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In the field of chaotic time series analysis, there is a lack of a distributional theory for the main
quantities used to characterize the underlying data generating process (DGP). In this paper a method
for resampling time series generated by a chaotic dynamical system is proposed. The basic idea is
to develop an algorithm for building trajectories which lie on the same attractor of the true DGP,
that is with the same dynamical and geometrical properties of the original data. We performed some
numerical experiments on some short noise-free and high-noise series confirming that we are able to
correctly reproduce the distribution of the largest finite-time Lyapunov exponent and of the correlation
dimension.
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1. Introduction

A typical problem in statistical data analysis is the estimation of
an unknown quantity θ from a given sample. For time series, θ
could be for instance the mean, the variance or the autocorre-
lation at a specified lag. For chaotic time series, it could be the
average rate of divergence of nearby trajectories, the dimension
of the attractor or the entropy of the data generating process
(DGP).

Two main questions that immediately follow are: what esti-
mator θ̂ for θ has to be used; and, after having chosen a specific
θ̂, how accurate it is. In other words, together with the choice of
a ‘good’ estimator, it is generally of fundamental importance to
be able to give a measure of its accuracy. There are two ways to
accomplish this task: deriving formulas via analytical argument
(often difficult or too complicated) based on assumptions (of-
ten unrealistic and unverifiable), or making use of resampling
techniques.

Following Simon and Bruce (1993), by resampling procedures
we mean “...a collection of computer intensive methods to use
experimental data to obtain different estimates of a statistics or
underlying distribution”, with (possibly) minimal assumptions.
Roughly speaking, they are computer-based methods, which

substitutes considerable amounts of computation in place of
theoretical analysis for assigning measures of accuracy to sta-
tistical estimates. Jackknife and bootstrap are the most known
and widely used resampling methods (Efron and Tibshirani
1993).

In the field of chaotic time series analysis the inferential com-
ponent is often completely absent. Many works (see Geist et al.
(1990), Cutler (1993), Kurths et al. (1995) and the references
therein) focus their attention on the estimation of quantities
which characterize chaotic systems from a dynamical or geo-
metrical point of view (the Lyapunov spectrum, the fractal di-
mension and some complexity and entropy measures) but none
of them, with few exceptions, are worried about the necessity of
assessing a significance level for the estimated quantities.

Consequently, these estimations are of little or no use for prac-
tical purposes. For instance in the case of the largest Lyapunov
exponent λ1, a strictly positive value is, from a theoretical point
of view, a strong indication of the presence of a chaotic DGP,
but, from a practical perspective, without a confidence region
or a test of hypothesis, it does not tell us whether this is due
to an accidental cause or whether it correctly reflects one of
the properties of the dynamical system. Lai and Chen (1995),
Gencay (1996), Bailey et al. (1997), Golia and Sandri (1997)
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and Ziehmann et al. (1998) represent the first contributes in this
area. Starting from an idea contained in the works of Farmer
and Sidorowich (1988) and Casdagli (1992), the present work
tries to give an answer to this problem, proposing a deterministic
resampling algorithm (DRA) for chaotic time series, based on
local neural approximations of the DGP.

One important remark is necessary. We warn the reader
against classifying our algorithm as a surrogate data method
(Theiler et al. 1992). In fact the aim of the latter technique is to
test the null hypothesis that the underlying DGP is of a specified
type, for example white noise. For this purpose, the method starts
generating surrogate data, that is a set of time series which are
similar to the observed data but consistent with the null hypoth-
esis. Then it computes a discriminant statistic for the original
and the surrogate data sets which allows one to decide if the null
hypothesis has to be accepted or not. Our aim here is completely
different. We do not consider this kind of hypothesis testing. Pro-
ducing an arbitrary number of resampled series which mimic the
deterministic behavior of the underlying DGP, we want to supply
density estimations for the estimated statistics.

The paper is organized as follows. In Section 2 we present
some basic definitions which will be used in the next sec-
tions. After a short review of the main methods for time se-
ries bootstrapping and after considering their inability to resam-
ple chaotic trajectories, Section 3 presents the main ideas upon
which the proposed DRA is founded. A detailed description of
the algorithm is given in Section 4. In Section 5, we discuss under
what conditions the randomness shown by the bootstrap estima-
tors is a meaningful approximation of the ‘real’ randomness
which characterize the estimates of the parameters of interest.
In Section 6, we test our deterministic resampling algorithm on
time series yielded by the Lorenz model with and without addi-
tive noise, and on the geophysical Southern Oscillation Index.
Conclusions follow in Section 7. Descriptions of neural networks
and the time delay method are briefly given in the Appendix.

2. Some basic notions

An m-dimensional differentiable dynamical system is a time
evolution defined by an evolution equation (continuous-time
case)

ẋ = F(x), x ∈ Rm,

which yields a smooth function f t (x), the flow, such that
d
dt ( f t (x))t=τ = F( f τ (x)) for all τ ∈ R, or by a map (discrete-
time case)

xt+1 = f (xt ), x ∈ Rm,

where f or F are differentiable functions and t ∈ N.
The point x is a periodic point of period n if f n(x) = x .
We say f : D → D is topologically transitive if for any open

sets U, V ⊂ D there is a n such that f n(U ) ∩ V 	= ∅.

f : D → D displays sensitive dependence on initial
conditions (SDIC) if there exists δ > 0 such that for any x in D
and any neighborhood V of x , there exists a y in V and n ≥ 0
such that d ( f n(x), f n(y)) > δ, where d is a distance defined
on D. It means that orbits with close initial conditions, will
diverge after a small number of steps.

If V ⊆ D is a set, then f : V → V is chaotic on V if (1) f has
SDIC (2) f is topologically transitive and (3) periodic points are
dense in V (Berliner 1992). The quantities most frequently used
to characterize the dynamics of a chaotic system are the correla-
tion dimension and the Lyapunov exponents. They measure the
degree of geometrical complexity of the attractor and the degree
of dynamical instability of the trajectories respectively.

The correlation dimension, dcorr, is defined by

dcorr = lim
ε→0

log C(ε)

log ε
(1)

where C(ε) is

C(ε) = lim
N→∞

1

N 2
CN (ε)

where N is the number of available points and CN (ε) is the
number of pairs of points on the attractor whose distance from
one another is less that ε. The correlation dimension depends on
the spatial correlation of points on the attractor and thus on the
degree of its inhomogeneity. Moreover, it gives information on
the minimum number of variables present in the evolution of the
corresponding dynamical system (Grassberger and Procaccia
1983).

The Lyapunov exponents λi are measures of the average rate
of divergence or convergence of typical trajectories in time. If the
initial state of a time evolution is perturbed, even only slightly,
the exponential rate at which the perturbation increases, or de-
creases, with time is called the Lyapunov exponent. The largest
Lyapunov exponent is given by

λ(x, w) = lim
t→∞

1

t
ln ‖Dx f t (x) · w‖ (2)

for almost any vector w, where Dx f t (x) is the derivative of f t in
x (Benettin et al. 1980, Eckmann and Ruelle 1985). Henceforth
we will use λ1 instead of λ(x, w). The multiplicative ergodic
theorem of Oseledec (1968) ensures that (2) exists and does not
depend on the specific initial condition chosen. The other expo-
nents can in principle be obtained by diagonalizing the positive
matrices D∗

x f t Dx f t , where D∗
x f t is the adjoint of Dx f t , and

using the fact that their eigenvalues behave like e2tλ1 , e2tλ2 , . . . .
In terms of information theory the largest Lyapunov exponent
λ may be interpreted as giving the rate of loss of information
about the location of the initial point. If the largest Lyapunov
exponent is positive, then this is one of the main signatures of
chaos. This notion can also be extended to stochastic dynamical
system (see Tong 1995).

Many methods were proposed in literature to estimate dcorr

and λ1 (see Geist et al. 1990 and the references therein, Brown
et al. 1991, McCaffrey et al. 1992). In this paper we will use the



A resampling algorithm 243

Grassberger and Procaccia (1983)’s estimator for dcorr and the
Rosenstein et al. (1993)’s estimator for λ1.

Using a finite-precision computer in order to numerically cal-
culate the orbits of a chaotic dynamical system, it is inevitable
to introduce at any step of the computation small truncations
or rounding errors which will be greatly magnified by SDIC in
the future evolution of the system. This leads to a fundamen-
tal paradox: the true orbit starting from an initial condition x0

can be expected to have no correlation with the numerical orbit
starting from the same x0 after few steps. Moreover, it has been
shown that numerical experiments can sometimes yield dynam-
ics which are qualitatively completely different from the true
ones. For instance, Corless et al. (1991) show that the implicit
Euler method can, for large enough step size, artificially stabilize
truly unstable fixed points and completely destroy any possible
chaotic attractors. Conversely, Lorenz (1989) gives examples of
chaotic behavior which occurs when difference equations, used
as approximations to ODEs, are solved numerically with an ‘ex-
cessively’ large time step. Corless et al. (1991) also show that
floating-point simulation of a discrete map with a globally at-
tracting fixed point at the origin can appear chaotic, for extremely
long time, purely due to rounding error effects. An interesting
review on numerical problems for chaotic dynamical systems is
Corless (1994).

Therefore, a fundamental question arises: under what con-
ditions will the computed orbit be close to a true orbit of the
model? This is equivalent to ask if the dynamical system has the
so-called shadowing property (or pseudo orbit tracing property,
POTP).

A sequence of points {xt }t>0 in Rm is called an orbit of
the dynamical system f if xt+1 = f (xt ) = f t+1(x0), where
f t = f ◦ f ◦ · · · ◦ f (t times). Note that an orbit, often referred
to a true orbit in contrast with the notion of pseudo orbit, can
be completely identified by the couple { f, x0}. Moreover, a
piece of orbit of length N {xt }N

t=0 is identified by the triplet
{ f, x0, N }. In fact, given an initial condition x0, the future
evolution of the system is completely defined. Alternatively, a
true orbit can be seen as a single realization (defined by x0) of
the deterministic process f . A δ-pseudo orbit is a sequence of
points {x0, x1, . . .} which satisfies d( f (xt ), xt+1) ≤ δ for every
t ≥ 0. We say that f has the shadowing property if for every
ε > 0, there is a δ > 0 such that every δ-pseudo orbit can be
ε-shadowed by an actual orbit, i.e. there is an initial condition
x̃0 such that d( f t (x̃0), xt ) ≤ ε for all t ≥ 0.

To prove the existence of the shadowing property is not an
easy task. The earliest result in this field is the Shadow Lemma
by Anosov and Bowen, which proved that hyperbolic maps have
the POTP. In the last decades, many other works on shadow-
ing appeared in the literature. They prove the existence of the
POTP for many classes of non-hyperbolic dynamical systems.
Diamond et al. (1995) state that semi-hyperbolic systems have
the shadowing property (and a stronger form of shadowing
called bi-shadowing). Pilyugin and Plamenevskaya (1999) show
that POTP is a property of generic homeomorphisms. Reinfelds
(1997) extends the shadowing property to the discrete semidy-

namical systems generated by a continuous map in a complete
metric space. Without assuming hyperbolicity, Sauer and Yorke
(1991) prove that, as long as the system is ‘sufficiently’ hy-
perbolic along the finite-length computed trajectory { f, x0, N },
then { f, x0, N } can be shadowed by a true trajectory. The proof
of this theorem is constructive and particularly interesting be-
cause it shows that, under the conditions of the theorem, the
iterated application of a specific refinement procedure on the
original pseudo orbit, results in a sequence of refined pseudo or-
bits with decreasing noise level, and whose limit is a true orbit.
Dawson et al. (1994) and Yuan and Yorke (1999) find conditions
for nonshadowability. The brittleness B of a pseudo trajectory
{xt }N

t=0 is the ratio of shadowing distance ε over the magnitude of
the one-step error δ, that is B = ε/δ. A necessary condition for
shadowability is that the brittleness times the error magnitude
of the pseudo trajectory is smaller than the extent of the attrac-
tor in phase space (Dawson et al. 1994). Many other important
contributions to the field of numerical computation of chaotic
orbits are collected in Kloeden and Palmer (1994).

Sometimes a numerical orbit is ε-shadowed by a true one only
for a finite number of steps. We say that a pseudo orbit {xt }N

t=0
has a glitch at the n-th step, n < N , if {xt }n

t=0 can be shadowed
but {xt }n+1

t=0 can not. Consider one of the simplest examples of
glitch: the one-dimensional logistic map xt+1 = 4xt (1 − xt ) and
the δ-pseudo orbit which begins with x0 = 0.5 (Fig. 1).

Let assume the following step is x1 = 1 + δ and from then
on the δ-pseudo orbit is computed without errors. Clearly
x2 = 4(1 + δ)(−δ) < 0, the pseudo orbit diverges to −∞ and
no ε-shadowing true orbit exists. Sauer and Yorke (1991) con-
jecture that one expects a glitch to occur on the order of every
1/

√
δ steps. See also the results reported in Sauer et al. (1997).

In the next sections we will show that the shadowing property
plays a crucial role in the resampling scheme we are going to
propose. As a matter of fact, it is one of the necessary requisites
to ensure that the resampled time series stay close to true orbits
of the unknown dynamical system.

3. Resampling chaotic time series

A frequent practical problem that one must face in the analy-
sis of chaotic time series is the estimation of some invariants θ
(like dcorr and λ1) using, for instance, one of the estimators men-
tioned in the previous section. A key feature must be pointed
out: pieces of trajectory { f, x0, N } with equal length N , starting
from different initial conditions lead to different values of the
estimators θf (x0, N ) and the smaller N is, the more its variabil-
ity is marked. In the case of the Lyapunov exponent, this fact is
due to the presence of regions of the phase space characterized
by different levels of the rate of contraction/expansion of the tra-
jectories. In other words, the estimators assume different values
due to the choice of different initial conditions x0. Thus, even if
we are working in a purely deterministic context, it is correct and
convenient to consider them as random variables with their own
probability distributions (Nychka et al. 1992, Berliner 1992).
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Fig. 1. Example of glitch for the logistic map

For chaotic as well as stochastic processes, it is funda-
mental to quantify the variability of the estimates, construct-
ing, for example, confidence intervals. However, trying to de-
rive analytically the sample distribution of the estimates in
many cases is a very complex and difficult task. Bailey et al.
(1997) present a central limit theorem for local Lyapunov ex-
ponents in stochastic systems whose state-space representation
is

xt+1 = f (xt ) + εt , (3)

where f is a deterministic map and {εt } is a sequence of i.i.d.
random variables. An other asymptotic result concerning the
estimate of the Lyapunov exponent λ1 in the case of unidimen-
sional maps is given by Lai and Chen (1995).

The alternative is to use a data-resampling method or boot-
strap.

In a general probabilistic situation, one can summarize the
bootstrap method following the scheme proposed by Efron and
Tibshirani (1986) (see Fig. 2): suppose we have a sample X =
{xt }N

t=1 yielded by a statistical model P and let θP (X, N ) the
statistics of interest. The first step in the bootstrap is to estimate
P with data X. Let X∗ be a bootstrap data set generated from the

estimated model P̂ . The conditional distribution of θP̂ (X∗, N )
given X is then the bootstrap estimator of the distribution of
θP (X, N ).

The original jackknife and bootstrap were developed for inde-
pendent and identical distributed data, so they cannot be roughly
applied to non-i.i.d. cases like time series and other dependent
data. For this purpose, a special class of bootstrap methods for
stationary time series has been developed in the last decade. Two
different approaches can be identified. The first is a parametric
model-based approach, which is founded on the idea of fitting
parametric models first and then resampling from the residu-
als (Efron and Tibshirani 1993). On the contrary, the second
approach is based on a nonparametric, purely model-free boot-
strap scheme. One of the earliest non parametric methods is the

Fig. 2. Diagram of the bootstrapping process in a probabilistic
framework
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grouping bootstrap proposed by Carlstein (1986). Lai and Chen
(1995) apply this scheme to estimate the empirical distribution
of an estimator of λ1 for chaotic time series.

A more efficient non parametric method is the blockwise or
moving block bootstrap developed by Künsch (1989). Künsch’s
idea is to resample overlapping blocks of consecutive observa-
tions and to concatenate the selected blocks. All the same, the
series obtained in this way show artifacts which are caused by
joining randomly selected blocks, so the serial dependence is
preserved within, but not across, the blocks. Developments of
this method are in Politis and Romano (1994) and in Carlstein
et al. (1998). Another promising methodology is the sieve boot-
strap, recently proposed by Bühlmann (1997).

Lall and Sharma (1996) introduce a methodology called
nearest neighbor bootstrap which makes use of the time delay
method and the nearest neighbor techniques. After reconstruct-
ing the series in a d-dimensional phase space using the method
of delay (see Appendix), the algorithm starts choosing an initial
point xt and the relative k-nearest neighbors {xti }k

i=1. The k suc-
cessors of these points, say x(t+1)i , are then resampled according
to a discrete kernel K and a new vector xt+1 is produced. The
successors of the k-nearest neighbors of xt+1 are subsequently
resampled giving xt+2, and so on. This method does not need
prior assumptions on the form of the dependence or the form
of the probability density function and it seems to be able to
preserve the dependence structure in many real cases, like hy-
drologic time series.

In general, all these methods, even if they have a validity in
the stochastic ambit, do not seem to be applicable to time series
yielded by a chaotic DGP. As a matter of fact, the application of
these bootstrap schemes to deterministic time series produces
series in which the original dynamics is partially or completely
destroyed. Lall and Sharma (1996)’s method, for example, which
seems at first sight the most suitable among all, actually leads,
step after step, to ‘jump’ randomly from an orbit to a nearby one,
producing time series which look like noisy chaotic orbits. This
is the same as inserting a spurious randomness in the bootstrap
estimation of the sample distribution of θ f (x0, N ).

At our knowledge, there are only few works which propose
specific bootstrap techniques for chaotic time series. Gencay
(1996) bootstraps the points in the reconstructed phase space
rather than in the time domain and, from a certain point of view,
this is equivalent to a moving block bootstrap. Ziehmann et al.
(1998) show the inappropriateness of Gencay’s method for de-
pendent data and propose an alternate bootstrap scheme (the
dynamically conditioned bootstrap) for aleatoric systems as (3).

Here we propose a completely different approach. Following
the scheme of Fig. 2, it can be summarized as follows (see Fig. 3):
the sample data set X(x0) ≡ { f, x0, N } = {xt }N

t=0 is the piece of
orbit starting from x0 with length N , yielded by the unknown
deterministic model f , and θ f (x0, N ) is the statistics of interest.
The first step in our resampling method is the estimation of f
using the data set X(x0). The resampled data sets X∗ are then
generated using the estimated model ˆf . Taking into account that
the variability of θ f (x0, N ) depends on the piece of the observed

Fig. 3. The resampling procedure for chaotic time series

orbit and, by consequence, on the initial condition x0, we yield
the bootstrap data sets X∗(x0 j ) ≡ { ˆf , x0 j , N } = {x∗

t }N
t=0 choosing

a suitable set of different initial conditions x0 j and iterating N
times the model ˆf :

x∗
t = ˆf (x∗

t−1) = ˆf ◦ ˆf ◦ · · · ◦ ˆf (x0 j ).

In the next section we give a detailed description of the algorithm
together with an overview of the methods for the optimal choice
of its parameter values.

4. The algorithm

As sketched in the previous section, our data-resampling method
is composed by three fundamental steps:

1) the estimation of the flow or map ˆf
2) the proper choice of a set of initial conditions {x0 j }M

j=1

3) the calculation of the orbits which start from {x0 j }M
j=1 by

repeated applications of ˆf , X∗(x0 j ) = {x∗
t }N

t=0.

Regarding the estimate of f , it is possible to choose between
global or local models (Farmer and Sidorowich 1988) and be-
tween linear and nonlinear models. In the present work, we adopt
a nearest neighbor neural model, i.e. a nonlinear, local model.
As shown in the next section, this model offers some important
advantages.

Regarding the second stage of the algorithm, assuming the
ergodicity of the dynamical system under study, the choice of
the initial conditions is not problematic, and it does not need to
be random (Berliner 1992). Taking into account that the x0’s have
to stay into the basin of attraction of the system, we preferred
to choose them randomly selecting one of the N points of the
sample orbit and adding a ‘small’ random disturbance η.

Given ˆf x, the local estimator of f at the point x, the j-th
resampled orbit starting from x0 j is X∗(x0 j ) = {x∗

t }N
t=0, where

x∗
t = ˆf x∗

t−1
(x∗

t−1). In order to avoid transients, we always discard
the first nT iterations.

The proposed deterministic resampling algorithm can be de-
scribed in details as follows:

1. Starting from the observed time series {yt }N
t=1, use the time

delay method to build the points xt ∈ Rd in the reconstructed
phase space, where xt = {yt , yt+τ , yt+2τ , . . . , yt+(d−1)τ }, d is
the embedding dimension and τ is the time delay (see a brief
description of the method in the Appendix).

2. Choose an initial condition x0.
3. Look for the k closest points to x0, {xni }k

i=1, i.e. find the k
points which minimize the distance from the reference point
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x0; this set of points represents the total input of the neural
network.

4. Select the successors {xni +1}k
i=1, i.e. find the k points in the

phase space which correspond to the evolutions of the dynam-
ical system starting from the set of points {xni }k

i=1 selected
in step 3; this set of points is the total output of the neural
network.

5. Locally estimate the flow f fitting a neural model ˆf x0 to the
two sets of points in Rd calculated in steps 3 and 4.

6. Put x0 in the input of the network and calculate x∗
1 = ˆf x0 (x0);

this is the first point of the new orbit which is going to be
constructed.

7. Go back to 3, look for the k nearest points of x∗
1, estimate

ˆf x∗
1
, compute x∗

2 = ˆf x∗
1
(x∗

1), and so on.

The parameters involved in the deterministic resampling algo-
rithm are the number h of hidden units of the neural network,
the time delay τ , the embedding dimension d and the number of
nearest neighbors k.

One of the most important problems encountered in the prac-
tical application of neural networks is to find a suitable minimal
topology. In fact, too large a value of h increases the time re-
quired by the training procedure, may cause non-convergence of
the error-minimization algorithm and usually decreases the gen-
eralization capabilities of the network. Pruning methods are a
basic approach to find optimal network topologies. The idea be-
hind these methods is to remove neurons or connections (during
or after the training process) according to an optimality criteria.
Optimal Brain Damage and Optimal Brain Surgeon represent
two popular pruning procedures (see Thimm and Fiesler 1997).
White (1992) gives useful indications on the choice of the opti-
mal number of neurons as a function of the sample size N .

The proper choice of the time delay τ , together with the em-
bedding dimension d, is of great importance in the process of re-
construction of the attractor. For small τ the dynamics take place
on the hyper-diagonal of the embedding space so xt and xt+τ be-
come almost linear dependent which is not the case for the real
observables of a nonlinear system. Too large a τ causes the co-
ordinates to disjoin by the stretching and folding, so the charac-
teristic structures tend to disappear. There are many methods for
choosing τ (see Rosenstein et al. 1994). Usually a good choice
is based on mutual information (Fraser and Swinney 1986). If
d is selected too small, there could be intersection problems for
the orbits, so points which seem near, are actually very far; if d is
chosen too big, this reduces the density of the utilizable points.
The method of false nearest neighbor is often used for choosing
the right d (Kennel et al. 1992).

With regard to k, it is important to be reminded that the choice
of too small a k involves difficulties in the estimation of f with
the neural net, in fact few points of input and output are used,
so the estimation becomes more approximate and rough. On the
contrary, too big a k introduces an error in the estimation of f
caused by having to consider points which are actually very far
from the reference one.

Because our target is to minimize the approximation errors
in the estimation of f , we prefer to choose jointly the embed-
ding dimension d and the number of nearest neighbors k. One
criterium is to minimize the one-step prediction error on an
out-of-sample testing set. The data set is divided in two sets of
unequal length. The larger one is called training or learning set
and is used to estimate the parameters of the local neural net-
works. The forecasting performances of the networks are tested
on the second set, called testing set. In other words, for different
values of d and k, one fits the neural model to the learning set and
then estimates the forecasting error on the out-of-sample test-
ing set. The optimal d and k correspond to the minimum of the
error function. Being aware of the potentially dangerous effects
of data splitting (LeBaron and Weigend 1997), we repeated the
calculus of d and k for different splitting of the sample series.

5. Theoretical basis

A theoretical question must be faced here: beyond the empiri-
cal evidence (shown in section 6), is it correct to state that our
method is able to produce resampled orbits with the same dy-
namical and geometrical properties of the true DGP? In other
words, under what conditions does the algorithm correctly ap-
proximate the real randomness of the estimators of interest?

Let us consider the problem using three different levels of
abstraction:

1) f is known and calculations are made by an infinite-
precision computer.
Under these (unrealistic) conditions, our algorithm produces,
for each randomly chosen initial condition x0 j , resampled
series {x∗

t }N
t=0, where x∗

t+1 = f (x∗
t ) and x∗

0 = x0 j , which are
true orbits of the underlying DGP. Hence, the distribution
of the estimator θf (x0, N ) is exactly reproduced. It is worth
pointing out that, because f is known, this is merely a Monte
Carlo experiment.

2) f is known and calculations are made by a finite-precision
computer.
Under these conditions, iterating f , our algorithm produces
δ-pseudo orbits {x∗

t }N
t=0, x∗

t+1 = f (x∗
t ) + δt , where δt repre-

sents numerical noise due to truncation or rounding errors
made by the finite-precision computer at any step. For dy-
namical systems in continuous time, where usually only the
vector field F is known and solutions often cannot be ob-
tained in closed form, δt also includes the discretization error
induced by the integration method (e.g. Euler’s or Runge-
Kutta methods).

Here we need to guarantee that each resampled series can
be legitimately considered as the product of the underlying
DGP. The first requirement is therefore the condition that
true orbits ε-close to the computed δ-pseudo orbits exist.
As stated in section 2, this is true is f has the shadowing
property. However, shadowing by itself is not quite enough
to ensure that the resampling scheme is working correctly.
The true orbits doing the shadowing must also be, in some
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Fig. 4. Robustness to glitches in the case of a) a global estimator ˆf and b) a local one

sense, typical orbits. Briefly, typical or generic orbits are the
ones that generate the invariant distribution of the system
and that start from a measure-one set of initial conditions.
McCauley (1994) correctly points out that this set is the class
that would theoretically occur with absolute certainty if one
could make a truly random draw of numbers, with infinite
precision, from the continuum. Therefore, while typical tra-
jectories are pervasive in natural experiments (and are the
only observable ones), they could not be observable in nu-
merical experiments. Unlike shadowability, the study of the
conditions under which shadowing orbits are typical is still in
its infancy (see McCauley 1994 and the references therein).

Another fundamental question that must be considered is
the dependence of ε on δ, which in turn influences the rate
of convergence of our bootstrap approximations. When a
Lyapunov exponent fluctuates about zero, Sauer et al. (1997)
find that ε follows a power law distribution c ·ε−2m/σ 2

, where
m and σ are the mean and the standard deviation of the time-
1 Lyapunov exponent closest to zero. In other words, the
greater the finite time fluctuation about zero, the smaller the
power law exponent, resulting in large shadowing distances.

As in the previous case, one must note the coincidence
between our resampling algorithm and a Monte Carlo repli-
cation scheme. This means that the problems discussed above
(shadowability, ‘genericness’ of shadowing orbits) are com-
mon to any numerical experiments and not a specific weak-
ness of our DRA.

3) f is unknown and the estimated ˆf is used in place of f .
Iterating ˆf , our algorithm generates resampled orbits which
are pseudo orbits {x∗

t }N
t=0, x∗

t+1 = ˆf (x∗
t ) = f (x∗

t )+δt , where
δt represents the truncation or rounding errors plus the error
due to the approximation of f by ˆf .

As stated above, the correct functioning of the DRA
depends on the following two conditions: 1) f must have the

POTP and 2) the shadowing orbits must be typical. However,
in this case, they are not sufficient. Two other requirements
must be imposed. First, the estimator ˆf has to be more and
more close to f as N grows, that is ˆf must be a consistent
estimate of f . This ensures that, as N grows, the probability
of approximation error exceeding any special level, tends
to zero. Moreover, the piece of orbit which represents our
sample data must belong to a true typical trajectory of the
underlying DGP or must belong to a pseudo orbit shadowed
by a true typical orbit. In other words the sample has to be
representative.

Therefore, the crucial question here is not, as erroneously
stated by Farmer and Sidorowich (1988) p. 316, to get
‘good’ forecasts of the true trajectories starting from the
randomly chosen initial points x0j . This is a particularly
strong condition when treating chaotic DPGs because ‘good’
forecasts are only possible for short time periods and, for
our purposes, it is quite unimportant if each resampled
series X∗(x0j ) starting from a given initial condition x0j

moves close or not to the true orbit X (x0j ) starting from
the same point. Rather, we need a ‘good’ approximation
of the flow or map f which, together with ‘typical’ POTP,
guarantees that the resampled trajectories X∗(x0j ) stay
ε-close to typical true orbits (usually unknown).

When f is unknown and only a sample series {xt }N
t=0

is available, testing the presence of POTP is a challenging
task. The first strategy one can follow is to test if one of
the conditions for nonshadowability is present (for example
the presence of a finite time Lyapunov exponent fluctuating
around zero). Secondly, one could try to verify, through
suitable tests (see for example the statistics for continuity
of Pecora et al. 1997), if f has one of the properties which
assures the shadowability (for instance, f is an homeo-
morphism).



248 Golia and Sandri

The choice of a neural estimator is motivated by two
properties. First, the feedforward neural networks can
approximate virtually any function of interest to any desired
degree of accuracy, provided many sufficiently hidden units
are available. In other words, this kind of neural network
represents a class of universal approximators (Hornik et al.
1992). Secondly, White (1992) demonstrates that, under
mild conditions, feedforward neural networks are consistent
estimators of f . In the specific context of chaotic dynamics,
neural networks are found to be competitive with the best of
the approximation methods in the construction of a nonlinear
map from a given time series as well as in the recovering of
the derivatives of a nonlinear map (Gallant and White 1992).

Moreover, we have decided to use a local model instead
of a global one because it shows itself to be more ‘robust’
in the presence of glitches. Recalling the example of
Fig. 1, consider a global estimator of the logistic map f .
Suppose to avoid numerical errors and of overestimate f in
a neighborhood of the glitch x0 = 0.5. Fig. 4(a) shows that,
if the resampled trajectory enters within the neighborhood
U0 of x0 (whose amplitude depends on how much we
overestimate f ), we have ˆf (x0) > 1 and the orbit diverges
to −∞, loosing shadowability.

Consider now a local estimator (see Fig. 4(b)). Let
U0 ⊂ [0, 1] be the set of the k-nearest neighbors of the
glitch x0 and U1 ⊂ [0, 1] the set of the one-step evolutions

Fig. 5. Root mean square prediction error as a function of the embedding dimension d and the number of nearest neighbors k

of these k points. Our local estimator is therefore a map
ˆf x0 : U0 → U1. This means that, in spite of the presence

of the glitch, ˆf x0 (x0) belongs to U1 and the resampled orbit
will never diverge, (hopefully) continuing to be close to a
shadowing orbit.

6. Applications

In this section we present some applications of the proposed al-
gorithm to the Lorenz flow, which owns the shadowing property
(see Coomes et al. 1995), and to a real time series. In Golia and
Sandri (1997) the algorithm was tested on the logistic map.

The first application concerns a series of 1000 points (as in
common real situations, we prefer to test the method on a rel-
atively short time series) generated by the noise-free Lorenz
dynamical system:

ẋ = σ (y − x)

ẏ = Rx − y − xz

ż = −bz + xy

with σ = 16, R = 45.92, b = 4. The values of the correlation di-
mension and the largest Lyapunov exponent are approximately
dcorr = 2.06 and λ1 = 1.50 respectively. Setting τ = 5 and h = 5,
in Fig. 5 we trace the root mean square (one-step) prediction
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Fig. 6. a) Time series yielded from the Lorenz model and b) its 2D reconstruction c) Time series simulated by the proposed method and d) its 2D
reconstruction

error (RMSPE) as a function of the embedding dimension d
and of the number of nearest neighbors k. It is evident that the
optimal parameters are d = 3 and k ≈ 80.

Figure 6 shows the true and a resampled series plotted in the
time domain and in the 2-dimensional reconstructed phase space
respectively. From a qualitative point of view, no remarkable
discrepancies are evident.

The power spectra of the true and resampled series are shown
in Fig. 7. One can see that they have approximately the same
shape. For high frequences the spectrum of the resampled series
shows a shift due to the presence of the resampling noise δ.

In Fig. 8 the box-plot of the autocorrelation estimates for
200 true Lorenz series and 100 resampled series are compared.
The autocorrelation structure of data seems correctly reproduced
together with the distributional properties of estimates.

Using Grassberger and Procaccia (1983)’s estimator for dcorr

and Rosenstein et al. (1993)’s estimator for λ1, we calculate the
Lyapunov exponent and the correlation dimension for the 200
true and 100 resampled time series. In Table 1 we propose some
descriptive statistics for the Lyapunov exponent and correlation
dimension estimations: the sample median, mean and standard
deviation.

Table 2 shows some percentiles of the empirical distributions
of λ̂1 and d̂corr estimated by the true and resampled Lorenz series
respectively.

Fig. 7. a) Power spectra of a noise-free Lorenz series and b) of a re-
sampled one
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Table 1. Descriptive statistics of based on 200 Lorenz replications and on 100 resampled Lorenz replications respectively

Median Mean Std. Dev.

Lyapunov Exponent ‘True’ Replications 1.49 1.50 0.35
Resampled Replications 1.50 1.54 0.37

Correlation Dimension ‘True’ Replications 1.90 1.91 0.22
Resampled Replications 1.88 1.90 0.15

Table 2. Percentiles of λ̂1 and d̂corr based on 200 Lorenz replications and on 100 resampled Lorenz replications respectively

2.5% 5% 10% 16% 50% 84% 90% 95% 97.5%

λ̂1 ‘True’ Rep. 0.88 0.93 1.02 1.16 1.49 1.84 1.96 2.11 2.24
Resampled Rep. 0.86 0.99 1.11 1.24 1.50 1.89 2.18 2.28 2.35

d̂corr ‘True’ Rep. 1.56 1.64 1.68 1.73 1.896 2.05 2.12 2.21 2.53
Resampled Rep. 1.64 1.66 1.73 1.77 1.88 2.01 2.06 2.11 2.22

Fig. 8. Box-plot of the autocorrelations for a) 100 true Lorenz time
series and b) 100 resampled ones

Table 3. p-values of the two nonparametric tests for Lorenz model

Equal location
parameters Equal distribution

Lyapunov Exponent 0.53 0.76
Correlation Dimension 0.65 0.33

As an extra confirmation that the values of the estimates of
the parameters λ1 and dcorr computed using the resampled series
are reproducing the real randomness of the chosen estimators
λ̂1 and d̂corr for the Lorenz model, we apply the following two
nonparametric tests: the Wilcoxon test (equal location parame-
ters) and the Kolmogorov-Smirnov test (equal distribution) (see
Conover 1980). On the basis of the p-values reported in Table 3
we can accept the whole set of hypotheses, within a significance
level of 5%.

The results give us confirmation that, in the present applica-
tion, the method is working correctly. We can therefore state that
the dynamical and geometrical properties of the resampled time
series and of the series generated by the DGP under study are
the same and the randomness of the estimators is preserved.

In the second experiment we consider a deterministic series
contaminated by a strong additive Gaussian white noise. The
data are yielded by taking the Lorenz series described in the
previous application and adding an i.i.d. Gaussian noise whose
variance σ 2

n is equal to the variance σ 2
s of the noise-free com-

ponent (SNR = 0dB). This is a particularly hard test which
allows us to explore the power of the proposed method on a
more realistic ground.

We do not directly apply the resampling procedure to the raw
series because we believe that the deterministic and stochastic
components of the data set cannot be subjected to the same re-
sampling ‘treatment’: while one can bootstrap the stochastic part
using one of the methods described in Section 3, the determin-
istic signal require a completely different ‘ad hoc’ resampling
scheme.
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Fig. 9. a) Noisy Lorenz time series and d) its 2D reconstruction, b) filtered Lorenz time series and e) its 2D reconstruction, c) resampled time
series from the filtered Lorenz series and f) its 2D reconstruction

Fig. 10. Box-plot of the autocorrelations for Lorfil and the 100 resam-
pled time series

In order to distinguish these two components we must face
here an identification problem. There is a large amount of litera-
ture on the subject, also for chaotic signal (see the review article
of Grassberger et al. 1993). In our simulations we use a non-
parametric filtering method called Singular Spectrum Analysis
(SSA) (see Broomhead and King 1986 and Vautard et al. 1992),
based on the classical principal component analysis. Choosing a

Table 4. Descriptive statistics of the 100 resampled filtered Lorenz
time series

Median Mean Std. Dev.

Lyapunov Exponent 1.51 1.53 0.53
Correlation Dimension 2.16 2.20 0.21

number of principal directions equal to 2 (Lisi et al. 1995), we di-
vide the noisy series, which we call Lornoise, in two components:

Lornoise = Lorfil + ε

where Lorfil is an estimate of the deterministic part of the
original series and ε represents the stochastic component. The
noisy Lorenz series, the filtered series and a resampled one,
together with their reconstructed 2-dimensional attractors are
plotted in Fig. 9.

Applying our deterministic resampling algorithm on Lorfil

with parameters d = 4, τ = 5, h = 5 and k = 20, we yield 100
time series. In the first step we compare the autocorrelation
structure for Lorfil and the resampled series.

The graph in Fig. 10 shows clearly how, in this case, such
structure is preserved by the resampling procedure. The esti-
mated values of the correlation dimension and the Lyapunov
exponent for Lorfil are: λ̂1 = 1.398 and d̂corr = 2.218. Table 4
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Table 5. Percentiles of λ̂1 based on 100 resampling filtered Lorenz replications

2.5% 5% 10% 16% 50% 84% 90% 95% 97.5%

0.64 0.78 0.88 0.98 1.51 2.00 2.14 2.52 2.59

Table 6. Percentiles of d̂corr based on 100 resampling filtered Lorenz replications

2.5% 5% 10% 16% 50% 84% 90% 95% 97.5%

1.90 1.93 1.98 2.01 2.16 2.41 2.51 2.61 2.68

shows the descriptive statistics of the same estimations corre-
sponding to the resampled series.

Then we want to draw a confidence interval for the estimated
values of λ1 and dcorr. In order to do that, we use the percentile in-
terval that is a confidence interval based on the percentiles of the
bootstrap distribution of the parameters (Efron and Tibshirani
1993). The 1 + 2α percentile interval is defined as

[θ̂%,low, θ̂%,up] = [
θ̂∗(α), θ̂∗(1−α)

]

where θ̂∗(α) is the 100·αth percentile of the bootstrap distribution.
Tables 5 and 6 show some percentile values for the estimations

of λ1 and dcorr.

Fig. 11. a) SOI time series and d) its 2D reconstruction, b) filtered SOI and e) its 2D reconstruction, c) resampled time series from the filtered
SOI and f) its 2D reconstruction

The 0.95 percentile interval for λ̂1 is [0.6374, 2.587] and the
0.95 percentile interval for d̂corr is [1.8975, 2.683].

In the last application we test our deterministic resampling
algorithm on a real time series: the monthly Southern Oscillation
Index (SOI) which measures the difference between the pression
level in Tahiti and Darwin Sea (Australia). The series contains
588 observations. A preliminary analysis of the data set shows
the presence of a deterministic signal contaminated by a high
amount of noise, a situation very similar to the 0 dB noisy Lorenz
series considered above. Applying the filtering method based
on SSA (number of principal directions p = 3, see Lisi et al.
1995), we get the series shown in Fig. 11(b). A resampled series
is plotted in 11(c).



A resampling algorithm 253

Fig. 12. Box-plot of the autocorrelations for the filtered SOI time series
and the 100 resampled ones

Table 7. Descriptive statistics of the 100 resampled filtered SOI time
series

Median Mean Std. Dev.

Lyapunov Exponent 0.0364 0.0357 0.007
Correlation Dimension 3.17 3.19 0.43

The deterministic resampling algorithm parameters for the
filtered SOI are: d = 5, τ = 5, h = 5 and k = 20. Again, we
yield 100 resampled time series and analyze the autocorrelation
structure of the filtered SOI series and the resampled ones (see
the box-plot of Fig. 12).

The sample median, mean and standard deviation of the esti-
mates of the largest Lyapunov exponent and of the correlation
dimension for the resampled series are shown in Table 7.

The corresponding estimates for the filtered SOI are: λ̂1 =
0.03523 and d̂corr = 3.227. We report the percentiles of λ̂1 and
d̂corr in Tables 8 and 9.

The 0.95 percentile interval for the largest Lyapunov expo-
nent is [0.0216, 0.0492]. The corresponding interval for d̂corr is
[2.3298, 4.0605].

Table 8. Percentiles of λ̂1 based on 100 resampling filtered SOI replications

2.5% 5% 10% 16% 50% 84% 90% 95% 97.5%

0.021 0.022 0.027 0.029 0.0364 0.042 0.045 0.047 0.049

Table 9. Percentiles of d̂corr based on 100 resampling filtered SOI replications

2.5% 5% 10% 16% 50% 84% 90% 95% 97.5%

2.33 2.54 2.77 2.84 3.17 3.59 3.79 3.89 4.06

7. Conclusions

In this paper we present a resampling algorithm for chaotic time
series. The basic idea is to develop a method for building trajec-
tories which lie on the same attractor of the underlying DGP, that
is series with the same dynamical and geometrical properties of
the original data.

The tests performed on short noise-free and noisy Lorenz
series confirm that our deterministic resampling algorithm cor-
rectly reproduce the distribution of the largest Lyapunov ex-
ponent, of the correlation dimension and of the autocorrela-
tion function. We can therefore give estimates of the confidence
intervals for these system invariants and throw the bases for
testing the hypothesis of chaoticity.

In the present work, we approximate the unknown flow mak-
ing use of local feed-forward neural networks. This is only one
of the many statistical instruments available for nonlinear model
estimation. Experimenting new and more advanced models (e.g.
the recurrent neural networks proposed by Mozer 1994) is an in-
teresting direction for future research.

Appendix

The reconstruction of the phase space is usually the first step
in the analysis of dynamical systems. The most widespread ap-
proach to this problem is the so-called time delay method be-
cause it is the most straightforward and the noise level is constant
for each delay component. It consists in using time delay coor-
dinates (see Broomhead and King 1986) to form the multiple
state-space vectors xt ∈ Rd .

Given a time series {xt }n
t=1, the reconstructed state of the sys-

tem at each time t is:

xt = {
xt , xt+τ , xt+2τ , . . . , xt+(d−1)τ

}
where τ is the time delay and d the embedding dimension for
the DGP under study. These vectors form points on a trajectory
in a d-dimensional space which is diffeomorphically related to
the actual phase space of the real DGP. This result is due to
Takens (1981) and it means that the reconstructed space, called
embedding space, is topologically equivalent to the original one
and the dynamical parameters are left invariant.
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Feed-forward neural networks are a class of nonlinear models
which are capable of approximating any continuous function f
uniformly on compacta, that is they are universal approximators.
This property makes neural models very appealing in nonlinear
regression. Moreover, under proper smoothness conditions on f ,
they permit to consistently estimate functionals of f , including
partial derivatives (Gallant and White 1991).

The input values x ∈ Rd (d is the embedding dimension) are
received by the d input units, which pass them to the hidden units
using a linear transformation determined by their connection
strength γij . Each hidden unit performs a nonlinear transforma-
tion on its total input, producing a total output using a sigmoid
function K (x), called activation function, which is the same for
all the hidden units. The network output O can be represented
as

O =
q∑

i=1

βi K

(
d∑

j=1

γi j x j + bi

)
(4)

where βi , with βi ∈ Rq , are the weights of the output produced
by every hidden unit, q is the number of hidden units, and bi is
the bias of the hidden units.

A great advantage of the neural nets is their robustness against
an incorrect choice of the model’s dimension d (in the chaotic
contest is the embedding dimension).

Acknowledgments

We wish to thank L.A. Smith and M. Spano for many use-
ful comments and suggestions. We also thanks R. Perli and
D. Pirrie.

References

Bailey B.A., Ellner S., and Nychka D.W. 1997. Chaos with confidence:
Asymptotics and applications of local lyapunov exponents. In:
D.C. Cutler and D.T. Kaplan (Eds.), Nonlinear Dynamics and Time
Series. Building a Bridge Between the Natural and Statistical Sci-
ences. American Mathematical Society, 115–133.

Benettin G., Galgagni L., Giorgilli A., and Strelcyn J.M. 1980.
Lyapunov characteristic exponents for smooth dynamical systems
and for Hamiltonian systems; a method for computing all of them.
Part 1: Theory. Part 2: Numerical application. Meccanica 15: 9–30.

Berliner L.M. 1992. Statistics, probability and chaos. Statistical Science
7(1): 69–122.

Broomhead D.S. and King G.P. 1986. Extracting qualitative dynamics
from experimental data. Physica D 20: 217–236.

Brown R., Bryant P., and Abarbanel H.D.I. 1991. Computing the
Lyapunov spectrum of a dynamical system from an observed time
series. Physical Review A. 43(6): 2787–2806.

Bühlmann P. 1997. Sieve bootstrap for time series. Bernoulli 3(2): 123–
148.

Carlstein E. 1986. The use of subseries values for estimating the vari-
ance of a general statistic from a stationary sequence. The Annals
of Statistics 14(3): 1171–1179.

Carlstein E., Do K., Hall P., Hesterberg T., and Künsch H.R. 1998.
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