
A Research Agenda
for Distributed Software Development

Bikram Sengupta
IBM Research

Block-1, Indian Institute of Technology,
Hauz Khas, New Delhi 110016, India

bsengupt@in.ibm.com

Satish Chandra
IBM Research

Hawthorne, NY, USA

satishchandra@us.ibm.com

Vibha Sinha
IBM Research

Block-1, Indian Institute of Technology
Hauz Khas, New Delhi 110016, India

vibsinha@in.ibm.com

ABSTRACT
In recent years, a number of business reasons have caused
software development to become increasingly distributed. Remote
development of software offers several advantages, but it is also
fraught with challenges. In this paper, we report on our study of
distributed software development that helped shape a research
agenda for this field. Our study has identified four areas where
important research questions need to be addressed to make
distributed development more effective. These areas are:
collaborative software tools, knowledge acquisition and
management, testing in a distributed set-up and process and
metrics issues. We present a brief summary of related research in
each of these areas, and also outline open research issues.

Categories and Subject Descriptors
 D.2.0 [Software Engineering – General]

General Terms
Management, Measurement, Performance

Keywords
Distributed software development, research agenda, collaboration,
knowledge management, testing, process, metrics

1. Introduction
During the last two decades, the management, development and
maintenance of software have evolved from being concentrated at
a single site to being geographically distributed across the globe.
This phenomenon is variously referred to as “global”,
“distributed” or “multi-site” software development. A number of
business reasons have contributed to this trend. To start with, the
global demand for software products and services beginning in
the late 1980s led to a flood of mergers and acquisitions, as IT
firms strived to penetrate new markets and complement their
product lines. At the same time, companies increasingly chose to

focus on core competencies and hand-off or “outsource” some of
the other necessary activities to firms specializing in those areas.
“Offshoring” brought in further benefits - availability of a large
pool of skilled labor, the prospect of being able to do round-the-
clock development, and most importantly, huge savings that could
be accrued through low labor cost in developing countries. For
example, a study by McKinsey [1] reports that the software
development costs in India are 4 times less than that in US and for
the period between 2003 to 2008 US savings from offshoring
would grow from $6.7 billion to $20.0 billion. Of course, the
process has also been aided by significant technological advances;
in particular, the explosive growth of the Internet, which often
makes distances irrelevant, and has made remote collaboration
increasingly practical. Little wonder then, that a study in 2000 [2]
revealed that 70% of US firms have outsourced some kind of
business process, and 203 of US Fortune 500 companies engage
in offshore outsourcing; or, that according to a Gartner Inc.
estimate [3] in 2004, up to 10% of the workforce in US tech
companies would be located in emerging markets by the end of
the year.

1.1 Challenges in Distributed Development
The perceived benefits notwithstanding, distributed development
of software is fraught with challenges. Previous literature (e.g. [4,
5]) has identified a number of these difficulties, which we briefly
discuss here. Many of the challenges that arise in practice can be
traced back to inadequate communication (particularly informal
communication) between team members separated by distance
and time-zone differences. In collocated projects, such
communication helps easy dissemination of project knowledge,
familiarizes individuals with the working styles of others, and
fosters greater understanding between team members. There is
very convincing evidence, however, that the frequency of
communication generally drops off sharply with physical
separation among coworkers’ offices [18, 35] and in a multi-site
environment such communication can be virtually non-existent.
Time-zone differences further worsen the situation, in many cases
significantly reducing the time-window for effective synchronous
communication between remote teams. Consequently, in
distributed projects, information flows are often irregular,
resulting in frequent misalignment and re-work [4]. Apart from
geographic separation, cultural differences [20] across sites also
impede easy communication. The primary spoken language may
vary from one site to another, or a common spoken language may
have subtle differences in meaning. Moreover, two sites may also
follow different corporate cultures [6] e.g. some companies have
well-defined hierarchies and associated protocols, while others

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE’06, May 20–28, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005…$5.00.

731

have a relatively flat organizational structure. Studies indicate that
distributed teams that are culturally divided may not be as
cohesive as local ones, and this may lead to less trust [24], poor
cooperation and ultimately, conflicts. These difficulties are
particularly telling for those software development activities that
are communication-intensive. For example, [5] reports on the
negative impacts of remote communication, cultural diversity and
time differences on the requirements analysis phase of the
software lifecycle.

Inadequate informal communication, lack of trust and cultural
differences are not the only challenges in distributed software
development. There are strategic issues, pertaining to the
distribution of work across sites; process differences that can lead
to problems in synchronization and system integration;
knowledge management challenges that impede timely sharing of
knowledge and reduce opportunities for re-use; and finally,
technical issues e.g. poor bandwidth, connectivity problems etc.
that can have a severe impact on the productivity of remote teams.

These challenges in distributed development often carry a heavy
penalty in terms of slowing down multi-site work e.g. [18] reports
that distributed work items take about two and one-half times as
long to complete as similar items where all the work is collocated.
Moreover, while the production costs might be low in distributed
software development, there are increased coordination costs
involved. The cost-benefit trade-offs in distributed development
have been a topic of interest to both researchers and practitioners
and a number of studies have been published on the same -
studying coordination in distributed software teams [8, 9, 10] and
geographically dispersed teams in general [11, 12, 13, 14].

1.2 Outline of this paper
As the above discussion - and also other references throughout
this paper - will indicate, there have been a number of academic
efforts relevant to different aspects of distributed software
development. These include studies of outsourcing trends in
specific geographies [2, 15] and economic implications of this
trend [16], to experience reports on distributed development
projects [17, 19], and summary of challenges observed [4], to
tools and methodologies that address specific remote development
challenges (e.g. [21, 28]).

Like many efforts in this area, our starting point was also a field
study that enabled us to gain rich feedback from distributed
development practitioners regarding the challenges they face, and
some of the best practices they have formulated to deal with these
challenges. Unlike previous efforts, however, we went a step
further to identify the core research issues behind the challenges;
thus instead of merely confirming previous reports about the
difficulties of cross-site communication, we wanted to consider its
implications on the next-generation software engineering tools.
As another example, while we wanted to report on the knowledge
management challenges we observed in outsourcing projects, we
also sought to explore research opportunities in combining the
information flow capabilities of structured and unstructured
project artifacts to aid knowledge migration.

The main contribution of this paper is thus not the findings of our
field study per se (which resonate with many of the previous
studies in this area), but rather a research agenda for distributed

software development that was synthesized from it. As part of this
agenda, we will summarize research efforts in each of the areas
identified but more importantly, we will also highlight some of
the open questions that warrant further investigation. To the best
of our knowledge, there has been no comparable effort towards
composing a broad research agenda for distributed development
based on field observations. We believe that such an agenda will
help focus the efforts of software engineering research community
to ensure that distributed development of software remains a
viable option in the long run.

The paper is structured as follows: in the rest of Section 1, we
report on our study of distributed software development in IBM,
introduce the research topics that emerged from the study, and set
its scope. Sections 2-5 then consider these topics in more detail.
Specifically, in Section 2, we explore research in the area of
collaboration and sharing tools for software development. Section
3 addresses issues related to application knowledge migration and
management. Research directions that can facilitate testing in a
distributed environment are addressed in Section 4. Section 5
investigates process and metrics issues in distributed
development. In Section 6 we summarize the main research items,
and conclude the paper.

1.3 Initial Study
At IBM Research, for more than a year we have been
investigating the challenges in distributed software development
through extensive interactions with global development
practitioners. Our proximity to development teams in India, who
are heavily involved in offshore development, placed us in a
favorable position to conduct such a study. A very typical setup in
a distributed project that we came across is shown in Fig. 1. This
involves a customer-facing team (comprising managers, business
analysts and senior architects) located somewhere in the US or
Europe (shown in the top left of the figure), and multiple
development teams (comprising system engineers, designers,
programmers and testers) in remote locations like India, China,
Brazil etc. (depicted by the remaining teams in Fig. 1). These
teams can belong to the same or different organizations. In
projects involving maintenance of legacy systems (a major share
of outsourcing projects), usually a team from the remote
development center visits the customer premises at the start of the
engagement, to absorb knowledge about the application. At the
end of knowledge acquisition, these “Onsite Trainees” carry back
application knowledge to the remote centers, as shown in Fig.1.
Project artifacts (e.g. code, documentation, test data etc.) are
shared with the remote teams. Subsequently, it is the
responsibility of the customer-facing team to closely interact with
the customer and elicit high-level business requirements. The
analysts then work with the system engineers in remote locations
to create concrete system requirements that would meet the
business needs. In addition, remote centers need to collaborate to
draw up “Interface Agreements” that specify how their modules
will interact. Development then proceeds across the different
teams, and periodically, work products from different sites are
integrated and validated.

During the study, we spoke to around 30 practitioners in different
roles across 14 projects. Both onsite (US and Netherlands) and
remote team members (based in India) were approached. The
discussions with the India team members occurred through face-

732

to-face meetings and phone calls. For the onsite teams,
teleconferences and follow-up e-mails were used. The primary
data collection technique was semi-structured interviews, guided
by questions like: “What are the different challenges you face in
your work due to the geographic distribution of your project?”,
“Which of these challenges have the greatest impact on your
work?” and “What tools and methodologies do you use to address
these challenges?”

Best Practices: We found that the teams have developed several
“best practices” to help address some of the well-known
challenges of distributed development. Since people aspects play
a very important role in distributed projects, managers usually
adopt early team-building measures (e.g. face-to-face meetings) to
create strong rapport between team members across sites. In fact,
successful multi-site projects had as much as 8 weeks of face-to-
face contact for training of key team members. In some cases,
when team members return to their own sites, they act as contact
people or liaisons, a practice that has also been reported elsewhere
[22]. While the liaisons may also help bridge cultural differences,
as a general rule, new team members are given some kind of
informal cultural training according to the requirements of the
project. Teams stressed on the need for consistent processes to be
deployed and examples of practices they found useful included
creating and maintaining a glossary of common terms, performing
code releases early and often, and using short cycle times to
ensure focus. We found that some teams have adopted interesting

optimization techniques e.g. use of an asset management tool to
help maximum re-use of assets (e.g. software licenses) through
inter-site sharing, particularly when business hours at two sites
are non-overlapping. Some coarse indicators of project status and
teamwork are also collected, e.g. using frequency of contributions
and interactions as a measure of overall project progress and team
morale, using interviews and surveys that request numeric
answers to questions on personal work, teamwork etc. Finally,
there is extensive use of tools to aid in communication (e-mails,
chat, phone calls etc.), document sharing (e.g. through Lotus
Notes teamrooms), configuration management (e.g. Rational
ClearCase [23]) and defect management (e.g. Rational
ClearQuest, [23]).

Challenges: The best practices notwithstanding, practitioners also
reported on a wide variety of challenges. Some of the main
challenges are indicated in Fig.1 using the legend “Problem
areas”. A basic difficulty is the inability to communicate
effectively across distances, cultures and time-zones, as has also
been reported elsewhere (Section 1.1). We discovered that these
problems were particularly acute in distributed requirements
management, since it is one of the most collaboration-intensive
activities in software development. Several study participants
reported difficulties in gaining shared understanding of
requirements, and in propagating and managing requirement
changes. Similar issues arose with interface agreements. A related
concern was integration testing; since requirements and interface

Fig 1 – A Typical Setup in Distributed Software Development

Translation to system requirements

Code, Documentation and Test Data

Release

Business
Requirements Data Confidentiality/ Size Issues

Process & Metrics Issues

Integration
Failures

Knowledge Migration & Management
REMOTE DEVELOPMENT

CENTER

INTEGRATION
TEAM

ONSITE TRAINEES

CUSTOMER &
 BUSINESS ANALYST

Legend –

Problem areas

Customer

Remote development team

REMOTE DEVELOPMENT
CENTER

Interface
Agreements

Release

Misinterpretation

Misinterpretation

733

agreements are frequently misinterpreted, developers at one site
often make incorrect assumptions about sub-systems being
developed at other sites. These discrepancies remain hidden
during unit testing and surface only during integration when they
are very expensive to fix. Another major challenge that we came
across is the acquisition of application knowledge from the
customer/parent site and its subsequent management at a remote
site through the life of a project. Again, software process and
metrics issues, well understood for collocated development, did
not seem to scale to distributed projects. In addition, there were
networking and other infrastructure issues which lead to
challenges in data replication and remote builds, as well as data
privacy concerns that discourage customers from sharing much-
needed production data to development teams in other
organizations.

Note that some of these challenges e.g. inaccurate requirements
capture, integration errors etc. arise even in collocated software
development. However, the rich anecdotal evidence that we
gathered in course of our study suggest that distributed
development, by adding factors like geographic dispersion, time-
zone issues and cultural/organizational differences, has
accentuated some of the existing difficulties, and also added new
ones to the development process.

Based on the study, we have synthesized a research agenda for
distributed software development. In particular, we propose the
following areas as part of a broad research program:

• Collaborative software development tools, to strengthen
collaboration in distributed development

• Application knowledge management, to ease the task of
migrating application knowledge from the parent site to
remote development centers, and preserve and manage
the same

• Testing in a distributed set-up, in particular a) how to do
effective unit-testing at a remote site where test data
cannot be directly accessed in entirety due to data
privacy and replication issues and b) how to smoothen
the integration of modules developed at separate
locations and reduce integration errors

• Process and metrics issues, that determine what
development methodologies to follow, what data and
metrics to collect when development is distributed

We would like to emphasize that these areas do not constitute an
exhaustive list of possible research directions in distributed
development. For example, a multi-site project presents rich
opportunities for behavioral studies of software practitioners
across different sites, but this has not been included in the above
list. Again, there has been interesting research on how to build
trust between remote teams [24], which is also beyond the scope
of this paper. Our discussion focuses primarily on technical
challenges we identified where software engineering research can
add value and while it covers a broad spectrum of issues in multi-
site development, there are indeed research opportunities beyond
its scope.

We will now elaborate on the above items, discuss ongoing
efforts to meet these challenges, and explore opportunities for
further investigation.

2. Collaborative Software Tools
 Software development is an inherently collaborative activity. To
start with, business analysts have to interact with customers and
elicit high-level needs, and then work with system engineers and
architects who refine them into concrete technical requirements
and work out the system design. These form the basis for
development, which again, cannot be accomplished in isolation:
in any significant software development effort, programmers
work together on the same piece of code, use each other’s code,
and rope in testers to validate their code. Thus a high-bandwidth
mode of collaboration has to be established within the team to
ensure that there is shared understanding of the development
process and the delivered system meets the customer needs.

 Unfortunately, in distributed development, remoteness and time-
zone differences put severe strain on cross-site collaboration. For
example, during our study, we discovered that remote
practitioners are unable to hold effective discussions on
requirements. Since existing requirements management tools do
not provide rich support for collaboration, teams typically use
these tools only as a shared requirements repository, and hold all
discussions outside of the tool in e-mails, chats or phone calls.
This involves a significant amount of context-switch (as users
have to continually move back and forth between the
requirements and communication environments) and moreover, it
becomes difficult to track and preserve discussions on
requirements that are spread across several media. Again, when
requirements change, the information is often not propagated to
remote teams in a timely/effective manner, and gaps in
understanding creep in over time. Note that other software
development activities like design, coding, project management
etc. are also impacted when the stakeholders are distributed, as
software engineering tools traditionally used for these provide
little or no support for the collaboration needs of these activities.
Distributed development thus presents a compelling case to make
software development tools and environments more collaborative.
The broad aim of this line of research would be to explore ways to
weave-in collaboration features in support of common software
tasks into the software development tools themselves. In a
seminal work [25] Booch and Brown present a vision for a
“Collaborative Development Environment” (CDE) tailored to the
needs of software practitioners, where a CDE is defined as “a
virtual space wherein all the stakeholders of the project – even if
distributed by time or distance – may negotiate, brainstorm,
discuss, share knowledge, and generally labor together to carry
out some task, most often to create an executable deliverable and
its supporting artifacts.” A number of research projects as well as
open source efforts and commercial products are now bringing
elements of collaboration into software development activities.
Commercially, collab.net [26] is one provider of such CDEs; its
public face is SourceForge [26], an open-source CDE, which
offers facilities for configuration management, bug tracking, task
management and discussions. Stellation [27] is an open source
effort that introduces “activity”-oriented fine-grained source
control, to simplify collaboration and provide awareness of
changes. Coven [28] uses a soft-locking mechanism to warn the
new committing user of a potential conflict. Sangam [29] features
a shared editor and chat for pair programming. Jazz [30] supports
rich synchronous communication, and promotes mutual
awareness of coding activities within a development team.

734

As distributed development becomes increasingly popular,
research in collaborative environments will continue to gain
momentum. However, there is a need to expand the scope of this
line of research. Most of the work in the CDE domain till date has
focused on collaborative coding (configuration management,
conflict detection etc.) and relatively little attention has been paid
to other software development activities like requirements
management, project management, design etc., even though many
of these activities are highly collaborative in nature (and are thus
disrupted by geographic separation). There have been a few
exceptions of course, (e.g. [31, 32, 33]) but by and large, the
success of coding-specific CDEs is yet to be realized in practice
in other domains. To bring about a paradigm shift in distributed
development, the situation needs to change. In other words, the
scope of CDEs has to be broadened to include all common
software development activities within its fold.

There are several important challenges that have to be addressed
by researchers for this to succeed. First, a deep understanding of
the information flows and models of collaboration in different
distributed software development activities have to be developed.
Rigorous empirical studies need to be conducted across various
kinds of engagements to build and refine such models. Next, a
judicious mix of collaboration services have to be deployed in a
CDE to facilitate these information flows. In particular, support
for highly synchronous activities like software design has to be
significantly enhanced. For example, shared virtual whiteboards
currently available for synchronous design work do not provide
adequate support for concurrency and conflict resolution;
highlighting and managing changes also become difficult when
non-textual artifacts (e.g. UML models) are involved. A shared
whiteboard for collaborative elaboration of UML models has to
address these challenges to make virtual collaboration around
design artifacts truly effective.

Distributed software development thus presents a fertile ground
for researchers in Computer Supported Cooperative Work
(CSCW) and Human Computer Interaction (HCI) to help
transition traditional CASE tools for requirements, design, project
management etc. to the next level, which focuses on the
collaborative needs of the extended team and imposes no
restriction on its geographic proximity.

3. Application Knowledge Migration and
Management
Several distributed development projects we surveyed involved
maintenance and enhancement of legacy systems. We discovered
that this outsourcing of application maintenance to IT service
companies presents a significant information flow challenge. A
team from the offshore vendor generally visits the client premises
for a limited period of time (during our study, we found this to be
typically in the range of 3-4 months) to acquire application
knowledge, and carry it back to the remote development center in
preparation of subsequent maintenance requests. The speed and
accuracy of this knowledge transfer and its subsequent
management is a major differentiating factor in the cost and
performance of outsourcing. Some of the managers we
interviewed reported that the key difficulty in remote maintenance
of software lay in the following questions: what is the optimal
way for a service team to absorb knowledge of a legacy
application from a client team during a brief onsite visit, and how

does it retain this knowledge in a person-independent manner?
The latter question assumes significance because we found
outsourcing teams to grow and shrink quite frequently depending
on the funding available from the customer; when a team member
has to leave a project, important domain and application
knowledge the member acquired often leaves with him or her.
When new members join the team, they often need to spend
significant time acquiring this knowledge afresh, before they can
start to become productive. This churn cuts into the cost
advantages of remote outsourcing.

In general, there are two sources of application knowledge: first,
the software development artifacts such as requirements,
architecture diagrams, interface specifications, code, test cases
etc. – the “formal” artifacts (here, “formal” does not imply
mathematically precise); and second, “informal” sources which
include human agents like original developers and users of the
system, and crucially, informal artifacts that include (but are not
limited to) ad-hoc documents about the application, notes
gathered during the on-site application hand-off meetings, and the
information persisted from collaboration tools.

A significant amount of knowledge may be extracted from the
formal artifacts through a combination of code and specification
inspection, and execution of the application followed by analysis
of trace files and error logs. While there is a large body of tools
that can aid in this process (e.g. debugging tools, tools for tracing
and visualizing the execution of different scenarios, reverse
engineering tools such as Doxygen [37] that can parse code to
generate interaction and class diagrams), there is still a gap when
it comes to integrating the tools that a team member (e.g. a
visiting offshore system engineer) may use during knowledge
acquisition, with appropriate metrics that can quantify the
knowledge captured, and provide feedback on missing links in the
acquisition process. A highly desirable end goal would be to bring
existing legacy applications into the domain of model-driven
development, by linking code to existing or re-constructed UML-
style models. This is an exciting area of research, with potentially
far-reaching benefits.

On the other hand, informal information sources are often unique
sources of generally untapped information; examples include
experience reports on system usage, e-mails explaining a
particular design rationale, meeting notes that document the
resolution of an important issue etc. However, neither formal nor
informal sources alone suffice for all the knowledge acquisition
needs. It is difficult to rely on the formal artifacts alone for
several reasons: one may not know which artifacts contains the
information one needs, there may be ambiguities in an artifact, it
may be very time-consuming to get the right information out of an
artifact or the artifact itself may be obsolete with respect to the
intent. There is always some “uncommitted” information in a
project that is just not recoverable by examining the formal
artifacts, however complete. Over-reliance on informal sources
similarly, is unrealistic: human information sources may simply
not be there (e.g. the system developers have moved to other
projects/organizations), and although ad-hoc documents may
provide useful insight into the project, they are unlikely to be
detailed enough to explain all system technicalities.

We believe that this challenge presents an interesting possibility
of combining the information flow capabilities of formal and
informal artifacts. Techniques from unstructured information

735

management area may be used to analyze informal artifacts and
organize the recovered knowledge for easy retrieval. A research
problem here is how to automatically create useful linkages
between formal artifacts and the knowledge recovered from
informal sources. Also, since the corpus of knowledge continues
to grow over time, the recovered knowledge has to be managed on
an ongoing basis.

Apart from knowledge acquisition, knowledge sharing between
remote team members also gains significance in distributed
development, particularly when a new site joins the development
effort. Very often, human sources of project-specific information
are available, but they may not be known to colleagues at remote
sites. This leads to substantial delays in the resolution of even
minor issues. Research can investigate ways in which the
expertise of different individuals and teams may be “learnt” as
development proceeds, depending on how they contribute to the
application. This kind of knowledge may be acquired (e.g. [21])
using change management systems, concurrent versioning
systems, modification request logs etc. that typically document
the persons involved in raising requests, making code commits
and so on. There are also tools that help users identify artifacts
pertinent to a given task e.g. Hipikat [38] recommends relevant
software development artifacts (by searching code repositories,
newsgroups, bug-reports etc.) based on the context in which a
developer requests help. In addition, learning databases could be
maintained permitting team members to publish solutions to
problems encountered (“debugging diaries”), tutorials on
installing software (“cheat sheets”) etc. A research opportunity
here would be to see how all such knowledge sources may be
integrated to support some kind of “virtual assistant” that may be
embedded within the collaborative tools used by distributed
teams. For example, the assistant can accept queries entered by
the user, search the knowledge-base and find relevant results; if
the number of results falls below a certain threshold, the assistant
may automatically identify an appropriate team member to help
with the query, route it to him/her, and keep track of whether the
query has been satisfactorily answered or not. Such assistance
can be of considerable help to new team members trying to come
up to speed.

4. Testing in a Distributed Environment
In distributed projects, modules are implemented and unit tested
at remote development centers, and then integrated periodically at
a central location (e.g. customer premises). While actual
unit/integration testing procedures in distributed projects are no
different from collocated ones, we found that new challenges
arise due to privacy of test data, size of the production database
and imprecision of interface documents. We consider these issues
below.
Data Privacy: In maintenance projects, data available in
production databases of the live system have traditionally been
used for testing. However, with increasing security concerns,
many customers are now unwilling to share this data across
organizational/geographic boundaries. During our study of
distributed development, we discovered that the unavailability of
real-life data makes it difficult for remote development teams to
conduct comprehensive unit testing of their modules. The
practitioners we interviewed reported two challenges they faced:
First, a substantial overhead is imposed on them if they have to
generate mock databases themselves to thoroughly test the code.

Secondly, mock databases may not sufficiently reflect the
complexities and intricacies of real-life data, and successfully
unit-tested code based on fabricated data often reveals errors
when tested later with actual data.
This calls for techniques to de-sensitize production data before
use. Research in the area of privacy-preserving databases is thus
relevant to remote software development teams looking to test
their code. Wiederhold et al [39] have developed a mechanism to
prevent release of confidential information by introducing a
security filter between the production databases and the
applications being tested. The filter is responsible for storing the
security constraint policies and distorting sensitive information
being returned to applications based on these pre-defined policies.
In [40] Wu et al propose a technique for generating intelligent test
databases by first extracting rules and statistical data from the
production database and then synthesizing random data into the
test database according to the extracted rules. The field of
statistical databases has developed methods to prevent the
disclosure of confidential individual data while satisfying requests
for aggregate information (sum, count, average etc) [41, 43, 44].
Also relevant is research in the area of privacy preserving data
mining [42, 45], where the objective is to prevent the disclosure
of confidential individual values while preserving general patterns
and rules. Future research can explore ways in which privacy
policies and rules may be efficiently updated to account for
changes in the live production database. It may also be interesting
to conduct empirical studies to verify the effectiveness of test data
generated using these methods (as compared to the live data) in
uncovering defects in the software modules being tested.

Size of Production Database: Even if production data is not
considered confidential, the database may be too large to transfer
and maintain at a remote development site. For example, the
India-based teams we interviewed noted that bandwidth available
to them is insufficient for downloading large production databases
from the customer location. As a workaround, they often take
“slices” of the production data for unit testing at the different
sites. This lessens data transfer costs and in-transit security issues,
but leads to new challenges in maintaining referential constraints
between records in different tables. Consider a simple example: A
and B are two tables in a database with attributes a1, a2, a3 and
b1, b2, b3 respectively, where a1 is the primary key of table A
and foreign key for table B (related to b1). A slice of such a
database cannot be taken randomly; rather records should be
selected in such a way that for all values of b1 in records of slice
of B, there is a corresponding record in slice of A where a1= b1.
This problem gets further aggravated when some constraints are
embedded in code and SQL query statements rather than database
schema. A second challenge related to slicing is similar to the one
for creation of mock databases – how to get a truly representative
slice which contains values for different possible ranges/types of
data.

Integration Testing: A large number of defects in a distributed
project show up only during integration, when modules developed
and unit tested at different sites are actually put together and
executed. In fact integration testing was one of the early
challenges of distributed development reported in the literature
[19]. The root cause of most integration problems is inadequate
documentation/understanding of interface requirements. As [19]
noted in a study of integration difficulties in a distributed project,
“interface specifications lacked essential details such as message

736

type, return types and assumptions about performance.” To this
list, we may add semantic considerations like permitted method
invocation sequence and constraints on input parameters and
return values, which are seldom well-documented.
In collocated development, ambiguous specifications are far less
of a problem, since rich informal communication among
participants effectively compensates for any gaps in
understanding. This is one of the reasons why traditionally
software engineers have not considered it worth their effort to
make specifications extremely precise descriptions of their intent.
The key difference in multi-site development is that high-
bandwidth informal communication is much harder to achieve [4].
Thus integration or “recomposition” [48] challenges in such
projects, as described above, present a compelling case for
leveraging research in the area of formal specification languages
[49]. In other words, in distributed software development, it is
indeed worth the extra effort in making interface requirements
and other specification documents convey the precise and full
information needed for product integration. Previous (albeit
dated) work [50] in this regard has advocated a “module
interconnection language” to create artifacts that carry interface
knowledge. With various modeling and constraint languages [51,
52] gaining mainstream acceptance, there is an opportunity for
formal methods research to address an important and practical
problem in distributed development.
There is another benefit of having formal interface descriptions: it
opens up the possibility of automatically generating smart
simulators of remote modules based on their specification. Such
simulators (stubs/drivers) can be used for conducting “pre-
integration” checks during unit testing, leading to early discovery
of potential interfacing problems. This can significantly enhance
the quality of unit testing at any site, and also reduce the gap
between unit and subsequent integration testing.

5. Process and Metrics Issues
The dynamics of collocated software development are well
understood by now. Popular software process frameworks like
Software Engineering Institute’s Capability Maturity Model
(CMM) and ISO 9001, detail key process areas (KPAs) for
software development, and have been well-tested over the years
in collocated projects. However, these frameworks were not
designed keeping global development in mind and lack KPAs that
address capabilities for managing distributed software projects
[53]. This deficiency in well-known process frameworks is
becoming increasingly critical in practice since quality of
software (as opposed to cheap labor) is emerging as the primary
differentiator between numerous low-cost vendors competing for
outsourcing contracts worldwide. As our interviews of distributed
development practitioners -- as well as a survey of existing
literature – reveal, there has been relatively little investigation of
process and metrics issues in distributed development, making
this a fertile ground for research.
Several studies have suggested that there are differences in
software development practices and performance levels around
the world. For example, in 1990, a survey of forty projects in the
United States and Japan reported that in Japanese projects, more
time was spent on product design while American teams spent
more time on actual coding [56]. A more recent survey [57] of
104 firms in India, Japan, USA and Europe reveals that Indian

and Japanese firms invested much more in detailed design
specifications compared to others; more Indian and European
firms broke down projects into subcycles than their US and
Japanese counterparts; again, in terms of defect levels, Indian and
US projects were quite similar to each other, but were
considerably higher than the Japanese, while European firms
showed the highest defect levels. These results are particularly
relevant to firms that are considering greater outsourcing of their
software development activities, and to managers of distributed
projects spanning several regions/organizations. It indicates that
metrics and processes that can efficiently keep a collocated
project on track may not scale to distributed projects with inherent
differences in process and performance across sites. The feedback
we collected during our study of distributed development in IBM
resonates with this hypothesis.
An early step towards enriching the CMM framework with KPAs
for distributed development has been presented in [53]. It
identifies 24 new KPAs that address the wide-ranging capabilities
needed for managing global projects including the setting of
shared business goals among participating development centers,
identification, sharing and standardization of best practices in
distributed development across global organizations along with
policies for common knowledge transfer and the enabling of
cross-site informal communication through continuous
infrastructure improvement.
There is a need to expand and refine these models by considering
other potential KPAs in distributed development e.g. the
management of risk. There are inherent risks in any software
development effort, but risks in distributed projects tend to be less
visible [58], and therefore more difficult to deal with. As such,
risk management in distributed projects must begin early;
research has to identify the different levels (e.g. strategic level,
operational level [59] etc.) at which risk analysis must be
performed, and the methods for doing the same. Another
important process area concerns the distribution of work across
sites. Previous work has reported on a number of models that may
be used for organizing work based e.g. on functional areas of
expertise, product architecture, process steps, release plans and so
on [9, 36]. As [9] reports, however, no model resolves all
coordination issues that arise from distribution, so an important
research issue is to choose the right model depending on the
dominant coordination problem. It would also be interesting to
study if hybrid models can be deployed to support coordination in
very large development efforts. Such models may then be
progressively refined through appropriate post-mortem activities
e.g. analysis of defect data that may indicate the effectiveness of
geographic distribution [54].
As KPAs for distributed development are identified and
incorporated into process frameworks, a related research direction
would be the formulation of appropriate metrics to help quantify
these areas. For example, what metrics can accurately measure the
risks and benefits of project dispersion? How to compose
measures from different sites to gain insight into the overall
project status? In addition, we propose the following directions
for a metrics-based management of distributed projects:
 Identify metrics to represent the effort of each partner

involved in the project and measure that the assigned
responsibilities are met. In a distributed project, it is
important to define the responsibilities of the different

737

organizations/ teams at a sufficiently detailed level so that
there is no misunderstanding as to what is going to be
performed by whom. Some possibilities here include the
detailing of responsibilities of teams using ODC’s [55]
signature metric and definition of function exit metrics to
measure the quality of their deliverables.

 Develop indicators that provide information about client
expectations and their impact on the project value chain,
which is the process by which a series of activities are linked
together for the purpose of creating value for the client. This
would allow participating organizations to adopt a broad
perspective of the project and measure how their input
generates value for client.

 Use information from existing projects as well as history of
past projects to develop metrics which help provide estimates
for future requests such as contract pricing [60], software
insurance and distribution of work between teams. The broad
aim of these predictive metrics would be to support business
decision making processes.

6. Summary and Conclusion
In this paper, we reported on our study of distributed software
development, which helped us synthesize a research agenda for
this field. Collaborative software tools, knowledge acquisition and
management, testing in a distributed set-up, and process and
metrics issues were identified as areas where important research
questions need to be addressed to make distributed development
more effective. We presented a brief summary of related research
in each of these areas, and also outlined open research issues. To
re-iterate, here are some of the most important (in our opinion)
research areas in software engineering that would have a big
impact on distributed development:

1. Development of collaborative environments
encompassing all phases of software development
(requirements, design, coding, testing).

2. Reverse-engineering tools to recover knowledge from
existing applications

3. Integrating knowledge extracted from formal and
informal artifacts

4. Maintenance of informal knowledge in a human-
independent way

5. Development of techniques to model production data
for testing to preserve privacy of the real data, and to
work effectively with a representative subset of data

6. Use of formal specifications to ease integration of
modules developed by different teams.

7. Enhancement of software development process
frameworks by identifying and incorporating key
process areas relevant to distributed development

8. Development of a set of metrics to quantify these
process areas in support of project management and
decision-making in a distributed environment

We hope that the agenda presented in this paper will help focus
research efforts on areas of practical importance in distributed
software development and thereby help advance the state-of-
practice in this domain.

7. Acknowledgements
We would like to thank John Patterson for extensive discussions
on collaborative development environments. Acknowledgements
are also due to James Herbsleb and Peter Santhanam for their
inputs on process and metrics issues in distributed development.

8. REFERENCES
[1] Nasscom - Mckinsey report 2002

http://www.nasscom.org/artdisplay.asp?Art_id=1225
[2] Carmel, E. and Agarwal, R. Offshore Sourcing of

Information Technology Work by America’s Largest Firms.
Technical Report, Kogod School, American University,
Washington D.C., November 2000.

[3] Business Week Online, March 1, 2004.
http://www.businessweek.com/magazine/content/04_09/b38
72001_mz001.htm

[4] Herbsleb, J.D and Moitra, D.: Global software development :
IEEE Software, March-April 2001, pages 16-20

[5] Damian, D. and Zowghi, D. Requirements Engineering
challenges in multi-site software development organizations.
Requirements Engineering Journal 8, 2003, pages 149-160

[6] Heeks, R., Krishna, S., Nicholson, B. And Sahay, S.
Synching or Sinking: Global Software Outsourcing
Relationships, IEEE Software, March-April, 2001, pages 54-
60

[7] Herbsleb, J.D, Mockus, A, Finholt, T.A., and Grinter,R.E .
Distance, Dependencies and Delay in a Global
Collaboration. ACM Conference on Computer Supported
Cooperative Work (CSCW) 2000, pages: 319-328.

[8] Carmel, E. Global Software Teams. Prentice Hall, 1999.
[9] Grinter, R., Herbsleb, J. and Perry, D. The geography of

coordination: Dealing with distance in R&D work.
International ACM SIGGROUP Conference on Supporting
Group Work, 1999, pages 306-315

[10] Espinosa, J., Kraut, R.E., Lerch, F.J., Slaughter, S.A.,
Herbsleb, J. and Mockus, A. Shared Mental Models and
Coordination in Large-Scale, Distributed Software
Development. International Conference in Information
Systems 2001

[11] Van den Bulte, C., Moenaert, R. The effects of R&D team
co-location on communication patterns among R&D,
marketing, and manufacturing. Management Science, 1998

[12] Olson, G.M, and Olson, J.S. Distance matters. Human-
Computer Interaction, 2000

[13] McDonough, E. F, Kahn, K., and Barczak, G. An
investigation of the use of global, virtual, and collocated new
product development teams. Journal of Product Innovation
Management 2001

[14] Kiesler, S., Cummings, J.N. What do we know about
proximity in work groups? A legacy of research on physical
distance. In Distributed Work, Hinds, P., Kiesler, S. (ed.)
2002

[15] Kobitzsch, W., Rombach, D. and Feldman, R. Outsourcing
in India. IEEE Software, March-April, 2001

738

[16] Arora, A., and Gambardella, A. The Globalization of the
Software Industry: Perspectives and Opportunities for
Developed and Developing Countries. NBER Working Paper
No. 10538, June 2004. http://www.nber.org/papers/W10538

[17] Ebert, C. and De Neve, P. Surviving Global Software
Development. IEEE Software, March-April, 2001.

[18] Herbsleb, J.D., and Mockus, A. An Empirical Study of
Speed and Communication in Globally-Distributed Software
Development. IEEE Transactions on Software Engineering,
29(3), 2003

[19] Herbsleb, J. D. & Grinter, R. E. Architectures, Coordination,
and Distance: Conway's Law and Beyond. IEEE Software,
Sept/Oct 1999, pages 63-70.

[20] Krishna, S., Sahay, S. and and Walsham, G. Managing
Cross-Cultural Issues in Global Software Outsourcing.
Communications of the ACM. Volume 47, Number 4, April
2004.

[21] Mockus, A. and Herbsleb, J. Expertise Browser: A
Quantitative Approach to Identifying Expertise. International
Conference on Software Engineering, 2002, pages 503-512

[22] Carmel, E. and Agarwal, R. Tactical Approaches for
Alleviating Distance in Global Software Development. IEEE
Software, March-April, 2001

[23] http://www-306.ibm.com/software/awdtools/clearcase/,
http://www-306.ibm.com/software/awdtools/clearquest/

[24] Jarvenpaa, S. and Leidner, D. Communication and Trust in
Global Virtual Teams. Journal of Computer Mediated
Communication 3(4), June, 1998.

[25] Booch, G. and Brown, A. Collaborative Development
Environments. Advances in Computers Vol. 59, Academic
Press, August 2003.

[26] http://www.collab.net, http://sourceforge.net
[27] http://www.eclipse.org/stellation
[28] Carroll, M. and Sprenkle, S. Coven: Brewing Better

Collaboration through Software Configuration Management.
ACM SIGSOFT Foundations of Software Engineering, 2000,
pages 88-97

[29] http://sangam.sourceforge.net
[30] Cheng, L., DeSouza, C., Hupfer, S., Patterson, J. and

Ross, S. Building Collaboration into IDEs. ACM Queue
vol.1 no.9, 2004

[31] Maurer, M., Succi, G., Holz, H. et.al. Software Process
Support over the Internet. International Conference on
Software Engineering (ICSE), 1999, pages 642-645

[32] Sinha, V., Sengupta, B., and Chandra, S. EGRET: A
Collaborative Tool for Distributed Requirements
Management. IBM Research Technical Report, RI06001,
2005.

[33] Graham, T.C.N. et al. A World-Wide-Web Architecture for
Collaborative Software Design. Software Technology and
Engineering Practice (STEP'99). 1999: IEEE Press.

[34] Mehra, A., Grundy, J.C. and Hosking, J.G. Supporting
Collaborative Software Design with a Plug-in, Web

Services-based. Workshop on Directions in Software
Engineering Environments at ICSE 2004.

[35] Allen, T.J. Managing the Flow of Technology. MIT Press,
1977

[36] Allen, T.J. and Hauptman, O. The Influence of
Communication Technologies on Organizational Structure:
A Conceptual Model for Future Research. Communication
Research 14(5), 1987, pages 575-587.

[37] http://www.doxygen.org
[38] Cubranic, D., Murphy, G.. Hipikat: Recommending Pertinent

Software Development Artifacts, International Conference
on Software Engineering 2003, pages 403-418

[39] Wiederhold, G., and Bilello, M. Protecting Inappropriate
Release of Data from Realistic Databases. Ninth
International Workshop on Database and Expert Systems
Applications, Vienna, Austria, 1998.

[40] Wu, X., Wang, Y., and Zheng, Y. Privacy Preserving
Database Application Testing. ACM Workshop on Privacy
in Electronic Society (WPES), 2003, pages 118-128

[41] Adam, N.R., and Wortman, J. C. Security-control methods
for statistical databases. ACM Computing Surveys, 21(4),
1989, pages 515-556

[42] Agrawal, R. and Srikant, R. Privacy-preserving Data Mining.
Proceedings of ACM SIGMOD Conference on Management
of Data, pages 439-450, Dallas, Texas, May 2000.

[43] Domingo-Ferrer, J.Current Directions in Statistical Data
Protection. In Proceeding of Statistical Data Protection,
1998.

[44] Dinur, I., and Nissim, K. Revealing Information while
Preserving Privacy. Proceedings of 22nd ACM Symposium
on Principles of Database Systems, ACM Press, 2003, pages
202-210

[45] Brankovich, L., and Estivill-Castro, V. Data Swapping:
Balancing Privacy Against Precision in Mining Logical
Rules. Proceedings of International Conference of Data
Warehousing and Knowledge Discovery, 1999.

[46] D. Chays, S. Dan, P. Frankl, F. Vokolos, E. Weyuker. A
Framework for Testing Database Applications. Symposium
on Software Testing and Analysis, 2000

[47] Mockus, A., Fielding, R. and Herbsleb, J. Two Cases of
Open Source Software Development: Apache and Mozila.
ACM Transactions on Software Engineering and
Methodology (TOSEM), 11(3), pages 309-346

[48] Grinter, R. Recomposition: Putting it All Back Together
Again. ACM Conference on Computer Supported
Cooperative Work (CSCW), 1998, pages 393-402.

[49] The World Wide Web Virtual Library: Formal Methods.
http://vl.fmnet.info

[50] DeRemer, F., and Kron, H. Programming in the Large vs.
Programming in the Small. Proceedings of International
Conference on Reliable Software, pages 114-121, 1975.

[51] Booch, G., Rumbaugh, J., and Jacobson, I. The Unified
Modeling Language User Guide. Addison Wesley, 1998

739

[52] Warmer, J., and Kleppe, A. The Object Constraint Language
Precise Modeling with UML. Addison Wesley, 1999

[53] Ramasubbu, N., Krishnan, M.S., and Kompalli, P.
Leveraging Global Resources: A Process Maturity
Framework for Managing Distributed Development. IEEE
Software, Volume 22, Issue 3, pages 80-86, May 2005

[54] Bassin, K., and Santhanam, P. Managing the Maintenance of
Ported, Outsourced, and Legacy software via Orthogonal
Defect Classification. International Conference on Software
Maintenance, 2001

[55] Chillarege, R., Bhandari, I., Chaar, J. et. al, Orthogonal
Defect Classification-A Concept for In-Process
Measurements. IEEE Transactions on Software Engineering.
Volume 18,Issue 11, November, 1992.

[56] Cusumano, M., and Kemerer, C.F. A Quantitative Analysis
of US and Japanese Practice and Performance in Software
Development. Management Science, volume 36, no. 11,
pages 1384-1406, November, 1990

[57] Cusumano, M., MacCormack, A., Kemerer, C., and
Crandall, W. Software Development Worldwide: the State of
the Practice. IEEE Software, 20(6), November/December
2003, pages 28-34

[58] Karolak, D.W. Global Software Development – Managing
Virtual Teams and Environments. Los Alamitos, IEEE
Computer Society, USA, 1998

[59] Prikladnicki, R., Yamaguti, M. H., Antunes, D. C. Risk
Management in Distributed Software Development: A
Process Integration Proposal. 5th IFIP Working Conference
on Virtual Enterprises at 18th IFIP World Computer
Congress, 2004

[60] Li, P., Shaw, M., Herbsleb, J., Ray, B., Santhanam, P.
Empirical Evaluation of Defect Projection Models for
Widely-deployed Production Software Systems. ACM
SIGSOFT Software Engineering Notes, Volume 29, Issue 6,
November 2004.

740

