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Abstract: Diagnostic tools appropriate for undertaking
interventions to control helminth infections are key to
their success. Many diagnostic tests for helminth infection
have unsatisfactory performance characteristics and are
not well suited for use in the parasite control programmes
that are being increasingly implemented. Although the
application of modern laboratory research techniques to
improve diagnostics for helminth infection has resulted in
some technical advances, uptake has not been uniform.
Frequently, pilot or proof of concept studies of promising
diagnostic technologies have not been followed by much
needed product development, and in many settings
diagnosis continues to rely on insensitive and unsatisfac-
tory parasitological or serodiagnostic techniques. In
contrast, PCR-based xenomonitoring of arthropod vectors,
and use of parasite recombinant proteins as reagents for
serodiagnostic tests, have resulted in critical advances in
the control of specific helminth parasites. The Disease
Reference Group on Helminths Infections (DRG4), estab-
lished in 2009 by the Special Programme for Research and
Training in Tropical Diseases (TDR) was given the mandate
to review helminthiases research and identify research
priorities and gaps. In this review, the diagnostic
technologies relevant to control of helminth infections,
either available or in development, are reviewed. Critical
gaps are identified and opportunities to improve needed
technologies are discussed.

Introduction

The technical limitations of currently available diagnostic

methods for helminth infections impose significant constraints on

current initiatives to control these infections, as discussed in other

reviews of this collection [1,2]. Appropriate diagnostic methodol-

ogies are required for: a) disease mapping to guide initiation and

prioritisation of interventions; b) monitoring and evaluation

(M&E) of ongoing interventions, and particularly for the prompt

detection of possible emerging anthelmintic resistance; c) assess-

ment of elimination of infection by elimination programmes as

these approach termination; and d) case-based diagnosis for

surveillance.

For each of these activities, the technical requirements for

diagnostic tests differ and pose different technical challenges.

Furthermore, for each helminth species, the biology of the parasite

(life cycle, accessibility of parasite stages for parasitological

diagnosis, body fluid appropriate for sampling, role of and need

to sample vector or intermediate host), and of the parasite–host

system (including age profiles of infection prevalence and intensity)

impose different constraints on diagnostic capacity. In addition,

intensity of infection is a critical determinant of transmission

dynamics, morbidity, and disease burden. Thus, the need to assess

infection burden is critical to understanding density-dependent

regulatory mechanisms of parasite transmission and morbidity.

Yet, with few exceptions, this critical parameter is difficult to

quantify accurately with current diagnostic tools.

Not only are techniques for the diagnosis of individual infections

important, but also techniques for assessment in communities and

larger regions are necessary. In this respect, a major obstacle to the

implementation of cost-effective control is the lack of accurate

descriptions of the geographical distribution of infection. The

effectiveness of large-scale integrated programmes for the control

of neglected tropical diseases (NTDs) in general, and helminth

diseases in particular, depends on appreciation of the geographical

overlap between the different NTDs. However, in spite of being

co-endemic in most countries, different NTDs can exhibit limited

geographical overlap at sub-national scales, necessitating a more
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geographically targeted approach for their control. Therefore,

techniques appropriate for the diagnosis and surveillance of

helminth infections are essential for solving many of the control

challenges described in other articles of this collection [1,2].

The range of diagnostic tools that are available at present can be

classified into: 1) parasitological tests, where the parasite (or more

frequently parasite transmission stages), sampled from appropriate

tissues or body fluids, is directly visualised using a microscope (not

necessary for visualisation of large nematodes such as adult Ascaris);

2) serological assays, where parasite-specific antibodies are detected

in serum samples; 3) antigen detection tests, where a parasite

biomarker is detected; 4) molecular diagnosis, where parasite

nucleic acid is detected; and 5) other specific tools for parasite

detection in arthropod vectors or snail (or other) intermediate hosts.

As noted above, there are important differences in the specific

requirements for diagnostic tests for each helminth parasite,

differences that are determined by the biology of the parasite and

the control interventions that are currently deployed. Likewise, the

critical gaps in diagnostic technology differ for each parasite species.

In this review, a product of the discussions held by the Disease

Reference Group on Helminth Infections (DRG4) established in

2009 by the Special Programme for Research and Training in

Tropical Diseases (TDR), available diagnostic tests for the six

helminth human infections, within the remit of the DRG4, are

considered in the context of the specific technical requirements of

diagnostic tests needed for control of these parasites, and critical

gaps in diagnostic technology are identified. The technical issues

related to the performance of tests using parasitological, serological,

antigen detection, molecular detection, and other specific tools for

diagnosis in vectors and intermediate hosts are detailed in the

following supplementary files: Text S1 for soil-transmitted helmin-

thiases; Text S2 for filarial infections; Text S3 for schistosomiasis;

Text S4 for hydatid disease; Text S5 for taeniasis/cystercosis; and

Text S6 for food-borne trematode infections. A summary of the

current diagnostic tools for monitoring and surveillance in control

programmes is presented in Table 1. The use of these tests in the

context of control and elimination activities is outlined in the

sections below. Box 1 lists the abbreviations used in this paper. The

desired attributes of diagnostic techniques required for the successful

implementation of mass drug administration (MDA) programmes

are listed in Box 2.

Soil-Transmitted Helminthiases

Current control programmes for the intestinal nematodes or

soil-transmitted helminthiases (STHs), namely, those caused by

Ascaris lumbricoides, hookworm (Necator americanus and Ancylostoma

duodenale), and Trichuris trichiura (and to a lesser extent by

Strongyloides stercoralis) are focused on morbidity control through

community-based deworming programmes, particularly among

school-age children by annual or twice annual distribution of a

single dose of a broad spectrum benzimidazole anthelmintic, either

albendazole or mebendazole [2,3]. Although parasitological

diagnosis can be readily undertaken (see below), a number of

critical deficiencies in diagnostic capacity exist. These include the

absence of well-validated and practical methodologies to measure

infection intensity (egg count is taken as a proxy for this but this

approach has limitations), and validated cutoffs for drug efficacy

monitoring [4]. A detailed discussion of the strengths and

weaknesses of diagnostic tests appropriate for diagnosis of STHs

is presented in Text S1, and a summary of the use of current STH

diagnostic tests for specific objectives is presented in Table 2. The

research priorities for STH diagnosis are summarised in Box 3.

Infection Intensity
For the STHs, intensity of infection is a major determinant of

morbidity, infection dynamics, and response to therapy, as well as

Table 1. Diagnostic Tools Available for Monitoring and Surveillance in Control Programmes for Human Helminthiases.

Helminth Infection Stage of the Control Programme References

Early Advanced Final and End Points

Onchocerciasis Nodule palpation for detection
of onchocercomata, skin-snipping
for detection, and counting of
mf in skin snips

Skin snipping sensitivity
decreases; DEC patch test; PCR-
based monitoring of simulid
populations; Ov-16 card test

Xenomonitoring via fly feeding/recording
microfilarial uptake. Serology in untreated
children; PCR and DEC patch test; Ov-16
card test

[106,107]

Lymphatic filariasis Blood smears for detection
and counting of mf in blood;
CFA for bancroftian filariasis.
Rapid dipstick for antibody
(Ab) detection in brugian filariasis

PCR-based assays for W.
bancrofti and B. malayi in blood;
PCR-based monitoring of
mosquito populations

Monitoring infections in mosquitoes and
anti-filarial Ab levels in children as indicators
of local transmission for making decisions
about programme end points

[108–110]

Soil-transmitted
helminthiases

Quantitative egg counts using
validated methodology such as
Kato-Katz (KK) test

Infections become lighter and
more difficult to detect. Egg
concentration techniques, e.g.,
FLOTAC likely to be required
to detect light infections

Increasing proportion of unfertilised Ascaris
eggs could indicate declining mating
probability (unfertilised eggs often missed
by KK). Need for highly sensitive
diagnostic methods

[11–13]

Intestinal schistosomiasis
due to S. mansoni

As above Need to validate PCR-based
diagnostic assays in low-
transmission areas

Elimination of infection reservoir rarely
attempted

[111]

Intestinal schistosomiasis
due to S. japonicum

Initial screening for antibodies
in indirect haemagglutination
assay (IHA), subsequent testing
with KK of the seropositive results

Seroprevalence determined
by IHA can be much higher than
prevalence in stool-based PCR;
hatching and KK tests

New algorithms for treatment in low
intensity areas; PCR may replace KK in
such algorithms. Surveillance in snails;
sentinel mice

[111–114]

Urinary schistosomiasis
(S. haematobium)

Urine filtration for detection and
counting of eggs

Need to improve urine
circulating antigen test for
use in low-transmission areas

Find and treat cases in both active
surveillance and health care settings

[111]

doi:10.1371/journal.pntd.0001601.t001
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a crucial variable for epidemiological modelling [5]. Further,

aggregation of infection, whereby a minority of individuals

harbour very heavy infection loads but the majority of the host

population harbours light or moderate infection, is a major

factor to consider in epidemiological studies and chemotherapy

efficacy trials, as well as in efforts to reduce prevalence. Intensity

of infection would be best assessed by enumerating adult worm

numbers. While this can be achieved by use of a cathartic in

conjunction with an anthelmintic, preferably one that paralyses

adult worms, such as pyrantel pamoate or levamisole, followed

by enumeration of parasites in collected faeces, this is not an

easy test to perform, and is unreliable for hookworms and

whipworms because of poor to moderate, and variable, efficacy

of pyrantel and levamisole against these parasites [6]. Therefore,

most studies and surveys have relied on quantitative egg

counting.

Of the quantitative methods described for egg counting, the

Kato-Katz method [7], originally developed for detection and

quantification of Schistosoma mansoni eggs in human faecal samples,

is the most widely used method, and has undergone a number of

validation studies [8,9]. This test has some methodological

problems due to the fact that different helminth eggs have

different clearing times and viability. Hookworm eggs in particular

are subject to lysis if the slides are not examined within 30 minutes

[10]. A preferred quantitative flotation technique used in

veterinary practice is the McMaster test [4]. It is less well studied

in the human STH infections. In a recently undertaken study

where these two methods were compared, the accuracy of the two

tests was approximately equivalent [4]. The McMaster method

has the drawback of not being suitable for community studies

where intestinal schistosomiasis is co-endemic (China, Africa,

South America). Recently, a purpose-built flotation apparatus

(FLOTAC) has been designed and tested for the purpose of

improving the quantitative analysis of faecal egg counts [11].

Although the FLOTAC method is more sensitive than the Kato-

Katz technique [12,13], particularly for hookworm eggs, it

requires a centrifuge and is relatively low-throughput.

Application of Diagnostics for Assessment of Response to
Anthelmintic Chemotherapy including Detection of
Anthelmintic Resistance

Although quantitative measurement of infection intensity by egg

counting before and after treatment is the best available method

for assessment of anthelmintic efficacy, this approach suffers from

a number of significant drawbacks. For example, the relationship

between worm burden and egg output is not linearly proportional,

with density-dependent fecundity resulting in the potential

underestimation of adult worm burden, for example in A.

lumbricoides and hookworm infection [14–16].

The weaknesses in study design and consequent uncertainties in

measures of STH anthelmintic drug efficacy have been reviewed

[2,17,18]. In a recent review, specific guidelines regarding study

design, including intervals between testing and expected clearance

thresholds, have been recommended [2]. A specific problem is the

lack of inter-study standardisation of diagnostic tests used. Two

other specific issues pertain to technical aspects of diagnosis:

detection of low level infection, especially when a single stool

sample is examined using methods such as Kato-Katz, and a lack

of standardisation of the assessment of reduction in infection

intensity as determined by reduction in faecal egg counts. While

direct parasitological tests are relatively sensitive, their perfor-

mance is suboptimal at low intensity of infection, and therefore a

Box 1. List of Abbreviations

APOC, African Programme for Onchocerciasis Control
CAA, circulating anodic antigen
CCA, circulating cathodic antigen
CFA, circulating filarial antigen
CHD, cystic hydatid disease
DDIA, dipstick dye immunoassay
DEC, diethylcarbamazine
DFID, Department for International Development, United
Kingdom
DRG4, Disease Reference Group in Helminth Infections
FDA, Food and Drug Administration, United States
FECRT, faecal egg count reduction test
FIND, Foundation for Innovative New Diagnostics
GIS, geographical information system
ICT, immunochromatographic test
ITS, internal transcribed spacer
LAMP, loop-mediated isothermal amplification
LF, lymphatic filariasis
LIPS, luciferase immunoprecipitation system
MDA, mass drug administration
MDG, Millenium Development Goal
MDSS, Medical Device Safety Service, European Union
M&E, monitoring and evaluation
mf, microfilariae
NCC, neurocysticercosis
NTD, neglected tropical disease
PCR, polymerase chain reaction
PDIP, Product Development and Implementation Partner-
ship
POC, point-of-care
RAPLOA, rapid assessment procedure of loiasis
R&D, research and development
REA, rapid epidemiological assessment
REMO, rapid epidemiological mapping of onchocerciasis
SAE, severe adverse event
SEA, soluble egg antigen
STH, soil-transmitted helminthiasis
TB, tuberculosis
TDR, Special Programme for Research and Training in
Tropical Diseases
WHO, World Health Organization

Box 2. Five Desirable Attributes of Diagnostic
Tests Required for Helminth Control
Programmes

N Scalable cost-effective tests for individual diagnosis.
Ideally these should be suitable for point-of-care (POC)
use, or in environments where technical resources are
limited

N Tests suitable for large-scale surveys, for example for
epidemiological surveillance

N Tests capable of quantifying infection intensity (worm
burden) reliably, a diagnostic parameter that is critical
when dealing with helminth infections

N Tests enabling quantification of suboptimal responses to
control interventions including prompt detection of
drug resistance

N High specificity and sensitivity as infection prevalence
and intensity decrease throughout intervention, en-
abling to assess programme end points

www.plosntds.org 3 April 2012 | Volume 6 | Issue 4 | e1601



single negative stool examination for helminth eggs is liable to

result in Type II errors in evaluation of trial outcomes, i.e.,

misclassification of decreased drug efficacy as intact due to failure

to detect persistent, low level infection following anthelmintic

therapy. As discussed above, while there is no well-accepted

measure of intensity of infection, trials have generally reported

some measure of reduction in egg count, but not in a standardised

fashion. In veterinary practice, significant work has been

undertaken to standardise assessment of anthelmintic drug efficacy

[19], specifically in standardising all aspects of the faecal egg count

reduction test (FECRT). As noted above, assessment of drug

efficacy by reporting reduction in egg counts is, in addition, subject

Box 3. Research Priorities for Helminth Diagnostics

Soil-Transmitted Helminthiases

1. Improve and validate tools for quantifying intensity of
infection (worm burden), including both biomarkers
(coproantigen) and molecular methods (PCR-based)

2. Refine/develop methods to assess response to treatment
for monitoring of drug efficacy

3. Refine methods for more accurate quantification of egg
counts

4. Develop and validate methods for quantifying parasite
genetic diversity and population structure

Filarial Infections

1. Devise diagnostic tools (e.g., biomarkers of active infection)
to assist elimination. Most available diagnostic methods are
too insensitive for M&E and surveillance once infection
prevalence falls to very low levels

2. Develop circulating antigen tests for detection of O.
volvulus, L. loa, and B. malayi infection that can be used
in combination with current tools to assess active infection

3. Identify and validate informative molecular markers for
detection of heritable changes in drug efficacy, and
develop cost-effective tools to detect such changes

4. Develop and validate methods for quantifying parasite
genetic diversity and population structure

Schistosomiasis

1. Refine antigen tests and optimise algorithms for their
combination with existing diagnostic assays including

parasitological, immunological, and ultrasound tools

2. Develop assays for assessment of worm burden in areas of
varying endemicity

3. Identify and standardise markers and assays for resistance
to praziquantel for monitoring of drug efficacy

4. Improve and standardise protocols for monitoring of
infection in humans and snails by molecular methods

5. Develop and validate methods for quantifying parasite
genetic diversity and population structure

Cystic Hydatid Disease

1. Develop rapid, sensitive, and specific point-of-care (POC)
tests for canine echinococcosis

Taeniasis/Cysticercosis

1. Develop rapid, sensitive, and specific POC tests for human
taeniasis

2. Develop sensitive and specific tests for detection of viable
Taenia solium infections in pigs

3. Devise quantitative tests to determine intensity of infection

Food-Borne Trematodiases

1. Develop species-specific monoclonal antibodies suitable
for use in specific coproantigen detection tests

2. Validate effective and inexpensive molecular methods for
differentiation of fluke species with similar egg morphol-
ogy

Table 2. Diagnostics Available for Soil-Transmitted Helminthiases.

Diagnostic Procedure and Objective Species of Intestinal Nematode

Ascaris lumbricoides (roundworm), Trichuris
trichiura (whipworm), Necator americanus/
Ancylostoma duodenale (hookworm) Strongyloides stercoralis (threadworm)

Stool microscopy with or without concentration
stepa

3 +/2

Coproculture Harada Mori for specific identification of hookworms 3

Antibody detection N/A 3

PCR and antigen detection ----Experimental----

Assessment of infection intensity Quantitative fecal egg count; PCR (experimental) N/A

Assessment of drug efficacy Reduction in stool egg counts (FECRT) Negative coproculture; decline in antibody titer

Mapping Stool microscopy Antibody detection

Elimination N/A N/A

aBy sedimentation (e.g., formalin-ethyl acetate sedimentation) or flotation (e.g., ZnSO4).
3, Available or method of choice; N/A, not available; +/2, acceptable but not ideal.
doi:10.1371/journal.pntd.0001601.t002
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to confounding due to the effect of density-dependent fecundity on

egg counts [16]. There may also be considerable geographic

heterogeneity in the strength of density-dependent constraints on

worm fecundity [14].

Pilot phenotypic tests of anthelmintic response have been

developed for hookworms, taking advantage of the characteristic

of hookworm eggs, whereby eggs passed in the faecal stream

mature into infective larvae over a number of days [20–22].

While there has been some work undertaken to standardise such

tests [23], significant work remains to be done. For T. trichiura

and A. lumbricoides, it has not been possible to develop such

phenotypic tests due to the lack of egg hatch in the external

environment, and an inability to readily assess parasite viability

ex vivo.

Some work has been conducted to develop molecular methods

to genotype intestinal nematode parasites for genetic markers of

anthelmintic resistance [24]. Efforts have largely concentrated on

genotyping for specific polymorphisms in the b-tubulin gene that

are recognised to be associated with anthelmintic resistance in a

range of veterinary nematodes, specifically mutations in the b-

tubulin gene at codons 200, 167, and 198. Assay methodologies

have been developed for A. lumbricoides [25], hookworms [26,27]

and T. trichiura [25,28], with resistance-associated mutations being

found in some populations of these soil-transmitted nematodes.

This suggests that selection for resistance to anthelmintics such as

albendazole and mebendazole can occur, and may help explain

the sometimes low and variable efficacy of these anthelmintics

against human STH infections (see [2,24] for recommended cure

efficacies). However, the relationship between the presence and

frequency of these specific mutations and drug response pheno-

types has not yet been fully characterised, and should become an

important research priority so that fast and sensitive genotyping

analyses, used on pooled egg samples, can provide surveillance

tools for anthelmintic resistance.

Application of Diagnostics for Disease Mapping,
Surveillance, and Mathematical Modelling

Infection mapping of STHs has progressed well, and readers are

referred to the http://www.thiswormyworld.org/ website. Al-

though mathematical models of transmission (reviewed within this

collection in [5]) have been developed, they may not account for

current difficulties in accurately quantifying worm burden, a

consideration that is seldom recognised.

Filariases

The programmes to eliminate onchocerciasis from the Americas

and lymphatic filariasis (LF) on a global basis have highlighted

specific deficiencies in the diagnostics for the filariases, particularly

in elimination settings. Some relate to the problem of surveillance

when infection prevalence falls to low levels. In such settings, most

available methods are too insensitive, even if active case detection

were logistically feasible. Other specific issues include prediction of

the risk of severe adverse events (SAEs) when individuals with high

grade microfilaraemia with Loa loa are administered antifilarial

chemotherapy, and detection and management of changes in drug

efficacy that may indicate emerging resistance. A detailed

discussion of the strengths and weaknesses of diagnostic tests

appropriate for diagnosis of filariasis is available in Text S2, and a

summary of current diagnostic tests for filariases is presented in

Table 3. The research priorities for filarial diagnosis are

summarised in Box 3.

Table 3. Diagnostics Available for Filarial Infections.

Objective Lymphatic Filariasis Onchocerciasis Loiasis

Wuchereria bancrofti Brugia malayi Onchocerca volvulus Loa loa

Parasitological diagnosis Blood filtration for microfilariae (mf)
Ultrasound

Skin snip
Nodule palpation
DEC patch test

Blood filtration for
microfilariae

Antibody detection 3 3 3 3

Antigen detection 3 – – –

PCR Molecular xenomonitoring (PCR on mosquito/fly vectors) –

Assessment of infection
intensity

mf load in blood
Antigen level

mf load in blood mf load in skin
Nodule palpation

mf load in blood

Assessment of
drug efficacy

Disappearance of mf from
blood at given times
post-treatment Ultrasound
changes in filarial worm nests
Clearance of circulating antigen

Disappearance of mf
from blood at given
times post-treatment
Ultrasound changes
in filarial worm nests

Disappearance of mf from
skin at given times
post-treatment Ultrasound
changes in nodules By
nodule histology or
embryogram examination

Disappearance of
mf from blood

Mapping Antigenaemia prevalence REMO RAPLOA

Elimination Seroepidemiology Seroepidemiology
Molecular xenodiagnosis of
vectors (mosquito PCR)

Seroepidemiology
Molecular xenodiagnosis
of vectors (blackfly PCR)

N/A

3, Available or method of choice; N/A, not available; –, not available.
REMO, rapid epidemiological mapping of onchocerciasis; RAPLOA, rapid assessment procedure for loiasis.
doi:10.1371/journal.pntd.0001601.t003
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Infection Intensity
Infection intensity may refer to adult worm burden or

microfilarial load. The relationship between microfilarial load, as

assessed by quantification of blood microfilaraemia in LF and

loaisis, or of microfilaridermia by skin snip in onchocerciasis, and

the total adult parasite burden is at best semi-quantitative. In

addition to limitations imposed by sampling methodology and

measurement error, microfilarial load is significantly affected by

immune-mediated parasite clearance mechanisms, and processes

regulating the fecundity of adult worms. Assessment of adult worm

burden in onchocerciasis by nodule palpation suffers from both

sensitivity and specificity problems in addition to complications

brought about by the aggregation of adult worms in nodules.

Nodule prevalence in a sample of adult hosts has been used to

estimate a measure of community infection for onchocerciasis, by

relating nodule to microfilarial prevalence. While palpation of

onchocercal nodules is the major tool for determination of

infection prevalence and rapid epidemiological mapping of

onchocerciasis (REMO) in areas of the African Programme for

Onchocerciasis Control (APOC), where it is used for identification

of communities at risk [29], and for selection of areas for mass

ivermectin administration, it is only reliable in highly endemic

areas. Its diagnostic precision is poor because of large intra- and

inter-individual variability, and its ability to reflect changes in

endemicity as a result of large-scale and prolonged control

programmes is limited [30].

Circulating filarial antigen (CFA) in bancroftian filariasis is a

product of adult worms, with the majority being produced by adult

female worms. As it is very difficult to enumerate adult worm

numbers in humans, the relationship between CFA level and

parasite burden is difficult to establish, but has been achieved in

relevant animal models [31]. In one study, where worm nests were

enumerated by ultrasound, there was a non-significant association

between CFA level and ultrasound signal [32].

Application of Diagnostics for Assessment of Response to
Anthelmintic Chemotherapy including Detection of
Anthelmintic Resistance

Aside from assessment of changes in microfilarial counts

following treatment, diagnostics for establishing cure of filariasis

are generally lacking, and as discussed in [24], the available drugs

for MDA are not generally macrofilaricidal (with the exception of

prolonged courses of doxycycline to deplete Wolbachia endobac-

teria [33]). This is particularly problematic when drugs, with

selective activity on the only life cycle stage that is amenable to

parasitological diagnosis—the microfilariae (mf)—are used (e.g.,

diethylcarbamazine [DEC], ivermectin). Ultrasound to establish

killing of adult worms in nodules in onchocerciasis may produce

equivocal results [34], and in any case, current annual or semi-

annual treatment regimens are not significantly macrofilaricidal.

Thus, assessment of ‘‘cure’’ after ivermectin therapy is problem-

atic, and without other markers it hampers study of possible drug

resistance. One approach has been to profile the responses of

individuals to ivermectin treatment by recording the rates of

reappearance of microfilariae in the skin after drug treatment, with

a faster than expected rate of repopulation serving as an indicator

of suboptimal response [35,36]. A complementary approach is the

histological examination of female worms in nodules removed at

approximately 3 months after ivermectin treatment, or the

preparation of embryograms from the females’ uterine content

to assess resumption of microfilarial production [35,36]. As

ivermectin treatment sterilises adult female worms for a period

after treatment, after several rounds of ivermectin (.4–6 rounds),

the uterus of adult female worms should be free of live, stretched

mf 3 months after treatment. Also, if active transmission is still

ongoing in an area under prolonged ivermectin control, these

methods allow assessment of the presence of young, incoming

worms [37].

In LF, the detection of the ‘‘filarial dance sign’’ in worm nests by

ultrasound has been advocated to determine adult worm viability

after macrofilaricidal chemotherapy (e.g., DEC, anti-Wolbachia

therapy) [38,39]. The disappearance of parasite antigen can also

serve as a surrogate for cure [40].

Application of Diagnostics for Disease Mapping,
Surveillance, and Mathematical Modelling

Given the imperfections of currently available diagnostics for

filariases, particularly with respect to the invasive and insensitive

nature of parasitological diagnosis, and the often critical need to

undertake cost-effective mapping, a number of novel techniques

have been developed to overcome the shortcomings of diagnostics.

For onchocerciasis, REMO began with work to identify proximity

to blackfly breeding sites and community nodule prevalence [29].

More recently, this has been supplemented by PCR screening of

pools of flies [41], and the DEC patch test [42]. A summary of

specific issues in diagnostic testing for onchocerciasis is presented

in Table 4.

For bancroftian filariasis, CFA assays, in the form of

immunochromatographic card tests (ICTs), have been successfully

incorporated into programmes to map the distribution of

Table 4. A Comparison of Current Diagnostic Tests for Human Onchocerciasis.

Test Specificity Sensitivity
Interference by
Onchocerca ochengi Throughput Cost Application

Skin snip #100% Low No Low Low Field

Nodule palpation Moderate Low No High Low Field

Snip PCR #100% #100% No Low High Lab

Scratch PCR #100% #100% No Low High Lab

DEC patch 98% 36%–83% No Low Low Lab

Fly dissection Low Low Yes Low Moderate Field

Fly pool PCR High High No High Varies Lab

Antibody ELISA #100% #100% No High Mod Lab

Modified from Boatin et al. [106].
doi:10.1371/journal.pntd.0001601.t004
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bancroftian filariasis [43,44], but see the introductory article of this

collection for problems with this test [45]. The occurrence of SAEs

following ivermectin distribution in areas where L. loa infection is

highly prevalent [46] has required the development of a model-

based geostatistical methodology [47] to map the risk of L. loa

infection being above a predetermined level (20% prevalence) in

areas co-endemic for onchocerciasis. The first approach was based

on using elevation and remote sensing images to define high-risk

areas based on geographic factors such as vegetation cover and

forest boundaries that defined the limits of breeding of the Chrysops

vector [48]. A second qualitative method, Rapid Assessment

Procedure for Loa loa (RAPLOA) uses a standardised questionnaire

to enquire for history of eye worm or Calabar swelling alone or in

conjunction with confirmation of presence of L. loa microfilarae-

mia in a survey sample [49]. The relationship between prevalence

of microfilaraemia and prevalence of eyeworm passage has been

incorporated into the geostatistical model [50].

Schistosomiases (including Infections by
Schistosoma mansoni, S. haematobium, and S.
japonicum)

To date, most schistosomiasis control programmes have aimed

at morbidity reduction rather than elimination of infection [51].

MDA with praziquantel is the main tool for morbidity control

[52]. As the prevalence of schistosomiasis decreases, the need for

improved diagnostic approaches for surveillance purposes will

significantly increase, and in some environments where the

causative parasite is a zoonosis (S. japonicum), increasing attention

to the animal reservoirs will be required. A detailed discussion of

the strengths and weaknesses of diagnostic tests appropriate for

diagnosis of schistosomiasis is available in Text S3, and a summary

of current diagnostic tests for schistosomiasis is presented in

Table 5. The research priorities for schistosomiasis diagnosis are

summarised in Box 3.

Infection Intensity
Although estimation of the intensity of schistosomiasis infection

is an essential requirement for the implementation of control

programmes, M&E, for assessment of efficacy of anti-bilharzial

drugs, and as the most important determinant of morbidity,

available diagnostics are suboptimal for this purpose.

Quantitative egg counting following urine filtration or Kato-

Katz smear are the standard techniques for estimation of intensity

of Schistosoma infection [53]. However, these methods are

confounded by a number of factors, including the overdispersed

nature of schistosome egg output in stool, and the daily variation

in excretion [54]. It has been recommended that replicate faecal/

urine samples over several (ideally a minimum of three)

consecutive days be used to quantify infection intensity. This

requirement is most important in low endemicity settings, in

monitoring of control programmes, and in chemotherapy efficacy

trials [55–59]. However, such approaches are not logistically or

financially feasible except in research settings. Statistical methods

have been proposed to improve accuracy in the parasitological

estimates [56].

Application of Diagnostics for Assessment of Response to
Anthelmintic Chemotherapy including Detection of
Anthelmintic Resistance

A number of reports from endemic areas have suggested that

resistance or tolerance to praziquantel might exist in S. mansoni in

Egypt [60] and Senegal [61,62], making the need for sensitive

diagnostic techniques for M&E of control programmes and

praziquantel chemotherapy a priority. Monitoring the efficacy of

praziquantel in schistosomiasis has relied on the relatively

insensitive method of measuring reduction in egg excretion

following treatment [63]. In addition to any variations in drug

effect on the worms, several factors can confound the interpreta-

tion of such studies. These include variability in pharmacokinetics

of praziquantel in different individuals, the effect of differences in

immune responses to the worms on drug effect, and the maturity

of worms in the human host (praziquantel is relatively ineffective

against juvenile worms) [64,65]. While a number of approaches to

overcoming the significant impediments to detecting drug

resistance using clinical efficacy as the parameter have been

reported, none are readily deployed at programmatic levels. One

such approach has been to transfer clinical isolates from human

patients into mice for testing [66,67]. While this method has

enabled detailed laboratory study, it is expensive, it requires

sophisticated infrastructure, and is not always successful. A

number of in vitro tests have been developed for testing

praziquantel sensitivity on schistosome parasites at a variety of

life cycle stages [68–72]. However, to date none of these tests have

been standardised.

Application of Diagnostics for Disease Mapping,
Surveillance, and Mathematical Modelling

As schistosomiasis is characterised by focal distribution and

large-scale patterns of transmission that are influenced by

climatic and environmental conditions, the integrated use of

Table 5. Diagnostics Available for Schistosomiasis.

Schistosomiasis

Schistosoma mansoni Schistosoma haematobium Schistosoma japonicum

Parasitological diagnosis Stool Kato-Katz Urine filtration Stool Kato-Katz

Antibody detection 3 3 3

Antigen detection + +/2 N/A

PCR -----Experimental-----

Assessment of infection intensity Stool Kato-Katz Urinary egg count Stool Kato-Katz

Assessment of drug efficacy Clearance of eggs from stool Clearance of eggs from urine Clearance of eggs from stool

Mapping/elimination Seroepidemiology Seroepidemiology Seroepidemiology

3, Available or method of choice; N/A, not available; +/2, acceptable but not ideal.
doi:10.1371/journal.pntd.0001601.t005
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geographical information systems (GIS), remote sensing, and

geostatistics has provided new insights into its ecology and

epidemiology at a variety of spatial scales [73]. Nevertheless,

the microecology of snail and parasite endemicity may not be

readily defined without detailed parasitological surveys [74].

The variability in egg output noted above, and its relationship

with infection prevalence and intensity, has received consid-

erable attention in the development and validation of

mathematical models of schistosomiasis [75,76]. A positive

and statistically significant relationship between serum con-

centration of circulating cathodic antigen (CCA) and circulat-

ing anodic antigen (CAA) (as measures of worm burden) and

egg output has been reported [77], and such relationships have

been used to confirm density-dependent fecundity in S. mansoni

[78]. More recently, attention has focused on modelling the

impact of chemotherapy on parasite genetic diversity and drug

resistance [79–81] as discussed in this collection [5].

Cystic Hydatid Disease

The key interventions for control of cystic hydatid disease

(CHD) are continuous mass chemotherapy with praziquantel

administered to dogs along with changes to husbandry so that raw

offal is not fed to dogs. The development of an efficacious sheep

vaccine (EG95) [82] and promising results from early studies on a

dog vaccine [83] indicate that these interventions will also become

useful tools. There are no standard guidelines for monitoring the

effect of control programmes. A detailed discussion of the strengths

and weaknesses of diagnostic tests appropriate for diagnosis of

cystic hydatid disease is available in Text S4, and the research

priorities for CHD diagnosis are summarised in Box 3.

Infection Intensity
Quantification of the burden of Echinococcus worms in dogs can

be undertaken by egg counting and by worm counting after

arecoline purge. As even a few lightly infected dogs can sustain

infection transmission, due to the high biotic potential of cestodes,

the intensity of infection is a parameter of less importance in

echinococcosis.

Application of Diagnostics for Assessment of Response to
Anthelmintic Chemotherapy including Detection of
Anthelmintic Resistance

As described above, the main control tool is mass chemotherapy

of dogs; thus, surveillance for treatment efficacy in individual dogs,

reinfection rates, or emerging resistance are not priority param-

eters for surveillance. Instead the number and coverage of dog

treatments is the most important variable in control programmes.

Application of Diagnostics for Disease Mapping,
Surveillance, and Mathematical Modelling

The transmission dynamics of E. granulosus have been compre-

hensively studied by Gemmell and co-workers [84]; see also the

modelling review in this collection for other mathematical studies

of the population biology of CHD [5]. Currently, surveillance is

mostly based on infection surveillance at slaughter of infected

sheep for liver or lung cysts or, in the case of control programmes

targeting dogs, coproantigen or copro PCR assessments.

Taeniasis/Cysticercosis

Control of taeniasis/cysticercosis due to Taenia solium is in a

much earlier stage. Pilot intervention studies have been undertak-

en since 1989 using mass chemotherapy of the human population

with praziquantel [85]. In further studies interventions entailing

health education and combined mass human and porcine

chemotherapy have been investigated. More recently, a large-

scale elimination programme was applied in Peru [86] using a

series of tools described below. A detailed discussion of the

strengths and weaknesses of diagnostic tests appropriate for

diagnosis of taeniasis and cysticercosis is available in Text S5,

and the research priorities for taeniasis/cysticercosis diagnosis are

summarised in Box 3.

Infection Intensity
In both porcine and human cysticercosis, most infected

individuals carry a few parasites, and indeed most (.90%) human

tapeworm carriers harbour a single tapeworm, with infections with

more than two tapeworms being extremely rare, and therefore

unlikely to have implications for transmission control. On the

other hand, a high number of brain cysts in a human NCC patient

is usually associated with that person carrying a tapeworm, and

heavy infections in pigs mark the proximity of a human tapeworm

carrier. However, identification of heavily infected humans or pigs

requires brain imaging in humans or necropsy of pigs; thus, their

use in control is very limited. Tongue-positive pigs may serve as a

proxy for heavy cysticercosis infections. Whether transmission of

taeniasis in endemic populations is mostly driven by the majority

of pigs infected with few cysts (and thus difficult to detect), or by

the few pigs with many cysts (potential source of infection to many

people if eaten) is an unknown but important question [87]. A

diagnostic technique to determine intensity of infection in pigs

would therefore prove useful.

Application of Diagnostics for Assessment of Response to
Anthelmintic Chemotherapy including Detection of
Anthelmintic Resistance

Intestinal tapeworm infections are usually cured with a single

dose of niclosamide. The only way to confirm cure is to identify

tapeworm scoleces and proglottids following combined niclosa-

mide and purgative therapy [88], a method that is not widely

practiced. Coproantigen follow up was used for this purpose in the

Peru elimination programme and found to be very efficient. For

cysticercosis, the main way of determining cure is by radiologic

imaging to determine that cysts have been killed, a methodology

not useful for epidemiologic studies. To date, there is no evidence

for anthelminthic resistance in taeniasis.

Application of Diagnostics for Disease Mapping,
Surveillance, and Mathematical Modelling

Since no established control programmes have reached the

surveillance stage, no standard methods exist. Surveillance of

cysticercosis in pigs has been proposed as a practical, inexpensive,

and sensitive method for indirectly assessing human risk, and for

monitoring the effectiveness of community-based control pro-

grammes [87,89]. Infection in pigs is more prevalent than human

infection, and infection prevalence in pigs is subject to more rapid

change due to more rapid replacement of the pig population

compared to the human population [90]. Slaughterhouse

prevalence statistics are liable to underestimate the prevalence

of infection in endemic areas, as many pigs are not processed

through the formal slaughterhouse system. Indeed, if pig farmers

suspect that their pigs have cysticercosis they may avoid taking

them to the slaughterhouse [90]. An alternative approach that

has been suggested as a more effective way to assess changes in

the intensity of environmental contamination with T. solium eggs

is the placement of ‘‘sentinel’’ pigs from non-endemic areas in an
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area under surveillance and their monitoring by periodic serology

[91].

Human taeniasis usually has very low prevalence and human

cysticercosis may present years after infection, so neither of these

represent an appropriate target for active surveillance. Screening

of household contacts of cases may be a useful mean of

identification and treatment of tapeworm carriers [92,93].

Food-Borne Trematodiases

The inadequate state of diagnostic tests for zoonotic trematodes,

and particularly Clonorchis sinensis, Opisthorchis viverrini, Op. felineus,

Paragonimus spp., and other related fluke species, including

misdiagnosis of infecting species, underestimation of prevalence,

and inaccurate estimates of infection intensity, has been recently

reviewed [94]. A detailed discussion of the strengths and

weaknesses of diagnostic tests appropriate for diagnosis of food-

borne trematode infection is available in Text S6, and the research

priorities for food-borne trematode diagnosis are summarised in

Box 3.

Infection Intensity
As for intestinal nematodes, faecal egg counts do not correlate

particularly well with the actual worm burden [95]. In an autopsy

study aimed to assess the relationship between faecal egg count

and worm burden of Op. viverrini, worms were found in up to 20%

individuals with a negative faecal egg examination [96]. Although

a positive correlation was observed between worm burden and

faecal egg counts in heavier infections, a density-dependent effect

on excretion confounded the relationship.

Bringing New Helminth Diagnostic Tests to
Market

As outlined in this manuscript and accompanying supplemental

files, there is a significant literature on prototype diagnostic tests

for helminth infections. Once prototype diagnostic devices for

helminth infections reach an acceptable level of technical

performance, their further development beyond proof of concept

requires that a range of significant challenges be overcome. As is

the case in the more prominent diseases such as AIDS,

tuberculosis (TB), and malaria, the development of critically

needed diagnostic tests has assumed lower research priority

compared to other areas such as vaccine and drug development.

The lack of funding dedicated to development of diagnostics for

helminth infections remains a significant impediment, as discussed

in Boatin et al. [45] in this collection. This is a reflection of the

relatively small funding pool available for helminths overall (see

below).

The likely limited interest in commercialisation, a consequence

of the limited financial return, is a major impediment to the

development of diagnostic tests. This is due to a range of factors

including: a) the low priority for making a specific diagnosis of

most of these conditions in endemic settings; b) the low royalty for

licensing (,5% in most settings) [97]; and c) the significant costs

associated with the commercial scale manufacture and marketing

of such tests.

Further, the significant investment is required for diagnostic

tests to gain regulatory approval from the US Food and Drug

Administration (FDA) [98] or the European Union Medical

Device Safety Service (MDSS; http://www.mdss.com/IVDD/

ivddtoc.htm), and represents a further deterrent. While gaining

formal regulatory approval may not be essential for the

deployment of a new diagnostic test for helminth infections

or other NTDs, such approval carries significant advantages. A

minimum requirement for purchase is evidence of good

manufacturing practices, as documented by either compliance

with ISO 13485:2003 or 21 CFR 820 from the FDA. Once

such compliance has been demonstrated, it is likely to be easier

to gain financial support from donors and funders for pur-

chase of a diagnostic test for use in public health control

programmes.

Despite these challenges, examples exist of diagnostic devices or

platforms relevant to helminth infections and others NTDs that

have successfully reached market. These include circulating

antigen tests for filariasis [99,100], rapid diagnostic tests for

malaria [101], the k39 antibody detection test for leishmaniasis

[102], and the urinary CCA test for schistosomiasis [103]. Not well

documented in the scientific literature are the difficulties that each

of these platforms experienced in reaching market and then

maintaining a market presence. Of these, only a malaria rapid

diagnostic test from a single manufacturer (BinaxNOW Malaria

test kit; Inverness, Scarborough, Maine, United States) has gained

FDA approval as a diagnostic device.

Examination of the landscape of diagnostic tests and their

pathway to deployment therefore indicates that the standard

commercial pathway is not well suited to meeting the needs for

diagnostics to aid in the control of helminth parasites. Indeed, in

a recent review of the global investment for NTDs [104], the

sum of funding for research and development (R&D) for

diagnostic tests for helminth diseases was $US1.4 million, a

figure that represented 1.8% of total R&D funding for helminths

(Table 6). While this relative lack of investment is by no means

unique to these pathogens, it is of major importance in

consideration of the need to develop and deploy much-needed

new diagnostic tests for helminth infections. Indeed, it has

become clear that to reach the targets of the Millennium

Development Goals (MDGs) for many of the priority infectious

diseases such as TB, there is a major and unmet need for the

development of diagnostic tests.

A novel approach to bridging the gap between demonstrating

a technically satisfactory diagnostic assay, and bringing the

product in question to the market entails the formation of

organisations specifically tasked with this mission. The foremost

example of such a Product Development and Implementation

Partnership (PDIP) is the Foundation for Innovative New

Diagnostics (FIND; http://www.finddiagnostics.org), an organi-

sation that focuses on a small number of diseases including TB,

sleeping sickness, and malaria. It is supported by the World

Health Organization, the Bill & Melinda Gates Foundation, the

European Commission, the Government of The Netherlands,

UNITAID, DFID, and others.

As outlined by Murdoch in a FIND monograph [105], a

range of complex issues need to be dealt with to successfully

develop such diagnostics. These include: a) identifying specific

patients’ needs in developing countries and targeting products

to all the levels of the health system; b) understanding the

market—potential volumes, distribution of products, and end

user profiles; c) arranging the financial considerations to ensure

they cover both research and development costs; d) settling

issues regarding intellectual property rights for products with no

or limited financial return; e) finding the right manufacturing

approach and harnessing possibilities for technology transfer; f)

creating methods for evaluating the product through clinical

trials and for introducing it at country level; g) working with

governments to adapt national policies and approaches; h)

working with local laboratories to ensure they have the capacity

to use the products effectively; and i) working with donors and
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national governments to make sure tests can be purchased at

prices affordable for all.

It is apparent that for the successful development of the novel

diagnostic tests required for the control of helminth parasites,

similar approaches will be required. However, even if such a

model for development of diagnostic tests were implemented, a

system would need to be put in place to finance procurement, as

requiring the end user to pay will likely result in tests not being

used.

Concluding Remarks

Although a significant number of obstacles of a technical

nature impede the development of diagnostics appropriate to

support the ambitious programmes now in place to control the

NTDs in general, and the human helminthiases in particular,

there is good evidence that the tools are available to overcome

these obstacles. Whether the patchwork of activities as currently

being undertaken largely by enthusiastic researchers, for the

most part working in academic settings, will result in the

expeditious development of these much needed tests is uncertain.

As identified in the G-Finder report [104], the expenditure on

R&D for NTD diagnostics represents only a small proportion of

the funding expended in these areas, and is yet an even smaller

proportion of the operational costs of undertaking the compre-

hensive parasite control programmes that are currently being

advocated or implemented [3,24]. Many lessons can be learned

from the initiative to improve the development and public health

deployment of rapid diagnostics for malaria, led by TDR and

FIND. Although funding for assay development is needed, the

largest needs relate to programmatic leadership and support to

bridge the gap between the demonstration of satisfactory

technical performance of diagnostic platforms in field or clinical

settings, and their deployment in large-scale public health

programmes for the control and elimination of human helmin-

thiases.
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