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40 Abstract

41 Recent developments in high- and middle-income countries have 

42 exhibited a shift from conventional urban water systems to 

43 alternative solutions that are more diverse in source 

44 separation, decentralization, and modularization. These 

45 solutions include non-grid, small-grid, and hybrid systems to 
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46 address such pressing global challenges as climate change, 

47 eutrophication, and rapid urbanization. They close loops, 

48 recover valuable resources, and adapt quickly to changing 

49 boundary conditions such as population size. Moving to such 

50 alternative solutions requires both technical and social 

51 innovations to co-evolve over time into integrated socio-

52 technical urban water systems. Current implementations of 

53 alternative systems in high- and middle-income countries are 

54 promising, but they also underline the need for research 

55 questions to be addressed from technical, social, and 

56 transformative perspectives. Future research should apply a 

57 transdisciplinary research approach through socio-technical 

58 “lighthouse” projects that apply alternative urban water systems 

59 at scale. Such research should leverage experience from 

60 lighthouse projects in a range of socio-economic contexts, 

61 identify their potentials and limitations from an integrated 

62 perspective, and share their successes and failures across the 

63 urban water sector. 

64 Keywords

65 Urban water management, non-grid systems, small-grid systems, 

66 hybrid systems, research agenda, transdisciplinary integration

67 Graphical Abstract
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69

70 1. Introduction 

71 Cities in high- and middle-income countries generally rely on 

72 centralized systems to provide vital water services,1 including 

73 water supply, urban hygiene, urban drainage, and water pollution 

74 control.2 These services are usually provided through networks 

75 of buried pipes, termed grids, which connect users to sources of 

76 water and sinks for wastewater.3 Such conventional systems are 

77 characterized by strong path dependencies and technological and 

78 institutional lock-in effects,4 which usually undergo 

79 incremental changes rather than radical transformations.5 

80 However, incremental changes are not sufficient to meet such 

81 current and future challenges in the urban water sector as rapid 

82 urbanization, urban sprawl, eutrophication, climate change, 

83 resource scarcity, and aging infrastructure.6
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84 Alternative urban water systems have been studied in research,7-9 

85 discussed in policy,10-12 and implemented in practice.13-15 

86 Alternative solutions include potable and non-potable water 

87 reuse,16 source separation, decentralization,17 and the 

88 modularization of treatment systems comprising small-scale, 

89 mass-produced, standardized, and automated technology 

90 components.18, 19 These alternatives address pressing urban water 

91 challenges by closing loops, recovering valuable resources, and 

92 involving infrastructures that can easily adapt to changes in 

93 boundary conditions such as population size.

94 Although promising alternative urban water systems have been 

95 developed in recent decades, their market applications remain 

96 limited to a few places worldwide.20 Pilot applications have been 

97 implemented in major cities such as San Francisco,21 Melbourne, 

98 Sydney,22 Hamburg,23 Beijing,24, 25 Bangalore,26 and Zurich.27 Recent 

99 developments in high- and middle-income countries have thus 

100 shown an emergent shift from conventional urban water systems to 

101 alternative solutions that are more diverse in source 

102 separation, decentralization, and modularization. 

103 This shift towards alternative solutions implies far-reaching 

104 changes to the urban water sector. Technologies are highly 

105 intertwined with institutions28 and involve mutual 

106 interdependence between technical and social structures. Both 

107 need to transform and co-evolve over time into new and stable 

108 “configurations that work”29 to continue safe and reliable 

109 service provision while tackling emerging challenges.30 The 
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110 complexity, ambiguity and uncertainty of such socio-technical 

111 transition calls for the “constructive combination or 

112 integration”31 of a wide range of perspectives from research, 

113 policy, and practice in ways that are best addressed by 

114 transdisciplinary approaches.32 Such approaches transcend 

115 disciplinary boundaries (interdisciplinarity) while spanning 

116 research, policy, and practice (transdisciplinarity). They are 

117 intended to advance fundamental understanding of current and 

118 future challenges to urban water management, to generate 

119 promising solutions,33 and to enable mutual learning between 

120 research, policy, and practice.34 

121 In this paper, we explore the challenges to and opportunities 

122 for a transition to alternative urban water systems in high- and 

123 middle-income countries. Recent studies have (i) discussed the 

124 need to design, operate, and manage urban water systems in 

125 fundamentally different ways,8, 35 (ii) scrutinized promising 

126 alternative solutions,7, 36 and (iii) analyzed barriers to change 

127 in the urban water sector.28, 37 However, few studies have outlined 

128 a transdisciplinary research agenda that discusses key research 

129 questions from technical, social, and transformative 

130 perspectives, and across interrelated macro, meso, and micro 

131 levels. Integrating these perspectives and levels advances our 

132 understanding of the complexity of both alternative socio-

133 technical systems and socio-technical transitions in the urban 

134 water sector.
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135 We therefore synthesize the discussion from a high-level expert 

136 workshopi attended by experts from process engineering, 

137 environmental engineering, transitions studies, innovation 

138 studies, decision analysis, governance studies, environmental 

139 studies, social psychology, and transdisciplinary research. The 

140 discussion identified key research questions from technical, 

141 social and transformative perspectives at three levels: (i) 

142 macro, relating to formal and informal rules and regulations and 

143 long-term transformations of technological paradigms and 

144 societal beliefs; (ii) meso, relating to the spatial 

145 organization of technical systems and their governance 

146 structures; and (iii) micro, relating to technological 

147 components, individual actors, and short-term transformations. 

148 We conclude by reflecting critically on the challenges we faced 

149 while integrating diverse disciplines and fields in a single 

150 research agenda.

151

152 2. Recognizing the diversity of technical systems 

153 To discuss technical alternatives to today’s conventional 

154 systems, we define both the extreme solutions, grid-dominated 

155 and non-grid, and the intermediate solutions, small-grid and 

156 hybrid. Grids are constituent elements of today’s centralized 

157 systems, whose capital expenditure on pipes and sewers typically 

158 amounts to 70–80%, leading to technological lock-in effects.38 

159 We define non-grid systems as systems without pipes or sewers 

160 between individual buildings, but with piping within buildings 
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161 and on premises, and small grids as systems with sewers and pipes 

162 between a smallii number of individual buildings. Both non-grid 

163 and small-grid systems are modular structures that can be 

164 upscaled and downscaled to meet changing boundary conditions, 

165 thus reducing the lock-in effects observed in grid-dominated 

166 systems. Hybrid systems integrate non-grid and small-grid 

167 solutions into grid-dominated systems, such as non-grid or 

168 small-grid treatment of urine within conventional systems (see 

169 Figure 1).2, 39

170 We discuss the technical systems at the macro, meso, and micro 

171 levels. The macro level defines the services that urban water 

172 systems are expected to provide, the meso level the spatial 

173 organization of alternative systems, and the micro level the 

174 individual technologies. All three levels are interrelated. Our 

175 discussion excludes the variety of well-established alternative 

176 stormwater systems that are flexibly adapted to non-grid, small-

177 grid, and hybrid systems (collectively known as Water Sensitive 

178 Urban Design, Low Impact Development, and other terms40), as that 

179 field has progressed significantly in recent decades.41, 42 This 

180 progress has enabled research on stormwater management to shift 

181 its focus to maximizing the multiple benefits of stormwater 

182 systems with best planning practices42 and ensuring their 

183 compatibility with alternative water and wastewater systems.43 

184

185 - Figure 1 -

186
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187

188

189
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190 Figure 1. Schematic visualization of (a) non-grid, (b) small-

191 grid, and (c) hybrid urban wastewater systems (left column: top 

192 view) and units (right column: side view) based on empirical 

193 examples: (a) Beijing, China:24, 25 non-grid systems without sewers 

194 between individual buildings but with pipes inside buildings. 

195 Blackwater (e.g. from toilet) and greywater (e.g. from sinks, 

196 showers, washing machines or dishwashers) is collected in a 

197 single wastewater stream and treated on-site for non-potable 

198 reuse inside and outside individual buildings (e.g. toilet 

199 flushing, irrigation, and/or infiltration for aquifer recharge). 

200 Sludge is collected by trucks and treated in centralized sludge 

201 treatment plants. Rainwater is harvested and used for toilet 

202 flushing. (b) Hamburg, Jenfelder Au, Germany:23 small-grid 

203 systems for groups of individual buildings with different pipes 

204 for source-separated wastewater streams. Blackwater and 

205 greywater are collected and treated separately in decentralized 

206 treatment plants. Treated greywater is reused outside buildings. 

207 Energy is recovered from blackwater as heat and electricity and 

208 used in buildings. Sludge is collected by trucks and treated in 

209 centralized sludge treatment plants. (c) Eawag, Zurich, 

210 Switzerland:27 hybrid systems integrate non-grid and small-grid 

211 solutions into a grid-dominated system. Brownwater (e.g. from 

212 toilets, but without urine) and greywater is collected in a 

213 single wastewater stream and treated in a centralized wastewater 

214 treatment plant. Urine is collected through urine-diverting 

215 toilets and treated on-site. Urine is transformed into 
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216 fertilizer for reuse in urban agriculture44. Rainwater is 

217 harvested and used for toilet flushing. 

218

219 Services of urban water management (macro level). The services 

220 that urban water systems are expected to provide are generally 

221 defined at the macro level.2 Formal rules of service provision 

222 are commonly set by states and nations and are typically informed 

223 by international trends. Although in theory no technical 

224 decisions are taken at the macro level, it provides the 

225 boundaries for the technology choices at the meso and micro 

226 levels. In practice, technical decisions are sometimes 

227 effectively taken at the macro level due to, for instance, 

228 requirements for secondary treatment (e.g., the provisions of 

229 the US Clean Water Act). 

230 In the 19th century, decision-makers identified urban hygiene 

231 as the main service to be delivered, leading to the installation 

232 of sewers, with unintended detrimental effects on water quality. 

233 In the 20th century, water pollution control was added, resulting 

234 in the construction of wastewater treatment plants.45 Towards the 

235 end of the 20th century, authors started to discuss the 

236 sustainability of  urban water management.2, 46 In the 21st century, 

237 the focus on sustainability appears to be contributing to a shift 

238 towards incorporating urban water management into the evolving 

239 circular economy.47-50 The circular economy involves resource 

240 recovery from wastewater, primarily water, energy, and 

241 nutrients, as an additional service while balancing service 
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242 goals and overall resource efficiency, such as energy demand for 

243 alternative technologies.2 Water reuse opportunities are usually 

244 found at household and industry level as substitution of other 

245 water sources,51 at city level for recreational and ecological 

246 purposes and cooling,52 and at landscape level for streamflow 

247 augmentation53 and agricultural irrigation.51 Energy reuse is 

248 typically relevant in households in the recovery of heat and 

249 treatment facilities in the recovery of chemical energy from 

250 sludge as heat or electricity.54 Nutrient reuse can be found at 

251 all levels from gardens to large-scale agriculture. The wider 

252 the variety of services that urban water systems are expected to 

253 provide, the more challenging service provision becomes. The 

254 complexity of ensuring hygiene in on-site water provision from 

255 greywater exemplifies this challenge well.55 

256 Spatial organization of urban water management (meso level). 

257 The spatial organization of urban water services, including 

258 system type, system size, and mixing of water flows are all 

259 defined at the meso level. The integration of such services with 

260 other sectors and their services, such as energy supply and food 

261 supply, is also determined at this level. The meso level provides 

262 some of the most obvious arguments for alternative urban water 

263 systems: conventional grid-dominated systems require sufficient 

264 financial capital, long planning horizons, stable institutions, 

265 and sufficient water resources.7 In many low- and middle-income 

266 countries, few or none of these conditions prevail, and even in 
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267 high income countries, sufficient financial capital and water 

268 resources are not always available.56

269 However, even where such conditions are met, new demands for 

270 resource recovery services increase the demand for alternative 

271 solutions. It is often advantageous to recover resources from 

272 less diluted sources (e.g. nutrients from urine) or less 

273 contaminated ones (e.g. water from greywater). This may result 

274 in greater demand for source separation (see Figure 1),7,57 which 

275 can best be realized by means of non-grid or small-grid systems. 

276 Similarly, streamflow augmentation of small water courses with 

277 treated wastewater may lead to more widely distributed treatment 

278 systems.53 Progress in such digital technologies as wireless 

279 communication, automation, and remote sensing, monitoring, and 

280 controlling support radically different approaches to urban 

281 water management58 and allow distributed non-grid or small-grid 

282 systems to be operated remotely and semi-automatically.59 

283 However, the technological lock-in effects of legacy 

284 infrastructure, make it likely that, in the short term, non-grid 

285 and small-grid solutions will be implemented in new development 

286 areas or integrated into existing grid-dominated systems, 

287 resulting in increasing system hybridization.3 In the long term, 

288 alternative systems have the potential to disrupt the urban water 

289 sector, resulting in deeper sectoral transformation, discussed 

290 further below. 

291 Single technologies (micro level). Most research on and 

292 development of alternative urban water systems take place at the 
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293 micro level, mainly as on-site or small-scale technologies for 

294 treating combined or source-separated domestic wastewater. 

295 Source separation requires different treatment technologies for 

296 greywater, blackwater, urine, and feces17. Such technologies face 

297 specific challenges, such as robustness and ease of maintenance, 

298 and may rely on new types of interfaces, such as urine-separating 

299 toilets. 

300 Hybridizing existing technologies for multiple purposes both 

301 creates economic incentives and furthers system flexibility. 

302 Much can be learnt from research on alternative stormwater 

303 systems,41, 43 including the adaptability of existing nature-based 

304 systems for wastewater and greywater treatment (e.g. subsurface 

305 constructed wetlands60 and dual-mode biofilters61) to provide 

306 additional local amenity benefits. The integration of treatment 

307 or resource recovery in single household devices, such as 

308 recycling showers62 offer an alternative to intra-household 

309 grids. However, they require close collaboration between 

310 research and industry to meet the increasing complexity of 

311 designing, installing, and operating these systems.

312

313 3. Acknowledging the key role of social contexts 

314 Strong lock-in effects occur also at the social level.28 Moving 

315 from grid-dominated systems to non-grid, small-grid, and hybrid 

316 solutions implies far-reaching changes in social contexts. These 

317 contexts involve two distinct elements: actors and institutions. 

318 Actors comprise the firms, utilities, universities, policy 
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319 makers, users, and non-government organizations involved in 

320 designing, operating, managing, regulating, and using urban 

321 water systems. Institutions set the “rules of the game” that 

322 shape actors’ behaviors and thus condition the opportunities for 

323 and barriers to innovation.63 Institutions come in numerous 

324 forms, ranging from formal regulations, such as laws and water 

325 quality standards, to more intangible rules, such as cultural 

326 norms on how to properly use a toilet, and cognitive frames, 

327 such as “ways of doing things” in a wastewater utility.63 These 

328 institutional characteristics interact and reinforce each other 

329 and thus maintain overall stability. Consequently, alternative 

330 urban water management approaches challenge widely held and 

331 deeply embedded societal norms, regulations, and beliefs.

332 Developing, diffusing, and adopting alternative urban water 

333 systems requires a series of institutional changes at various 

334 levels. These include adapting existing laws, regulations, and 

335 health standards at national and international levels, urban 

336 planners and architects rethinking urban design, utility staff 

337 and treatment equipment suppliers embracing new business models, 

338 and users adjusting their behavior to new technologies and 

339 interfaces. The scale and diversity of these reconfigurations 

340 highlight the multi-dimensional, interconnected, and context-

341 specific character of the transitions required. This implies 

342 that even if public and private stakeholders agree to transform 

343 urban water management, they will be confronted with 

344 considerable path dependencies and unintended consequences at 
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345 all levels, similar to those of the technical systems discussed 

346 above. 

347 Changing widely-held societal norms, regulations and beliefs 

348 (macro level). Widely-held cultural norms, regulations and 

349 beliefs need to be identified that influence the success or 

350 failure of alternative systems. The urban water sector depends 

351 on a particularly strong set of ‘taken-for-granted’ 

352 technological paradigms and societal beliefs that stabilize the 

353 currently prevalent system.45 Scholars have long called for 

354 unpacking macro-level institutional black boxes, such as global 

355 industry structures dominated by large firms and donors, the 

356 “yuck factor” most cultures associate with water reuse, and the 

357 globally standardized curricula for civil engineers, which 

358 strongly prioritize conventional grid-dominated systems. To 

359 date, few studies have examined whether, where, and how such 

360 macro structures exert their influence and how innovative actors 

361 may circumvent institutional barriers when pursuing alternative 

362 solutions. A key challenge in this respect is the socio-technical 

363 complexity and spatial diversity of alternative systems, which 

364 blur traditional operational scales, boundaries, and actors’ 

365 roles and responsibilities.64

366 To date, research in this field has focused on defining 

367 institutional design principles,65, 66 benchmarking change 

368 processes,1 mapping legitimation processes,21 and assessing 

369 institutional capacity for change.67 Overall, this body of work 

370 is scattered and has overlooked some core research areas, 
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371 particularly in global water governance structures, interactions 

372 between actors, institutions, and technologies,68 and policy 

373 mixes that may support the diffusion of alternative solutions in 

374 various socio-economic settings. For instance, case studies 

375 examining the success or failure of the systems in Beijing, 

376 Hamburg, and Zurich emphasize context-specific institutional 

377 barriers while downplaying path dependencies that looked similar 

378 across all cases.45 Future research should generate deeper 

379 understandings of the macro-level dynamics that shape and 

380 enforce the formal rules governing who, how, and how well urban 

381 water systems are managed. 

382 Reforming organizations, industry, and governance structures 

383 (meso level). Moving to alternative systems also implies changes 

384 within and across organizations, industry, and economic 

385 incentive structures. Firms providing conventional systems 

386 reportedly struggle with radically novel business models and 

387 service structures for alternative systems.69 As these systems 

388 mature, start-ups and spin-offs may increasingly disrupt the 

389 incumbents’ income streams while maintaining or even improving 

390 the overall service level for end users.70, 71 While considerable 

391 spatial variety exists, adapting the internal organization, 

392 innovation structures, and income streams of traditional firms 

393 and utilities to alternative solutions is far from 

394 straightforward.37

395 Consequently, the economic feasibility and social impacts of 

396 alternative solutions need to be better understood. Their multi-
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397 dimensional costs and benefits have strong implications for 

398 finding the optimal degree of decentralization in diverse 

399 spatial and socio-economic contexts.72 Likewise, policy makers 

400 will have to rebalance the allocation of public and private costs 

401 and benefits in the urban water sector.22 Important policy 

402 questions about the environmental impact and social equity of 

403 different socio-technical system designs arise here,73 in 

404 particular whether and how alternative solutions can contribute 

405 to guaranteeing equitable access to urban water services.

406 Another open question concerns how to effectively organize the 

407 operation and maintenance of alternative solutions. Several 

408 promising niche experiments have implemented alternative systems 

409 at scale in San Francisco,21 Beijing,24, 25 Bangalore,26 and various 

410 European23,27,  and Australian cities.9, 69  The results of these 

411 early initiatives are mixed, but they highlight the lack of any 

412 systematic evaluation and categorization of the organizational 

413 challenges that they face or of governance structures and 

414 regulative frameworks that are conducive to innovation while 

415 protecting public health and vulnerable societal groups.

416 Changing behaviors and routines (micro level). Moving away from 

417 conventional grid-dominated systems requires that a broader 

418 range of stakeholders engage in ensuring that alternative 

419 solutions are accepted, adopted, and safely managed. While some 

420 alternative systems may operate in a fully automated way, in 

421 most cases individuals, households, utility practitioners, 

422 private businesses, and regulators will have to become more 
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423 involved in using and managing such systems. Part of the 

424 challenge thus involves encouraging and empowering a shift in 

425 key stakeholders’ daily routines and practices. For instance, 

426 how can users be motivated to become more involved in investing, 

427 installing, adopting, operating, and managing the systems and 

428 changing their behaviors and routines? To answer this question, 

429 a nuanced understanding of (i) contextual expectations about the 

430 role of government, (ii) contemporary societal norms and values 

431 related to conventional urban water management, and (iii) users’ 

432 perceptions and understandings of alternative systems is 

433 required. Such insights provide detailed insights into the 

434 variety of psychological drivers, objectives, and motives for 

435 adopting and maintaining new technologies. Such understanding 

436 assists in designing suitable, context-specific interventions 

437 that encourage the acceptance and safe management of alternative 

438 solutions.74 For instance, public commitment may enhance people’s 

439 use of alternative solutions.75 

440 A key challenge for research in this area is that relatively 

441 few non-grid, small-grid, and hybrid systems have been 

442 implemented to date. Therefore, previous research has mostly 

443 focused on community acceptance and emotional responses,76, 77 but 

444 studies associated with (i) defining and allocating rights and 

445 responsibilities related to alternative systems and (ii) using 

446 and maintaining such systems in the long term are scarce from 

447 either user or utility perspectives. Future research will 

448 benefit from experimental studies on implemented pilot systems 
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449 by acquiring knowledge of the long-term use and maintenance78 and 

450 the rights and responsibilities associated with them. For 

451 example, a psychological analysis of why urine-separating 

452 toilets were accepted at the Eawag headquarters in Switzerland 

453 but were not in similar buildings in Germany would be a highly 

454 interesting research endeavor.

455

456 4. Managing socio-technical transitions: An integrative and 

457 dynamic perspective

458 As argued in the preceding sections, the future pervasiveness 

459 of alternative solutions will depend not only on the availability 

460 of new technical configurations and suitable institutional 

461 arrangements but also on their alignment. Thus, the timing and 

462 co-management of innovation processes becomes crucial. The 

463 challenge is to inquire into conditions for transitioning the 

464 entire socio-technical system towards a more multi-faceted urban 

465 water sector.29 Maintaining existing services while enabling 

466 radical shifts in the way urban water services are provided 

467 requires the formulation of long-term visions2, 79 and context-

468 sensitive implementation of alternative systems.

469 These kinds of transitions have to be analyzed at two levels: 

470 (i) In the short term, new solutions have to be implemented in 

471 protected niches80 that enable testing of and learning from 

472 alternative systems under current technical and institutional 

473 conditions; (ii) in the longer run, lessons learned from such 

474 experience need to be mainstreamed. During this transition, 
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475 different types of learning by utilities, technology providers, 

476 governments and users will be essential. First-order learning 

477 about facts (“Are we doing things right?”) is required for 

478 improving the efficiency of the new systems under otherwise 

479 unchanged technical and institutional conditions. Second-order 

480 learning about “taken-for-granted” beliefs (“Are we doing the 

481 right things?”) is necessary for expanding the field of 

482 alternatives. Third-order learning about underlying assumptions, 

483 theories, paradigms, and principles (“How do we decide what is 

484 right?”) is essential for enabling deep shifts in policy 

485 priorities and institutional frames,81 as is underway in the 

486 renewable electricity sector. First-order and second-order 

487 learning will be more prominent in short-term transformation, 

488 while in the longer term, third order learning will become 

489 increasingly prevalent.82

490 Implementing multi-faceted urban water systems under current 

491 sectoral conditions. In the short term, research has to focus on 

492 whether and how current utilities, regulators, consultancies, 

493 and users are able to implement alternative solutions. New ways 

494 of participatory planning and experimental implementation of 

495 alternative solutions have to be developed alongside the 

496 prevailing grid-dominated systems. Often, the implementation of 

497 alternative solutions will depend on protected spaces that 

498 shield actors from the path dependencies of the centralized 

499 system. In Beijing24, 25 and Bangalore,26 such protection stemmed 

500 from city and state regulations, in San Francisco21 and Hamburg23 
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501 from utilities that pro-actively promoted experimental 

502 approaches. The alternatives developing in such protected niche 

503 contexts directly challenge the competencies, routines, and 

504 organizational structures of existing water utilities, 

505 regulators, and users.69 Widespread implementation will require 

506 first-order and second-order learning for many actors across 

507 different organizations and decision levels. Research should 

508 deal with how innovation management can be improved within the 

509 water sector, such as by creating protected spaces. It should 

510 also focus on how the water sector can tap into synergies with 

511 other sectors, such as energy and waste, to overcome the silo 

512 effect.83 

513 Insights from the energy and waste sectors’ past experiences 

514 and responses to similar challenges could be highly instructive 

515 for urban water management.20 In particular, contextual studies  

516 are required to characterize change processes that have enabled 

517 or hindered innovations alongside prescriptive methods that 

518 induce or facilitate these change processes. Approaches already 

519 exist in various areas of political and organization science84-86 

520 and in decision and management science87-91 to describe, analyze, 

521 plan, and evaluate various transition pathways from the existing 

522 centralized systems to more multi-faceted urban water systems. 

523 These approaches include models for assessing spatial 

524 infrastructure systems, for instance by integrating geographical 

525 data, methods for reliably eliciting decision-makers’ 

526 priorities,92 and tools for analyzing and comparing system 

Page 22 of 42

ACS Paragon Plus Environment

Environmental Science & Technology



23

527 alternatives.93 Moreover, research accompanying niche experiments 

528 is critical to tracking learning processes and identifying key 

529 conditions for upscaling and mainstreaming alternative 

530 solutions. The research should focus on how different aspects of 

531 socio-technical systems, including innovation management, 

532 business models, regulation, pricing models, and user behaviors, 

533 can be developed in a balanced way.  

534 Supporting the mainstreaming of multi-faceted urban water 

535 systems. The co-evolution of technical and social systems into 

536 socio-technical “configurations that work”29 is complex. This 

537 complexity requires the capacity to revisit and revise 

538 fundamental assumptions: third-order learning.82 Here, the role 

539 of researchers is to anticipate and evaluate emergent trends 

540 among diverse sectoral stakeholders.94 We can expect that as 

541 alternative systems mature, prices for modular technologies will 

542 drop as a result of mass manufacturing (“economies of numbers”),18 

543 utilities and firms will establish robust business models and 

544 operational procedures, technical standards will be codified, 

545 and regulators will learn how to deal with more widely 

546 distributed systems. Based on insights from the transition 

547 literature6 and recent experiences with the energy transition, 

548 we can expect that these transformations will occur very rapidly 

549 once sufficient momentum has accumulated. 

550 A key research challenge in this area is to specify longer-run 

551 needs and opportunities. This relates mostly to leveraging 

552 current and assessing longer-term transformation pressures that 
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553 will act on the sector, including climate change, shifts in 

554 demand patterns and societal values, and rapid urbanization and 

555 socio-economic change. Futures methods, such as scenario 

556 analysis, are useful in addressing uncertainties related to such 

557 pressures.90, 91, 95 Several key research questions emerge from this 

558 challenge: How can visions and long-term transition strategies 

559 for municipalities, regions, and entire countries be identified 

560 and formulated? What kind of political power struggles will 

561 emerge once the sector’s income and actor structures are deeply 

562 transformed? How can funding priorities of urban, national, and 

563 international governments and donors be adapted in favor of 

564 alternative solutions? How can incremental change induce the 

565 transition from one system state to another, and how can this 

566 transition be steered? And, finally, what can be learned from 

567 experience around the globe in transforming urban water systems? 

568

569 5. Towards an integrative research agenda 

570 Considering the technical, institutional, and transition 

571 challenges and opportunities outlined above, we summarize the 

572 path forward for future research on urban water management as 

573 key research questions (see Table 1). 

574 A key insight from our discussion is that experimentation in 

575 isolated pilot projects is not enough to mainstream alternative 

576 urban water systems. Future research should use a 

577 transdisciplinary approach to generating evidence through socio-

578 technical “lighthouse” projects that apply alternative urban 
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579 water systems at scale, such as across a whole city district, 

580 and thus engage research, policy, and practice in joint learning 

581 processes. Such research should highlight drivers of and 

582 barriers to innovation and demonstrate the potentials and 

583 limitations of alternative systems from an integrated socio-

584 technical system perspective. It should also leverage experience 

585 from lighthouse projects in diverse socio-economic contexts, 

586 document this experience, and share successes and failures in 

587 research, policy, and practice across the urban water sector. 

588 To our knowledge, many potential “lighthouse” projects are 

589 emerging in cities as diverse as San Francisco, Bangalore, and 

590 Hamburg with highly context-sensitive drivers and niche actors. 

591 However, system knowledge remains scattered and tacit and is not 

592 systematically compared. Yet, such cross-contextual knowledge 

593 exchange and mutual learning is of crucial importance to spurring 

594 global innovations within the water sector and to accelerating 

595 the evolution, diffusion, and general validation21 of alternative 

596 urban water systems. We thus encourage international non-

597 government organizations, city networks, and donors to engage in 

598 increased strategic networking and in facilitating cross-

599 contextual knowledge exchange and mutual learning about the most 

600 relevant successes and failures, for instance through IWA 

601 Specialist Groups, C40 Cities Networks, and capacity building 

602 programs from such development partners as the World Bank.
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Table 1. Summary of open research questions to be addressed in future research on alternative urban 

water systems

Macro level Meso level Micro level

Technical 
perspective

How can urban water 
services be defined to 
reflect the specific 
challenges of the 21st 
century? 

How can these new defined 
services be translated 
into ideal combinations 
of non-grid, small-grid, 
hybrid, and grid-
dominated systems at the 
meso level and new 
technical developments at 
the micro level? 

How can ideal combinations of 
non-grid, small-grid, hybrid, 
and grid-dominated systems be 
determined for given contexts? 
Which degree of source 
separation, decentralization 
and modularization is optimal? 
How can different systems be 
integrated into a coherent 
system of systems? 

How can digital technologies 
support remote and semi-
automatic operation of a large 
number of distributed 
treatment systems? 

How can on-site and small-
scale technologies fulfill 
the goals set at the macro 
level? How can these 
technologies be integrated 
into households without 
creating new lock-in 
effects, for instance, in 
the form of intra-household 
grids? 

How can small-grid systems 
be designed without 
creating new lock-in 
effects? 

Social 
perspective

How do existing laws, 
norms, and beliefs 
influence the adoption of 
alternative urban water 
systems? 

What institutional 
arrangements are optimal 
for the safe operation and 
maintenance of non-grid, 

What new business models, 
market structures and firm 
strategies can potentially 
transform the conventional 
urban water system? 

What economic and financial 
incentives can support non-
grid, small-grid, and hybrid 

How do users understand and 
perceive non-grid, small-
grid, and hybrid systems?

Which motives and drivers 
predict stakeholders’ 
acceptance, adoption, and 
maintenance of alternative 
systems? 
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small-grid, and hybrid 
systems in various 
contexts?

What context-sensitive 
legitimation strategies 
can support the diffusion 
of non-grid, small-grid, 
and hybrid systems?

systems in a fair and inclusive 
way?

How can a large number of 
distributed systems be 
effectively operated, 
maintained, regulated, and 
controlled?

Which interventions can 
promote the adoption, use, 
and maintenance of 
alternative systems?

How can different 
stakeholders shape 
institutions in favor of 
alternative urban water 
systems?

Short term Long term

Transformat
ive 
perspective

How can experimental 
implementation of 
alternative systems be 
established and developed 
at scale? 

How can consideration of 
and learning about 
alternative systems be 
achieved and sustained as 
standard processes? 

How can visions and transition strategies for 
municipalities, regions, and entire countries be 
formulated, integrated, and supported within the water 
sector and across interdependent sectors? 

How can social and technical innovation processes be 
coordinated over the course of several decades without 
disrupting services along the way or creating stranded 
investments and still break with established path 
dependencies?
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603

604 6. Epilogue - Reflections on integrating multiple perspectives

605 In this paper, we integrate a range of disciplinary 

606 perspectives and fields to outline an integrative research 

607 agenda for the future of urban water management. Although we 

608 propose a transdisciplinary approach for future research, we are 

609 fully aware of the difficulties posed by such an approach.96 Our 

610 challenge in integrating these different perspectives and fields 

611 within this paper provides insights into the issues that 

612 transdisciplinary teams will have to address. We found it crucial 

613 to establish the intrinsic purpose of our integration effort, 

614 weigh the contributions of the various perspectives and fields, 

615 combine these contributions, and remain critical of the emerging 

616 conclusions. As in any team effort, we faced the challenge of 

617 balancing the various and sometimes competing expectations, 

618 interests, and needs of all co-authors and the often 

619 underestimated challenge of appreciating and honoring the 

620 specific contributions of each co-author.97 Writing this paper 

621 was a highly iterative and dynamic two-year process. The result 

622 can be regarded both as a “system of thought in reflective 

623 equilibrium” and as a work in progress that is subject to 

624 continuous revision.98

625

626
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ii The definition of “small” is relative to context and varies 

from, for example, tens of houses in a rural or peri-urban 

setting to several thousand residential and commercial units in 

a highly urbanized setting. 
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Schematic visualization of (a) non-grid, (b) small-grid, and (c) hybrid urban wastewater systems (left 
column: top view) and units (right column: side view) based on empirical examples: (a) Beijing, China:24, 

25 non-grid systems without sewers between individual buildings but with pipes inside buildings. Blackwater 
(e.g. from toilet) and greywater (e.g. from sinks, showers, washing machines or dishwashers) is collected in 
a single wastewater stream and treated on-site for non-potable reuse inside and outside individual buildings 

(e.g. toilet flushing, irrigation, and/or infiltration for aquifer recharge). Sludge is collected by trucks and 
treated in centralized sludge treatment plants. Rainwater is harvested and used for toilet flushing. (b) 

Hamburg, Jenfelder Au, Germany:23 small-grid systems for groups of individual buildings with different 
pipes for source-separated wastewater streams. Blackwater and greywater are collected and treated 
separately in decentralized treatment plants. Treated greywater is reused outside buildings. Energy is 

recovered from blackwater as heat and electricity and used in buildings. Sludge is collected by trucks and 
treated in centralized sludge treatment plants. (c) Eawag, Zurich, Switzerland:27 hybrid systems integrate 
non-grid and small-grid solutions into a grid-dominated system. Brownwater (e.g. from toilets, but without 

urine) and greywater is collected in a single wastewater stream and treated in a centralized wastewater 

Page 42 of 42

ACS Paragon Plus Environment

Environmental Science & Technology



treatment plant. Urine is collected through urine-diverting toilets and treated on-site. Urine is transformed 
into fertilizer for reuse in urban agriculture44. Rainwater is harvested and used for toilet flushing. 
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