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Once a program run exposes a bug, the programmers’ first task is fault localization:

identifying the portions of code they need to change to correct the bug. Help for this

task takes the form of fault-localization tools, which vary from static code analyzers

to debuggers. This dissertation develops a research framework for fault-localization

tools that require only a set of runs, some of which fail, to produce their output.

The first part of the framework is an architecture for fault-localization tools. The

architecture prescribes five phases: data collection for each run, data abstraction for

each run, modeling of sets of runs to produce models of correct and failing runs,

contrasting the two models, and finally mapping the difference back to source code.

This architecture also describes a number of existing tools.

The second part of the framework provides an evaluation method for fault-local-

ization tools, based on the effort an ideal user must invest to interpret a tool’s results.

This effort is measured as the proportion of code that lies between the report and the

faulty locations on a graph representing the structure of source locations.

The dissertation presents and evaluates a number of fault-localization tools devel-

oped within this framework that are built around program profiles and collections

of dynamically discovered invariants. Notable contributions include the nearest-

neighbor idea, where failing runs are compared with their most similar successful

run, and the discrete comparison and differencing of program profiles based on per-

mutation distances. The combination of these two contributions achieved the best

results of the tools we developed, as computed by the evaluation method.

Finally, this dissertation presents and quantifies elided events, a cause for caution

in the interpretation of program profile data. The problem is that the execution of

a part of code may have no effect on the run’s correctness. As a result, code that

should be suspicious is considered safe, with adverse effects for debugging.
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Chapter 1

Introduction

This dissertation demonstrates the practicality of fault-localization tools when the

available sources of information are only the program, a set of failing runs, and a

set of successful runs. It introduces a research framework comprising two essential

instruments for such a demonstration: an architecture that explains and prescribes

the development of fault localization tools and a method to evaluate and compare such

tools. In addition, this dissertation introduces a number of such tools and evaluates

and compares them experimentally.

1.1 Debugging and Debugging Tools

A faulty or buggy program is one that, on some inputs, confounds the expectations of

its programmer. We can say that the program does not conform to its specification,

which need not be formal or even explicit. When a bug is exposed, the programmer

must identify the part of the program to be changed so that the program meets

expectations. This process is called fault localization and is often the hardest part of

the debugging process, which also involves fixing the bug. Debugging tools aim to help

the programmers locate and fix the bugs. Most debugging tools are actually fault-

localization tools, since fixing the bugs remains firmly the responsibility of humans.

Probably the earliest debugging tools were the EDSAC debugging routines. The

EDSAC (Electronic Delay Storage Automatic Computer), designed by Maurice Wilkes

1
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at Cambridge University and put into operation in May 1949, was one of the first

stored-program computers. The first three programs run on the EDSAC worked flaw-

lessly: they computed squares, primes, and squares and their differences. The fourth

was a more ambitious venture: it was meant to calculate numerically the integral of

a specific differential equation. Wilkes describes his early experience with this pro-

gram in his memoirs [Wilkes, 1985]: “I was trying to get working my first non-trivial

program . . . the realization came over me with full force that a good part of the re-

mainder of my life was going to be spent in finding errors in my own programs.”

Soon thereafter, Gill [1951] created a set of subroutines to help monitor the operation

of EDSAC, including many that a modern programmer would recognize as essential

parts of a debugger: breakpoints, watchpoints, single-stepping, memory dumps and

even tracing under a virtual machine.

The purpose of both the EDSAC subroutines and modern debuggers is to help

locate bugs, i.e. identify the portions of code that must change for the program to be

correct. Debuggers help programmers by allowing them to examine the execution in

detail until they discover a discrepancy between the program actions or the machine’s

state and their expectations about these actions and states.

Certain kinds of bugs appear again and again in different programs. Debugging

programs with such bugs with a debugger is arduous; instead, for some of these bugs

programmers can use tools and languages that provide prevention or quick detection

mechanisms. An eminent example is type errors, accessing of data as a different type

than it is. Type systems can prevent such accesses, either (if checked at compile time)

by not allowing the program to execute at all or (if checked dynamically) by checking

every access and flagging the erroneous ones. A second example is out-of-bounds

array accesses, i.e. accessing memory past the end of an array as part of the array.

Here, a tool can check every array access and ensure that the index used is within

the array bounds.

If the programmers have inklings about bugs that are not covered in the language

or available tools and they can express their suspicions in terms of the program’s state

at certain points, they can insert assertions at those points, i.e. code that at run time
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flags the execution of catastrophic operations rather than executing them.

If no language feature, no tool, no assertion catches a bug, the programmer must

resort to debuggers and examine the execution closely. In recent years, a number

of debugging tools have appeared in the literature [Agrawal et al., 1998; Chen and

Cheung, 1997; Cleve and Zeller, 2005; Pan and Spafford, 1992; Reps et al., 1997;

Whalley, 1994; Zeller, 2002; Zeller and Hildebrandt, 2002] that minimize programmer

effort by letting them contrast successful and failing runs. A major idea here is that

it is much easier for the programmer (or even the final user) to provide macroscopic

evaluations of correctness (“was this run successful?”) than microscopic evaluations

(“is the machine state correct?”). This assumption is valid partly because microscopic

evaluations require more information and partly because macroscopic evaluations

require only knowledge of what the program is supposed to do, rather than how

the program is designed to do it. These tools are commonly called automated fault-

localization tools, since they require minimal input from the programmer. However,

when there is no danger of confusion, such tools are also called simply fault-localization

tools.

1.2 Philosophy and Overview

This dissertation focuses on automated fault-localization tools. The first contribution

of this thesis, described in Chapter 3, is the exposition, in relational terms, of an

architecture fault-localization tools can and often do follow. The basic idea of the

architecture is not restricted to automated fault-localization tools. All the tools

we have discussed (debuggers, language features, automated fault-localization tools)

operate on the same principle. They employ a model of correctness for the program

runs. When a particular run violates it, the how and the when of this violation can

provide the programmer with clues on the location of the bug. For debugging tools,

the model of correctness is in the programmer’s head; for language features, it is

in what the language allows (“a correct run accesses each piece of memory as one

type only”). Assertions embody such decisions in their code (“the first argument
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must always be larger than zero”); for automated fault-localization tools, the correct

model is discovered, automatically, in the correct runs. Chapter 2 discusses a number

of debugging tools from the perspective of the correctness model they employ.

This idea of a correctness model is the foundation of Chapter 3. An automated

fault-localization tool collects certain data from each program run, builds a model

of correctness from the correct runs, contrasts it with the failing run, and maps the

differences back to the source code to give the programmer a hint about the location

of the bug. The latter part of Chapter 3 maps a number of research tools to this

architecture.

The second contribution of this thesis is an evaluation method for debugging

tools. Automated debugging tools often exploit some specific characteristic of the

faulty program or its operating environment. As a result, they are applicable only in

restricted domains, and as an unfortunate side effect there is no way to compare these

tools to one another; indeed, such tools are often validated through case studies. I

rectify this situation in Chapter 4, where I design a general evaluation function. The

idea is that once a tool reports some portion of code as potentially faulty, we can

assign a score to the report by observing not only the reported features but also

their distance from the features that should be reported, i.e. the faulty features. The

notion of distance can be obtained from structural relations between features, say the

system dependence graph if our granularity of feature is basic blocks. If we define this

distance, then the evaluation function corresponds to the number of features closer

to the report than the actual fault. In the latter part of Chapter 4, I present an

implementation of the evaluation function based on the program dependence graph

and experiments that show its behavior over a number of example programs.

Armed with a general architecture and an evaluation function, I present in Chap-

ter 5 five prototype fault-localization tools. I then evaluate them in Chapter 6. These

tools are based on program profiles, i.e. counts of the executions of lines of code dur-

ing a run, and potential invariants, i.e. predicates that hold true for a run but not

necessarily for all runs of the program [Ernst et al., 2001]. These tools serve as mod-

els of more involved tools and highlight their strengths and weaknesses. Chapters 5
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and 6 combined showcase a research framework for fault-localization tools, consisting

of the general architecture of Chapter 3 and the evaluation method of Chapter 4.

Certain of the tools described in Chapter 5 are novel. In particular, although past

research has contrasted runs with close inputs to highlight potential fault locations,

I contrast runs that are as close as possible in the domain where the differencing

takes place. This dispenses with the need for any external knowledge of the similarity

of runs, e.g. by assuming knowledge of the program input’s structure. Contrasting

profiles directly, however, creates the need to compare counts of events in such a

way that differences map cleanly and discretely to lines of code: I achieve this by

observing that the ordering of lines by their execution counts contains much of the

information in their relative execution frequencies, and then applying a permutation

distance function. The combination of using close runs and permutation distances

achieves the best results.

Using profiles for fault localization can be misleading. In particular, certain exe-

cutions of portions of code may have no effect on the program’s output. Chapter 7

explains and quantifies how this can happen and discusses the repercussions for any

analysis that uses program profiles as its primary source of data.

Finally, Chapter 8 presents my conclusions.



Chapter 2

Related Work

In this chapter I discuss a number of debugging tools, sketching the debugging land-

scape and setting the background of this dissertation. Bugs have been a fact of life

for programmers almost from the beginning of computing, and there is a multitude

of tools to help them debug their programs. One can organize such tools according

to many possible principles, for example along the historical axis, or according to

whether the tools operate on program executions (dynamic tools) or solely on source

code (static tools).

This dissertation takes a different and more pertinent approach. All debugging

tools are based on the following idea: there is a model of correct program behavior,

and the debugging effort seeks how a failing run violates the correctness model. Under

this light, a major characteristic of a debugging tool is the provenance of the model.

For example, the focus of this dissertation is on a relatively new family of tools that

derive a correctness model from a number of correct runs. This discussion follows a

classification of debugging tools stemming from the correctness model idea. The list

of tools discussed here is in no way exhaustive; instead, it provides a sample of the

variety of efforts on the debugging problem.

6
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2.1 Definitions and Overview

In this document I use bug and fault to mean a deviation of the program’s behavior

from the desired behavior, and also the portion of the program responsible for the de-

viation. When necessary, I talk explicitly about the deviant behavior or manifestation

of the bug.

Debugging is the process of discovering deviant behavior, finding its cause in the

code, and fixing it so that the behavior is eliminated. The first step of the process,

discovering deviant behavior, is usually done on a running program through software

testing. However, in certain cases, it is possible to identify patterns of code that will

result in deviant behaviors if executed, and then static tools (i.e., tools that examine

only the source code) can be applied and isolate that code before run time. The second

step in the debugging process, finding the cause of the deviant behavior in the code,

is often called fault localization. Most debugging tools are actually fault localization

tools: the third step of debugging, fixing the code, remains firmly a human endeavor.

Fault localization tools employ a model of correctness and contrast it with the

faulty program or a particular run. Partial correctness models have emerged that

formulate whole classes of bugs, and languages and tools have incorporated them to

help the programmers deal with bugs from those classes. Examples of such tools are

described in section 2.2.

Other classes of bugs are foreseen during the specification process, and the result-

ing specification incorporates correctness models that exclude those bugs. Tools can

then allow the programmers to compare the specification with the code. Yet other

bugs are anticipated during coding; for those, the user can include error-checking code

around the functionality. Bugs that nobody anticipated, so that their existence in the

program does not conflict with any correctness model attached to the program, are

the most difficult to find. In such cases, programmers can use debuggers, which let

them examine an execution at a very low level and isolate the failure-inducing code,

perhaps refining their mental correctness model along the way. A slew of languages,

interfaces, and extensions to debuggers allow higher-level examination of executions.

I describe such tools in section 2.3.
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Using a debugger or writing a specification can be a arduous process. Therefore,

in recent years, a new family of tools has emerged that automatically builds a cor-

rectness model from program runs that the user has to label as correct. Such tools

are described in section 2.4.

2.2 Correctness Models Provided in Tools and Lan-

guages

Programming languages already provide correctness models that exclude many faulty

programs or runs. The preeminent example is type systems (for an overview, see

e.g. [Pierce, 2002]), which among other things ensure that each memory location is

accessed as a single data type throughout an execution. When implemented statically

(e.g. in ML [Milner et al., 1997]), the compiler rejects code that might result in the

violation of this property. When implemented dynamically (e.g. in Scheme [Kelsey

et al., 1998]), every memory access is checked for type safety before it is executed.

The correctness model prohibits all programs that may result in illegal accesses.

Formulations of correctness models are sometimes immature, expensive to check,

or inaccurate, yet checking them can be effective. In those cases, embedding checks

for those models in a language is inappropriate, and such checks are instead put into

extralingual tools. As the tools mature, these checks can be put in the later versions

of the language or the compiler.

2.2.1 Static Tools

Lint [Johnson, 1979] is a tool for the C programming language that warns about a

number of static code properties such as unused variables, the use of uninitialized

variables, disagreement between functions’ formal and actual parameters (function

prototype checking), and “strange constructions” (sic). Lint often flagged too many

errors, but certain of its checks, such as function prototype checking, were important

and were incorporated in the 1989 C language standard.
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The standard’s rationale states:

The function prototype mechanism is one of the most useful additions
to the C language. The feature, of course, has precedent in many of the
Algol-derived languages of the past 25 years. The particular form adopted
in the Standard is based in large part upon C++.

Function prototypes provide a powerful translation-time error detection
capability. In traditional C practice without prototypes, it is extremely
difficult for the translator to detect errors (wrong number or type of argu-
ments) in calls to functions declared in another source file. Detection of
such errors has either occurred at runtime, or through the use of auxiliary
software tools.

The “auxiliary software tools” include lint. Function prototypes are thus a way to

specify a (partial) correctness model that found its way from a language definition

(in Algol) to a extralingual tool (Lint) back into a language definition (C, via C++).

The bugs addressed by the model are malformed function calls.

Lint’s checking of function prototypes had a set of properties that made it particu-

larly suitable for incorporation into the C compiler (no doubt due to its own linguistic

heritage): it required only source code for its operation; when it raised a false alarm

(flagged a correct function call as incorrect), other relatively simple language features

(casts) could be used to silence it explicitly; it raised false alarms rarely; and the

correct alarms it raised flagged particularly catastrophic function calls.

Other static tools do not necessarily have all these characteristics, but can still

be extremely useful. PREfix [Bush et al., 2000] anticipates a class of illegal memory

accesses, such as illegal pointer references, and examines a number of control paths

to find potential such references. It does not catch all such references, nor does it

guarantee that every reference it catches can actually happen at run time; still, it is

reportedly a very useful tool [Larus et al., 2004].

2.2.2 Dynamic Tools

Unlike tools such as Lint and PREfix, which operate on the program’s code, tools

like Purify [Hastings and Joyce, 1991] and valgrind [Seward and Nethercote, 2005]

operate during program execution, therefore requiring a compiled program and a set
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of test inputs. Then they can monitor all memory accesses and prevent any illegal

memory accesses. The correctness model includes properties such as “no memory

address shall be read before it is written”.

Such tools can also tackle a set of synchronization bugs, such as deadlocks and

data races [Savage et al., 1997]. In fact, much of the work here is devoted to improving

the correctness model so that it is easy to check, yet effective.

2.3 Correctness Models Provided by Programmers

Although many bugs are anticipated by language designers or tool writers, such bugs

are by necessity “generic” bugs, in the sense that they apply to all programs, and

therefore they cannot address correctness properties that should hold only for partic-

ular programs. For example, any program with a function call site where the actual

arguments do not agree with the formal arguments can be flagged as problematic, but

for a particular program it might be an error to call a function with all its arguments

equal to zero.

When there is no tool that will check a correctness property that applies to a

particular program, the description of correctness has to be provided by the pro-

grammer. The simplest way to do this, which requires virtually no tool support, is

direct coding of assertions [Hoare, 2003] around sensitive pieces of code. Then the

assertions are checked during program execution. With more effort, specifications

can be written and checked statically with tools such as LClint [Evans et al., 1994]

and Extended Static Checking [Detlefs et al., 1998]. With the advent of software

model checking [Holzmann, 1997], a number of tools have appeared that check an

abstraction of the program against a formula in temporal logic.

When a bug escapes all correctness models developed during language design, tool

design, and program specification, but surfaces during testing or even deployment,

the developers need to explore the failing execution with a debugger. Debuggers have

a long history, starting with the EDSAC monitoring routines [Gill, 1951]. A debugger

is a tool that allows the user to examine an execution closely by following the control
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flow step by step, examining the values of variables at any time, etc. Since debuggers

provide only the means to examine a program execution, but no guidance for what to

examine, they remain difficult tools to use; hence the addition of elaborate graphical

interfaces [Zeller and Lütkehaus, 1996] and query languages [Linton, 1983; Ducassé,

1991; Ducassé, 1999; Lencevicius et al., 1997]. The idea in these languages is that

users, after seeing a bug, will have new-found knowledge about the nature of the bug

and therefore will be able to refine their mental model of correctness and construct

valuable queries, perhaps akin to the assertions they would have written had they

foreseen the bug.

Examining program runs is a slow, tedious task in which the user must step

slowly through the execution and verify the correctness of each state. Ehud Shapiro’s

system [Shapiro, 1983] minimizes the states the user must look at and guides the

users to the faulty function call by asking them to verify intermediate results. With

binary search, the system minimizes the number of oracle queries. Shapiro’s work

assumes a stateless language.

Program slicing [Weiser, 1984; Tip, 1995] is based on the idea that the program-

mer knows of a variable which, at a specific point in the code, has the wrong value.

The variable together with the point in the code is called the slicing criterion. Slicing

finds the part (slice) of the program that affects the slicing criterion. Dynamic slic-

ing [Agrawal and Horgan, 1990; Smith and Korel, 2000; Korel and Laski, 1990], the

dynamic extension of slicing, assumes that the user can pinpoint a variable that has

the wrong value at a particular program point, and also at a particular time during an

execution. It then selects the code portion that had an effect on the variable at that

program point during a particular run. Since users must provide the slicing criterion,

they must first discover a variable with a wrong value, which presumes a significant

amount of work on the user’s part.
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2.4 Correctness Models Discovered Automatically

A newer class of fault localization tools build the correctness model automatically.

In certain cases the model can be discovered by examining existing programs’ source,

as in Engler et al.’s work [Engler et al., 2001]. The underlying assumption is that

frequently occurring patterns in source code stem from implicit rules that encode

good programming practices. Therefore, code locations that almost, but not exactly,

conform to the patterns are possible sites of bugs. The necessary condition is that

those programs are similar to the one we want to debug. This line of research has been

successfully applied to, for example, device drivers, which all must obey a common

set of rules, those of the operating system.

More common is the building of models from program runs. Ammons et al. [2002]

discover rules about the interaction of programs and libraries dynamically. The idea

is to define the boundary between programs and libraries and then observe how the

programs use the library. Inconsistencies in this use can flag bugs. In further research

Ammons et al. [2003] provide tools for improving the inferred specifications.

Contrasting program runs or portions of runs can provide intuition on the location

of bugs. A key concept here is coverage. If a run executes a particular piece of code,

then we say the portion of code was covered during the run.

Pan and Spafford [1992] present a set of ideas on how to contrast program slices

with different slicing criteria from a run. The core idea is that, if a variable has the

correct value during the run and a different variable has a wrong value, then the fault

is in the slice of the second variable but outside the slice of the first. Chen and Cheung

[1997] extend the idea to include differences between slices from different runs.

χV ue [Agrawal et al., 1998] allows the user to contrast the coverage of programs

during runs that execute different user-level features. The goal is to assist the pro-

grammer locate these features in the code for program maintenance. χSlice [Agrawal

et al., 1998] allows the comparison of program slices to facilitate fault localization,

implementing some of the ideas in [Pan and Spafford, 1992].

Jones et al. [2002] contrast many failing and successful runs together and employ

a SeeSoft-like visualization [Eick et al., 1992] to display a ranking of suspect portions
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of code. Portions of code that execute rarely in a correct run and frequently in a

failing run have high ranking. The tool also displays a confidence judgment using

different visual aspects on the same display.

Ball [1999] suggests comparing program runs via concept analysis [Ganter and

Wille, 1999].

None of these tools address the problem of selecting the runs or slices to contrast.

This problem is often addressed by manipulating program inputs to create two very

similar inputs, one that causes the program to succeed and one that causes the pro-

gram to fail. Assuming that similar inputs result in similar runs, programmers can

then contrast the two runs to help locate the fault.

Whalley presents vpoiso [Boyd and Whalley, 1993; Whalley, 1994], a tool to lo-

calize bugs in a compiler. A bug is detected by comparing the output of a program

compiled with the buggy compiler with one compiled with a “correct” compiler. To

find bugs in the optimizer, a number of runs of the optimizer are contrasted at the

level of minimal improving transformations of the compiler’s internal data structures.

If an improving transformation is skipped, the compiler will still produce correct,

if less efficient, code. If the transformations are t1, t2, . . . , tn, vpoiso orders the set

{{t1}, {t1, t2}, . . . , {t1, t2, . . . , tn}}, under the usual subset relation. Then, for every

such set, it allows the included tranformations to execute and checks the result. vpoiso

performs a binary search on the set of sets, isolating a fault inducing set {t1, t2, . . . , tm}

such that {t1, t2, . . . , tm−1} is not faulty. vpoiso assumes the transformations inde-

pendent, therefore it blames tm. For non-optimizing bugs, vpoiso does not localize

the bug, although it isolates a minimal input for which the compiler fails. It orders

(arbitrarily) the functions {f1, f2, . . . , fn} of the subject program, and considers the

subsets {f1}, {f1, f2}, . . . , {f1, f2, . . . , fn}. For each one of them, it compiles the set’s

members with the suspect compiler, and the other functions of the subject program

with a trusted compiler. Similar to the optimizing case, a function set {f1, f2, . . . , fm}

is isolated such that compiling all of its functions with the suspect compiler reveals

the fault, while compiling only {f1, f2, . . . , fm−1} with the suspect compiler does not.

Compilation of fm is blamed. Whalley’s techniques work under strict rules: suffixes
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of the sequence of improving transformations can be turned off without jeopardizing

the program’s correctness, and an error in compiling one function cannot be masked

by wrongly compiling another one. Essentially the set of prefixes of t1, t2, . . . , tn must

map to to failure or success monotonically: if a prefix fails, all its longer prefixes fail,

and if it succeeds, all longer prefixes succeed.

Zeller and Hildebrandt [2002] extended these minimizing techniques to handle

cases where there is no monotonicity, while giving weaker guarantees on the mini-

mality of the input. In particular, Zeller’s algorithm Delta Debugging is a greedy

algorithm that examines potentially a quadratic number of input subsets to find an

1-minimal change in the input. A 1-minimal change is a change of size one that turns

a non-failure-inducing input into a failure inducing input. Delta Debugging is cleverly

tuned to make full use of Whalley’s assumptions if they hold. The first application of

the technique on input was on the input of a web browser. Further applications [Choi

and Zeller, 2002; Zeller, 1999] include other debugging domains, such as finding the

difference between a thread schedule that makes a multithreaded program fail and

one that does not, and isolating the change in a multi-version system that causes the

program to fail.

Reps et al. [1997] present DynaDiff, a tool that isolates faults at the level of

acyclic, intraprocedural control paths. They target business programs they suspect of

the Y2K bug and run them twice, once with the system clock set to the end of 1999

and once with the clock set to the beginning of 2000. Then they inspect the program

coverage from both runs, trying to find paths that were not covered in the former

case but were in the later. The idea is that paths covered only after the crucial date

are suspect.

Hangal and Lam [2002] present Diduce, a system that continuously computes

a set of predicates about a program run and reports when any of those predicates

do not hold anymore. The predicates record which bits in the program state have

remained constants, and which have received both possible values. This allows them

to discover constancy, upper bounds, and the sign of numerical values. Diduce uses

a simple set of predicates similar to Ernst et al.’s potential invariants [Ernst et al.,
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2001]. A potential invariant is a predicate on a number of program variables that may

hold during an execution. Executing the program on an input will show that some

invariants are not true; after more runs, the set of remaining invariants is closer to the

set of true invariants. If those runs are correct, then the set of remaining invariants

can serve as a model of correctness.

Many bugs are only discovered after deployment; as a result, the program inputs

are not directly available to the programmer, and data collection resources are not

fully available to the user who discovers the bug. A new generation of tools addresses

this problem, by instrumenting programs under the constraint that they will run

off-site, and implementing statistical analysis on samples of the program runs [Orso

et al., 2002; Liblit et al., 2003].

Most of the tools I have described in this section do not interfere with the pro-

gram’s state. Programmers working with the debugger can often change the program’s

state, or even manipulate the program itself while it is running. A small number of

tools help or automate this process. Critical slicing [Agrawal et al., 1993; DeMillo

et al., 1996], by DeMillo et al., starts with a slicing criterion and then deletes lines of

code in the slice, re-executes the remaining slice, and observes if the value of a vari-

able remains unchanged. Zeller’s more recent work [Zeller, 2002; Cleve and Zeller,

2005] copies values from a successful run to a failing run to isolate the part of the

state that is relevant to the failure. These techniques can be viewed as generating

arbitrary runs of the program to contrast with failing runs. There arbitrary runs do

not obey the semantics of the program, but they have the advantage of being very

close to the failing run, so that if they do not themselves fail, they can help pinpoint

the fault.

Differencing techiques are not applied only to actual program runs. One of the

advantages of software model checking is that, when the program violates a specified

property, model checking tools provide the user with a counterexample trace; i.e.,

a sequence of abstract program states that, if part of an execution, would violate

the property. However, such traces can be long and unwieldy, and existing work in

model checking [Ball et al., 2003; Groce and Visser, 2003] creates explanations of
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specification violations by differencing successful and failing traces. Although the

approaches are similar to the one I describe in this document, the overall process is

different since the errors are against a specification, and the runs are over abstractions

of the program.

Most of the tools described in this chapter have been validated through case

studies. A direct comparison of these tools is hindered by the fact that they collect

different data from running programs, use different models, and different techniques

to contrast them with failing runs. In the next two chapters, I present an architecture

encompassing many of the tools that build a correctness model from correct runs of

the program, and an evaluation technique that allows comparing them.



Chapter 3

Architecture

In this chapter I describe an architecture for automated fault localization systems.

The major contribution is a decomposition of such systems into discernible parts,

facilitating the design, implementation and study of fault-localization systems. The

key separation is the classical one between data and operations.

In essence, the architecture models a particular kind of fault localization system

that collects information about correct runs, builds an abstraction representing a

“generic” correct run, contrasts this with the information collected about a failing

run, and maps the difference to the source code to isolate the possible source of the

bug. Therefore, the architecture describes a specific process consisting of specific

components with a specific data flow among them. In addition, the architecture

prescribes this process, resulting in a blueprint for future systems and allowing us to

separate and study independently the various parts of the process and their effect on

the performance of the overall system.

In the past few years a number of research debugging tools have appeared that

demonstrate the efficacy of automated fault localization. Many of those tools follow

the process described in this architecture. On the other hand, these tools draw much

of their success from exploiting knowledge about their subject (i.e. faulty) programs

or their operating environments. Such knowledge might include that the subject

program is a Y2K-sensitive application, that the program is an optimizing compiler

with (ideally) independent phases, or that a multitude of failing runs is available. The

17
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presentation of these systems often focuses on this knowledge, and it is this focus that

hinders comparing, extending, and improving these tools. The architecture described

in this chapter aims to alleviate this problem. In addition, elements of the architecture

are reused in an evaluation method that is the topic of the next chapter.

In this chapter and elsewhere, we often assume that only a single failing run is

available. There are multiple reasons to make that assumption. First, a single failing

run may be all that is available. Second, the architecture needs only minor changes

in the last phase if we have many failing runs available. Most importantly, two

failures caused by different bugs can confuse the debugging process, since we would

be searching for two bugs at the same time, each potentially eliding the other. At the

same time, a single failing run is likely to fail because of a single bug rather than the

interaction of multiple bugs. The underlying issue is known as fault coupling, and its

low probability of fault coupling has been proven for restricted set of programs [How

Tai Wah, 2000]. The intuition behind the low probability of fault coupling is fairly

simple: if we already assume that bug manifestations are rare (in other words, many

more runs succeed than fail), then a bug manifests itself during runs that meet a

restrictive set of conditions. Two bugs manifesting themselves in the same run would

imply that the run lies in the intersection of two such restrictive sets, a far more

restrictive and therefore less likely set.

3.1 An Example

The architecture is built around two basic data types: spectra, the internal repre-

sentations of program runs, and models, the internal representations of summaries of

program runs. This section aims to provide a grounding and intuition about these

terms and the process encompassed by the architecture by applying the process to

debugging a simple function.

The function we are going to debug is the triangleType function of Figure 3.1.

Figure 3.1 also contains the driver function that reads the numbers from a user, passes

them to triangleType and prints triangleType’s return value.
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4,4,4 4,5,5 3,4,5
1 triangleType(float a, float b, float c)
2 {
3 if (a == b and b == c) ● ● ● ●
4 return Equilateral; ● ●
5 if (a == b or b == c or a == c) ● ● ●
6 return Isosceles; ● ●
7 return Isosceles; /* Should be Scalene */ ● ●
8 }
9 main()

10 {
11 read(a,b,c); ● ● ● ●
12 tt = triangleType(a,b,c); ● ● ● ●
13 print tt; ● ● ● ●
14 }

Figure 3.1: Simple fault localization

The function takes three numeric arguments representing the lengths of the sides

of a triangle and is supposed to return the type of the triangle: Equilateral, Isosceles,

or Scalene. However, the function has an error: it returns Isosceles when it should

return Scalene.

If we run the program with input (4, 4, 4), it correctly returns Equilateral. In

the process, it executes lines 3,4,11,12, and 13. The first column of the right part of

Figure 3.1 shows this fact by including a dot next to each line of code that executes

for the (4, 4, 4) input, shown as the header of the column.

The program also produces the correct result (Isosceles) on the input (4, 5, 5). We

mark this column 2 of the right part of the figure.

For input (3, 4, 5) the program fails, returning Isosceles instead of Scalene. Column

4 shows the lines executed for that input.

Having executed the program on inputs (4, 4, 4), (4, 5, 5), (3, 4, 5), we discover

at the last input that the program has a bug. We can then use the information

collected during the correct runs to find where the bug is not, and contrast it with

the information from the failing run to find where the bug is. Column 3 summarizes

the correct executions by showing a dot for every line of code that executed in any

correct run, i.e. showing a dot if there was is a dot in the same row of columns 1 or 2.
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Column 5 contains a dot for each line that executed in no correct run but did

execute in the failing run, i.e. a dot in every row that has a dot in column 4 but not

in 3. The only such line is line 7, which is the faulty line; we have therefore found

the bug.

3.2 Discussion

Finding the bug in triangleType involved a few steps that are special cases of the

process discussed here. First, we collected a set of inputs on which the program

succeeds. We ran the program on these inputs and collected information about the

inner workings of the each run, as shown in the first two columns of Figure 3.1. We

did not keep all the information from the runs, but rather an abstraction; this case

we kept only the set of executed lines.

We call the information kept from a run the spectrum, a term spectrum introduced

in [Reps et al., 1997] to mean the set of intraprocedural acyclic paths executed in the

program run. We also collected the same information from a failing run. We call this

spectrum the failing spectrum and the spectra from successful runs successful spectra.

We then summarized the correct runs into a model of successful runs. The model

is a generic description of the correct runs; it summarizes what we know about them,

possibly in a lossy way. In this example the model contains only information about

the lines executed in any correct run, but no information about how these lines may

interact or even be mutually exclusive.

At the next step we compute the difference between the model of success and the

failing spectrum. This is the crucial step yielding the information that can help us

locate the bug.

In our example, the last step is implicit: we need to map the difference to the

source code in order to indicate where the bug is. Since our example spectra, model,

and difference are all expressed in terms of lines of code, the last step is simply an

identity function. In the general case though, a more elaborate computation may be

necessary.
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The mapping operation is a severe requirement since it implies that the difference

can be mapped to the source, effectively excluding certain classes of spectra. For

example, it could be that our spectrum includes only the duration of the execution,

our model computes the average over all successful runs, and the difference is the

quotient of the failing spectrum value over the model value. This would be a perfectly

valid definition for spectra, models, and differences only if there is some way to map

the quotient to the source code. One could use an arbitrary mapping from ratios to

source code, but the quality of the tool would suffer.

3.3 Formalization

In our architecture discussion we discuss a number of artifacts: programs, source

locations, events, program runs, spectra, models, and differences. We use sets and

relations as our (only) constructs.

The programmer trying to debug a system only cares about a single program at

a time. The interactions among different processes might be the root of the problem,

but then we can view the system of processes as the program. As a result, we need

not address multiple programs in our architecture. At this stage, we also do not care

about the static interconnections among portions of the program. Therefore, we can

view the program as an single unstructured set L of atomic source locations or simply

locations :

L = l1, l2, . . . , ln

In our example, the set of locations is the set of executable lines of code. Alternatively,

the locations could be the functions of a program, particular variables, pairs of lines

where one sets and the other uses the same variable, etc.

Once we have defined the set L, the fault-localization problem becomes the prob-

lem of selecting the faulty source locations. The fault localizer takes the whole pro-

gram as an argument: in other words, the type of the fault localizer is

FaultLocalizer : L → L

i.e., a fault localizer is a function from the location set to the location set.
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In order to talk about a program run, we need to introduce a notion of time. For

our purposes, we can view time as the set of integers N, although any given run will

last only for a subset [0..T ], for some T .

We model a single execution of the program as a sequence of atomic events from

an event set E. So as to allow multiple events to happen at the same time (for

example, if the program is multithreaded or if events can overlap) and times when

no event happens, we model a run as a relation between events and time: r ⊆ E×N.

We call the set of all runs R. R potentially includes all the relations between events

and time, but certain such relations will not represent a run; thus R is a subset of

the set of all relations bewteen events and runs:

R ⊆ P(E×N)

(P is the powerset operator.) In our example, an event corresponds to the execution

of a single line of code. In this case, it is also trivial to define the correspondence

between events and locations: it is simply the identity relation. In general, though

this need not be the case, and we can provide a MapBack relation that takes us from

events to locations:

MapBack ⊂ E×L

We use a strict subset because a mapping that maps all events to all locations is not

useful.

Having described in relational terms the basic data a fault-localization system

works with, we can now describe its actual operation. The user of a faulty system

needs to provide the debugging system with the set A ⊆ R of runs. Not all runs need

to be available; in fact, most runs probably are not. The user also needs to provide

a single bit of information for each run that classifies the run as successful or failed.

In other words, the user provides a partition of A into successful (or correct) runs C

and failing runs F:

F∩C = ∅, F∪C = A

What we have defined so far is dependent on the program (L), the program and the

debugging system (E, R), the user’s expectations, and whether they are met during
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a particular run (C, F). We have not addressed at all the inner workings of the fault

localization system. We do so through two relations: the first, abstraction, maps runs

to spectra from a set S. A spectrum is the result of processing a single run:

Abstract : R → S

To keep the relational description general, we leave spectra as uninterpreted rela-

tions, but familiar examples of spectra include profiles (the results of the aggregational

relational query a 7→ count(a, .)) or covers (the results of the query (a, .) 7→ a over

the run relation). For example, a coverage spectrum is a set of the first projection

of the pairs of the E×N relation. A profiling spectrum is a relation E×N when the

second item of each tuple is the number of occurrences of the first item in the original

relation.

The second relation summarizes a set of spectra into models. We call the set

of possible models M and again, for generality, we leave models as uninterpreted

relations. Models encapsulate sets of runs, for example the set C or the set F. The

modeling operation maps a set of spectra to the corresponding model:

Modeling : PS → M

Sometimes is it useful to let the model of a set of spectra (say, the set of successful

spectra) to depend on another set of spectra (say, a set of failing spectra):

Modeling2 : PS × PS → M

The Modeling relation can be seen as a special case of the Modeling2 relation with

the second spectrum-set empty.

The essential requirement on models is that they can be contrasted to produce a

set of interesting events:

Contrast : (M × M) → P E

Then we need to utilize the MapBack relation to gain a set of candidate faulty loca-

tions.

If we have available only a single failing run, then a model must be contrasted

with a single spectrum:
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Contrast1 : (M × S) → P E

The fault localizer is the composition of the described relations:

FaultLocalizer : F, C 7→
MapBack(Contrast(Modeling(Abstract(F)), Modeling(Abstract(C))))

or for a single failing run:

FaultLocalizer1 : F, C 7→
MapBack(Contrast(Abstract(F), Modeling(Abstract(C))))

3.4 Mapping Existing Tools to the Framework

A number of existing tools can be described within this architecture. I begin with five

tools described in detail in Chapter 5. The first four of them are collectively called

the Whither tools, while the last one is called Carrot. The latter section maps a set

of recent research tools to the architecture.

3.4.1 The Whither and Carrot Tools

The first tool, on which the triangle example is based, uses the basic blocks (for our

purposes here, equivalent to lines of code) as the set of program locations. The set

of events corresponds to the execution of a line of code. The set R corresponds to

all sequences of executed lines of code. The MapBack relation maps the event of the

execution of line A to line A. The spectrum is a cover, meaning that the Abstract

relation maps a run to the set of events that corresponds to the set of lines executed

during the run. The Modeling relation is defined as the union operation on sets.

The Contrast relation is the set difference operation. The tool highlights code that

executes only in the failing runs.

The second tool is identical to the first one except that the Modeling relation is

the intersection operation on sets and the Contrast relation is the difference operation

with the arguments swapped. This tool highlights code that executes all successful

runs but not in the failing runs.
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The third tool is also identical to the first, except that the Modeling relation

selects a single run to contrast with the failing run. The selection process utilizes a

distance function between runs and selects the correct run closest to the failing run.

Therefore, this tool uses a Modeling2 relation that highlights code that executes in a

failing run but not in a successful run.

The fourth tool is similar to the third tool with respect to the sets L, E, R. The

Abstract relation, however, comprises many steps:

1. It produces a profile, i.e. it counts how many times each event occurs during

the run,

2. It sorts the events according to their execution frequency during the run,

3. It discards the frequencies.

The spectrum for this tool is a ranking of all events according to their frequency.

The model, as in the third tool, selects a single successful run according to a distance

function defined on the event rankings. The Contrast relation is also defined over

event rankings, but returns events; details about this tool are given in Chapter 5.

The fifth tool is significantly different. It is based on the notion of potential

invariants [Ernst et al., 2001]. The set of locations is the set of entries and exits

of functions. The events are function calls and returns, augmented with the values

of parameters and local variables. The Abstract relation first confounds all executed

events that refer to the same location together and then, for each location, it computes

the predicates (from a predicate universe) that hold for all events referring to the

location. The set of holding predicates for each location forms the spectrum of the

run. Modeling a set of spectra entails computing which predicates exist in all spectra.

Contrasting finds the predicates broken in the failing run. Mapping back finds the

locations to which the broken predicates correspond.

3.4.2 Other Research Tools

Pan and Spafford [1992] present a set of tools similar to the first and second Whither

tool. The significant difference is that instead of program runs, they use slices from
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the same run, computed according to different slicing criteria. The propose a number

of heuristics for processing these slices, including the ones in the first and second

Whither tools. χVue works similarly.

Tarantula [Jones et al., 2002] is similar to the first Whither tools. For each line

of code x they compute the ratio

|C(x)|
|C|

|C(x)|
|C|

+ |F (x)|
|F |

where |C| is the number of correct runs, |F | is the number of failing runs, |C(x)| is

the number of correct runs that executed x, and |F (x)| is the number of failing runs

that executed x. They also compute the quantity max
(

|C(x)|
|C|

, |F (x)|
|F |

)

. Then they use

a Seesoft [Eick et al., 1992] visualization that shows the source code compactly, and

color each line according to the first ratio for the hue component and the second ratio

for the brightness component. It is then up to the user to interpret this information.

This technique maps as follows to the architecture: The location set, event set, run

set, abstraction and spectra are as in the first Whither tool. The modeling process

for a set of runs |R| computes the relation
(

x, |R(x)|
|R|

)

. The differencing process first

computes the two ratios as above. The user’s role is part of the differencing process:

it is to set implicit thresholds for the hue and brightness ratios, and select only those

lines of code where the two ratios exceed the thresholds.

DynaDiff [Reps et al., 1997] is similar to the third Whither tool. Only two runs

are compared. Its set of locations is the intraprocedural acyclic paths of the program,

an event corresponds to the execution of such a path, and the run is the sequence of

executed events. The abstraction process results in spectra that correspond to the set

of events that happened during the run. The differencing is directly on the spectra;

the modelling process is simply an identity function. The key in this technique is the

careful selection of program run to compare to the (potentially) failing run.

vpoiso [Boyd and Whalley, 1993; Whalley, 1994] is similar to the third Whither

tool. Eventually, only two runs are compared. Unlike DynaDiff, vpoiso does not

require that the user select the runs; instead, it constructs a (correct run, failing run)

pair to contrasts them. The set of locations for vpoiso is the set of transformations;
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an event is the execution of a tranformation, a run the sequence of events, and a

spectrum the events executed. The tools searches for a run that fails while the

minimally shorter run does not. If all of those runs were available from the beginning

rather than constructed on demand, vpoiso would be performing a nearest-neighbor

computation to find the two closest runs one of which succeeds while the other fails.

Some applications of Delta Debugging [Zeller and Hildebrandt, 2002] proceed in

a similar way. In the debugging of gcc, the event set corresponds to optimization

phases and each run corresponds to a different sets of optimization phases. The runs

are constructed externally, by manipulating the compilers flags. Newer applications

of Delta Debugging [Zeller, 2002] generate a set of “runs” by grafting parts of the

state of a correct run onto the failing one. These are not runs of the program since

they can be impossible; i.e., some of the states Delta Debugging examines may not

be possible in any run without such grafting. These tools report chains of events

and therefore they cannot be said to localize the bugs. The newest application of

Delta Debugging [Cleve and Zeller, 2005], on the other hand, reports specific lines of

code and therefore fits the architecture better.

Diduce [Hangal and Lam, 2002] is similar to the Carrot tool. The set of source

locations is the set of write operations in the program code. Its event set is the set

of writes to variables, augmented with the new value (from which we can find the

old value for the next write). A run is a sequence of writes. The spectrum is an

abstraction over the bits of values: which bits were constant (and which constant),

and which bits took both values. The model of a set of runs is the predicates over

bits that were always true. The difference is the predicates that are not true in the

model of failing runs (which can be a single run) and true for the model of successful

runs.



Chapter 4

Evaluation Method

In this chapter I present a quantitative measure of the quality of a fault-localization

report. Such a measure is useful in assessing of single fault-localization tools; it be-

comes indispensable in comparing such tools. The measure imitates an ideal user

who systematically explores the program text, starting from the report until encoun-

tering a faulty statement. The proportion of code such a user would not have to

explore is the score of the report. The measure is easy to apply and encourages small,

accurate reports without being overly strict. It has already been adopted by other

researchers [Groce, 2004; Cleve and Zeller, 2005].

4.1 Motivation

The ultimate judgment on a fault-localization system’s quality lies with its users.

Therefore, the ideal evaluation of a fault localizer has to rely on experiments with

human subjects. Such an approach has several drawbacks, at least during the devel-

opment phase.

First, human-subject experiments are expensive, since they require training the

subjects on an elaborate tool. In addition, the tool needs to be finished, e.g. it must

be stable and have a polished user interface. Such systems are hard to develop, and in

prototype form the effort to develop the user interface can well exceed that to develop

the core tool.

28
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More importantly, comparing tools on the basis of human experiments is error-

prone. Human experiments are hard to replicate, since the results need to be cal-

ibrated for different sets of users, and the quality of the tool’s user interface can

strongly affect the tool’s evaluation, so that we learn less about the tool’s fundamen-

tal principles than about its implementation.

Last, one of the higher-level goals of building fault-localization tools is their poten-

tial to shed light on what constitutes an interesting feature of a program. In general,

it is difficult to define an interesting program run, much more to decide which parts

of the program are responsible for the run being interesting. But when a program

mostly succeeds, then its failing runs are de facto interesting and there is an identi-

fiable code portion (the bug) responsible for the interesting behavior. A desired side

effect of building fault localizers will be discovering and understanding these code

portions. If we evaluate fault-localization tools only with user experiments, then the

user experience becomes our only goal and this valuable side effect is lost.

In fact, many of these reasons apply in other areas in computer science, notably

information retrieval and natural language processing (NLP). The NLP textbook

by Manning and Schütze [1999] points out that:

An important recent development in NLP has been the use of much more
rigorous standards for the evaluation of NLP systems. It is generally
agreed that the ultimate demonstration of success is showing improved
performance at an application task, be that spelling correction, summa-
rizing job advertisements, or whatever. Nevertheless, while developing
systems, it is often convenient to assess components of the system, on
some artificial performance score (such as perplexity), improvements in
which one can expect to be reflected in better performance for the whole
system on an application task.

This chapter presents the first (to my knowledge), widely applicable evaluation

measure for fault-localization systems. Given a program, the locations of the fault in

the program, and the report of a fault localizer, the measure assigns a score to the

report. The next section describes an example application of the method.
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if (c1) {
y = 9;
z = 10;

if (c2)
x = z;

else

x = y;
}

Figure 4.1: A simple program

4.2 An Example

In this section, I present an example application of the measure to a simple fault-

localization report. We follow the actions of an ideal user who explores the program

starting from the report and proceeds in a methodical way until the faulty code is

found. The score of the report is the percentage of the program that our imaginary

user does not need to visit.

Figure 4.1 shows a short program fragment. Suppose the report consists of the

first line of code, i.e. the condition c1. Our ideal user starts exploring the program

from the first line. If the first line happens to be faulty, the ideal user stops there and

focuses on fixing the fault. The score of the report would then be 1−1/6 = 5/6, since

the user does not need to examine five sixths of the code. This is the best attainable

score.

If the first line is not faulty, the user must choose which line to explore next.

Multiple possibilities exist, of course: the user could examine the next line in the

program text, skip the if statement entirely (and therefore the whole fragment), etc.

Instead of some other arbitrary choice, we equip our user with a venerable tool of

program analysis, the program dependence graph (PDG) [Ferrante et al., 1987].

The program dependence graph contains a node for each maximal expression

(including assignments) in the program. It contains an control edge from an expression

A to an expression B if expression A affects whether statement B is evaluated or not,

and a data edge from A to B if the value computed by A potentially affects the value

computed by B. Figure 4.2 shows the program dependence graph for the program of



31

if(c1)

if(c2)

y = ...

z = ...

x = z

x = y

Figure 4.2: The program dependence graph of the program of Figure 4.1

Figure 4.1.

The advantage of using the PDG rather than, say, the text order is that certain

arbitrary artifacts of the text order do not appear in the PDG. For example, since

lines 2 and 3 of the program in Figure 4.1 have no dependencies on each other, the

order in which they appear in the text is arbitrary; the semantics of the program

would not change if the two lines were exchanged. This fact is reflected in the PDG

by the absence of any edges between the two nodes representing those lines of code.

Given a report as a set of nodes on the PDG, we can split the PDG into layers of

nodes of equal distance from the report. Layer n is defined as the nodes that can be

reached by a path of length at most n from the starting nodes of the exploration, i.e.

the report. The example program has three layers, when starting from the c1 node:

layer 0 contains only the c1 node, layer 1 contains the assignments to z and y as

well as the second conditional, and layer 2 contains the assignments to x. Figure 4.3

shows the layers of the example PDG.

Armed with the PDG, our user explores it, layer by layer, starting from the report.

The user examines a whole layer at a time, stopping at the layer that contains a faulty

node. In the example program, if one of the assignments to z or y or the condition c2

is faulty, the user stops at layer 1. In that case, the score of the report is 2/6, as the
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if(c1)

if(c2) y = ...z = ...

x = z x = y

Figure 4.3: The program dependence graph of the program of Figure 4.1, split into
layers

user avoids examining only two nodes. Otherwise, if the fault is in the assignments

to x, the user stops at layer 2, having examined the whole graph, and therefore the

score of the report is 0.

This example hints at a few characteristics of the measure. The method encourages

small, accurate reports. Its range is [0, 1). A small report which finds the bug gets a

larger score (closer to 1) than a large report which finds the bug. A report that finds

the bug gets a higher score than a report that does. The measure is applicable under

the following assumptions:

• the bug and the fault localizer report are syntactic

• the syntactic description of the bug is known

Furthermore, for the measure to give interesting results, a third assumption is neces-

sary:

• the bug is small

The first assumption is necessary because the measure relies on a syntactic comparison

of bug and report. The second assumption limits the applicability of the evaluation

measure to cases we already have fixed the bugs; such a requirement is acceptable at

the evaluation stage of the fault localization tool. The third assumption states that

given a large syntactic fault that would encompass most of the program, the measure

does not provide a large range of scores.
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4.2.1 Precision and Recall

In this section, I discuss the framework upon which the measure is based. In informa-

tion retrieval and natural language processing, success is measured by a combination

of two measures: precision and recall. Indeed, the adoption of these measures by

the natural language community has goals similar to ours. Our discussion of the

precision/recall framework is based on Manning and Schütze [1999].

Precision and recall apply to systems whose set of possible answers is the power

set of a universe. In other words, the system’s answers are sets; the answers are

subsets of a known finite set, the universe; elements of the universe can appear in a

set independently of other elements. Precision and recall also require that a perfect

answer is known.

Precision and recall can be described in terms of the error types in statistical

decision theory. Type-I errors are the errors in which an element of the perfect

answer does not appear in the system’s answer, and type-II errors are those in which

the system’s answer contains elements that are not in the perfect answer. Let us

call A the system’s answer and C the perfect (or correct) answer and let us split

the elements of the universe into four sets, depending on whether they appear in the

perfect answer and whether they appear in the system’s answer:

Perfect (Correct) Answer C

System Answer A present absent

In A but not in C
present in A and in C

(Type II error)

not in A, though in C
absent

(Type I error)
not in A, not in C

The recall score of A, given by R(A) = (A∩C)/C, measures how many type-I errors

it contains. The precision score of A, given by P (A) = (C − A)/A, measures how

many type-II errors it contains.

Each of these measures assigns excellent scores to many degenerate cases. For

example, a report containing all the elements of the universe has excellent recall,
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while an empty report has excellent precision. For this reason, precision and recall

are usually combined into a single measure, for example the F -measure: 2PR/(R+P ).

The precision/recall framework incorporates a notion of similarity of reports to the

perfect report. With respect to precision, a perfect report contains only the elements

of C; removing elements of C does not affect the perfection of the report, but adding

elements from U−C does. With respect to recall, a perfect report is one that includes

all of C; subtracting elements from that perfect report takes us further from a perfect

score, but adding elements does not.

4.2.2 The Measure

While it is possible to evaluate fault localizers using a precision/recall framework,

such an evaluation does not take into account the structure of programs. For example,

consider the an if statement with two branches: if(c) then A else B. Suppose that

the condition is incorrect so that for a particular input, the program executes A rather

than B. A fault-localization report that “blames” the conditional has high recall. At

the same time, a report that also includes A would get a lower precision, and a report

that includes only A would get low precision and recall. We definitely want the first

case (the report that includes the conditional) to receive a high score; however, we

would also like the reports that include A to receive a high score, since even though

they are not exactly where the bug is, they are “close”. On the other hand, if the

bug is in A, but the report includes only B, we want the score to be low: the report

points at exactly the case where the code is correct.

We would like a measure that embeds a suitable notion of closeness to perfect

reports. From our analysis of the precision/recall framework, we can discern several

needs for our measure:

• A universe of answers

• A set of perfect reports

• A distance metric that maps an answer to a number
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The universe of answers depends on the fault localizer; the perfect report depends on

the bug.

It remains to define the distance between reports. Let us recall our desiderata:

small reports are better than large reports, reports closer the bug are better than

reports further from the bug. We base our distance on a basic distance between

the syntactic elements of the program. Syntactic elements of program are typically

organized in graphs. In such graphs, the nodes represent syntactic elements, e.g.

statements or functions, and the edges represent relations such as control dependen-

cies, data dependencies, or potential function calls. The current implementation of

the measure uses the system dependence graph (SDG), which is the interprocedural

extension of the PDG, with edges linking actual and formal arguments. However, one

could apply a similar process with a call graph, where each node is a function and

each edge a potential function call.

We want our evaluation metric to reward tools for reporting few expressions, as

close as possible to the faulty one. A bug typically encompasses more than one

minimal expression. We do not require that all nodes be included; one suffices.

We now focus on our imperfect reports. The easy case is when the faulty node is

identified. In that case, we know that the report is accurate and we penalize only for

size.

The harder cases occur when the report does not include a faulty node. Because

of program structure, such reports are not always useless. For example, in an if

statement, a report might say that the fault is in the condition when it is actually in

the body. In other words, the tool might say that the body should not execute. If

the body is wrong, then this body should not execute, which is helpful and “almost

accurate”.

This leads to the following idea: if, moving in the SDG from the report, we quickly

encounter a faulty node, then we want this report to have a high score. Such a simple

scheme contains a loophole for tools: all they need to do is report a central node, that

is, a node close to every node. A central node will be close to a faulty node, and the

report will get an undeserved high score. We would therefore like to penalize reports
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that include central nodes; on the other hand, we want to do so only in moderation,

since central nodes may actually be faulty.

To solve this problem, we penalize the nodes in the report for every node they are

closer to than the faulty nodes. We do this by the following process: We start from

the reported nodes and moving in a breadth first manner, we mark all the visited

nodes.

We mark each node in the graph with its distance from any node in the report.

Then we find the minimum rank of all the faulty nodes. Then we split all the nodes

in the graph into three classes:

• those closer to the report than any faulty node

• the faulty nodes

• the nodes that are further from the report than the faulty node closest to the

report

The score of the report is the percentage of nodes in that last class.

Certain characteristics at the limit points of the scoring function we can calculate

immediately:

• A perfect report achieves a score close to 100%

• A report that includes the whole graph achieves a score of 0%

• The score of a report that includes a faulty node decreases linearly with its size

• a report that does not include a faulty node is is first expanded until it does;

after that, its score decreases linearly with its size

Our metric thus bears similarities to both precision, as higher scores are assigned

to small reports, and recall, as higher scores are assigned to reports that include (or

will include, after a few expansion steps) the faulty node.

Although this is of no consequence in the example of the previous section, we want

the ideal user to only follow paths that follow only one edge direction (either along the
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direction of the edges or the opposite). The reasoning for this is that if we let the ideal

user follow paths while ignoring the direction of the edges, then sibling nodes would

be at distance equal to two because of their common parent. In that case, blaming

the wrong branch of a conditional statement would receive a high score. This would

be unfortunate, since the sibling of a faulty branch is exactly the code that does not

execute when the faulty code does. On the other hand, we want the search to proceed

in both directions: if an expression is suspect, then the expressions that affected it

are obviously suspect (“why is this expression wrong?”), but so are the expression

it affects (“what does this expression affect that may affect the output?”). For this

reason, we define the distance between two nodes as the length of the shortest path

between them that includes either edges with their direction intact or edges with the

direction inverted.

4.3 Formalization

In this section, I formalize the evaluation method and connect it to the architecture of

the previous chapter. Again, the program is a set of locations L. This time, however,

we take into account the structure between the locations. This structure is given by a

relation R ⊆ L×L, listing the edges of the graph that contains the locations as nodes.

If the set of locations is the set of expressions, as in the discussion in the previous

sections, then the relation R can be the system dependence graph. In another easy

to imagine case, the locations can be the functions of the program and the relation

R can represent the static call graph.

The evalution function then needs to be provided with two subsets of L: the set

of suspicious locations S and the set of guilty locations G. S is the output of the

fault localization system we are evaluating; G is the perfect report.

We first consider the case where the search for G from S can follow only the

direction of edges as described by R. Then the evaluation function finds the minimal

n such that Rn[S] ∩G 6= ∅. In other words, if R0, R1, R2, . . . are the identity relation

I, R itself, the join of R with itself once (R ∗ R), etc. and R0[S], R[S], R2[S], . . . are
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the images of S under those relations, we are looking for the smallest number of self-

joins of R under which the image of S includes at least one node from G. If we view

R as a graph, then R0[S], R[S], R2[S], . . . corresponds to the set of nodes reachable

from S through zero, one, two, etc. edges, the levels of the initial example. The term
⋃m

i=0 Ri[S] corresponds to the set of nodes reachable from S with up to m edges. Once

the function has established the minimal n such that Rn[S]∩G 6= ∅, the score of the

report S is

1 −
|
⋃n

i=0 (Ri[S])|

|L|

To allow the search for G from S to happen along directed paths on the graph

described by R, we need to consider not only the relation R but also its reflection R−1.

(The reflection is not an inverse, since it is not necessarily true that R ∗ R−1 6= I.)

R[S]∪R−1[S] includes all the nodes reachable from S with one step, regardless of the

direction. The relation R2[S]∪(R−1)2[S] includes all the nodes reachable from S with

two steps along the same direction (following either R or R−1 for both steps, but not

R for one step and R−1 for the other). Let us define the relations Qn = Rn ∪ (R−1)n.

The relation Qn can now play the role R was playing previously, except that now

the search proceeds along directed paths on either direction. So the function first

searches for the smallest n such that Qn[S] ∩ G 6= ∅, and the final score assigned to

the report S is

1 −
|
⋃n

i=0 (Qi[S])|

|L|

4.4 Experimental Behavior

In this section I discuss the behavior of the evaluation function when applied to the

results of various fault localizers and seven different programs. The fault localizers,

the programs, and the bugs are described in detail in the following chapters; of

interest here is the score of a report with respect to its size. Table 4.1 shows some

characteristics of these programs: their size in lines of code, the number of nodes in

their SDG, and the pseudodiameter (i.e. the maximum distance between two reachable

nodes) of the SDG.
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Program LOC SDG Nodes SDG diameter
print tokens 565 214 13
print tokens2 510 199 15
replace 563 238 23
schedule 412 191 20
schedule2 307 150 21
tcas 173 88 10
tot info 406 148 18

Table 4.1: A number of programs and their size characteristics

Figure 4.4 shows eight plots: the first seven contain data from individual pro-

grams, while the last one combines data from all programs. On each plot, each point

corresponds to a report. The horizontal coordinate corresponds to the size of the

report, and the vertical coordinate corresponds to its score.

Since the score of a report is bounded by its size, all points in these graphs are

below the 1−x line. The most striking characteristic is the number of reports that lie

on the 1 − x line. Those are reports that include a faulty node; therefore, they only

pay a penalty for their size. No report contained more than 70% of the program’s

nodes, although this is an artifact of the localizers used here. The graphs for certain

programs (for example, tcas) include only a few points; tcas is a small program with

only 66 nodes, whereas print tokens1 has 203. As a result, the fault localizers generate

fewer reports for tcas than for the other programs. One should also note the discrete

nature of the reports. Even though the scores and sizes are normalized with respect

to the size of the graph of the relevant program, only certain report sizes and scores

are possible.

Overall, the evaluation function covers a large portion of the space. Many reports

are assigned low scores, but some get high scores. Also, the evaluation method has

managed a balance between the precision and the recall component: high scores are

given to small reports, but a small report does not necessarily receive a high score.

The power of the evaluation function to discriminate among fault localizers is

examined in Chapter 6, after I present the set of fault localizers.
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Figure 4.4: Fault localization reports: scores for seven programs
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4.5 Variations

A number of variations can be implemented for the evaluation method, although

they usually cause some loss in the comparability of reports obtained under slightly

different circumstances.

First, if we want the possible scores to include 100%, i.e. cover the entire closed

interval [0, 1], then it suffices to omit the failing nodes when we compute the sizes of

the PDG and the report, since the report should not be penalized for the number of

faulty nodes it includes. However, a side effect is that report scores from different

versions of the same program are no longer directly comparable any more, since

different sets of faulty nodes yield different baselines.

Second, all techniques based on dynamic information have access to coverage

information, and it is tempting to express their scores with respect to the amount

of executed code the ideal user would not have to examine. The reasoning is that

non-executed code cannot contain the bug, and no user would ever examine it. The

problem with this modification is that the results from different failing runs would be

expressed with a different baseline. For example, suppose we have a failing run that

executes most of the code and a failing run that executes only a small portion of the

code. Suppose also that we obtain two reports from a fault-localization system, one

based on each run, and that both of these reports contain the bug. If we express the

scores with respect to the nodes executed in each run, then the report coming from

the run executing most of the code will receive a better score than the other, even if

it is larger in absolute terms.



Chapter 5

Implementations of the

Architecture

This dissertation presents two instruments for effective research in debugging tools:

a design architecture and an evaluation method. This chapter and the next describe

a pilot study in the use of these instruments: in this chapter we design a set of tools

using different program monitoring information, and in the next chapter we evaluate

them. This pilot study demonstrates that:

• the architecture can be used effectively to guide the design and description of

tools

• the evaluation function can yield measurable differences in the quality of tools

5.1 Tool Overview

Here I present a number of fault-localization tools based on the architecture of Chap-

ter 3. As prescribed by the architecture, are five kinds of data there involved in each

tool:

• The trace data: the information we collect from each run

• The spectra: the information we retain about each run

42
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• The models: the information we retain about sets of runs

• The difference: the information we compute as the contrast between models (or

spectra) and models

• The source code

This section briefly describes five tools individually; the following sections describe

the design of each tool in terms of the architecture.

All tools use a set of successful runs but a single failing run, for the fault-coupling

reasons outlined in Chapter 3. The first four systems are implemented in a system

called Whither, while the fifth is called Carrot.

The first Whither tool highlights pieces of code that execute only the failing run.

The underlying idea is to isolate portions of code that, if executed during a program

run, the run will definitely fail, perhaps immediately, perhaps not. If such a piece

of code exists and is responsible for the failing run we have, and if all the correct

runs of the program were available, then the first tool would successfully isolate the

faulty code. Since, in general, some correct runs are unavailable, the tool may isolate

portions of code that only execute in the failing run but would execute in some correct

run that is unavailable.

The second Whither tool highlights pieces of code that execute in all successful

runs but not in the failing run. The idea is that such code performs some necessary

or “redeeming” operation, whose absence renders a run a failure.

The third Whither tool introduces the idea of a nearest-neighbor model. The tool

reports pieces of code that execute in the failing run but do not execute in a very

similar successful run, where similarity is high if the two runs executed the same

pieces of code. Past research has demonstrated that comparing a failing run with a

successful run close to it can point to the location of the bug. However, the definition

of “close” has been domain-specific, suggesting that information about the program’s

input structure is necessary to select the successful run effectively among a set of

successful runs. For example, in Reps et al. [1997] part of the program’s input is the

date, and a significant change in behavior is anticipated when the year changes from
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1999 to 2000. Zeller and Hildebrandt [2002] assume that the program’s input can be

halved (recursively) to generate a failure-inducing input that differs minimally from

a non-failure-inducing input. In contrast, the third Whither tool defines a distance

operation on the representations of runs (the spectra), and then selects for contrast

the correct spectrum that is closest to the failure spectrum. Two past findings indicate

comparing spectra directly is a promising avenue. Harrold et al. [2000] performed a

large scale experiment on program spectra. The result was that, although an unusual

spectrum does not necessarily signal a faulty run, faulty runs tend to have unusual

spectra. Further work by Dickinson et al. [2001] applies clustering techniques to

observation testing. They organize the profiles of runs in a metric space, and they find

that the profiles of failing runs tend to belong in smaller clusters and be further away

from their nearest neighbor than successful runs. These results are not surprising.

Programs that succeed on a large number of inputs (almost-correct programs) must

encompass a lot of knowledge about the typical inputs and consequently typical runs.

The fourth Whither tool introduces count permutations together with the nearest

neighbor approach. The underlying idea is that a bug can be located by looking

at code that executes too often or too rarely during a run. The definition of “too

often”, however, changes among runs. For example, suppose the program reads a

set of characters from the input and, when operating correctly transforms all those

characters, while when it fails it transforms all but one of those characters. The

number of transformations is the hint to the bug; but that number is too small only

in comparison to the number of characters read. The fourth Whither tool examines

such information, highlighting pieces of code that execute more (or less) often with

respect to other pieces of code in the failing run than they do in successful runs.

Carrot is based on the idea of potential program invariants [Ernst et al., 2001],

predicates over data that may hold at specific points during a run. Carrot isolates

invariants that hold over all correct runs but not over the failing run. The program

location of the broken invariant is highlighted as the possible location of the bug.
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5.2 Data Collection

The first step in the systems described here is data collection from the program

executions. The most basic data-collection method is program coverage. Program-

coverage tools partition the program in executable fragments and tell us, after an

execution, which of these fragments executed and which did not. The granularity of

the partition can vary: two common examples are functions (subroutines, methods),

and basic blocks, defined in Aho et al. [1986] as

sequences of consecutive statements in which flow of control enters at the
beginning and leaves at the end without halt or possibility of branching
except at the end.

Often the kind of system just described is called “node coverage”, because the re-

sulting information refers to the fragments themselves; if we are interested in the

transitions between pairs of fragments we have “edge coverage”. The idea is that the

program’s fragments are the nodes of a graph, and the possible transitions from one

to the other (function calls when the fragments are functions or branches when the

fragments are basic blocks) are the edges of the graph. Then an execution is a path

through this graph, and node profiling reports the visited nodes while edge profiling

reports the traversed edges.

The program instrumentation for coverage is not particularly complex; a probe

at the beginning of each fragment or, for edge profiling, at each edge will suffice.

Such a probe ensures that a single bit of information is set when the probe executes.

This is only marginally less expensive than recording the number of executions of

the probe, and indeed this latter form of data collection, program profiling, is far

more commonly implemented. The same choices about fragment granularity and

edge versus node monitoring apply to profiling also. It is easy to obtain coverage

data from a profile by simply mapping all nonzero values to true and all zero values

to one.

In our implementations, we used gcov, the basic-block level profiler of the GNU

compiler suite, to obtain basic-block profiles that we also mapped to basic-block

coverage data.
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Although most of the tools discussed here used coverage and profile data, i.e.

control-flow data, Carrot used the notion of potential invariants by Ernst et al. [2001].

Ernst [2000] describes invariants:

A program invariant is a property that is true at a particular program
point or points, such as might be found in an assert statement, a formal
specification or a representation invariant.

Discovering potential invariants automatically involves examining the values of certain

variables whenever a specific fragment of code is to be executed. At the data-collection

stage, debugging tools based on invariants must record those values. The relevant

fragments of the program can vary, but of particular interest are function entries and

exits and loop heads. Our implementation instruments programs so that the emitted

value trace contains the values of function arguments at function entry as well as the

return value on exit.

5.3 From Traces to Spectra

In certain cases, the data collected from program instrumentation can readily serve

as a spectrum. This is true, for example, for coverage data, which can be seen as

subsets of the set of program fragments and represented as binary vectors. Then

all set operations are applicable, include operations on binary vectors such as the

Hamming distance or set difference.

Profiles are harder to use as spectra, even though they can be viewed as vectors

of integers, because operations on such vectors often yield in vectors with non-integer

values, which cannot be mapped cleanly to fragments of code. For example, sup-

pose we want to compute the distance and then the difference between two vectors

containing basic-block execution counts. The standard element-wise vector difference

will not do; long runs can actually be very close to shorter runs (going though a loop

10 times in one example and 10,000 in another) but element-wise difference does not

preserve this information. The same is true when two loops in the program execute

an equal number of times within each run, but the numbers differ in the two runs. We
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could normalize the vectors before subtracting them, but then the components that

execute the same numbers of times (for example, the first line of the main function

in a C program, which executes exactly once) would appear different for any run of

even miniscule length differences.

The insight here is that we can keep the relevant execution counts of the runs, but

not the counts themselves. We preserve this information by sorting the vectors and

discarding the actual counts, thereby representing each run as the sorted sequence

of its basic blocks, where the sorting key is the number of times that basic block

executed.

Invariant-based spectra are built on the basic idea of dynamically discovered in-

variants. Here, the spectrum of a program run is the set of invariants that were never

invalidated during the run. In our implementation, the potential invariants, in the

style of Daikon [Ernst et al., 2001], are drawn from the following relational schemata,

instantiated on function entries and exits:

• The equality invariant checks whether two variables are always equal

• The sum invariant checks whether two variables always sum to the same value

• The less than invariant checks whether a variable is always less than another

variable

• The constant equality invariant checks whether a variable is always equal to a

constant

The instantiations of a schema bind each schema metavariable to each of the variables

available at the beginning of a function or the return value of the function.

In addition, Carrot generates value sets, which record the set of all values bound

to a variable. Unlike potential invariants, which are falsified by runs, value sets are

initially empty and acquire values over the course of execution. This simple form of

value sets, however, can lead to needless inaccuracy in estimating program behavior.

Suppose a function f has two formal arguments, x and y. If f is called twice, once on

〈1, 3〉 and the second time on 〈2, 4〉, the value set for x contains 1 and 2, and the value
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set for y contains 3 and 4. The cross-product of these sets contains the pair 〈1, 4〉,

which incorrectly suggests that the call f(1, 4) occurred in the program’s execution.

To diminish this form of inaccuracy, we also maintain sets of pairs of values that

occurred during execution.

5.4 Models

If a spectrum can be viewed as a set, then models representing sets of runs can be

built with set operations. For example, consider basic-block coverage: since it is a

set, the set union of many such sets gives us the basic blocks that were executed in

all the runs represented in the model. Similarly, the set intersection of the sets gives

us a different model. When we later want to take the difference between a model

of successful runs and the spectrum of a failing one, we can use the set difference

operation. For the union model case, we then discover the basic blocks executed

only in the failing run; for the intersection model case, we discover the basic blocks

executed in all the runs but the failing run.

Invariant-based spectra can be handled in essentially the same way: the model

can be built as the set of invariants never invalidated in any correct run; the difference

then contains the invariants invalidated in the failing run.

Such models suffer from the fact that they confound elements of different runs.

For example, if basic blocks A and B need to execute for a run to fail but each one

of them can execute in a successful run, a union model can easily fail to highlight the

problem. One solution to this effect is never to confound runs, but to carefully select

a single successful run to contrast with the failing one, essentially reducing the model

to a single run.

The natural candidate for this single correct run is the nearest neighbor of the

failing run according to some distance function. For set-based spectra, we can use

the Hamming distance for this purpose. The Hamming distance between two binary

vectors is the count of positions at which the two vectors disagree. In this case we can

still employ a set difference for the last step of the computation of candidate faulty
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code fragments. The choice of the Hamming distance (a symmetric operation) and

the asymmetric set difference operation for the nearest-neighbor model means that it

is possible for a pair of runs to have nonzero distance and an empty difference.

For sorted profiles, we can measure distance between the sequences as the distance

between two permutations. Distances between permutations have a long history,

starting with Cayley [1849]; they are based on the cost of transforming one to the

other given a certain set of operations (for a quick introduction, see Critchlow [1985]).

This is equivalent to considering one of the permutations as sorted and counting the

number of operations needed to sort the other. If we allow only exchanges operations,

the distance is called Cayley’s distance. If we allow only adjacent exchanges (as in

insertsort or bubblesort), the distance is called Kendall’s τ . If we allow arbitrary

moves the distance is called Ulam’s distance. For example, the permutations a, b, c, d

and a, c, d, b are at Ulam distance 1, because we can transform the first to the second

by simply moving the b to the end.

Ulam’s distance is especially suitable for the distance between spectra based on

permutations of basic blocks. Allowing arbitrary moves models the phenomenon of

executing the body of one loop more or fewer times than the body of another. Ad-

ditionally, in computing differences we want to attribute the difference between two

spectra to the basic blocks involved in the editing operations; Kendall’s and Cayley’s

methods involve too many. Because of its relation to sorting, we would expect comput-

ing Ulam’s distance to be inexpensive. Indeed, Ulam’s distance between two vectors

can be computed in n log n time: the algorithm is a special case dynamic program-

ming algorithm for the longest common subsequence problem [Hunt and Szymanski,

1977].

An interesting but minor problem appears in using Ulam’s distance if two basic

blocks execute the same number of times in one run but not in the other. In that case,

the basic blocks involved in the transformation depend on the tie-breaking operation

used in sorting. For example, say we have four basic blocks a, b, c, d, a run A in which

their respective execution counts are 4, 2, 3, 1, and a run B in which their execution

counts are 3, 2, 2, 1. The permutation corresponding to A is d, b, c, a, but there are two
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permutations corresponding to B: d, b, c, a, and d, c, b, a, depending on whether we

break the tie between b and c as b < c or vice versa. If we compare A with the first B

permutation there is no difference: the fact that c executed too few times with respect

to b is lost. If, on the other hand, we compare A with the second B permutation, both

b and c must move, and they would be highlighed. To solve this problem, we sort all

basic block count vectors twice, with opposite tie-breaking rules. Then we compare

permutations coming from the same tie-breaking rule, and we blame the basic blocks

involved in either transformation.

5.5 Summary of Implementations

We have implemented five tools: a tool based on the basic-block coverage and a union

model, a tool based on basic-block coverage and an intersection model, a tool based on

basic-block coverage and the nearest-neighbor model (using the Hamming distance),

a tool based on basic-block profiles and the nearest-neighbor model (using the Ulam

distance), and a tool, Carrot, based on dynamically discovered invariants and the

union model. All tools were implemented, for the most part, in Ocaml [Leroy et al.,

2004]. The first four tools are part of the same program, with models and spectra

encapsulated as modules and a single driving routine choosing among them. Carrot

uses Ernst’s data-collection tools and its own engine for invariant detection.



Chapter 6

Experiments

In this chapter I present a set of experiments designed to evaluate the implementations

described in the previous chapter. The goal is to show how such an evaluation can

actually happen, as well as to provide a set of basis data for future comparisons.

Two main results immediately follow from the findings of this chapter:

• It is possible to locate bugs with the simple profiles as spectra

• The nearest neighbor model outperforms all other models

Additionally, the utility of invariant-based fault localization remains doubtful.

More importantly, this chapter shows the successful application of the comparison

process to a varying set of implementations of the architecture. Together with other

researchers’ application of the same evaluation process [Groce, 2004; Cleve and Zeller,

2005], this chapter provides good evidence that the evaluation process and its specific

implementation of Chapter 4 are widely applicable.

6.1 Tools

To collect the program profiles, I used gcc, the GNU C compiler, in conjunction with

gcov, the GNU coverage testing tool. Gcc can be instructed to instrument each line

of code so that at the end of each run the program produces a file containing the

51
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Program Description Vers. LOC Tests Failed Versions with
Tests collisions only

print tokens lexical analyzer 7 565 4072 6–186 0

print tokens2 lexical analyzer 10 510 4057 33–518 0

replace pattern replacement 32 563 5542 3–309 1

schedule priority scheduler 9 412 2627 7–293 1

schedule2 priority scheduler 10 307 2683 2–65 1

tcas altitude separation 41 173 1592 1–131 18

tot info information measure 23 406 1026 3–251 2

Table 6.1: Overview of the Siemens suite

number of times each line executed. Gcov can then be used to read and process the

file. Gcc does not provide instrumentation at the basic-block level, which would be

more desirable for our purposes; however, some of the same effect can be achieved by

rewriting the program’s source code as described in the next section.

The various spectra and models were implemented in the Whither tool, written

in OCaml. A separate tool, Carrot, also in OCaml, implements the invariant-based

spectrum and model.

To obtain the SDG, we used CodeSurfer [Anderson and Teitelbaum, 2001], a

commercial program slicing tool, which exports a SDG. We had to convert the

exported SDG to a graph over lines, our level of profiling. We did this by adding

a node to the SDG for every line and connecting all line nodes to the SDG nodes

representing the line. We gave such edges weight 0. The distance between any two

lines is the length of the shortest directed path between them.

6.2 Subject Programs

Our subject faulty programs come from the Georgia Tech version [Rothermel and

Harrold, 1998] of the Siemens suite [Hutchins et al., 1994]. The Siemens test suite

consists of 132 C programs with injected faults (Table 6.1). Each program is a variant

of one of seven “golden” programs, ranging in size from 170 to 560 lines, including

comments. Each faulty version has exactly one fault injected, but the faults are not
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necessarily localized; some of them span multiple lines or even functions. A significant

number of the faults are simple code omissions: some of them make some condition in

the program stricter, some make a condition laxer, and some omit a statement from

a sequence. We made some slight cosmetic modifications to the programs, largely

to tune them to the available tools. For example, we joined lines that were part of

the same statement. Our most important change was to align the programs with the

correct one, so that all bugs were just line modifications as opposed to line insertions

and deletions.

Each of the seven program families comes with a test suite that exposes the bugs

in each faulty version. To separate the fault-inducing inputs from the non-fault-

inducing inputs, we ran the golden version on each of the inputs and compared the

result with that of running a faulty program on the same input. An overwhelming

number of tests succeed for each version. Column 6 (Failed Tests) in Table 6.1 shows

the range of the number of faulty runs for each program family. For example, one

version of print tokens failed on only 6 of 4072 inputs, but another version of the

same program failed on 186 inputs. Two programs (version 32 of replace and version

9 of schedule2) gave us no faulty runs. In the first one, the inserted bug was the

exchange of a logical and operation for a bitwise and operation, but on the system

on which we ran the programs this had no effect. For the second program, the

inserted bug exchanges one function call for another, but the intended function is

called transitively (and the result discarded). We excluded these two programs from

the rest of our experiments. When working with the nearest-neighbor model we need

to consider every pair consisting of a successful and a failing run of every specific

program version. The number of such pairs per program version ranges from about

1500 to about two million. The total number of such pairs over all programs exceeds

34 million.

While collecting traces, we observed that in some cases, spectra of successful and

failing runs collided. That is, the spectra of some failing runs were indistinguishable

from those of some successful runs for the same version of the program. We ob-

served 2888 such collisions with the coverage spectrum and 1088 such collisions with
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the permutation spectrum. Naturally, all the runs that collide in the permutations

spectrum also collide for the binary coverage spectrum. We chose to exclude all the

failing runs with collisions in the binary coverage spectrum from our experiments, for

three reasons. First, when two spectra collide, all the techniques we are concerned

with produce empty reports, and therefore those runs provide no comparison points.

Second, any score we would assign to empty reports would be arbitrary since empty

reports are obviously not good reports, though at least they do not mislead the pro-

grammer. Last, we expect collisions to be rare when using more elaborate spectra.

Once we exclude all failing runs with collisions, no failing runs were left for some

programs. This leaves 109 programs that we actually used in the experiment.

6.3 Results

We are interested in the average behavior of each method. We cannot simply average

all the scores that each method achieves for each failing run, because certain programs

have many more runs than others and the simple average would reflect those programs

more. Instead, we average the scores in stages, obtaining a weighted average in which

every program version has the same weight.

Let us focus on a program version P , and let us call F its set of failing runs, S its

set of successful runs, and scoreU(f) the score of the union method, when it uses a

failing run f . Then the score of the union method for P is the average of the scores

of the reports based on each failing run of that program:

scoreU(P ) =

∑

F
scoreU(f)

|F |

The formula for the intersection model is similar.

For the random techniques, the score of the technique depends not only on the

failing run, but also on the correct run the technique picks to contrast with it. If

there are multiple nearest neighbors the technique could uniformly pick any of them.

Therefore, to compute the score for the failing run, we average over the scores obtained

by selecting each correct run. More formally, if f is a failing run in the set of all failing
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Score Inter. Union NN/Cov NN/Perm
0-10% 108 101 31 19
10-20% 0 0 7 0
20-30% 0 0 15 2
30-40% 0 0 15 7
40-50% 0 0 10 4
50-60% 0 0 8 21
60-70% 0 0 4 15
70-80% 0 1 5 13
80-90% 0 1 9 10
90-100% 1 6 5 18

Table 6.2: Distribution of scores per method

runs F , then the random selection’s score is:

scoreRandom(f) =

∑

S
score(f, n)

|S|

Then the score for a program is defined as in the union and intersection cases.

The process works similarly for the nearest-neighbor techniques, except we average

not over the set of correct runs, but over the set of nearest neighbors to the failing

run Nf . The nearest neighbor score for the run is

scoreNN (f) =

∑

Nf

score(f, n)

|Nf |

Then the score for a program is defined as in the union and intersection cases.

6.3.1 Technique Performance

Table 6.2 shows the distribution of scores for the five techniques.

The intersection technique gives an empty report and achieves a zero score for all

programs bar one (version 9 of schedule), for which it gives an almost perfect report.

The reason for the proliferation of empty reports is the following: our test suites

assure program coverage. Therefore, every top-level condition in every program has

to be true in some execution and false in some other. When it is true, the parts of
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the code that are in the false branch are excluded from the intersection. Conversely,

when the condition is false, the parts of the code that are in the true branch are

excluded from the intersection. Therefore, every line of code that is guarded by a

top-level condition cannot appear in the intersection if the non-failure-inducing part

of the test suite obtains branch coverage of top-level conditional statements, a highly

likely situation. The only parts of the program that could appear in the intersection

under top-level coverage are the ones that are not guarded by anything. But those

statements are always executed, even in the failing runs we examine. The intersection

technique achieves a high score for version 9 of schedule for an interesting reason: the

program ends prematurely (with a segmentation fault) producing an empty profile.

The bug is actually in the first executable line of the main function. Obviously, all

successful runs execute that line; the failing run also executes it, but because of the

segmentation fault, it is not reflected in the spectrum.

The union model did succeed in finding some bugs. The interesting thing about

it, though, is its almost bimodal behavior: it reports either nothing or things very

close to the bug. It depends on almost the reverse of what the intersection depends

on: it must be impossible to achieve full code coverage with only successful runs.

This means that the bug must be very well localized at the level of abstraction the

spectra provide.

The average score for the nearest neighbor model was 56% with the permutation

spectrum and 35% with the coverage spectrum. The nearest neighbor models give

us consistently better results than the union and intersection models, even when the

bugs are not found exactly. Nearest neighbors are not hindered by coverage issues.

Having a large number of runs helps, because it is easier to find a close neighbor

of a failing run, but it is the existence of a close neighbor, not the number of runs,

that matters. This is an important property. For the union and intersection models

the set of successful runs must be large enough (to exclude all irrelevant parts of the

program) but not too large, because then the successful runs overshadow the bug.

This is why previous work based on these models had to use slicing, introducing an a

priori relevance of the spectra to the bug. Thanks to the nearest-neighbor models we
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Figure 6.1: Distribution of the difference in scores between the nearest neighbor model
(with the coverage spectrum) and the union model for our subject programs

can answer our first question, about the possibility of locating bugs with the given

spectra, in the affirmative.

6.3.2 Technique Comparison

The second question is how the nearest-neighbor techniques perform in comparison

to the union and intersection techniques. The comparison with the intersection tech-

nique is not very interesting; in the one case in which it locates the bug, the bug is

also found by the nearest neighbor techniques (for the same reasons). On the other

hand, the intersection technique produces mostly empty reports, so at least it does

not mislead the user.

The question of the behavior of the nearest neighbors with respect to the union

technique is a little harder to answer. The union technique gets more scores above

90% than the nearest-neighbor technique with the coverage spectrum. However, it

achieves fewer scores above 80%. The distribution of the difference of scores between

the union and the nearest neighbor method is shown in Figure 6.1. The average
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Figure 6.2: Distribution of the difference in scores between the permutation spectrum
and the coverage spectrum, with the nearest neighbor model

difference is 27 points. The nearest neighbor does better in all but seven cases. Not

surprisingly, six of these cases are the ones in which union gets a score above 90%.

However, it is also true that for those cases, the difference in scores is large, which

means that the nearest neighbor is not performing well. Note, though, that this is

the average nearest neighbor, and that in two of these case there is a particular run

for which the nearest neighbor finds the bug.

Figure 6.2 shows a similar graph for the nearest neighbor with the coverage spec-

trum and the nearest neighbor with the permutation spectrum. The permutation

spectrum performs considerably better: on average, it achieves a score 10 points

higher. Still, in a few cases the simpler spectrum does better. The reason is that

in these cases the more complex spectrum, which is symmetric, gives us a few more

nodes than just the faulty ones, and therefore the score is a little lower.
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Figure 6.3: Distribution of the difference in scores between choosing the nearest
neighbor and choosing any successful run uniformly (coverage spectrum)

6.3.3 Nearest Neighbor vs. Random Selection

In this section, we test whether selecting the nearest neighbor for comparison with

the failing run is superior to selecting a correct run randomly. Figure 6.3 shows the

distribution of the differences of scores between using the nearest neighbor and using

any run. That is, given a failing run, what score would we get if, instead of going to

the trouble of choosing the nearest neighbor, we chose some arbitrary successful run?

Surprisingly, in the simple spectrum case, the average run performs a bit better!

A simple explanation for this is that the space defined by the coverage spectrum is

too compact. Because of this, there is always a run which, when compared with

our failing run, will isolate the faulty line. If this intuition is correct, then enlarging

the space by using a more complete spectrum, should increase the difference from

the average. Indeed Figure 6.4 shows the distribution of the difference between the

score of the nearest neighbor using the more complex spectrum and the average

score of using any run, instead of the nearest neighbor. This difference is 10 points

on average, suggesting that indeed, in more elaborate spaces, selecting the nearest
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Figure 6.4: Distribution of the difference in scores between choosing the nearest
neighbor and choosing any successful run uniformly (permutation spectrum)

neighbor significantly outperforms selecting a random run.

6.3.4 Discussion

There are threats to the validity of our results: the choice of programs, the choice of

spectra, and the fact that I used my own evaluation strategy. The programs in the

Siemens suite are relatively small and the faults are injected; there is definitely need

for more realistic experiments. The spectra I use are simplistic, as witnessed by the

number of spectrum collisions, and there is no guarantee that the results will hold

for more elaborate spectra. Still, I believe that the use of a single similar run to help

isolate faults will hold with more elaborate spectra, as witnessed by previous research

that exploited input structure. Perhaps the strongest threat is that the performance

evaluation method is our own. However, its simplicity leads us to believe that there

are no hidden biases in favor of the nearest-neighbor model.

Our technique assumes the availability of a large number of runs, or some other

way of discovering a similar run. This need can be addressed by keeping the results
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of beta testing by a test case generator [Korel, 1990], or by driving a manual testing

process [Horwitz, 2002], perhaps based on the fault-localization report. I have claimed

that my technique is independent of the input structure. If the test cases come from

a test-case generator, the advantage is smaller: the existence of a test generator

assumes knowledge about the input structure, but our technique alleviates the need

for a distance metric on inputs and it discharges the assumption that similar inputs

lead to similar runs.

6.4 Carrot

To evaluate the invariant-based spectrum and model, we1 developed a separate tool,

Carrot. To evaluate Carrot’s effectiveness, we must determine whether

1. the model eventually converges to a “steady state”, i.e., additional good runs

do not significantly alter it

2. contrasting the model of good runs with the spectrum for a bad run produces

anything at all

3. the difference in (2) holds a clue to the actual error.

Comparing a premature model of good runs against a bad run can make the tool

report many more potential invariants than comparing with a steady state model.

The first item is therefore important in minimizing the number of invariants the

programmer needs to examine.

We tested Carrot on two programs from the Siemens suite: tcas and print tokens.

To check the eventual stability of the model, we experimented with the correct versions

of tcas and print tokens. Further experiments with a third program from the Siemens

suite, replace, produced similar results. The results differ for value sets and relational

invariants. We find that the size of the set of relational invariants decreases rapidly

and eventually reaches a steady state. In contrast, even the last five runs of the

programs cause hundreds of value-set extensions.

1This section is based on work done with Brock Pytlik, Shriram Krishnamurthi and Steve Reiss.
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To check the second and third requirements, we examine all faulty versions avail-

able for tcas and print tokens. We found that contrasting the faulty run to the

steady-state model does not always result in invalidations. In particular, there is no

invalidation for any of the 568 faulty runs of versions of tcas. For print tokens, out

of 484 faulty runs, only one (of version 5) invalidates relational invariants. The two

invalidated invariants are not related to the bug.

We then created a new faulty version of print tokens with the explicit purpose of

uncovering the bug in it. print tokens contains a partial identity function that returns

its argument if the argument is in a specific set of values, and terminates the program

otherwise. In our version, the function returns its argument if the argument is in the

set of values; otherwise (to inject a fault) it returns the largest value of the set. The

result is that the function is not an identity function anymore. This bug should be

identified by the invariant schemata we implemented.

Our manufactured version of print tokens exposes its bug on 48 inputs. Each

faulty run invalidates the same two invariants that point directly to the bug, except

one run which invalidates two more invariants unrelated to the bug.

6.4.1 Discussion

Our very preliminary experience based on this work is naturally negative. We were

unable realistically to locate any bugs in the many variants of the Siemens suite.

This failure could be caused by any number of shortcomings in our approach: Carrot

does not implement a sufficiently rich set of invariants; the style of invariants used by

Carrot is mismatched with the programs we are analyzing; or potential invariants are

not suitable for debugging. Our experiments are too premature to conclude the last

point. On the one hand, the potential for success clearly exists, as the manufactured

version of print tokens suggests and as tools more closely hewn to a particular domain,

such as Diduce [Hangal and Lam, 2002], demonstrate. On the other hand, a similar

technique used by Groce and Visser [2003] has not been shown to bear fruit.2

2Visser, personal communication.



Chapter 7

Elision

When you come to a fork in the road, take it.

— Yogi Berra

Chapter 5 discussed a number of implementations based on coverage spectra, i.e.

on which parts of code execute during a run. Intuitively, our confidence in a fragment

of code increases when the fragment executes (is covered) during a correct run and

decreases when it executes during a failing run. This intuition lies at the basis of a

number of systems [Pan and Spafford, 1992; Reps et al., 1997; Jones et al., 2002] and

is exemplified in its strongest form by the first Whither tool: every line of code that

executes in a correct run is deemed correct, every line of code that executes only in

a failing run is deemed faulty.

In this chapter I show how this intuition can lead to wrong conclusions, with

adverse effects for debugging. Just because a line of code executes in a correct run

does not make it correct; it may have had no effect on the output of the program. A

well-known manifestation of this absense of effect is that, given a program and a test

suite that covers it fully, even if none of the tests fail, we still cannot be sure that the

program harbors no mistakes.

In this chapter I examine a special case of this phenomenon in which individual

conditional choices give us misleading coverage information. Conditional choices are

63
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the basic elements of coverage: coverage is simply an aggregate view of all the control-

flow choices made during a program run. Therefore, when individual choices give us

misleading information about the correctness of a fragment, the aggregation will be

misleading also. In the particular case examined in this chapter, a choice makes no

difference to the program’s outcome. Thus, the coverage of any program fragment

due to this choice provides no evidence on the correctness of the fragment.

7.1 An Example

Consider the program in Figure 7.1. Suppose that the expected outcome of the

program is 1 and the value of the complicated expression is true. When the then

clause is executed, coverage provides (correct) evidence that both the condition and

the then clause are correct.

However, suppose that the else clause is replaced with x:=5;, as in Figure 7.2,

and that there exist two test cases with different values of c for which the expected

output is 1. The program succeeds in both cases, and coverage provides no reliable

information on the correctness of either the condition or the executed clause. In effect,

the conditional statement made no choice, so both the condition and the executed

branch could be erroneous. Conversely, if the expected output is not 1 and c is equal

to true, coverage points to the then clause as suspect. However, since the condition

made no choice, it may well have been wrong, and then the else clause could be the

erroneous one.

c := (* complicated expression *)

if (c)

then x := 3;

else x := 4;

print x mod 2;

Figure 7.1: A simple if-then-else
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c := (* complicated expression *)

if (c)

then x := 3;

else x := 5;

print x mod 2;

Figure 7.2: An elided if-then-else

We say that a particular evaluation of a conditional during a run is elided if the

run has the same outcome regardless of which branch is executed. We also call the

conditional itself elided. If all evaluations of a particular conditional during a run are

elided, we say that the conditional was totally elided during the run.

Elision is a dynamic concept. The elision of a particular evaluation of a conditional

is affected by both the program state at the time of the evaluation and the future of

the run. In our first example, if instead of x := 5 the else clause read x := y, y’s

value would influence the conditional’s elision. Moreover, if the conditional is reached

twice, once with y odd and once with y even, it would be elided only once. The rest

of the computation, and how it handles the outcomes of each branch, also determines

whether the conditional is elided. In our example, the immediate effects on x are

discernible, but the conditional is elided by the modulo operation. Therefore, the

particular dynamic context affects whether a statement is elided or not.

x := 5;

c := y < 10;

d := true;

e := (y < 50) and (z < 10);

if (c orelse d orelse e)

then x = 3;

print x mod 2;

Figure 7.3: Elision with boolean operators

At first sight, it seems unlikely that conditional elision is common. After all, every

if statement in a program is there for good reason, and programs avoid recomputing

the same values, as dictated by efficiency concerns and good algorithm design. But
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these are local and static properties: in full programs, at run time, decisions are

often repeated or have no effect on the program’s outcome. Programs do not output

their internal state; we only have narrow windows through which to discern their

behavior. In Figure 7.3 we cannot observe the whole value of x, only that of its

lowest bit. Second, elision is a dynamic property of the program, and not every

conditional statement has a crucial place in all contexts. In Figure 7.3, given that d

is true, c is elided, although used1. Lastly, the same conditional check may appear

multiple times in different guises: in Figure 7.3 the computations of c and e both

check whether y < 50.

To discover if a conditional is elided or not, we need to pose the following question:

how does the output of the program change if the condition is inverted? To answer the

question experimentally, we forcibly change the value of the condition just before the

direction of the branch is decided, and we monitor any differences in the observable

behavior of the program. In this chapter, we focus on single elided conditionals : in

other words, we make a single inversion during a run. We repeat the process for

each conditional, starting each time in the original run and inverting the condition

immediately following the last condition we inverted (Figure 7.4).

Examining both branches of each if is akin to introducing faults into the subject

program. We replace every statement of the form if(c) with a statement of the form

if(c xor s), where s is a boolean “slack” variable. Then we allow only one slack

variable to be true, exactly once through the program run, and we examine its effects.

We replicate the process for each slack variable and for each evaluation of the condition

during the run. Unlike with other approaches like mutation testing [DeMillo et al.,

1978], we need not specify directly how the new conditional differs from the original.

This lets us separate all possible mutations of the conditional into two groups: the

group that leaves all decisions intact and the group that inverts the decision once.

Then we can examine both groups without enumerating them. Therefore, we can

implicitly address a large number of potential faults and examine whether a test case

1This example also illustrates that elision is not static or dynamic slicing: c, d and e would be
in the backward static slice of x, and c and d would be in the dynamic slice.
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Figure 7.4: The structure of the elision exploration. Each of the vertical lines rep-
resents a run identical to the original run; each dot on a vertical line represents the
conditional statement we examine; each horizontal line represents a run that deviates
from the original in that we forcibly change the value of the condition.

would expose them.

7.2 Implementation

Before we discuss our implementation, we should mention a number of other testing

and debugging approaches that modify the program behavior, either statically or at

run time. Dynamic mutation testing [Laski et al., 1997] establishes the sensitivity of

code by changing function return values. Delta Debugging experiments with splicing

parts of the state of a successful execution onto a failing one in order to isolate

cause-effect chains [Zeller, 2002]. Our approach is more restrained: we merely change

boolean values in conditions. This frees us from the need for an alternate run and

allows us to exhaust the space of changes. Critical slicing [DeMillo et al., 1996]

selectively removes statements to examine whether they affect a slice. Removing a

statement is equivalent to leaving the program state intact. For conditionals, this

technique would not always examine both branches. Mutation testing [DeMillo et al.,

1978] modifies the subject program; the user has to augment a test suite until it

distinguishes all mutants from the original program. Elision can be used in this way:

the user would have to build a test suite in which all conditionals matter at least
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once.

Our experimental framework for discovering elided conditionals has two coupled

components:

• An instrumentation component that rewrites the source code of the subject

program to let us explore both branches of each conditional.

• A monitoring component that lets us examine the differences in the program’s

behavior when we follow the branch of a conditional not dictated by its evalu-

ation context.

Our instrumentation system [Chan-Tin, 2004] is built on top of CIL [Necula et al.,

2002], a source-to-source transformation library for the C language. We first apply

two of CIL’s own transformations to the subject program. The first one transforms

all loops into simple conditional statements, as in Figure 7.5. The second transforms

all binary boolean operators to sequences of nested if statements, as in Figure 7.6.

Both transformations insert goto statements as necessary.

while (i != EOF) {

// loop body

}

becomes

while (1) {

while_0_continue:

if (! (i != EOF)) {

goto while_0_break;

}

// loop body

}

while_0_break:

Figure 7.5: Sample CIL loop transformation

After these two transformations, we apply one of our own that transforms all

statements of the form if (c) into statements of the form if (split(c)). The three
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if (i == ’#’ || i == ’@’) {

// conditional body

}

becomes

if (i == ’#’) {

// conditional body

} else {

if (i == ’@’) {

// conditional body

}

}

Figure 7.6: Sample CIL boolean transformation

transformations together ensure that we call the split function on every branch of

the program.

The split function, implemented on top of the Unix fork system call, is an

identity function with an important side effect: it duplicates the running process.

Following Unix terminology, we call the newly created process the child process. The

child process differs in two major ways from the original parent process: the return

of split is inverted, and future invocations of split have no side effects (and return

their argument unmodified). In this way, we create a number of processes equal to

the number of branches encountered during the program execution (Figure 7.7). This

can dramatically increase the running time of a test run.

Our monitoring system is implemented as a modified C library. Our C library

behaves differently for the original process, which follows all the branches as if we

had not inserted the calls to split, and for each of the child processes, which have

one inverted decision. For the original process, the monitoring system simply records

all output, including writing to files and terminals; it also records the process’s total

execution time. For the child processes, the monitoring system checks whether the

output agrees with that of the original process, and also checks that the running time

does not exceed three times the running time of the original process. We stop a child
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Figure 7.7: Implemented elision exploration, combining the prefixes of processes

process as soon as it (irrevocably) behaves differently from the parent process2. In

general, any difference that a user might observe should be monitored; however, it is

of equal importance not to flag differences that the user cannot observe.

We start each of the child processes in a blocked state. When the parent process

finishes, we resume the child processes one at a time and monitor for any observable

differences from the parent process.

7.3 Experimental Results

We experimented with three C programs: tcas, print tokens, and space. Two of these

programs, tcas and print tokens, come from the Siemens suite [Hutchins et al., 1994;

Rothermel and Harrold, 1998]; the third is a program written for the European Space

Agency [Rothermel et al., 2001; Vokolos and Frankl, 1998]. Each of these programs

has a number of versions, all but one of which contain faults. We used the correct

version for our experiments.

tcas is an aircraft collision-avoidance system that consumes 12 integers and out-

puts 0, 1, or 2, depending on whether the airplane should increase, keep, or decrease

its altitude. It is essentially a large predicate. Few programs have the same structure

2We assume that the program does not undo any of its actions; for example, it does not write
into the same position of a file twice.
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Program Description LOC #Cond #Tests
tcas altitude separation 173 33 1608
print tokens lexical analyzer 565 88 4132
space ADL interpreter 6218 622 13297

Table 7.1: Overview of subject program for elision experiments. Column 3 is the
number of lines of code; column 4 is the number of conditionals.

as tcas, but many programs contain complex predicates. print tokens is a lexical

analyzer and space is an interpreter for an array definition language (ADL).

Because of tcas’s structure, we expect that most conditionals will be elided. We

expect elision to be less extensive for the other two programs, since they output much

more information about their inputs.

Program Boolean Boolean Ratio Avg. False
Coverage Elision Coverage

tcas 23615 14923 0.63 9.3
print tokens 238787 8765 0.04 2.1
space 2769599 366198 0.13 27.5

Table 7.2: Elision statistics over the number of conditionals

Program Count Count Ratio
Coverage Elision

tcas 24501 15809 0.65
print tokens 4291376 533391 0.12
space 63923979 15979909 0.25

Table 7.3: Elision statistics over the number of executions of conditionals

We run each program on a number of tests, as shown in Table 7.1. For each run,

we kept information on how many times each conditional statement executed and

how many times it was elided. Table 7.2 summarizes our findings. The first column

contains the program name. The second column contains the aggregate boolean

coverage of conditionals: the number of conditionals evaluated during all runs, when

each conditional is counted only the first time it executes during a run. The third
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column contains the aggregate boolean elision: the number of conditionals elided

during all runs, when each conditional is counted once for each run where it was totally

elided, i.e. all its evaluations were elided. As we would expect, 63% of conditionals

are elided in tcas, 13% in space, but only 4% in print tokens. The fourth column

contains the ratio of columns 2 and 3. Column 5 is the average number of elided

conditionals during a run. These conditionals are still executed and thus are reported

as covered, but this information is misleading. Nine conditionals are elided on average

in the runs of tcas. This is out of 33 conditionals in the entire program, although

not all of them execute during all runs. For print tokens and space the numbers

are lower but still significant. One dramatic example appears in tcas. The original,

uninstrumented program contains a conditional of the form if (a && b && c). The

c part of the conditional is executed in 245 runs, yet is totally elided in all of them.

As a result, its computation remains untested, after 1608 tests. Figure 7.8 shows a

graphical summary of all the tcas conditionals. Another example appears in space,

where a nested conditional is elided in 61 of the 75 runs in which it executed.

Table 7.3 repeats the first four columns of Table 7.2, but we count each conditional

evaluation individually. For tcas the difference between the second and third columns

and the fourth and fifth columns is the same, because any non-elided conditional is

non-elided exactly once during the run.

7.4 Discussion and Related Work

Our results here are confirmed by an independent study [Wang et al., 2003], using

different tools and subject programs.

Since elided conditionals occur, I believe that future dynamic analyses should take

them into account. In general, any information discovered during dynamic analyses

that is not true for both branches of each elided conditional in the program should

be discarded. Branch and statement coverage should not consider as covered the

branches of elided conditionals. In def-use chain tracing, an elided conditional should

not constitute a use. Path profiling [Reps et al., 1997] should not include paths that
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Figure 7.8: tcas profile and elision data per conditional. Each pair of bars corresponds
to a conditional and the vertical axis represents number of runs. The blue (light) bars
represent the number of runs in which a conditional executed, while the red (dark)
bars represent the number of runs in which the conditional was totally elided. The
conditionals are ordered by the number of runs in which they were not elided.
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include elided conditionals. Invariant detection [Ernst et al., 2001] should not include

invariants stemming from branches of elided conditionals. Automated debugging

based on coverage data [Jones et al., 2002; Renieris and Reiss, 2003; Reps et al.,

1997] should not include elided branches in spectra comparisons.

Elision can be a tool in the search for causal relations of program faults [Groce and

Visser, 2003; Zeller, 2002]. By its nature, elision modifies the program in minimal

ways, consistent with Lewis’s theory of causation [Lewis, 1973]. When a program

does not fail even if a conditional is changed, this conditional clearly cannot be the

cause of the fault.

In its present implementation, elision discovery is prohibitively expensive. Smarter

state sharing, as in the Java Pathfinder [Visser et al., 2003], would facilitate its use.

This would also let us experiment with multiple (boolean) faults.

Elided conditionals are but the simplest case of elision. In the more general case,

we would have to perturb a single non-boolean variable at every expression. This

is much harder: the alternative domain may be much larger and not well defined.

Consider an integer used as an index to an array. Its domain, not taking into account

its usage, is the full domain of integers. If we take its usage into account, then its

domain in an unsafe language like C remains unchanged, but in a safe language like

Java it becomes the union of the valid array indexes and a single item that would

cause an out-of-bounds error. The situation becomes harder when the variable we

want to manipulate is a pointer. Its domain could include every item in the data

structure it points to, every item of the same type as the item currently pointed

to, or, in unsafe languages, any address in memory. The situation dictates that we

develop specific fault models for each language and perhaps each program.

We can view elision as a dynamic information-flow problem [Denning and Denning,

1977]. If we consider the regular input of the program as public and the values of

the slack variables (c.f. section 7.1) s as private, then the elision question becomes

equivalent to the information-flow question whether we can find the values of s from

the public inputs and the output. However, the enforcement of secure information

flow is often local in the code [Sabelfeld and Myers, 2003], and in elision we are
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interested in remote effects.

Such remote effects are captured by the RELAY model of fault origination and

transfer [Thompson, 1991; Thompson et al., 1993]. Assuming a fault from a class

of syntactic faults, RELAY constructs a necessary and sufficient condition for the

observation of the fault. RELAY targets a relatively simple language (for example,

the target language has no pointers), and yet the conditions it needs to construct are

complex and sometimes fault-specific. The authors point out that it is impractical

to instrument a program to monitor the condition constructed by RELAY. Still, the

model provides insight into the complexity of the problem, and could provide local

necessary conditions to improve the efficiency of a brute-force method like ours.



Chapter 8

Conclusions

When I started work on automated fault localization, I was hoping that research

in the field was as mature as in compiler optimization, with an established set of

benchmarks and a well understood architecture. I found out this was not true: much

debugging work is disconnected. Once I had the basic ideas of the framework, I kept

finding more and more papers that implicitly discussed the same architecture, within

the scope of a particular solution to a particular problem. Most of these papers do

not reference previous work that implemented the same architecture; terms did not

exist to describe the differences among them.

Two things became clear from reading a few of these papers: that the emerging

architecture, or at the very least design pattern, for fault-localization systems had

not been identified and articulated, and that there was no way to compare different

tools. These observations implied that the barrier for new research in this field was

extremely high: researchers had to start from specific domains (which means that

they had to be domain experts in some other area) and their that progress could not

be quantified, and was therefore doomed to be slow and disconnected.

I have tried to remedy these two problems in this dissertation. A multitude

of debugging spectra and models are waiting to be discovered. Until now, whole

systems had to be invented in one gulp, and my hope for the framework described

in this dissertation is that it breaks the problem in smaller, more tractable pieces.

At the same time, the evaluation method allows researchers to compare different
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implementations in a way that was not possible before, and therefore allows us to

identify progress in the field far more easily.
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