
A Research Roadmap Towards Achieving

Scalability in Model Driven Engineering

Dimitrios S. Kolovos

1
, Louis M. Rose

1
, Nicholas Matragkas

1
, Richard F. Paige

1
,

Esther Guerra

2
, Jesús Sánchez Cuadrado

2
, Juan De Lara

2
,

István Ráth

3
, Dániel Varró

3
, Massimo Tisi

4
, Jordi Cabot

4

1
University of York,

2
Universidad Autónoma de Madrid,

3
Budapest University of Technology and Economics,

4
University of Nantes

{dimitris.kolovos, louis.rose, nicholas.matragkas, richard.paige}@york.ac.uk,

{Esther.Guerra, Jesus.Sanchez.Cuadrado, Juan.deLara}@uam.es,

{rath, varro}@mit.bme.hu, {massimo.tisi, jordi.cabot}@inria.fr

ABSTRACT
As Model-Driven Engineering (MDE) is increasingly applied
to larger and more complex systems, the current generation
of modelling and model management technologies are being
pushed to their limits in terms of capacity and e�ciency.
Additional research and development is imperative in order
to enable MDE to remain relevant with industrial practice
and to continue delivering its widely recognised productiv-
ity, quality, and maintainability benefits. Achieving scalabil-
ity in modelling and MDE involves being able to construct
large models and domain-specific languages in a systematic
manner, enabling teams of modellers to construct and refine
large models in a collaborative manner, advancing the state
of the art in model querying and transformations tools so
that they can cope with large models (of the scale of mil-
lions of model elements), and providing an infrastructure for
e�cient storage, indexing and retrieval of large models. This
paper attempts to provide a research roadmap for these as-
pects of scalability in MDE and outline directions for work
in this emerging research area.

1. INTRODUCTION
Modelling is an essential part of any engineering process.

Engineers of all disciplines construct models of the systems
they intend to build – e.g. software applications, bridges,
airplanes – to capture, test, and validate their ideas with
other stakeholders before embarking on a long and costly
production process. Model-Driven Engineering (MDE) is a
software engineering methodology that attempts to reduce
the accidental complexity [1] of software systems by promot-
ing models that focus on the essential complexity of systems,
as first-class artefacts of the software development process.
In contrast to traditional software development methodolo-
gies where models are mainly used for communication and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
BigMDE ’13, June 17, 2013 Budapest, Hungary
Copyright 2013 ACM 978-1-4503-2165-5 ...$15.00.

post-mortem documentation purposes, in MDE models are
the main living and evolving artefacts from which concrete
software development artefacts can be produced in an auto-
mated fashion, through model-to-model and model-to-text
transformation.

With object-oriented techniques having reached a point of
exhaustion [2, 3], MDE constitutes the latest paradigm shift
in software engineering as it raises the level of abstraction
beyond that provided by 3rd generation programming lan-
guages. To avoid the pitfalls of one-size-fits-all CASE tools,
MDE advocates domain-specific solutions and modern MDE
architectures provide the means to implement these using a
combination of general purpose languages (e.g. UML), do-
main specific languages, and languages and tools for auto-
mated model management (transformation, validation, com-
parison, merging, refactoring etc). In recent studies, MDE
has been shown to increase productivity by as much as a fac-
tor of 10 [4, 5], and significantly enhance important aspects
of the software development process such as maintainability,
consistency and traceability [6].

As MDE is increasingly applied to larger and more com-
plex systems, the current generation of modelling and model
management technologies are being stressed to their limits
in terms of their capacity to accommodate collaborative de-
velopment, e�cient management and persistence of models
larger than a few hundreds of megabytes in size. As such, a
new line of research is imperative in order to achieve scalabil-
ity across the MDE technical space and enable MDE to re-
main relevant and continue delivering its widely-recognised
productivity, quality, and maintainability benefits.

Scalability in software engineering has di↵erent dimen-
sions: number of software engineers; size of engineering arte-
facts; size and complexity of languages used; size of engineer-
ing tasks that are carried out; number of engineering arte-
facts, etc. As illustrated in Figure 1, achieving scalability in
MDE involves:

• being able to construct large models and domain spe-
cific languages in a systematic manner;

• enabling large teams of modellers to construct and re-
fine large models in a collaborative manner;

• advancing the state of the art in model querying and
transformations tools so that they can cope with large
models (of the order millions of model elements);



• providing an infrastructure for e�cient storage, index-
ing and retrieval of such models.

Scalable 
Queries and 

Transformations

Scalable 
Domain Specific 

Languages

Toolkit for 
constructing 

scalable DSLs
require

Scalable DSLs
Scalable 

Concrete Visual 
Syntax Toolkit 

Scalable 
Model 

Persistence

Scalable
Collaborative 

Modelling

Collaborative 
Modelling 

Tools

requires

require

Primitives and 
Patterns for 

Collaborative 
Modelling

requires

defined using

Large-Scale 
Models

conform to

Transformation 
Benchmarks

require

Reactive and Cloud 
based Querying and 

Transformation Engines

require

used to measure

query and
transform

Guidelines 
and Best 
Practices

require
defined following

underpin

used to manage

Efficient Model 
Persistence 

Format

requires

Model Indexing 
Framework

requires

indexes

stored in

used to explore/edit

use for global queries

Figure 1: Tackling the challenge of scalability in

MDE

The rest of the paper (Sections 2-5) provides an overview
of the state of the art in these four key areas, identifies
the main challenges that need to be overcome, and outlines
directions for further research and development. Section 6
concludes the paper.

2. SCALABLE DOMAIN SPECIFIC
LANGUAGES

Even though the concepts, techniques and tools for MDE
have been notably improved over the last few years, we still
find that models and languages do not scale well, hetero-
geneous languages (perhaps belonging to di↵erent technical
spaces) are di�cult to combine, and there are no satisfac-
tory techniques for the application of MDE to large, com-
plex systems in more complicated scenarios. These scenar-
ios require techniques for the engineering, modularization
and reuse of large models and complex modelling languages
enabling their flexible combination. Many research groups
have recognized these deficiencies [7, 8], making this area a
very promising line of research, with great potential impact
in industry. We review the current state of the art regarding
scalable language design, and propose research directions to
tackle the identified gaps.

2.1 State of the Art
There are several works aimed at defining compositional

mechanisms for languages and models. The Reuseware project
(http://www.reuseware.org/) aims at providing composi-
tion technology and techniques for languages lacking such
built-in mechanisms. Reuseware is specifically aimed to-
wards languages in the context of the Semantic Web, such
as OWL, and modeling languages, like the UML. Such tech-
niques allow for componentization and composition of arti-
facts written in these languages, fostering reuse [9]. In [10]

the authors extend the OMG’s Meta-Object Facility (MOF)
for the specification of proper meta-model components with
provided export and required import interfaces. This fa-
cilitates information hiding and enables the construction of
languages by composing these components. However, the
technique is only described theoretically and does not con-
sider composition of models. In [11] the authors propose a
similar approach for the definition of import and export in-
terfaces for meta-models and models. Again, currently the
approach is only defined theoretically, but an implementa-
tion atop EMF is foreseen. Moreover, none of these ap-
proaches tackle issues related to consistency checking when
models are interconnected.

With respect to handling visualization of large, complex
models, some researchers have brought abstraction tech-
niques from the field of information visualization. For exam-
ple, in [12], the authors develop an ad-hoc semantic-zooming
technique to ease navigation in complex UML diagrams, and
some visual language editors like DiaGen enable the defini-
tion of abstractions [13]. However, these abstractions have
to be manually programmed for each di↵erent language.
Some preliminary work in the definition of generic model
abstractions has been reported in [14], which can be reused
across di↵erent meta-models, however, there is still no sup-
port for visualizations, and these abstractions have not been
applied in the context of large, heterogeneous models.

Finally, little work has addressed processes for develop-
ing and testing meta-models [15, 16]. For example, in [16]
the authors propose a language to write automated tests for
conceptual schemas, which could be used for test driven de-
velopment of DSLs. In [15] the authors propose a process
for the incremental development of meta-models by consid-
ering increasingly refined test models. Some other works (in-
cluding proposals from some of the partners) have explored
the induction of meta-models from example models [17, 18],
and enabling collaboration in the definition of the meta-
models [19]. However, none of these works consider issues
related to scalability of models or meta-models.

2.2 Research Directions
The basic activities in Language and Model Engineering

are the specification of domain-specific languages (normally
through meta-models), the generation of modelling tools
starting from those specifications, and the construction of
models using the generated tools. Each of these techniques
should be scalable for industrial use, and should enable the
adequate handling of complexity. We believe that research
is needed to facilitate the use of these techniques in contexts
and applications of industrial scale. In particular, we foresee
the following dimensions:

Scalable Language Design. In the first place, it should
be possible to take into account scalability concerns when
designing a modelling language. Appropriate techniques
should be provided to extend the meta-model structure when
large models are expected, in order to enhance e�ciency for
certain model queries. Such extensions could be suggested
by an intelligent recommender system, on the basis of the
expected sizes, queries and model usages. An additional
mechanism is to include automated support for modulariza-
tion, enabling the construction of libraries of reusable models
and meta-model fragments (as it is done in the programming
domain to tackle scalability). For example, including in the



meta-modelling infrastructure concepts like package, names-
pace, fragment, diagram or sub-model, which should be in-
stantiated with controlled cardinality. Those model frag-
ments, of potentially heterogeneous technical spaces, can be
distributed and linked through soft references [20, 21, 22].
To enable the correct composition and reuse of fragments,
(non-intrusive) mechanisms for the contract-based definition
of template models and meta-models are needed. These de-
composition and hierarchical constructs pose the problem of
consistency and validation of global properties of the model.
Hence e�cient, incremental techniques for such validation
are needed.

Scalable Concrete Syntaxes. Another means to tackle scal-
ability is to provide support for useful model abstractions,
providing a simplified view of a model, or introducing hi-
erarchical elements, organizing models at di↵erent levels of
abstraction. A means to facilitate their construction is to
define generic abstractions, which can be reused across dif-
ferent modelling languages [14]. These techniques should
be available both for the abstract syntax of models (i.e.,
“raw” models), and also for the graphical concrete syntax
level, in order to facilitate the visualization and exploration
of large-scale models, at di↵erent levels of abstraction. An-
other common issue is that no concrete syntax (only generic
tree-based editors) is defined for some meta-models, which
becomes problematic as models grow. To address such sce-
narios, research on automatic generation of graphical con-
crete syntaxes, adaptable to the characteristics of the meta-
model, and taking scalability as a concern to enable usable
navigation and visualization of large models is needed.

Heterogeneity. In real projects, one seldom uses isolated
DSLs in the development, but several languages might be
needed to describe the di↵erent aspects of the system to be
built. These concerns could even be expressed using di↵er-
ent technological spaces, like combinations of DSLs, UML or
specialized languages like Matlab/Simulink. Hence, research
on supporting the construction of multi-view language en-
vironments by reusing meta-model fragments, possibly of
heterogeneous technologies, is needed.

Processes and Methodologies. Currently, DSLs and meta-
models are often developed in an informal, ad-hoc way. How-
ever, being central to the MDE process, DSLs should be
engineered using sound principles and methods, gathering
requirements from all stakeholders. However, current MDE
practice lacks proposals in this direction. Therefore, pro-
cesses and methodologies enabling the engineering of DSLs,
and the disciplined use of models are needed, using the tech-
niques described above in an industrial setting.

3. SCALABLE QUERIES AND
TRANSFORMATIONS

The proposed research agenda on accelerating model trans-
formation engines builds on a vast literature of methods to
improve the performance of computation systems.

3.1 State of the Art

Incrementality.
One of the fundamental techniques commonly used in this

area is incrementality. The idea has already been applied to
model transformations, and the most followed approach is
o✏ine incrementality. [23] proposes an automatic way to
synchronize the source and target models of an ATL trans-
formation o✏ine. Incrementality is implemented by inter-
facing with existing di↵erencing tools for calculating changes
to the models and propagating them bidirectionally. Hearn-
den et al. [24] synchronize two models incrementally using
a declarative logic-based transformation engine. The ap-
proach records a transformation execution and links each
transformation step to the correspondent changes in the
source model. This information is then used for change prop-
agation. Live and o✏ine incrementality has been already
implemented with Graph Transformations techniques, for
example in [25]. Especially the work in [26] implements live
incrementality, based on the RETE algorithm, a well-known
technique in the field of rule-based systems. These graph
transformation approaches focus on incremental pattern-matching
to improve the performances of the transformation. [27] em-
ploys Triple Graph Grammars for incremental o✏ine model
synchronization in both directions. With respect to model
querying, the topic of evaluating OCL expressions incremen-
tally has been investigated by Cabot [28], especially for de-
tecting if a modification to a UML model violates OCL con-
straints that were satisfied before.

Lazy computation in model transformations.
While another well-known method to improve scalability

is lazy computation, we are not aware of any model trans-
formation tool with an on-demand generation strategy. The
Stratego [29] system allows user-defined execution strategies
for transformation rules. While user-defined strategies have
been employed to implement target-driven approaches [30],
the activation of rules as answer to external consumption has
not been addressed. VIATRA [31], despite not implement-
ing on-demand transformation, evaluates lazily the matches
of connected rules to avoid unnecessary computation, as de-
scribed in [32]. Outside the MDE domain, [33] provides an
interpreter for XSLT that allows random access to the trans-
formation result. They also show how their implementation
enables e�cient pipelining of XSLT transformations. The
implementation of a lazy evaluator for functional (naviga-
tion) languages is a subject with a long tradition [34]. We
refer to [35] for an example based on Lisp. This subject has
been explored in [36] and in [37] where performance mea-
sures are presented.

Performance optimization for model transformations.
Other optimization techniques have been explored in model

transformation engines [38, 39]. Lazy loading [40] is a com-
plementary subject to lazy navigation, when dealing with
models that do not fit into the memory available to the
transformation engine. [41] explores the subsequent reuse
of matches of transformations rules for performance tun-
ing. In [42] model navigation results are cached to speed/up
transformation sequences. Incremental transformations are
often coupled with retainment rules that make it possible
to avoid overriding manual changes performed to the target
model when the correspondent part of the source model has
been updated. Retainment rules for model transformations
have been investigated in [43]. [41] presents methods to
evaluate pattern matches of di↵erent rules in an overlapped
way, to increase performance. In [42] transformation con-



text is preserved to e�ciently perform incremental updates
whereas in [38] and [39] strategies for the problem of graph
pattern matching optimization are investigated.

3.2 Research Directions
To address these gaps it would be valuable to develop a

novel transformation engine able to generate on demand the
elements of models connected by a transformation network.
We propose a shift of paradigm for programming model-
driven applications towards reactive programming [44], and
we perform the first steps in this direction by implementing
and practically evaluating a reactive engine for model trans-
formations. Reactive programming denotes a programming
paradigm oriented to the propagation of changes through
data flows. An example of reactive programming in this
broad sense, is a language whose programs automatically up-
date their computation whenever some input data changes.
In our model-driven context we propose a paradigm where a
network of reactive transformations defines persistent data-
flows among models. A reactive transformation engine takes
care of activating only the strictly needed computation in re-
sponse to updates or requests of model elements. The reac-
tive engine o↵ers a combination of incremental and lazy com-
putation (and loading) that transparently keeps the system
consistent according to the provided transformation rules.

A reactive engine also opens the way to scenarios based
on infinite intermediate models generated on demand, or
streaming models propagating from inputs to outputs. This
research has the potential to widen the application space of
the model-driven approach to new scenarios.

4. SCALABLE COLLABORATIVE
MODELLING

As model sizes and complexity have grown, multi-user
environments (which are already standard in traditional,
source-code centric development environments) are neces-
sary. Collaboration and related features (such as version
management, conflict resolution, model migration and merg-
ing) are now widely recognized as services of key importance,
especially in terms of reusability and overall e�ciency [45].
Unfortunately, the state of the art in modelling technologies
has not yet caught up, as current tools leg behind both in
terms of features and maturity. As a result, tool providers
and toolchain designers have to rely on ad-hoc solutions. In
the following, we provide a brief overview of these challenges.

4.1 State of the Art

Model repositories.
Model repositories are storage systems for modeling arte-

facts that are mostly focused on persistence and concur-
rent access over a distributed infrastructure (client-server).
They have limited support for advanced use-cases such as
conflict management, branching, model comparison etc. In-
stead, they provide extension mechanisms and core APIs
that auxiliary, function-specific tools may use. In the follow-
ing overview, we focus on the collaborative aspect of such
technologies.

The Eclipse Modeling Framework Connected Data Ob-
jects (CDO [46]) framework is a model repository for EMF
models primarily targeting scalable model persistence and
version management, with a simple collaborative access layer.

CDO implements a custom API for collaboration, based on
transaction management and views that rely on a partition-
ing technique (implicit locking). Unfortunately, there is no
mature support for conflict management and merging.

The enhancement of the collaboration features of CDO
are the primary goal of the Dawn project [47] that should
feature a collaborative UI and corresponding API. The aim
is to provide preliminary collaboration primitives (such as
locking, update, commit) for generated EMF and GMF ed-
itors.

MORSA [48, 49] is a recent approach for scalable model
persistence based on a NoSQL back-end and on-demand
loading/caching mechanisms, with a prototypical implemen-
tation for EMF models. Its primary focus is scalability and
only provides preliminary query and integration facilities
(does not cover access control, version management or se-
curity).

Online collaborative modelling systems.
Online collaborative modelling systems rely on a short

transaction model, whereby a single, shared instance of the
model is edited by multiple users in real time (i.e. all changes
are propagated to all participants instantly). These systems
lack conflict management, or only provide very light weight
mechanisms (such as voluntary locking). As a result, con-
flicts are very limited in scope and are resolved instantly, at
the cost of communication overhead and that all parties are
required to be online simultaneously.

CoolModes (COllaborative Open Learning and MODEl-
ing System) [50] implements an online collaborative model
editing approach for e-learning, with the prime focus on
communication. It features a plugin architecture by which
custom DSMLs can be specified using XML DTDs and in-
tegrated into the system.

EMFCollab [51] is an open-source e↵ort that implements a
light-weight and thus easy-to-integrate online collaboration
feature over EMF models. The implementation is compat-
ible with traditional file-based version control systems like
CVS or SVN, as files are used for persistence.

The SpacEclipse-CGMF [52] approach is an attempt to in-
tegrate online collaborative functionality in Eclipse Graph-
ical Modeling Framework-based graphical editors. It also
integrates a model-based way to define both the domain of
the graphical editor and the workspace configuration of the
tool to be generated. This is done using a dedicated DSL.

Model versioning systems.
Model versioning systems are more closely aligned with

o✏ine version control systems (VCS) such as CVS or SVN.
They follow the long transaction model whereby contribu-
tors are assumed to commit larger portions of work with
respect to a certain (past) version as the reference. Hence,
since conflicts are common, their detection, resolution and
merging are features of top importance. Depending on their
architecture, they may or may not deal with auxiliary ser-
vices such as authentication and access control (these may
be provided by additional middleware such as the web server
that hosts the actual communication between server and
client).

ModelCVS [53, 54] is one of the earliest attempts to create
a CVS-like version control system for modelling artefacts. It
is a collection of early prototype tool integration meta-tools
(last updated in 2008), consisting of a model di↵erencing



and matching framework, a model mapping editor and a
semantic versioning back-end. The project did not produce
technology of industrial maturity.

AMOR [55, 56] (formerly known as SmoVer) builds on the
experiences gained in early projects like ModelCVS, with the
focus on improvement of conflict management. AMOR pro-
vides precise conflict detection, intelligent conflict resolution
within an adaptable versioning framework which versioning
adapters of various DSMLs can extend as plugins. The de-
tection and resolution of conflicts makes use of advanced
techniques such as semantics or operation-driven reasoning
[57], visualization, data mining and machine learning tech-
niques. Unfortunately, AMOR has not evolved into a fully
usable tool with only limited prototypes available; the final
goal is to integrate the entire framework into the Enterprise
Architect suite.

The Eclipse Modeling Team Framework (MTF) [58], an
Eclipse project in the pre-proposal phase, is intended as
the continuation of AMOR. MTF is intended as a meta-
repository for modelling artefacts within the Eclipse workspace,
leveraging existing Eclipse technologies such as the Team
API, CDO and SVN integration to provide a fully integrated
meta- and instance model versioning system.

EMFStore [59, 60] is an implemented and working model
versioning framework for EMF that provides APIs for con-
flict management, but in a limited way: although some built-
in prototypes are available, custom DSMLs need hand-coded
and domain-specific solutions for reliable operation. EMF-
Store does not scale to large models and also uses an uses
RDBMS backend through EMF Teneo, providing only very
simple access control.

Model differencing.
In cases where the server-side VCS cannot be replaced by

a custom solution for models, o✏ine model comparison, dif-
ferencing and merging tools such as EMF Compare 2.0 [61]
or EMF Di↵/Merge [62] are also often used (in combina-
tion with the traditional VCS). In these cases, the detection
and resolution of conflicts is performed by a (dedicated) user
manually on their workstation, by checking out all versions
of the models, performing the comparison, resolving the con-
flicts (for which some hints may be provided by the di↵-
merge tools) and checking the result back in. Despite the
sophistication of di↵-merge algorithms especially in EMF
Di↵/Merge, a generic, domain-independent solution has not
been developed yet, i.e. tool developers have to augment the
core engine with their domain-specific customizations (just
like in the case of EMFStore).

Convergence of approaches.
More recent developments in the (Eclipse) collaborative

modelling community have resulted in convergence of ap-
proaches between model repositories, online collaboration
engines and version control systems. CDO/Dawn, for in-
stance, has been extended with online collaboration features
and development is planned to converge the technological
foundations of CDO, EMFStore, EMF Compare and EMF
Di↵/Merge.

In addition, more advanced, integrated frameworks such
as ModelBus [63] have appeared to address multiple issues
related to collaborative modelling (unfortunately, the de-
velopment of ModelBus slowed down significantly in recent
years, with version 2.0 still to appear as of late 2012, even

though originally planned for 2009). ModelBus provides
a tool integration layer for service-oriented tool orchestra-
tion [64] and integrates well-known industrial modelling tools
(e.g. Rational Software Architect, Papyrus, Enterprise Ar-
chitect), as well as auxiliary tools such as Rational DOORS,
Microsoft O�ce and MatLab Simulink. Moreover, it also in-
tegrates prototype tools for model validation, metrics eval-
uation and traceability management. With respect to col-
laboration, ModelBus implements a basic model repository
based on EMF with built-in model conversion to support
non-EMF tools (these adapters have to be programmed man-
ually). While the backend provides useful features such as
notifications (e.g. model changes, but not model element
changes), it only o↵ers limited scalability (in terms of model
size). ModelBus supports both o✏ine and online collabora-
tion through a very simple conflict management layer based
on voluntary model element-level locking.

The key weaknesses of the collaborative modelling state of
the art can be summarized as follows: (i) immature integra-
tion of online and o✏ine collaboration patterns; (ii) mostly
ad-hoc architectures that prohibit or make the implementa-
tion of domain-specific collaboration/version management
di�cult; (iii) very simplistic locking and conflict manage-
ment solutions that severely hinder developer productivity;
(iv) the lack of a flexible and scalable back-end platform
that caters to both Eclipse-based and other (commercial)
tools.

4.2 Research Directions
We foresee a multi-device collaborative modelling frame-

work built on the model bus design pattern, as follows.

Support for online and offline collaboration. The frame-
work should support both o✏ine and online collaboration
in a multi-user and multi-device environment, providing a
model access layer (transaction management, queries, views
and manipulation) featuring basic collaboration primitives
(push, pull, commit, merge), and an adaptation layer for the
integration of access control and security services.

Extensibility. It should be built on an extensible archi-
tecture that allows the integration of domain-specific, cus-
tomized plugins for conflict management (detection, resolu-
tion and merging).

Locking and conflict management. As novel and innova-
tive features, it should include:

• query-driven dynamic locking that uses complex graph
queries [65] for the specification of locking partitions
for views and manipulative transactions. Such queries
should operate in a collaboration-aware manner that
includes support for real-time updates and locked queries
(where updates are propagated only from a pre-defined
subset of collaboration partners).

• automated conflict resolution based on design-space
exploration techniques [66] that are able to ensure do-
main consistency and well-formedness by automati-
cally applying model manipulation policies to find valid
and conflict-free model states.



Technology. The middleware should define a client-server
protocol, core collaboration and version management oper-
ations (e.g. model manipulation, locking, branching, merg-
ing, upgrade) and extension mechanisms for various locking,
conflict management and access control services. On the
front-end, it should be compatible with existing and future
Eclipse-based technologies (EMF and its auxiliaries and the
Team API); on the back-end, it should fully support and
integrate into the scalable model persistence framework.

5. SCALABLE MODEL PERSISTENCE
An essential component of scalable MDE is infrastructure

that facilitates persistence and retrieval or large models in
an e�cient manner. This section reviews the state of the
art in this area and the challenges that need to be overcome
through further research and development.

5.1 State of the Art
The most widely adopted format for model persistence

is the XML Metadata Interchange (XMI) format, which is
an Object Management Group (OMG) and an ISO/IEC
(19503:2005) standard. XMI was introduced in order to
enhance interoperability between modelling tools and pre-
vent vendor lock-in. Since its introduction, XMI has been
adopted as a common import/export model persistence for-
mat by the majority of UML modelling tools (IBM RSA,
Poseidon, MagicDraw UML, Modelio, Altova UModel etc.),
and as a native persistence format in the Eclipse Modeling
Framework (EMF) and the MetaData Repository (MDR).
While XMI has been a significant step towards tool interop-
erability, as discussed in [67] and [8] it is not a particularly
e�cient model representation format, as – being based on
top of XML – it provides limited support for lazy or partial
model loading, features that are essential for managing large
models.

To address the limitations of XMI with working with large
models, several alternatives have been proposed. In [40],
the Binary Model Syntax (BMS) is briefly discussed as a
high performance binary alternative to XMI. However, since
2009, when the article above was published, there have not
been any updates or releases of BMS in the public domain.
The Connected Data Objects framework (CDO) [46] is a
framework built on top of the Eclipse Modeling Framework,
and supports persistence of large models in relational databases
supporting features such as save points, explicit locking,
change notification, queries, temporality, branching, merg-
ing, o✏ine and fail-over modes. A major concern with CDO
is that it implements its own version control management
system and there are strong indications that this is hindering
industrial adoption, as moving away from stable and proved
version control management systems such as CVS, SVN and
VSS and into a newly-developed VCS is not an easy deci-
sion. Also, recent work has demonstrated that CDO does
not scale up as well as advertised. More specifically, CDO
failed to load all test sets that were greater than 271MB
in [67] although the documentation claims that it has been
used to load models up to 4GB.

Other related work in the field of scalable model persis-
tence, includes the Mongo-EMF [68] and the Morsa [67]
systems which leverage NoSQL (Not Only SQL) database
systems. Morsa achieves scalable model persistence by em-
ploying on-demand loading facilities that are able to retrieve
and update model fragments on a per-need basis. Morsa

has been demonstrated to out-perform XMI in terms of the
memory needed to load and traverse a large model (646MB)
by 17 times while requiring 20 times more time [67]. Mongo
EMF is very similar to Morsa but no results have been re-
ported on its performance yet. Both Mongo-EMF and Morsa
are prototypes and so far there is no indication that they
target or plan to target issues such as security and access
control, which are critical for the deployment of such solu-
tions in an industrial context.

5.2 Research Directions

Efficient Model Storage. The current standard model stor-
age format is the XML Metadata Interchange[69]. As XMI
is an XML-based format, in order to access any model el-
ements using current state-of-the-art modelling frameworks
such as EMF, the complete model file needs to be parsed
and loaded in memory first. This implies that the larger the
model file, the more time and memory is needed in order to
load the model. Also, XMI inherits the verbosity of XML
which means that XMI-encoded model files are much larger
in size than needed in order to store the information they
do.

To address these issues, we envision a new e�cient model
representation format that will reduce the size of model files,
enable modelling and model management tools to lazily load
the contents of a model into memory, and access specific
model elements without needing to read the entire model
file first. We anticipate that such a format will provide a
dramatic improvement both in terms of both the size of
model files, and in terms of the memory and time required
to load these models. For instance, findings from the Google
Protocol Bu↵ers project suggest that a well-designed binary
format can deliver improvements of a scale of 3-10 in terms
of size, and 20-100 in terms of loading speed compared to
XML. To design the proposed format, existing successful
binary formats such as these provided by Google Protocol
Bu↵ers, BSON and Fast Infoset should be investigated in
order to develop a solid understanding of their structure,
strengths and weaknesses.

Model Indexing. With a faster and more e�cient model
persistence format that provides a reduction of the scale
of 10 in terms of size, an XMI-based model of the order
of hundreds of MBs, would now be of the order of tens of
MBs. In a typical collaborative development environment
where artefacts are stored in a central repository such as a
Version Control System (VCS – e.g. CVS, SVN, Git etc.),
an FTP server or a shared network folder, and synchronised
over the network, even files of the order of tens of MBs are
challenging to manage as for every change they need to be
transferred back and forth between the local copy and the
remote repository. Storing a large model as a single file can
also be sub-optimal as it can cause frequent conflicts when
using an optimistic locking VCS or lock-outs when using a
pessimistic locking VCS.

Two solutions have been proposed for addressing this prob-
lem [8]:

1. Storing large models in dedicated model repositories
that enable model-element level (instead of file-level)
version control operations (check in, check out, lock
etc.);



2. Splitting large models over many cross-referenced phys-
ical files (model fragments).

The first approach requires both a leap in terms of the
modelling tools used to edit models, as the majority of mod-
elling tools work with file-based models, and a transition
from a robust and established types of repositories which
work well with a wide range of development tools, to newly
developed model-specific repositories. The particularly lim-
ited adoption of model-specific repositories such as CDO,
and ModelCVS [53, 54] so far has demonstrated that indus-
trial users can be reluctant to make such a drastic transition
in practice. As such, and in order to provide industrially-
relevant results, we will mainly focus on the second ap-
proach.

The main advantage of the second approach is that it
works well with existing modelling tools (as the vast ma-
jority of them work with files), and with existing types of
remote repositories (such as CVS, SVN, Git, FTP, shared
network folders etc). However, using this approach with
current state-of-the-art technologies makes it impossible to
compute queries of global nature such as “find all classes
that are sub-classes of X” without going through all the
model fragments from the remote repository every time. To
demonstrate this limitation, consider the scenario on the
left side (a) of Figure 2. In this scenario, the VCS reposi-
tory contains 3 model fragments (A, B and C) from which
the developer has checked out only fragment A. Now, if the
developer needs to know which other fragments in the repos-
itory reference its X element, they need to check out, load
and examine every other fragment in the repository (B and
C in this case). Obviously, as the number of model fragments
in the repository grows, this approach becomes increasingly
ine�cient.

Model Indexing
Server

VCS Server

Developer
Workspace

A

A

B
C

X

X

Y
Z

W

indexes

monitors

needs to 
query

VCS Server

Developer
Workspace

A

A

B
C

X

X

Y
Z

Wneeds to
check out
and load

needs to
check out
and load

(a) (b)

Figure 2: Performing global queries on model frag-

ments stored in a VCS repository without (a) and

with (b) an indexing server

To address this limitation, we envision a model index-
ing framework that can monitor the contents of remote ver-
sion control repositories, and index the models they contain
in scalable database that will enable e�cient computation
of global queries. The model indexing framework will sup-
port monitoring di↵erent types of remote repositories (SVN,
CVS, Git, FTP, remote filesystems etc.) and indexing of
heterogeneous models (i.e. XMI, binary, text-based models)
using a driver-based architecture.

Applications of such a framework can extend beyond the
boundaries of MDE as it can also be used in order to index

other types of artefacts, including source code (e.g. Java
source files can be loaded as models conforming to the Java
metamodel using tools such as Jamopp1). Indexing the
source code of an entire repository (and even of multiple
repositories) would enable developers and tools to perform
global queries (e.g. which classes inherit from class X? if I
change the signature of method Y, which classes will be af-
fected? is there any class named Z or that has a method Q?)
without needing to check out locally all the code from these
repositories – which is currently not possible with existing
technologies.

In order for the framework to also apply to the source code
indexing problem discussed above, the persistence mecha-
nism that will be used to underpin the index needs to be
highly scalable. While this is still an open research question,
NoSQL solutions such as Neo4J, OrientDB, Cassandra and
MongoDB appear to be promising candidates. The language
that clients (e.g. modelling or model management tools) will
use in order to query the model indexing framework is also
an open research question.

Security and Access Control. In terms of security, the
indexing framework needs to leverage the authentication
mechanisms provided by the remote repository it indexes,
and ensure that access control rules in the index are con-
sistent with those of the repository. For instance, in the
example of Figure 2, if the user that performs the query is
not permitted to access model fragment B in the VCS, the
query should either not return B or inform the user that X is
referenced from another model that they don’t have access
to. The precise definition of the security policy is again an
open research question that requires further investigation.

6. CONCLUSIONS
In this paper we have identified a number of challenges

related to scalability in Model Driven Engineering, we have
discussed the state of the art in the areas of scalable language
development, model querying and transformation, collabo-
rative modelling and persistence and we have proposed di-
rections for further research in this area which we plan to
explore further in the future.

Acknowledgements
We would like to thank Scott Hansen (The Open Group),
Alessandra Bagnato (SOFTEAM), Pedro Maló (Uninova),
Vincent Hanniet (Soft-Maint) and Salvator Trujillo (IKER-
LAN) for their help with identifying the challenges related to
scalable MDE from an industrial perspective, and for their
contributions to shaping the proposed research directions.

1http://www.jamopp.org/



7. REFERENCES
[1] Frederick P. Brooks, Jr. No silver bullet essence and

accidents of software engineering. Computer,
20(4):10–19, April 1987.

[2] Jean Bezivin. On the Unification Power of Models.
Software and System Modeling (SoSym), 4(2):171–188,
2005.

[3] D. Schmidt. Model-driven engineering. IEEE
Computer, 39(2):25, 2006.

[4] Jaaksi, A. Developing Mobile Browsers in a Product
Line. IEEE Software, pages 73–80, July/August 2002.

[5] J Karna, J-P Tolvanen, S Kelly. Evaluating the Use of
Domain-Specific Modeling in Practice. In Proc 9th
Workshop on Domain-Specific Modeling, 2009.

[6] Parastoo Mohagheghi, Vegard Dehlen. Where is the
Proof? - A Review of Experiences from Applying
MDE in Industry. In Schieferdecker, Ina and
Hartman, Alan, editor, Proc. 4th European Conference
on Model Driven Architecture, Foundations and
Applications (ECMDA-FA), volume 5095 of Lecture
Notes in Computer Science, pages 432–443. Springer
Berlin / Heidelberg, 2008.

[7] Mikaël Barbero, Frédéric Jouault, and Jean Bézivin.
Model driven management of complex systems:
Implementing the macroscopes vision. In 15th Annual
IEEE International Conference and Workshop on
Engineering of Computer Based Systems (ECBS
2008), pages 277–286. IEEE Computer Society, 2008.

[8] Dimitris Kolovos and Richard Paige and Fiona Polack.
The Grand Challenge of Scalability for Model Driven
Engineering. In Chaudron, Michel, editor, Models in
Software Engineering, volume 5421 of Lecture Notes in
Computer Science, pages 48–53. Springer Berlin /
Heidelberg, 2009.

[9] Florian Heidenreich, Jakob Henriksson, Jendrik
Johannes, and Ste↵en Zschaler. On
language-independent model modularisation. T.
Aspect-Oriented Software Development VI, 6:39–82,
2009.

[10] Ingo Weisemöller and Andy Schürr. Formal definition
of mof 2.0 metamodel components and composition.
In Model Driven Engineering Languages and Systems,
11th International Conference, volume 5301 of Lecture
Notes in Computer Science, pages 386–400. Springer,
2008.

[11] Stefan Jurack and Gabriele Taentzer. A component
concept for typed graphs with inheritance and
containment structures. In Graph Transformations -
5th International Conference, ICGT 2010, volume
6372 of Lecture Notes in Computer Science, pages
187–202. Springer, 2010.

[12] Mathias Frisch, Raimund Dachselt, and Tobias
Brückmann. Towards seamless semantic zooming
techniques for UML diagrams. In SOFTVIS, pages
207–208. ACM, 2008.

[13] Oliver Köth and Mark Minas. Structure, abstraction,
and direct manipulation in diagram editors. In
Diagrams, volume 2317 of LNCS, pages 290–304.
Springer, 2002.

[14] Juan de Lara, Esther Guerra, and Jesús Sánchez
Cuadrado. Abstracting modelling languages: A
reutilization approach. In Proc. CAiSE 2012, volume

7328 of Lecture Notes in Computer Science, pages
127–143. Springer, 2012.

[15] Antonio Cicchetti, Davide Di Ruscio, Dimitris
Kolovos, and Alfonso Pierantonio. A test-driven
approach for metamodel development. In Emerging
Technologies for the Evolution and Maintenance of
Software Models, pages 319–342. IGI Global, 2012.

[16] Albert Tort and Antoni Olivé. An approach to testing
conceptual schemas. Data Knowl. Eng.,
69(6):598–618, 2010.

[17] Hyun Cho, Yu Sun, Je↵ Gray, and Jules White. Key
challenges for modeling language creation by
demonstration. In ICSE’11 Workshop on Flexible
Modeling Tools, 2011.

[18] Jesús Sánchez Cuadrado, Juan de Lara, and Esther
Guerra. Bottom-up meta-modelling: An interactive
approach. In Model Driven Engineering Languages and
Systems - 15th International Conference, MODELS
2012, Innsbruck, Austria, September 30-October 5,
2012. Proceedings, volume 7590 of Lecture Notes in
Computer Science, pages 3–19. Springer, 2012.

[19] Javier Luis Cánovas Izquierdo and Jordi Cabot.
Community-driven language development. In Proc.
MISE’12 at ICSE, 2012.

[20] Louis Rose, Dimitrios Kolovos, Nicholas Drivalos,
James Williams, Richard Paige, Fiona Polack, and
Kiran Fernandes. Concordance: A framework for
managing model integrity. In Modelling Foundations
and Applications, volume 6138 of LNCS, pages
245–260. Springer Berlin / Heidelberg, 2010.

[21] Ábel Hegedüs, Ákos Horváth, István Ráth, and Dániel
Varró. Query-driven soft interconnection of emf
models. In Model Driven Engineering Languages and
Systems - 15th International Conference, MODELS
2012, Innsbruck, Austria. Proceedings, volume 7590 of
LNCS, pages 134–150, 2012.

[22] Cauê Clasen, Frédéric Jouault, and Jordi Cabot.
Virtual Composition of EMF Models. In 7èmes
Journées sur l’Ingénierie Dirigée par les Modèles
(IDM 2011), 2011.

[23] Yingfei Xiong, Dongxi Liu, Zhenjiang Hu, Haiyan
Zhao, Masato Takeichi, and Hong Mei. Towards
automatic model synchronization from model
transformations. Proc. of ASE’07, page 164, 2007.

[24] D. Hearnden, M. Lawley, and K. Raymond.
Incremental model transformation for the evolution of
model-driven systems. LNCS, 4199:321, 2006.

[25] G. Bergmann, I. Ráth, and D. Varró. Parallelization of
graph transformation based on incremental pattern
matching. Electronic Communications of EASST, 18,
2009.

[26] Gabor Bergmann, Istvan Rath, Gergely Varro, and
Daniel Varro. Change-driven model transformations.
Software and Systems Modeling, pages 1–31, 2011.
10.1007/s10270-011-0197-9.

[27] Holger Giese and Robert Wagner. From model
transformation to incremental bidirectional model
synchronization. Software & Systems Modeling,
8(1):21–43, 2008.

[28] J. Cabot and E. Teniente. Incremental evaluation of
OCL constraints. Lecture Notes in Computer Science,
4001:81, 2006.



[29] Eelco Visser. Program transformation with
Stratego/XT: Rules, strategies, tools, and systems in
Stratego/XT 0.9. In Domain-Specific Program
Generation, volume 3016 of LNCS, pages 216–238.
Springer, 2003.

[30] Jonne Van Wijngaarden and Eelco Visser. Program
transformation mechanics: A classification of
mechanisms for program transformation with a survey
of existing transformation systems. Technical report,
UU-CS, 2003.

[31] Dániel Varró and András Balogh. The model
transformation language of the VIATRA2 framework.
Science of Computer Programming, 68(3):214–234,
October 2007.

[32] Gabriele Taentzer, Karsten Ehrig, Esther Guerra,
J. de Lara, L. Lengyel, Tihamer Levendovszky, Ulrike
Prange, D. Varró, and S. Varró-Gyapay. Model
transformation by graph transformation: A
comparative study. In Proc. Workshop Model
Transformation in Practice, 2005.

[33] Ste↵en Schott and Markus L. Noga. Lazy XSL
transformations. In ACM Symposium on Document
Engineering, pages 9–18. ACM, 2003.

[34] Paul Hudak, John Hughes, Simon L. Peyton Jones,
and Philip Wadler. A history of Haskell: being lazy
with class. In HOPL, pages 1–55. ACM, 2007.

[35] Peter Henderson and James H. Morris, Jr. A lazy
evaluator. In Proceedings of the 3rd ACM
SIGACT-SIGPLAN symposium on Principles on
programming languages, POPL ’76, pages 95–103.
ACM, 1976.

[36] Olivier Beaudoux, Arnaud Blouin, Olivier Barais, and
Jean-Marc Jézéquel. Active operations on collections.
In MoDELS, volume 6394 of LNCS, pages 91–105.
Springer, 2010.

[37] Manuel Clavel, Marina Egea, and Miguel
Angel Garćıa de Dios. Building an e�cient component
for OCL evaluation. ECEASST, 15, 2008.

[38] Gergely Varró, Katalin Friedl, and Dániel Varró.
Adaptive graph pattern matching for model
transformations using model-sensitive search plans.
Electr. Notes Theor. Comput. Sci., 152:191–205, 2006.

[39] Rubino Geiß, Gernot Veit Batz, Daniel Grund,
Sebastian Hack, and Adam Szalkowski. GrGen: A fast
SPO-based graph rewriting tool. In ICGT, volume
4178 of LNCS, pages 383–397. Springer, 2006.

[40] Jouault, Frédéric and Bézivin, Jean and Barbero,
Mikaël. Towards an advanced model-driven
engineering toolbox. Innovations in Systems and
Software Engineering, 5:5–12, 2009.

[41] Tamás Mészáros, Gergely Mezei, Tihamer
Levendovszky, and Márk Asztalos. Manual and
automated performance optimization of model
transformation systems. STTT, 12:231–243, 2010.

[42] David Hearnden, Michael Lawley, and Kerry
Raymond. Incremental model transformation for the
evolution of model-driven systems. In MoDELS,
volume 4199 of LNCS, pages 321–335. Springer, 2006.

[43] T. Goldschmidt and A. Uhl. Retainment Rules for
Model Transformations. In 1st International
Workshop on Model Co-Evolution and Consistency
Management at Models 2008, 2008.

[44] D. Harel and A. Pnueli. On the development of
reactive systems, pages 477–498. Springer-Verlag New
York, Inc., New York, NY, USA, 1985.

[45] Kerstin Altmanninger, Martina Seidl, and Manuel
Wimmer. A survey on model versioning approaches.
International Journal of Web Information Systems
(IJWIS), 5(3):271–304, 2009.

[46] Eclipse. The connected data objects model repository
(CDO) project, 2012. http://eclipse.org/cdo.

[47] Martin Fluegge et al. Dawn: Collaborative modeling
with CDO, 2011. http://wiki.eclipse.org/Dawn.

[48] Javier Espinazo Pagan, Jesus Sanchez Cuadrado, and
Jesus Garćıa Molina. Morsa: A scalable approach for
persisting and accessing large models. In Jon Whittle,
Tony Clark, and Thomas Kı̈£¡hne, editors, Model
Driven Engineering Languages and Systems, volume
6981 of Lecture Notes in Computer Science, pages
77–92. Springer Berlin / Heidelberg, 2011.
10.1007/978-3-642-24485-8 7.

[49] Javier et al. Espinazo Pagán. Morsa: a NoSQL-based
model persistence solution, 2012.
http://modelum.es/trac/morsa/.

[50] Niels Pinkwart. A Plug-In Architecture for Graph
Based Collaborative Modeling Systems. In V. Aleven
et al, editor, Supplementary Proceedings of the 11th
Conference on Artificial Intelligence in Education,
Sydney (Australia), pages 89–94, Sydney, Australia,
2003. SIT.

[51] Andras Schmidt et al. Emfcollab, 2011.
http://qgears.com/products/emfcollab.

[52] Jesus Gallardo, Ana I. Molina, Crescencio Bravo,
Miguel A. Redondo, and Cesar A. Collazos. An
ontological conceptualization approach for awareness
in domain-independent collaborative modeling
systems: Application to a model-driven development
method. Expert Systems with Applications, 38(2):1099
– 1118, 2011. Intelligent Collaboration and Design.

[53] G. Kramler, G. Kappel, T. Reiter, E. Kapsammer,
W. Retschitzegger, and W. Schwinger. Towards a
semantic infrastructure supporting model-based tool
integration. In Proceedings of the 2006 international
workshop on Global integrated model management,
GaMMa ’06, pages 43–46, New York, NY, USA, 2006.
ACM.

[54] The ModelCVS project. A semantic infrastructure for
model-based tool integration, 2006.
http://modelcvs.org.

[55] Kerstin Altmanninger, Gerti Kappel, Angelika Kusel,
Werner Retschitzegger, Martina Seidl, Wieland
Schwinger, and Manuel Wimmer. Amor - towards
adaptable model versioning. In 1st Int. Workshop on
Model Co-Evolution and Consistency Management, in
conjunction with Models’08, 2008. Vortrag: 1st
International Workshop on Model Co-Evolution and
Consistency Management, Toulouse, Frankreich;
2008-09-30.

[56] The AMOR project. Adaptible model versioning
project website, 2009. http://modelversioning.org.

[57] Inc. Pentaho. Conflict resolution reasoner, 2010.
http://pentaho.com.

[58] Eclipse. Modeling team framework proposal, 2011.
http://www.eclipse.org/proposals/mtf/.



[59] Maximilian Koegel and Jonas Helming. Emfstore: a
model repository for emf models. In Proceedings of the
32nd ACM/IEEE International Conference on
Software Engineering - Volume 2, ICSE ’10, pages
307–308, New York, NY, USA, 2010. ACM.

[60] Eclipse. Emfstore project, 2011.
http://eclipse.org/emfstore.

[61] C. Brun et al. EMF compare 2.0, 2012.
http://www.eclipse.org/emf/compare/.

[62] O. Constant. EMF Di↵/Merge, 2012.
http://eclipse.org/diffmerge/.

[63] T. Ritter et al. ModelBus: a model-driven tool
integration framework to build a seamlessly integrated
tool environment for system engineering processes.,
2012. http://www.modelbus.org/modelbus/.

[64] Eric Armengaud, Markus Zoier, Andreas Baumgart,
Matthias Biehl, DeJiu Chen, Gerhard Griessnig,
Christian Hein, Tom Ritter, and Ramin
Tavakoli Kolagari. Model-based toolchain for the
e�cient development of safety-relevant automotive
embedded systems. Technical Report 2011-01-0056,
SAE International, Warrendale, PA, April 2011.

[65] Gábor Bergmann, Ákos Horváth, Istvan Rath, and
Dániel Varró. Incremental evaluation of model queries
over EMF models. In Dorina Petriu, Nicolas
Rouquette, and Oystein Haugen, editors, Model
Driven Engineering Languages and Systems, volume
6394 of Lecture Notes in Computer Science, pages
76–90. Springer Berlin / Heidelberg, 2010. Acceptance
rate: 21%; DOI: 10.1007/978-3-642-16145-2 6.

[66] Ábel Hegedüs, Ákos Horváth, István Ráth, and Dániel
Varró. A model-driven framework for guided design
space exploration. In 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE
2011), Lawrence, Kansas, USA, 11/2011 2011. IEEE
Computer Society, IEEE Computer Society. ACM
Distinguished Paper Award, Acceptance rate: 15%.

[67] Pagán, Javier Espinazo and Cuadrado, Jesús Sánchez
and Molina, Jesús Garćıa. Morsa: a scalable approach
for persisting and accessing large models. In
Proceedings of the 14th international conference on
Model driven engineering languages and systems,
MODELS’11, pages 77–92, Wellington, New Zealand,
2011. Springer-Verlag.

[68] Bryan Hunt. Mongo-EMF, 2011.
https://github.com/BryanHunt/mongo-emf/.

[69] Object Management Group. XML Metadata
Interchange 2.0 Specification.
http://www.omg.org/technology/documents/formal/xmi.htm.


