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ABSTRACT In recent years, convolutional neural networks have achieved considerable success in different
computer vision tasks, including image denoising. In this work, we present a residual dense neural network
(RDUNet) for image denoising based on the densely connected hierarchical network. The encoding and
decoding layers of the RDUNet consist of densely connected convolutional layers to reuse the feature maps
and local residual learning to avoid the vanishing gradient problem and speed up the learning process.
Moreover, global residual learning is adopted such that, instead of directly predicting the denoised image,
the model predicts the residual noise of the corrupted image. The algorithm was trained for the case
of additive white Gaussian noise and using a wide range of noise levels. Hence, one advantage of the
proposal is that the denoising process does not require prior knowledge about the noise level. In order
to evaluate the model, we conducted several experiments with natural image databases available online,
achieving competitive results compared with state-of-the-art networks for image denoising. For comparison
purpose, we use additive Gaussian noise with levels 10, 30, 50. In the case of grayscale images, we achieved
PSNR of 34.39, 29.11, 26.99, and SSIM of 0.9297, 0.8193, 0.7491. For color images we obtained PSNR of
36.68,31.43,29.12, and SSIM of 0.9600, 0.8961, 0.8465.

INDEX TERMS Additive white Gaussian noise, convolutional neural networks, image denoising, residual

dense neural network.

I. INTRODUCTION

Image denoising is an important problem in the area of low-
level image processing. The main objective of image denois-
ing problem is to recover a clean image x, which has been
corrupted by some noise v from a source. One assumption in
this work is that v is additive white Gaussian noise (AWGN);
therefore, the noisy image y follows the degradation model
y=x-+v.

Traditional model-based methods such as non-local means
(NLM) [1], block-batching and 3-D filtering (BM3D) [2],
weighted nuclear norm minimization (WNNM) [3] rely on
image prior modeling, and their optimization algorithms are
time-consuming. In recent years, we have witnessed a dra-
matic upsurge of exploiting convolutional neural networks
(CNNs) toward solving image denoising [4].
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Compared to traditional model-based methods, CNNs
offer fast inference and good performance. In recent years,
the complexity of CNN architectures has increased along
with the increase in the number of parameters. At the same
time, many of these models have also improved their perfor-
mance [5], [6]. On the other hand, several models need prior
knowledge about the type and level of noise or an estimation
thereof to obtain their best performance [7]. Some recent
neural networks for image denoising, with fewer parameters,
have been proposed to achieve competitive results [8]-[10].
Nevertheless, these models are trained for a specific noise
level, requiring a model instance for every noise level.

On the other hand, the U-Net model [11] was proposed
for the task of semantic segmentation. The U-Net model’s
architecture consists of a contracting (encoder) path to cap-
ture context and a symmetric expanding path (decoder) to
estimate the segmentation. This architecture has also recently
been used for image denoising in models such as multi-
level wavelet CNN (MWCNN) [12], densely connected
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hierarchical image denoising network (DHDN) [5], and deep
iterative down-up CNN (DIDN) [6] obtaining good results.

In this paper, we present a residual dense neural network
(RDUNet) for image denoising with competitive results with
state of the art. Its design is based on the DHDN architecture
that combines densely connected convolutional blocks and
allows the reuse of feature maps within the encoding and
decoding sections and between themselves. Although the
number of parameters of the RDUNet is greater than con-
ventional methods, the design of the proposed model allows
a smaller number of multiply-accumulate operations to be
carried out compared to models with similar or even higher
complexity.

The main contributions of our work are summarized as
follows:

« We present a convolutional neural network based on
DHDN model for natural image denoising, which is
capable of handling a wide range of Gaussian noise
levels.

o In the subsampling operation we use strided convolu-
tion, that allows us to obtain local contrast information,
unlike max-pooling which measures homogeneity.

We train our model with images corrupted by additive
white Gaussian noise with randomly selected levels. Accord-
ing to experiments, using color and gray level image datasets,
the proposed model achieves competitive results compared to
the state of the art and outperforms conventional methods.

The rest of this paper is organized as follows. In Section II,
we provide a brief review of related works. In Section III,
we introduce the proposed RDUNet model. In Section IV, we
present the ablation study of the proposed model.
In Section V, we report the experiment results of the proposed
method and in Section VI we present the limitations of this
study. Finally, in Section VII, we provide the conclusions of
this paper.

Il. RELATED WORK

There have been several approaches based on neural networks
to handle the image denoising problem. In [13] Jain and
Seung proposed the earliest convolutional neural network
for natural image denoising. Burger et al. [14] proposed a
multi-layer perceptron (MLP), the authors concluded that
neural networks can achieve better results than traditional
methods as BM3D [2] when considering the depth of the
network, the size of the appropriate training patches, and
training set. Zhang et al. [15] proposed a deep convolutional
neural network for image denoising (DnCNN). This model
improves the denoising performance by stacking multiple
blocks of convolutional layers, batch normalization [16], rec-
tified linear unit (ReLU) activations and the use of resid-
ual learning. In [17] Tai et al. proposed a deep end-to-end
persistent memory network for image restoration, this model
fuses both short-term and long-term memories to capture dif-
ferent levels of information. The fast and flexible denoising
CNN (FFDNet) proposed by Zhang et al. [18] introduces the
noise feature map for handle non-uniform noise level and
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downsampled sub-images for increasing the receptive field
and the performance speed. The work in [19] proposes a
generative adversarial neural network (GAN) to estimate the
noise distribution and generate noise samples. Then, the noise
patches sampled from the generator are used to build the train-
ing dataset. Kumwilaisak et al. [20] combines a multipath
CNN and long-short term memory (LSTM) layers to denoise
images corrupted by Poisson noise.

More recently models such as DHDN [5], DIDN [6], and
residual dense network (RDN) [21] have improved base-
line results established by DnCNN and FFDNet models.
However, these models have significantly increased their
complexity and the amount of parameters to achieve such
improvement. Additionally, to boost the performance, sev-
eral recent methods applies techniques as self-ensemble and
model ensemble [22]. In self-ensemble method, the results
from eight flipped/rotated versions of the same image are
averaged together. In model ensemble method, the outputs of
several models are averaged. In the latter case, it is necessary
to train more than one model to apply this alternative.

Several models of the state of the art are based on network
architectures such as autoencoders, residual, dense or a com-
bination thereof. The U-Net model [11] is one of the most
widely used autoencoder architectures today. The encoding
section consists of several convolutions, and max-pooling
that halves the size of the feature maps at each level, while
doubling the number of feature maps. The decoding section
restores the size of the feature maps and keeps a symmet-
ric form with respect to the encoding section. This sym-
metry, enables the reuse of feature maps by concatenat-
ing features maps at the same level and reduces the loss
of information caused by the encoding-decoding process.
In [12], Liu et al. propose the MWCNN model, which com-
bines wavelet transforms and convolutional layers inside of
a U-Net model, instead of simple convolutions and max-
poling. Wang et al. [23] extends the MWCNN adding residual
dense blocks in each layer of the model, improving the per-
formance of the base network. The DIDN model proposed
by Yu et al. [6] uses several U-Net based blocks, one behind
the other which decrease and increase the image size several
times. In [5], Park et al. propose the DHDN, this model uses
the U-Net architecture as a framework but interchanging the
simple convolution for densely connected residual blocks and
doubles the number of feature maps present at each level of
the network.

Residual learning and residual neural networks (ResNets),
on the other hand, were proposed by He er al. [24] for
addressing the network degradation problem as the network
depth increases. This learning scheme combines (adds) the
extracted features and the input of a sequence of convo-
lutional layers, which can solve the vanishing or explod-
ing gradient problems. Dense networks [25] reuses each
of the generated feature maps as input from subsequent
convolutions within the same convolutional block. These
model architectures and the residual learning became the
state-of-the art methods for image classification. In recent
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FIGURE 1. Architecture of proposed network.

years, several methods based on residual learning and
dense connectivity have been proposed for image denoising.
In [26], Rem et al. propose a deep residual network using
depth-wise separable convolutions for denoising either for
Gaussian or Poisson corrupted images. In [27], Zhang et al.
propose a deep residual network with parametric rectifier
linear unit layer for image restoration tasks: Gaussian image
denoising, single image super resolution and JPEG image
deblocking. In [21], Zhang et al. propose a model for
Image super-resolution and image denoising that combines
dense connectivity with residual learning. The residual dense
blocks consist on several densely connected convolutions.
A final convolution generates the same number of feature
maps that the input of the block, along with a residual
learning.

ill. PROPOSED METHOD

The architecture of the proposed model is illustrated in Fig. 1.
Residual learning is adopted for the proposed RDUNet
model. Consider a clean image x corrupted by additive white
Gaussian noise v: y = x +v. The problem of recovering x can
be formulated as finding a parametric function F(-; ®) such
that

X =F(y; @) ey

provides an estimate X of the original image x given the
corrupted image y and parameters @. Due to the corrupted
image y contains most of the structure of the clean image x it
is reasonable to preserve this structure and estimate just the
added noise. For this purpose, suppose we have a paramet-
ric mapping H(-; ®) such that H(y; ®) =~ —v. Therefore,
the denoising parametric model based on residual learning
can be written as follows:

F@y; 0) =Hy; ©) +y, ()
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where © represents the set of trainable parameters of the
model. Consequently, in order to estimate the parameters,
we can solve the following optimization problem:

N
. 1 . A2
<) zargngnﬁgﬁ(}-(yi» ©).x)+Z181% ()

where {(y;, x;)} represents a training dataset, x; is the clean
image and y; the corresponding degraded image by additive
white Gaussian noise. The first term in (3) corresponds to the
fidelity term and the second term is the regularization term.
The hyperparameter A > O controls the tradeoff between
these two terms. The function L(, -) is the loss function, and
in our case the Li-norm provided a better result, i.e., we use
the following function:

Ly.x) = |ly — x|l “

On the other hand, the main structure of the mapping
F(-; ©®) is a U-Net model that corresponds to the map-
ping H(-; ®), see Fig. 2, that consists of three encod-
ing/decoding levels, a bottleneck level, and a shortcut
between all the encoding and decoding layers at the same
level 1. The main differences with the standard U-Net is
that we change the Convolution-Maxpool blocks, for more
specialized denoising blocks together with the idea of using
dense networks and the noise residual modeling, see details
in Sections III-A and III-B.

At each level, there are two denoising blocks in the encod-
ing and decoding stages. The output of every encoding level
is downsampled by a factor of 2 using a convolution with
kernel size 2 x 2 and a stride of size 2 instead of max-
pooling. With each downsampling, the number of feature
maps is doubled in order to reduce the loss of information
from one level to another. The upsampling in the decoding
stage is performed by transposed convolutions. The shortcuts
between encoding layers and decoding layers are handled
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FIGURE 2. Building blocks of the RDUNet: a) Basic components used in the building blocks
of the RDUNet model, b) input and output blocks, c) densely connected denoising block

used throughout the model.

through concatenation. After each upsampling and concate-
nation, a 3 x 3 convolution is performed to reduce the number
of features and smooth the upsampled features, keeping the
most important information from these sources.

Throughout the model, the parametric ReLU (PReLU)
activation function is adopted as shown in Fig. 2. When we
use the PReLU function, there are as many trainable param-
eters as the number of feature maps in the corresponding
layer. This activation function increases the model flexibility
without introducing a large number of extra parameters [28].

The input block for feature extraction is shown in Fig. 2 (a).
The spatial information can be reasonably useful for predict-
ing a given pixel’s actual value for the denoising task. Locally,
the neighbor pixels have a similar value to the current pixel to
predict. High noise levels usually require larger patch sizes to
capture context information [29]. One way to get more spatial
information is by selecting the kernel size larger than the
typical 3 x 3 size. However, using this approach increases the
number of parameters quadratically for the spatial dimension
using a kernel of size k x k.

For the RDUNet, we increase the field of view by staking
two convolutions with kernel size 3 x 3 instead of using
just one with a larger kernel size. Both convolutions generate
128 feature maps to capture as much information as possible
from the corrupted image.

A. DENOISING BLOCK

The denoising block is based on the bottleneck block of
ResNet50 [24] and on the reuse of feature maps from the
DenseNet model [25], see Fig. 2 (b). First, we perform a
3 x 3 convolution for reducing the number of feature maps (f)
in half. Afterward, two convolutions with kernel size 3 x 3

VOLUME 9, 2021

are performed. These convolutions use all the preceding fea-
ture maps as input information, including block input feature
maps. Finally, a 3 x 3 convolution summarizes all the previ-
ous feature maps generated and the denoising block’s input.
This last convolution generates the same amount of feature
maps as the denoising block’s input to carry out the local
residual learning. Unlike the block proposed for the RDN
network, we use a 3 x 3 kernel size convolution instead of
1 x 1 to consider spatial information by merging previously
generated feature maps at the cost of increasing the number of
parameters. As mentioned above, the number of parameters
in the denoising block increases quadratically with respect to
the size of the convolution kernel and is also proportional to
the number of feature maps.

B. OUTPUT BLOCK

The output block is shown in Fig. 2 (c). This block reduces
the number of feature maps to match the input noisy image’s
size and generates an estimate of the residual noise. Note that
the output block is very similar to the input block, with the
difference that, in the output block we map an image of size
H x W x f toone of size H x W x c. This block’s output is
used for global residual learning, adding its result to the input
image to finally obtain the denoised image.

IV. ABLATION STUDY

Table 1 shows the ablation study. In this Table, we present
the effects of the denoising block’s design, the subsampling
method, and the use of global residual learning. The variants
of the proposed model are denoted in the form RDUNet,;
where j = 0, ..., 6, and the proposed model is just denoted
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TABLE 1. Ablation study of the main components of the proposed model: denoising block with 1 x 1 bottleneck convolution (DB, , ), denoising block
with 3 x 3 bottleneck convolution (DB5, 3), max pooling with kernel size 2 x 2 (MP,,;), convolution with kernel size 2 x 2 with stride = 2 as subsampling
method (Conv,,,) and global residual learning (GRL). We also compare the proposed RDUNet model with DHDN and U-Net models, and consider some
of their main differences: Input/Output convolutions with 1 x 1 kernel size (I/0; ;) or with 3 x 3 kernel size (1/05,3), upsampling by pixel shuffle

(PS) or by transposed convolution (Conv”), additional shortcut in the bottleneck (BN-shc) and the number of levels of the model. We also report the
number of trainable parameters, multiply-accumulate (MAC) operations on 64 x 64 color images, and the PSNR value on CBSD68 color dataset with noise

level 0 = 50.
Models Additional building blocks Denoising block ~ Subsampling Complexity and performance
Levels 1/01x1 1/03x3 BN-shc PS Conv?’ DBiyx1 DB3x3 MPaxs Convayxs GRL #Param. MACs PSNR (dB)
U-Net 5 v X X X v X X v X X 3IM  15G 27.35
DHDN 4 v X v v X X X v X v 168M  64G 27.71
RDUNet,g 4 X v X X v v X v X X 84M  28G 28.27
RDUNet,; 4 X v X X v v X v X v 84M  28G 28.28
RDUNet,2 4 X v X X v v X X 4 X 97M  29G 28.29
RDUNet,3 4 X v X X v v X X v v 9IM  29G 28.29
RDUNet,s 4 X v X X v X v v X X 148M  45G 28.29
RDUNet,5 4 X v X X v X v v X v 148M  45G 28.31
RDUNet,g 4 X v X X v X v X v X 166M  48G 28.34
RDUNet 4 X v X X v X v X 4 v 166M  48G 28.38

as RDUNet. We also include a comparison with the U-Net
and DHDN models.

We consider two versions of the convolution bottleneck.
These versions only consider the last layer that maps from
5f/2 to f feature maps in the denoising block, Fig. 2 (c).
In the first version we use a convolution with kernel size
1 x 1, denoted as DB, and in the second one, the kernel
size is 3 x 3, denoted as DB33. Concerning the subsampling
method, we consider max pooling with kernel size 2 x 2 and
strided convolution, with kernel size 2 x 2 and stride size
of 2, denoted as MP» > and Convj» respectively. Besides,
we study a global residual learning, denoted as GRL, to esti-
mate the noise and afterward remove it from the input image.

As shown in Table 1, the number of parameters
and multiplication-addition operations increase significantly
when we use the denoising block DB33 instead of DB .
This is due to the denoising block is used twice for each
level of the model, in both the encoder and decoder blocks.
Similarly, when we use Conv; 2 subsampling method instead
of MP;» the number of parameters increases. However,
the number of multiplication-addition operations increases
to a lesser extent compared to the previous case. Note that
as the complexity of the model increases, so does its com-
putational cost and performance. The learned Conv, 2 sub-
sampling parameters can measure both contrast and homo-
geneity, the local happens occurs when the entries of the
convolutional kernel combine positive and negative numbers,
see Fig. 3. Unlike max-pooling, which measures homogene-
ity and only considers information within each feature map
independently.

V. EXPERIMENTS

A. EXPERIMENTAL SETTING FOR TRAINING

We use the DIV2K dataset [30] originally proposed for
image super-resolution. The DIV2K training dataset consists
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a) b)

FIGURE 3. Randomly selected feature maps: a) after applying the second
denoising block and before applying the subsampling Conv,, ,, b) after
applying the subsampling Conv, .

of 800 high-quality, high-resolution color images (from size
648 x 2040 to 2040 x 2040). The DIV2K validation dataset
consists of 100 images with similar characteristics to the
training dataset.

For training the proposed model, we split the original
DIV2K training dataset in input/output patches {(y;, x;)} of
size 64 x 64. We train a model for the case of color images
and another for the case of grayscale images. In the case
of the model for grayscale image, we first converted the
color images into grayscale images. Noisy patches y; are
generated by corrupting the clean patches x; with additive
white Gaussian noise with noise intensity in the range o €
[5, 50]. Additionally, we apply augmentation that consists on
random vertical and horizontal flips, and 90° rotations. For
the training, the algorithm only receives the pairs {(y;, x;)};
however, we don not provide information about the level of
the noise.

In order to optimize eq. (3) we use the AdamW algo-
rithm [31]. This optimization algorithm allows us to work
the first and second terms of the loss function (3) decou-
pled. The regularization parameter used in eq. (4) is
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TABLE 2. Performance of different denoising methods on BSD68, Kodak24 and Set12 grayscale datasets with different noise levels. The best two results

of PSNR (dB) and SSIM are highlighted in red and blue respectively.

BSD68 Kodak24 Set12
Methods
oc=10 o =30 o =150 o =10 o =30 o =50 o =10 o =30 o =50

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
BM3D 33.32 0.9158 27.75 0.7731 25.60 0.6858 34.39 0.9127 29.12 0.7877 26.98 0.7140 34.40 0.9244 29.07 0.8305 26.36 0.7598
U-Net 33.47 0.9224 28.16 0.7948 26.04 0.7152 34.44 0.9182 29.30 0.8047 27.16 0.7354 34.21 0.9214 29.16 0.8369 26.85 0.7781
DnCNN  33.88 0.9270 28.36 0.7999 26.23 0.7189 34.90 0.9223 29.62 0.8071 27.49 0.7368 34.78 0.9270 29.52 0.8420 27.18 0.7826
IRCNN  33.74 0.9262 28.26 0.7989 26.19 0.7171 34.76 0.9215 29.52 0.8056 27.45 0.7342 34.72 0.9272 29.45 0.8392 27.14 0.7804
FFDNet  33.76 0.9266 28.39 0.8032 26.29 0.7245 34.81 0.9226 29.69 0.8123 27.62 0.7437 34.65 0.9271 29.61 0.8465 27.32 0.7903
RDN 3400 N/A 2856 N/A 2641 N/A 3517 N/A 3000 N/A 2785 N/A 3506 N/A 2994 N/A 2760 N/A
DHDN 3342 0.9213 28.55 0.8110 26.44 0.7296 34.43 0.9153 29.93 0.8211 27.88 0.7528 34.96 0.9315 29.91 0.8539 27.58 0.7984
DIDN 33.98 0.9284 28.58 0.8075 26.47 0.7310 35.16 0.9263 30.04 0.8222 27.96 0.7562 35.02 0.9315 30.00 0.8556 27.71 0.8025
RDUNet 33.98 0.9297 28.59 0.8104 26.48 0.7347 35.12 0.9272 30.01 0.8230 27.96 0.7584 34.99 0.9317 29.97 0.8553 27.68 0.8018
U-Net+  33.57 0.9236 28.22 0.7966 26.10 0.7176 34.54 0.9194 29.36 0.8066 27.22 0.7381 34.32 0.9224 29.24 0.8388 26.92 0.7808
RDN+ 3401 N/A 2858 N/A 2643 N/A 3519 N/A 30.02 NA 27.88 N/A 3508 N/A 2997 NA 27.64 N/A
DHDN+  33.50 0.9230 28.59 0.8120 26.47 0.7308 34.54 0.9174 30.00 0.8237 27.93 0.7546 35.01 0.9320 29.97 0.8550 27.66 0.8004
DIDN+  34.01 0.9286 28.61 0.8081 26.50 0.7320 35.20 0.9267 30.08 0.8230 28.01 0.7576 35.07 0.9318 30.05 0.8565 27.77 0.8041
RDUNet+ 34.01 0.9300 28.62 0.8112 26.51 0.7358 35.16 0.9277 30.04 0.8240 28.00 0.7597 35.03 0.9322 30.01 0.8560 27.73 0.8033

DHDN+: 32.2976 / 0.8932 DIDN+: 32.3162 / 0.8932 RDUNet+: 32.3642 / 0.8926

GT: 00/1.00

FIGURE 4. Comparison of denoising neural networks. 706024 image from CBSD68 dataset corrupted by AWGN with o = 50. Their corresponding PSNR

(dB)/SSIM values of denoised images are shown.

A = 1073, The parameters of the AdamW algorithm are
Bi 0.9, B2 0.999,¢ = 1078 The initial learning
rate is ag = 10_4, which is halved every 3 iterations over
the complete dataset until it reaches a value of oy = 1079,
The RDUNet model was trained with a batch size of 16 for
21 epochs. Our model was implemented in Python 3.6 using
PyTorch framework. The training time was 48 hours in a
Nvidia RTX Titan GPU. The source code and models are
available at https://github.com/JavierGurrola/RDUNet.

B. TESTING, COMPARISONS AND RESULTS FOR AWGN
For evaluating the proposed RDUNet model, we use the
CBSD68 [32], Kodak24 [33], and Urban100 [34] datasets
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for the case of color images. For grayscale images,
we used the grayscale version of CBSD68 and Kodak24,
and the Setl2 dataset [15]. The CBSD68 dataset consists
of 68 images of size 321 x 481. The Kodak24 dataset consists
of 24 images of size 768 x 512. The Urban100 dataset is a
collection of 100 high-resolution images with a variety of
real-world structures. The Setl2 dataset consists of seven
images of size 256 x 256, and five images of size 512 x 512.

We compare our proposed RDUNet model with BM3D
[2], [35], DnCNN [15], FFDNet [18], IRCNN [36],
RDN [21], DHDN [5], DIDN [6]. In addition, we compare
with the U-net model and we trained it from scratch. We also
consider the self-ensemble [22] versions of the: U-Net, RDN,
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DHDN+: 32.9430 / 0.8560 DIDN+: 32.9794 / 0.8559 RDUNet+: 33.0747 / 0.8574

GT: 00/1.00

FIGURE 5. Comparison of denoising neural networks. 789080 image from CBSD68 dataset corrupted by AWGN with ¢ = 50. Their corresponding PSNR

(dB)/SSIM values of denoised images are shown.

DHDN, and DIDN models, denoted here as U-Net+, RDN+,
DHDN+, and DIDN+- respectively. Similarly, we include the
self-ensemble version, RDUNet+-, of the proposed RDUNet.

For assessing the previous models, we use the peak signal-
to-noise ratio (PSNR) average [37] and the structural simi-
larity index (SSIM) average [38]. For comparison purposes,
we report the results for noise levels o = {10, 30, 50}, which
are the most common used in the literature.

The results of the comparison appear in Table 2, for
grayscale images, and in Table 3, for color images. In the case
of the selected models for the comparison, most of the results
are directly taken from the original paper. The U-net model
was trained from scratch for grayscale and color images. The
metric SSIM is not available for RDN and RDN+ models.
In the case of the Urban100 and Setl12 datasets, the DIDN,
DHDN, DIDN+-, and DHDN+ algorithms were evaluated
with the pre-trained models available in their respective
repositories. The rest of the methods were evaluated in all
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the datasets with their respective pre-trained models and their
corresponding authors’ source codes. In both tables, 2 and 3,
the best and the second best results are highlighted in red and
blue respectively. In Table 4, we summarize the number of
times that a model achieves the best and second-best PSNR
and SSIM values.

According to Table 4, the RDUNet+ achieves four times
the best PSNR values, and six times the second-best values of
the same metric, for both grayscale and color datasets. Note
that even though the DIDN+ has more times best PSNR val-
ues, the gap between RDUNet+ and DIDN+ PSNR values,
in the worst case, is lower than 0.09 dB.

In the case of SSIM metric, observe that the RDUNet+
model obtains six times the best values for grayscale and six
times for color datasets, whereas the DIDN+ model obtains
two times the best value for grayscale and two times for color
dataset. Moreover, the RDUNet (without self-ensemble) out-
performs most of the ensemble models, getting three and
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Noisy: 14.4422 / 0.0699 CBM3D: 30.3877 / 0.7846 DnCNN: 32.5545 / 0.8485 FFDNet: 32.4992 / 0.8447

DHDN-+: 33.0766 / 0.8619 DIDN+: 33.1762 / 0.8646 RDUNet+: 33.2537 / 0.8668 GT: 00/1.00

FIGURE 6. Comparison of denoising neural networks. 227092 image from CBSD68 dataset corrupted by AWGN with ¢ = 50. Their
corresponding PSNR (dB)/SSIM values of denoised images are shown.

DHDN+: 32.9224 / 0.8957 DIDN+: 32.9690 / 0.8961 RDUN'et-i—: 33.0146 / 0.8972 ‘G: 00/1.00
FIGURE 7. Comparison of denoising neural networks. kodim23 image from Kodak24 dataset corrupted by AWGN with

o = 50. Their corresponding PSNR (dB)/SSIM values of denoised images are shown.

five times the second-best value for the grayscale and color Table 5 summarizes the results by grayscale and color
datasets respectively. Notice in Table 2 and Table 3 that, com- datasets. The results were obtained using a weighted average,
bining both metrics, the proposed model RDUNet+ appears where the weights were calculated according to the size of
more times in either first or second place than any other the datasets. The RDUNet+ model achieves the best SSIM
model. values in almost all cases, while the RDUNet obtains the
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DHDN+: 30.7177 / 0.8394 DIDN+: 30.7564 / 0.8396 RDUNet+: 30.7460 / 0.8399

GT: 00/1.00

FIGURE 8. Comparison of denoising neural networks. kodim17 image from Kodak24 dataset corrupted by AWGN with ¢ = 50. Their corresponding PSNR

(dB)/SSIM values of denoised images are shown.

second-best value of the same metric in images with low noise
level. On the other hand, the RDUNet+ achieves the best
PSNR value in grayscale noisy images with & = 50 and the
second-best in grayscale images with noise levels ¢ = 10
and o = 30, and color dataset with noise levels o = 30
and o = 50. In Table 6 we compile the number of times a
method scored the best and second-best for both PSNR and
SSIM metrics based on Table 5.

In order to visually compare the performance of some
methods, from Fig. 4 to Fig. 10 we show results of denoised
images, using the test datasets evaluated in this work. In the
comparison, we consider the conventional method CBM3D,
the DnCNN and FFDNet models, and the self-ensemble with
best results: DHDN+, DIDN+ and RDUNet+. The later
model are included because they obtained the best results in
previous discussion.

In Fig. 4, the proposed model can recover more details
of the penguin’s legs, a better definition of the boundary
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between the rock and the background, and does not over
smooth the penguin’s chest. In Fig. 5, the RDUNet+ can
recover more details in the forehead and the temple, and with
fewer artifacts in the chin. However, models like DIDN-+
and DHDN+ recover better the background of the image.
In Fig. 6, the RDUNet+ model performances better in the
upper half of the vase. Although, the model cannot satisfac-
torily recover the triangular pattern in the middle of the vase,
it does retrieve the texture of that section. Fig. 7 shows that
the performance of the DHDN+, DIDN+, and RDUNet+
is very similar, not finding significant visual differences.
Nevertheless, the CBM3D, DnCNN, and FFDNet methods
show artifacts in the background leaves due to the noise.
Similar to the previous case, the performance of the DHDN+,
DIDN+, and RDUNet+ in Fig. 8 is very similar, recovering
part of the texture of the face of the statue but generating an
artifact above the right hand, making that section blue. The
CBM3D, DnCNN, and FFDNet methods show artifacts in the
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DHDN+: 27.3020 / 0.8127 DIDN+: 27.3677 / 0.8125 RDUNet+: 27.3997 / 0.8182

GT: 00/1.00

FIGURE 9. Comparison of denoising neural networks. Camera man image from Set12 dataset corrupted by AWGN with o = 50. Their corresponding PSNR

(dB)/SSIM values of denoised images are shown.

DHDN+: 24.3764 / 0.7580 DIDN+-: 24.4984 / 0.7628

RDUNet+: 24.4878 / 0.7667

GT: 00/1.00

FIGURE 10. Comparison of denoising neural networks. img_034 image from Urban100 dataset corrupted by AWGN with ¢ = 50. Their corresponding

PSNR (dB)/SSIM values of denoised images are shown.

background; in particular, CBM3D changes the statue’s color
lightly. In Fig. 9, RDUNet+ recovers some texture from the
grass and restores part of the background constructions. How-
ever, neither method is capable of recovering the left and right
of the background buildings. Unlike the CBM3D, DnCNN,
and FFDNet models, the DIDN+, DHDN+, and RDUNet
models recover the sky better, but they smooth the camera-
man’s clothes. In Fig. 10, the bricks of the building are the

VOLUME 9, 2021

elements that stand out the most. Observe that, the RDUNet-+
and DIDN+ models are the methods that recover more details
in the lower part of the building than in the upper part of it.
These methods almost completely recover the clouds in this
image.

Table 7 shows the number of multiplication-accumulation
operations (MACs) and the number of parameters of DnCNN,
FFDNet, U-Net, RDN, DIDN, DHDN, and RDUNet models.
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TABLE 3. Performance of different denoising methods on CBSD68, Kodak24 and Urban100 color datasets with different noise levels. The best two results

of PSNR (dB) and SSIM are highlighted in red and blue respectively.

CBSD68 Kodak24 Urban100
Methods
oc=10 o =30 o =50 o=10 o =30 o =50 o=10 o =30 o =50

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
CBM3D 35.89 0.9512 29.71 0.8426 27.36 0.7632 36.57 0.9432 30.89 0.8459 28.62 0.7772 34.11 0.9307 27.94 0.8223 24.43 0.7256
U-Net 35.39 0.9484 29.74 0.8489 27.35 0.7711 35.89 0.9393 30.55 0.8446 28.11 0.7736 34.10 0.9461 29.03 0.8761 26.45 0.8134
DnCNN  36.12 0.9536 30.32 0.8611 27.92 0.7882 36.58 0.9446 31.28 0.8579 28.94 0.7915 36.21 0.9607 30.28 0.8922 28.16 0.8490
IRCNN  36.06 0.9533 30.22 0.8607 27.86 0.7889 36.70 0.9448 31.24 0.8581 28.92 0.7939 35.81 0.9581 30.28 0.8940 27.69 0.8396
FFDNet  36.14 0.9540 30.31 0.8603 27.96 0.7881 36.80 0.9462 31.39 0.8596 29.10 0.7949 35.77 0.9585 30.53 0.8983 28.05 0.8476
RDN 3647 N/A 30.67 N/A 2831 N/A 3731 N/A 3194 N/A 29.66 N/A 36.69 N/A 31.69 NA 2929 N/A
DHDN 36.05 0.9532 30.12 0.8579 27.71 0.7874 37.30 0.9509 31.98 0.8743 29.72 0.8170 36.45 0.9628 31.50 0.9135 29.15 0.8736
DIDN 36.48 0.9565 30.71 0.8706 28.35 0.8041 37.32 0.9500 31.97 0.8724 29.72 0.8156 36.55 0.9634 31.69 0.9161 29.38 0.8779
RDUNet 36.48 0.9571 30.72 0.8720 28.38 0.8067 37.29 0.9506 31.97 0.8738 29.72 0.8177 36.54 0.9636 31.63 0.9158 29.32 0.8774
U-Net+  35.64 0.9503 29.88 0.8525 27.48 0.7765 36.09 0.9410 30.68 0.8481 28.26 0.7795 34.42 0.9482 29.20 0.8797 26.59 0.8190
RDN+ 36.49 N/A 30.70 N/A 2834 N/A 3733 N/A 3198 N/A 2970 N/A 3675 N/A 31.78 N/A 2938 N/A
DHDN+  36.27 0.9556 30.41 0.8654 28.02 0.7965 37.31 0.9510 31.99 0.8744 29.73 0.8170 36.55 0.9633 31.62 0.9149 29.30 0.8760
DIDN+  36.52 0.9567 30.75 0.8714 28.40 0.8054 37.37 0.9503 32.03 0.8734 29.80 0.8173 36.67 0.9639 31.82 0.9175 29.53 0.8803
RDUNet+ 36.52 0.9573 30.76 0.8727 28.42 0.8077 37.34 0.9509 32.02 0.8747 29.78 0.8190 36.64 0.9640 31.75 0.9171 29.44 0.8795

TABLE 4. Number of times that an algorithm reaches the best or second-best value in the case of grayscale and color datasets.

Metric Place

Grasyscale models

Color models

DIDN RDUNet RDN+ DHDN+ DIDN+ RDUNet+ RDN RDUNet RDN+ DHDN+ DIDN+ RDUNet+

PSNR best
second-best
SSIM best

second-best

0
2
0
0

w o = O

2

1
N/A
N/A

w = O O

S N W

N AN W

0
1

N/A
N/A

wn o O O

1

2
N/A
N/A

—_ -0 O

S NN
W AN W

TABLE 5. Weighted mean,considering the size of the studied datasets, of PSNR and SSIM measures computed from Tables 2 and 3.

Grasyscale Color
Methods
o =10 o =30 o =250 o=10 o =30 o =250

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
BM3D 33.69 09161 28.22 0.7831 26.01 0.7008 35.05 0.9395 28.94 0.8324 25.99 0.7454
U-Net 33.78 0.9213 28.54 0.8019 26.39 0.7271 34.78 0.9461 29.47 0.8625 26.98 0.7934
DnCNN  34.22 0.9259 28.78 0.8064 26.63 0.7304 36.22 0.9562 30.42 0.8769 28.17 0.8203
IRCNN  34.09 0.9252 28.69 0.8051 26.59 0.7284 36.01 0.9547 30.38 0.8777 27.90 0.8159
FFDNet  34.10 0.9257 28.83 0.8103 26.72 0.7365 36.03 0.9554 30.56 0.8800 28.15 0.8199
RDN 3439 N/A 29.05 N/A 2688 N/A 36.69 N/A 3136 N/A 2899 N/A
DHDN 33.83 0.9211 29.03 0.8183 26.90 0.7429 36.41 0.9579 31.07 0.8889 28.71 0.8360
DIDN 34.37 0.9283 29.08 0.8164 26.96 0.7451 36.62 0.9593 31.38 0.8945 29.06 0.8440
RDUNet 34.36 0.9294 29.08 0.8185 26.96 0.7479 36.61 0.9597 31.35 0.8950 29.04 0.8449
U-Net+  33.88 0.9225 28.60 0.8038 26.45 0.7296 35.06 0.9480 29.63 0.8661 27.11 0.7990
RDN+ 3441 N/A 29.07 N/A 2690 N/A 3673 N/A 3142 N/A 29.05 N/A
DHDN+ 3391 0.9227 29.07 0.8197 26.94 0.7443 36.55 0.9590 31.24 0.8923 28.90 0.8405
DIDN+ 3441 0.9285 29.12 0.8171 26.99 0.7462 36.70 0.9596 31.47 0.8957 29.16 0.8459
RDUNet+ 34.39 0.9297 29.11 0.8193 26.99 0.7491 36.68 0.9600 31.43 0.8961 29.12 0.8465

We can observe a clear difference in complexity between
classic models versus more recent models. Considering that
the number of parameters in the RDN model is not that large,
it performs too many operations.
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This is mainly because it does not use sub-sampling and
up-sampling operations, keeping the image with the same
spatial dimension during the whole denoising process. On the
other hand, the DIDN and DHDN models have a similar
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TABLE 6. Number of times that an algorithm reaches the best or second-best value according to Table 5.

Metric  Place  RDN DIDN RDUNet RDN+ DHDN+ DIDN+ RDUNet+
PSNR best 0 0 0 2 0 5 1
second-best 1 1 1 0 0 1 4
SSIM best NA O 0 N/A 1 0 5
second-best N/A 0 3 N/A 0 2 1
TABLE 7. Number of trainable parameters, multiply-accumulate (MAC) operations on 64 x 64 color images.
Model DnCNN FFDNet U-Net RDN DIDN DHDN RDUNet
Parameters 558k 854k 3IM 22M 165M 168M 166M
MACs 2G 876M 15G 90G 70G 64G 48G

complexity in the number of parameters and the number
MACs. The RDUNet model has a similar amount of param-
eters compared to the DHDN and DIDN models. However,
the number of operations it performs is lower, 25% and 31%
compared to the DHDN and DIDN models, respectively.
This reduction in the number of operations did not affect
the algorithm’s performance and kept it competitive with
more complex models such as DIDN and DHDN. This is
mainly because it does not use sub-sampling and up-sampling
operations, keeping the image with the same spatial dimen-
sion during the whole denoising process. On the other hand,
the DIDN and DHDN models have a similar complexity in the
number of parameters and the number MACs. The RDUNet
model has a similar amount of parameters compared to the
DHDN and DIDN models. However, the number of op.

VI. LIMITATIONS OF THE STUDY

The main limitation of the proposed model is one needs to
train the model for each type of noise. In particular, in the
study presented in this work the model was trained for addi-
tive Gaussian noise, with the advantage that the model does
not require information about the level of the noise. Other
limitations are that the number of parameters and the number
of operations involved during the forward mapping is high.
This can be a drawback for some applications, for example:
in real time video processing, in large images, or when using
mobile devices in type of task. These limitations will become
the future work of this study.

VIi. CONCLUSION

In this work, we presented a residual dense neural network
for image denoising which is based on the densely connected
hierarchical network. Instead of using standard convolution-
maxpool blocks, we used densely connected convolutional
layers to reuse the feature maps and local residual learn-
ing to avoid the vanishing gradient problem and speed up
the learning process. Furthermore, we adopted a global
residual network strategy in order to take advantage of the
structure that is present in the degraded image. Therefore,
we modeled the residual noise, rather than modeling the clean

VOLUME 9, 2021

image directly. An advantage of our proposal, in the case of
additive Gaussian noise, is that it does not require information
about the noise level in the degraded image. Experiments on
several datasets demonstrated that our proposed network is
competitive with state of the art methods and outperforms
conventional methods.
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