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ABSTRACT In recent years, convolutional neural networks have achieved considerable success in different

computer vision tasks, including image denoising. In this work, we present a residual dense neural network

(RDUNet) for image denoising based on the densely connected hierarchical network. The encoding and

decoding layers of the RDUNet consist of densely connected convolutional layers to reuse the feature maps

and local residual learning to avoid the vanishing gradient problem and speed up the learning process.

Moreover, global residual learning is adopted such that, instead of directly predicting the denoised image,

the model predicts the residual noise of the corrupted image. The algorithm was trained for the case

of additive white Gaussian noise and using a wide range of noise levels. Hence, one advantage of the

proposal is that the denoising process does not require prior knowledge about the noise level. In order

to evaluate the model, we conducted several experiments with natural image databases available online,

achieving competitive results compared with state-of-the-art networks for image denoising. For comparison

purpose, we use additive Gaussian noise with levels 10, 30, 50. In the case of grayscale images, we achieved

PSNR of 34.39, 29.11, 26.99, and SSIM of 0.9297, 0.8193, 0.7491. For color images we obtained PSNR of

36.68, 31.43, 29.12, and SSIM of 0.9600, 0.8961, 0.8465.

INDEX TERMS Additive white Gaussian noise, convolutional neural networks, image denoising, residual

dense neural network.

I. INTRODUCTION

Image denoising is an important problem in the area of low-

level image processing. The main objective of image denois-

ing problem is to recover a clean image x, which has been

corrupted by some noise v from a source. One assumption in

this work is that v is additive white Gaussian noise (AWGN);

therefore, the noisy image y follows the degradation model

y = x+ v.

Traditional model-based methods such as non-local means

(NLM) [1], block-batching and 3-D filtering (BM3D) [2],

weighted nuclear norm minimization (WNNM) [3] rely on

image prior modeling, and their optimization algorithms are

time-consuming. In recent years, we have witnessed a dra-

matic upsurge of exploiting convolutional neural networks

(CNNs) toward solving image denoising [4].

The associate editor coordinating the review of this manuscript and

approving it for publication was Mauro Gaggero .

Compared to traditional model-based methods, CNNs

offer fast inference and good performance. In recent years,

the complexity of CNN architectures has increased along

with the increase in the number of parameters. At the same

time, many of these models have also improved their perfor-

mance [5], [6]. On the other hand, several models need prior

knowledge about the type and level of noise or an estimation

thereof to obtain their best performance [7]. Some recent

neural networks for image denoising, with fewer parameters,

have been proposed to achieve competitive results [8]–[10].

Nevertheless, these models are trained for a specific noise

level, requiring a model instance for every noise level.

On the other hand, the U-Net model [11] was proposed

for the task of semantic segmentation. The U-Net model’s

architecture consists of a contracting (encoder) path to cap-

ture context and a symmetric expanding path (decoder) to

estimate the segmentation. This architecture has also recently

been used for image denoising in models such as multi-

level wavelet CNN (MWCNN) [12], densely connected
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hierarchical image denoising network (DHDN) [5], and deep

iterative down-up CNN (DIDN) [6] obtaining good results.

In this paper, we present a residual dense neural network

(RDUNet) for image denoising with competitive results with

state of the art. Its design is based on the DHDN architecture

that combines densely connected convolutional blocks and

allows the reuse of feature maps within the encoding and

decoding sections and between themselves. Although the

number of parameters of the RDUNet is greater than con-

ventional methods, the design of the proposed model allows

a smaller number of multiply-accumulate operations to be

carried out compared to models with similar or even higher

complexity.

The main contributions of our work are summarized as

follows:

• We present a convolutional neural network based on

DHDN model for natural image denoising, which is

capable of handling a wide range of Gaussian noise

levels.

• In the subsampling operation we use strided convolu-

tion, that allows us to obtain local contrast information,

unlike max-pooling which measures homogeneity.

We train our model with images corrupted by additive

white Gaussian noise with randomly selected levels. Accord-

ing to experiments, using color and gray level image datasets,

the proposed model achieves competitive results compared to

the state of the art and outperforms conventional methods.

The rest of this paper is organized as follows. In Section II,

we provide a brief review of related works. In Section III,

we introduce the proposed RDUNet model. In Section IV, we

present the ablation study of the proposed model.

In Section V, we report the experiment results of the proposed

method and in Section VI we present the limitations of this

study. Finally, in Section VII, we provide the conclusions of

this paper.

II. RELATED WORK

There have been several approaches based on neural networks

to handle the image denoising problem. In [13] Jain and

Seung proposed the earliest convolutional neural network

for natural image denoising. Burger et al. [14] proposed a

multi-layer perceptron (MLP), the authors concluded that

neural networks can achieve better results than traditional

methods as BM3D [2] when considering the depth of the

network, the size of the appropriate training patches, and

training set. Zhang et al. [15] proposed a deep convolutional

neural network for image denoising (DnCNN). This model

improves the denoising performance by stacking multiple

blocks of convolutional layers, batch normalization [16], rec-

tified linear unit (ReLU) activations and the use of resid-

ual learning. In [17] Tai et al. proposed a deep end-to-end

persistent memory network for image restoration, this model

fuses both short-term and long-term memories to capture dif-

ferent levels of information. The fast and flexible denoising

CNN (FFDNet) proposed by Zhang et al. [18] introduces the

noise feature map for handle non-uniform noise level and

downsampled sub-images for increasing the receptive field

and the performance speed. The work in [19] proposes a

generative adversarial neural network (GAN) to estimate the

noise distribution and generate noise samples. Then, the noise

patches sampled from the generator are used to build the train-

ing dataset. Kumwilaisak et al. [20] combines a multipath

CNN and long-short term memory (LSTM) layers to denoise

images corrupted by Poisson noise.

More recently models such as DHDN [5], DIDN [6], and

residual dense network (RDN) [21] have improved base-

line results established by DnCNN and FFDNet models.

However, these models have significantly increased their

complexity and the amount of parameters to achieve such

improvement. Additionally, to boost the performance, sev-

eral recent methods applies techniques as self-ensemble and

model ensemble [22]. In self-ensemble method, the results

from eight flipped/rotated versions of the same image are

averaged together. In model ensemble method, the outputs of

several models are averaged. In the latter case, it is necessary

to train more than one model to apply this alternative.

Several models of the state of the art are based on network

architectures such as autoencoders, residual, dense or a com-

bination thereof. The U-Net model [11] is one of the most

widely used autoencoder architectures today. The encoding

section consists of several convolutions, and max-pooling

that halves the size of the feature maps at each level, while

doubling the number of feature maps. The decoding section

restores the size of the feature maps and keeps a symmet-

ric form with respect to the encoding section. This sym-

metry, enables the reuse of feature maps by concatenat-

ing features maps at the same level and reduces the loss

of information caused by the encoding-decoding process.

In [12], Liu et al. propose the MWCNN model, which com-

bines wavelet transforms and convolutional layers inside of

a U-Net model, instead of simple convolutions and max-

poling.Wang et al. [23] extends theMWCNN adding residual

dense blocks in each layer of the model, improving the per-

formance of the base network. The DIDN model proposed

by Yu et al. [6] uses several U-Net based blocks, one behind

the other which decrease and increase the image size several

times. In [5], Park et al. propose the DHDN, this model uses

the U-Net architecture as a framework but interchanging the

simple convolution for densely connected residual blocks and

doubles the number of feature maps present at each level of

the network.

Residual learning and residual neural networks (ResNets),

on the other hand, were proposed by He et al. [24] for

addressing the network degradation problem as the network

depth increases. This learning scheme combines (adds) the

extracted features and the input of a sequence of convo-

lutional layers, which can solve the vanishing or explod-

ing gradient problems. Dense networks [25] reuses each

of the generated feature maps as input from subsequent

convolutions within the same convolutional block. These

model architectures and the residual learning became the

state-of-the art methods for image classification. In recent
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FIGURE 1. Architecture of proposed network.

years, several methods based on residual learning and

dense connectivity have been proposed for image denoising.

In [26], Rem et al. propose a deep residual network using

depth-wise separable convolutions for denoising either for

Gaussian or Poisson corrupted images. In [27], Zhang et al.

propose a deep residual network with parametric rectifier

linear unit layer for image restoration tasks: Gaussian image

denoising, single image super resolution and JPEG image

deblocking. In [21], Zhang et al. propose a model for

Image super-resolution and image denoising that combines

dense connectivity with residual learning. The residual dense

blocks consist on several densely connected convolutions.

A final convolution generates the same number of feature

maps that the input of the block, along with a residual

learning.

III. PROPOSED METHOD

The architecture of the proposed model is illustrated in Fig. 1.

Residual learning is adopted for the proposed RDUNet

model. Consider a clean image x corrupted by additive white

Gaussian noise v: y = x+v. The problem of recovering x can

be formulated as finding a parametric function F(·; 2) such

that

x̂ = F(y; 2) (1)

provides an estimate x̂ of the original image x given the

corrupted image y and parameters 2. Due to the corrupted

image y contains most of the structure of the clean image x it

is reasonable to preserve this structure and estimate just the

added noise. For this purpose, suppose we have a paramet-

ric mapping H(·; 2) such that H(y; 2) ≈ −v. Therefore,

the denoising parametric model based on residual learning

can be written as follows:

F(y; 2) = H(y; 2) + y, (2)

where 2 represents the set of trainable parameters of the

model. Consequently, in order to estimate the parameters,

we can solve the following optimization problem:

2
∗ = argmin

2

1

N

N∑

i=1

L (F(yi; 2), xi) +
λ

2
‖2‖2, (3)

where {(yi, xi)} represents a training dataset, xi is the clean

image and yi the corresponding degraded image by additive

white Gaussian noise. The first term in (3) corresponds to the

fidelity term and the second term is the regularization term.

The hyperparameter λ > 0 controls the tradeoff between

these two terms. The function L(·, ·) is the loss function, and

in our case the L1-norm provided a better result, i.e., we use

the following function:

L(y, x) = ||y− x||1. (4)

On the other hand, the main structure of the mapping

F(·; 2) is a U-Net model that corresponds to the map-

ping H(·; 2), see Fig. 2, that consists of three encod-

ing/decoding levels, a bottleneck level, and a shortcut

between all the encoding and decoding layers at the same

level 1. The main differences with the standard U-Net is

that we change the Convolution-Maxpool blocks, for more

specialized denoising blocks together with the idea of using

dense networks and the noise residual modeling, see details

in Sections III-A and III-B.

At each level, there are two denoising blocks in the encod-

ing and decoding stages. The output of every encoding level

is downsampled by a factor of 2 using a convolution with

kernel size 2 × 2 and a stride of size 2 instead of max-

pooling. With each downsampling, the number of feature

maps is doubled in order to reduce the loss of information

from one level to another. The upsampling in the decoding

stage is performed by transposed convolutions. The shortcuts

between encoding layers and decoding layers are handled
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FIGURE 2. Building blocks of the RDUNet: a) Basic components used in the building blocks
of the RDUNet model, b) input and output blocks, c) densely connected denoising block
used throughout the model.

through concatenation. After each upsampling and concate-

nation, a 3×3 convolution is performed to reduce the number

of features and smooth the upsampled features, keeping the

most important information from these sources.

Throughout the model, the parametric ReLU (PReLU)

activation function is adopted as shown in Fig. 2. When we

use the PReLU function, there are as many trainable param-

eters as the number of feature maps in the corresponding

layer. This activation function increases the model flexibility

without introducing a large number of extra parameters [28].

The input block for feature extraction is shown in Fig. 2 (a).

The spatial information can be reasonably useful for predict-

ing a given pixel’s actual value for the denoising task. Locally,

the neighbor pixels have a similar value to the current pixel to

predict. High noise levels usually require larger patch sizes to

capture context information [29]. One way to get more spatial

information is by selecting the kernel size larger than the

typical 3×3 size. However, using this approach increases the

number of parameters quadratically for the spatial dimension

using a kernel of size k × k .

For the RDUNet, we increase the field of view by staking

two convolutions with kernel size 3 × 3 instead of using

just one with a larger kernel size. Both convolutions generate

128 feature maps to capture as much information as possible

from the corrupted image.

A. DENOISING BLOCK

The denoising block is based on the bottleneck block of

ResNet50 [24] and on the reuse of feature maps from the

DenseNet model [25], see Fig. 2 (b). First, we perform a

3×3 convolution for reducing the number of feature maps (f )

in half. Afterward, two convolutions with kernel size 3 × 3

are performed. These convolutions use all the preceding fea-

ture maps as input information, including block input feature

maps. Finally, a 3 × 3 convolution summarizes all the previ-

ous feature maps generated and the denoising block’s input.

This last convolution generates the same amount of feature

maps as the denoising block’s input to carry out the local

residual learning. Unlike the block proposed for the RDN

network, we use a 3 × 3 kernel size convolution instead of

1 × 1 to consider spatial information by merging previously

generated feature maps at the cost of increasing the number of

parameters. As mentioned above, the number of parameters

in the denoising block increases quadratically with respect to

the size of the convolution kernel and is also proportional to

the number of feature maps.

B. OUTPUT BLOCK

The output block is shown in Fig. 2 (c). This block reduces

the number of feature maps to match the input noisy image’s

size and generates an estimate of the residual noise. Note that

the output block is very similar to the input block, with the

difference that, in the output block we map an image of size

H ×W × f to one of size H ×W × c. This block’s output is

used for global residual learning, adding its result to the input

image to finally obtain the denoised image.

IV. ABLATION STUDY

Table 1 shows the ablation study. In this Table, we present

the effects of the denoising block’s design, the subsampling

method, and the use of global residual learning. The variants

of the proposed model are denoted in the form RDUNetvj
where j = 0, . . . , 6, and the proposed model is just denoted
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TABLE 1. Ablation study of the main components of the proposed model: denoising block with 1 × 1 bottleneck convolution (DB1×1), denoising block
with 3 × 3 bottleneck convolution (DB3×3), max pooling with kernel size 2 × 2 (MP2×2), convolution with kernel size 2 × 2 with stride = 2 as subsampling
method (Conv2×2) and global residual learning (GRL). We also compare the proposed RDUNet model with DHDN and U-Net models, and consider some
of their main differences: Input/Output convolutions with 1 × 1 kernel size (I/O1×1) or with 3 × 3 kernel size (I/O3×3), upsampling by pixel shuffle
(PS) or by transposed convolution (ConvT ), additional shortcut in the bottleneck (BN-shc) and the number of levels of the model. We also report the
number of trainable parameters, multiply-accumulate (MAC) operations on 64 × 64 color images, and the PSNR value on CBSD68 color dataset with noise
level σ = 50.

as RDUNet. We also include a comparison with the U-Net

and DHDN models.

We consider two versions of the convolution bottleneck.

These versions only consider the last layer that maps from

5f /2 to f feature maps in the denoising block, Fig. 2 (c).

In the first version we use a convolution with kernel size

1 × 1, denoted as DB1×1, and in the second one, the kernel

size is 3×3, denoted as DB3×3. Concerning the subsampling

method, we consider max pooling with kernel size 2× 2 and

strided convolution, with kernel size 2 × 2 and stride size

of 2, denoted as MP2×2 and Conv2×2 respectively. Besides,

we study a global residual learning, denoted as GRL, to esti-

mate the noise and afterward remove it from the input image.

As shown in Table 1, the number of parameters

and multiplication-addition operations increase significantly

when we use the denoising block DB3×3 instead of DB1×1.

This is due to the denoising block is used twice for each

level of the model, in both the encoder and decoder blocks.

Similarly, whenwe use Conv2×2 subsamplingmethod instead

of MP2×2 the number of parameters increases. However,

the number of multiplication-addition operations increases

to a lesser extent compared to the previous case. Note that

as the complexity of the model increases, so does its com-

putational cost and performance. The learned Conv2×2 sub-

sampling parameters can measure both contrast and homo-

geneity, the local happens occurs when the entries of the

convolutional kernel combine positive and negative numbers,

see Fig. 3. Unlike max-pooling, which measures homogene-

ity and only considers information within each feature map

independently.

V. EXPERIMENTS

A. EXPERIMENTAL SETTING FOR TRAINING

We use the DIV2K dataset [30] originally proposed for

image super-resolution. The DIV2K training dataset consists

FIGURE 3. Randomly selected feature maps: a) after applying the second
denoising block and before applying the subsampling Conv2×2, b) after
applying the subsampling Conv2×2.

of 800 high-quality, high-resolution color images (from size

648 × 2040 to 2040 × 2040). The DIV2K validation dataset

consists of 100 images with similar characteristics to the

training dataset.

For training the proposed model, we split the original

DIV2K training dataset in input/output patches {(yi, xi)} of

size 64 × 64. We train a model for the case of color images

and another for the case of grayscale images. In the case

of the model for grayscale image, we first converted the

color images into grayscale images. Noisy patches yi are

generated by corrupting the clean patches xi with additive

white Gaussian noise with noise intensity in the range σ ∈

[5, 50]. Additionally, we apply augmentation that consists on

random vertical and horizontal flips, and 90◦ rotations. For

the training, the algorithm only receives the pairs {(yi, xi)};

however, we don not provide information about the level of

the noise.

In order to optimize eq. (3) we use the AdamW algo-

rithm [31]. This optimization algorithm allows us to work

the first and second terms of the loss function (3) decou-

pled. The regularization parameter used in eq. (4) is
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TABLE 2. Performance of different denoising methods on BSD68, Kodak24 and Set12 grayscale datasets with different noise levels. The best two results
of PSNR (dB) and SSIM are highlighted in red and blue respectively.

FIGURE 4. Comparison of denoising neural networks. 106024 image from CBSD68 dataset corrupted by AWGN with σ = 50. Their corresponding PSNR
(dB)/SSIM values of denoised images are shown.

λ = 10−5. The parameters of the AdamW algorithm are

β1 = 0.9, β2 = 0.999, ǫ = 10−8. The initial learning

rate is α0 = 10−4, which is halved every 3 iterations over

the complete dataset until it reaches a value of αf = 10−6.

The RDUNet model was trained with a batch size of 16 for

21 epochs. Our model was implemented in Python 3.6 using

PyTorch framework. The training time was 48 hours in a

Nvidia RTX Titan GPU. The source code and models are

available at https://github.com/JavierGurrola/RDUNet.

B. TESTING, COMPARISONS AND RESULTS FOR AWGN

For evaluating the proposed RDUNet model, we use the

CBSD68 [32], Kodak24 [33], and Urban100 [34] datasets

for the case of color images. For grayscale images,

we used the grayscale version of CBSD68 and Kodak24,

and the Set12 dataset [15]. The CBSD68 dataset consists

of 68 images of size 321×481. The Kodak24 dataset consists

of 24 images of size 768 × 512. The Urban100 dataset is a

collection of 100 high-resolution images with a variety of

real-world structures. The Set12 dataset consists of seven

images of size 256× 256, and five images of size 512× 512.

We compare our proposed RDUNet model with BM3D

[2], [35], DnCNN [15], FFDNet [18], IRCNN [36],

RDN [21], DHDN [5], DIDN [6]. In addition, we compare

with the U-net model and we trained it from scratch. We also

consider the self-ensemble [22] versions of the: U-Net, RDN,

VOLUME 9, 2021 31747



J. Gurrola-Ramos et al.: Residual Dense U-Net Neural Network for Image Denoising

FIGURE 5. Comparison of denoising neural networks. 189080 image from CBSD68 dataset corrupted by AWGN with σ = 50. Their corresponding PSNR
(dB)/SSIM values of denoised images are shown.

DHDN, and DIDNmodels, denoted here as U-Net+, RDN+,

DHDN+, and DIDN+ respectively. Similarly, we include the

self-ensemble version, RDUNet+, of the proposed RDUNet.

For assessing the previous models, we use the peak signal-

to-noise ratio (PSNR) average [37] and the structural simi-

larity index (SSIM) average [38]. For comparison purposes,

we report the results for noise levels σ = {10, 30, 50}, which

are the most common used in the literature.

The results of the comparison appear in Table 2, for

grayscale images, and in Table 3, for color images. In the case

of the selected models for the comparison, most of the results

are directly taken from the original paper. The U-net model

was trained from scratch for grayscale and color images. The

metric SSIM is not available for RDN and RDN+ models.

In the case of the Urban100 and Set12 datasets, the DIDN,

DHDN, DIDN+, and DHDN+ algorithms were evaluated

with the pre-trained models available in their respective

repositories. The rest of the methods were evaluated in all

the datasets with their respective pre-trained models and their

corresponding authors’ source codes. In both tables, 2 and 3,

the best and the second best results are highlighted in red and

blue respectively. In Table 4, we summarize the number of

times that a model achieves the best and second-best PSNR

and SSIM values.

According to Table 4, the RDUNet+ achieves four times

the best PSNR values, and six times the second-best values of

the same metric, for both grayscale and color datasets. Note

that even though the DIDN+ has more times best PSNR val-

ues, the gap between RDUNet+ and DIDN+ PSNR values,

in the worst case, is lower than 0.09 dB.

In the case of SSIM metric, observe that the RDUNet+

model obtains six times the best values for grayscale and six

times for color datasets, whereas the DIDN+ model obtains

two times the best value for grayscale and two times for color

dataset. Moreover, the RDUNet (without self-ensemble) out-

performs most of the ensemble models, getting three and
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FIGURE 6. Comparison of denoising neural networks. 227092 image from CBSD68 dataset corrupted by AWGN with σ = 50. Their
corresponding PSNR (dB)/SSIM values of denoised images are shown.

FIGURE 7. Comparison of denoising neural networks. kodim23 image from Kodak24 dataset corrupted by AWGN with
σ = 50. Their corresponding PSNR (dB)/SSIM values of denoised images are shown.

five times the second-best value for the grayscale and color

datasets respectively. Notice in Table 2 and Table 3 that, com-

bining both metrics, the proposed model RDUNet+ appears

more times in either first or second place than any other

model.

Table 5 summarizes the results by grayscale and color

datasets. The results were obtained using a weighted average,

where the weights were calculated according to the size of

the datasets. The RDUNet+ model achieves the best SSIM

values in almost all cases, while the RDUNet obtains the
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FIGURE 8. Comparison of denoising neural networks. kodim17 image from Kodak24 dataset corrupted by AWGN with σ = 50. Their corresponding PSNR
(dB)/SSIM values of denoised images are shown.

second-best value of the samemetric in imageswith low noise

level. On the other hand, the RDUNet+ achieves the best

PSNR value in grayscale noisy images with σ = 50 and the

second-best in grayscale images with noise levels σ = 10

and σ = 30, and color dataset with noise levels σ = 30

and σ = 50. In Table 6 we compile the number of times a

method scored the best and second-best for both PSNR and

SSIM metrics based on Table 5.

In order to visually compare the performance of some

methods, from Fig. 4 to Fig. 10 we show results of denoised

images, using the test datasets evaluated in this work. In the

comparison, we consider the conventional method CBM3D,

the DnCNN and FFDNet models, and the self-ensemble with

best results: DHDN+, DIDN+ and RDUNet+. The later

model are included because they obtained the best results in

previous discussion.

In Fig. 4, the proposed model can recover more details

of the penguin’s legs, a better definition of the boundary

between the rock and the background, and does not over

smooth the penguin’s chest. In Fig. 5, the RDUNet+ can

recover more details in the forehead and the temple, and with

fewer artifacts in the chin. However, models like DIDN+

and DHDN+ recover better the background of the image.

In Fig. 6, the RDUNet+ model performances better in the

upper half of the vase. Although, the model cannot satisfac-

torily recover the triangular pattern in the middle of the vase,

it does retrieve the texture of that section. Fig. 7 shows that

the performance of the DHDN+, DIDN+, and RDUNet+

is very similar, not finding significant visual differences.

Nevertheless, the CBM3D, DnCNN, and FFDNet methods

show artifacts in the background leaves due to the noise.

Similar to the previous case, the performance of the DHDN+,

DIDN+, and RDUNet+ in Fig. 8 is very similar, recovering

part of the texture of the face of the statue but generating an

artifact above the right hand, making that section blue. The

CBM3D, DnCNN, and FFDNet methods show artifacts in the
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FIGURE 9. Comparison of denoising neural networks. Camera man image from Set12 dataset corrupted by AWGN with σ = 50. Their corresponding PSNR
(dB)/SSIM values of denoised images are shown.

FIGURE 10. Comparison of denoising neural networks. img_034 image from Urban100 dataset corrupted by AWGN with σ = 50. Their corresponding
PSNR (dB)/SSIM values of denoised images are shown.

background; in particular, CBM3D changes the statue’s color

lightly. In Fig. 9, RDUNet+ recovers some texture from the

grass and restores part of the background constructions. How-

ever, neither method is capable of recovering the left and right

of the background buildings. Unlike the CBM3D, DnCNN,

and FFDNet models, the DIDN+, DHDN+, and RDUNet

models recover the sky better, but they smooth the camera-

man’s clothes. In Fig. 10, the bricks of the building are the

elements that stand out the most. Observe that, the RDUNet+

andDIDN+models are themethods that recover more details

in the lower part of the building than in the upper part of it.

These methods almost completely recover the clouds in this

image.

Table 7 shows the number of multiplication-accumulation

operations (MACs) and the number of parameters of DnCNN,

FFDNet, U-Net, RDN, DIDN, DHDN, and RDUNet models.
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TABLE 3. Performance of different denoising methods on CBSD68, Kodak24 and Urban100 color datasets with different noise levels. The best two results
of PSNR (dB) and SSIM are highlighted in red and blue respectively.

TABLE 4. Number of times that an algorithm reaches the best or second-best value in the case of grayscale and color datasets.

TABLE 5. Weighted mean,considering the size of the studied datasets, of PSNR and SSIM measures computed from Tables 2 and 3.

We can observe a clear difference in complexity between

classic models versus more recent models. Considering that

the number of parameters in the RDN model is not that large,

it performs too many operations.

This is mainly because it does not use sub-sampling and

up-sampling operations, keeping the image with the same

spatial dimension during the whole denoising process. On the

other hand, the DIDN and DHDN models have a similar
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TABLE 6. Number of times that an algorithm reaches the best or second-best value according to Table 5.

TABLE 7. Number of trainable parameters, multiply-accumulate (MAC) operations on 64 × 64 color images.

complexity in the number of parameters and the number

MACs. The RDUNet model has a similar amount of param-

eters compared to the DHDN and DIDN models. However,

the number of operations it performs is lower, 25% and 31%

compared to the DHDN and DIDN models, respectively.

This reduction in the number of operations did not affect

the algorithm’s performance and kept it competitive with

more complex models such as DIDN and DHDN. This is

mainly because it does not use sub-sampling and up-sampling

operations, keeping the image with the same spatial dimen-

sion during the whole denoising process. On the other hand,

theDIDN andDHDNmodels have a similar complexity in the

number of parameters and the number MACs. The RDUNet

model has a similar amount of parameters compared to the

DHDN and DIDN models. However, the number of op.

VI. LIMITATIONS OF THE STUDY

The main limitation of the proposed model is one needs to

train the model for each type of noise. In particular, in the

study presented in this work the model was trained for addi-

tive Gaussian noise, with the advantage that the model does

not require information about the level of the noise. Other

limitations are that the number of parameters and the number

of operations involved during the forward mapping is high.

This can be a drawback for some applications, for example:

in real time video processing, in large images, or when using

mobile devices in type of task. These limitations will become

the future work of this study.

VII. CONCLUSION

In this work, we presented a residual dense neural network

for image denoising which is based on the densely connected

hierarchical network. Instead of using standard convolution-

maxpool blocks, we used densely connected convolutional

layers to reuse the feature maps and local residual learn-

ing to avoid the vanishing gradient problem and speed up

the learning process. Furthermore, we adopted a global

residual network strategy in order to take advantage of the

structure that is present in the degraded image. Therefore,

wemodeled the residual noise, rather than modeling the clean

image directly. An advantage of our proposal, in the case of

additive Gaussian noise, is that it does not require information

about the noise level in the degraded image. Experiments on

several datasets demonstrated that our proposed network is

competitive with state of the art methods and outperforms

conventional methods.
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