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A Resilient Condition Assessment Monitoring System

Humberto E. Garcia, Wen-Chiao Lin, and Semyon M. Meerkov

Abstract— An architecture and supporting methods are pre-
sented for the implementation of a resilient condition assessment
monitoring system that can adaptively accommodate both cyber
and physical anomalies to a monitored system under obser-
vation. In particular, the architecture includes three layers:
information, assessment, and sensor selection. The information
layer estimates probability distributions of process variables
based on sensor measurements and assessments of the quality
of sensor data. Based on these estimates, the assessment layer
then employs probabilistic reasoning methods to assess the
plant health. The sensor selection layer selects sensors so that
assessments of the plant condition can be made within desired
time periods. Resilient features of the developed system are then
illustrated by simulations of a simplified power plant model,
where a large portion of the sensors are under attack.

Index Terms— Resilient systems, resilient monitoring, cyber-
physical attacks, cyber/physical condition assessments, rational
controllers, graceful degradation, measure of resiliency.

I. INTRODUCTION

A. Motivation

Complex engineering systems need to be reliably mon-

itored in order to ensure safety and proper operations. To

this end, sensors are typically deployed within the monitored

facility in order to observe the behavior of key process

variables and access system conditions. Monitoring chal-

lenges include efficient processing of information and correct

assessment of facility health despite possible natural or ma-

licious disturbances. While natural disturbances can often be

characterized reasonably well, malicious disturbances are ill-

characterized. Regarding the latter, a significantly damaging

disturbance to design against is the cyber-physical coordi-

nated attack. In a cyber-physical coordinated attack, an at-

tacker may cause a physical damage to the monitored facility

and, furthermore, coordinately compromise the information

layer via a cyber attack (e.g., by causing sensors to provide

false readings of process variables) so as to confuse the

operator of the actual plant health conditions. As intended by

the attacker, a potential result may be that the operator, due

to this confusion, takes a wrong decision, such as shutting

down the monitored process or switching the plant to an

inappropriate operating mode, while he/she otherwise could

have gracefully maintained operations amid in a degraded

mode, for example. Here, coordinated means that attacks

occur at different locations of the monitoring system, while

cyber-physical means that there are not only physical but also

cyber attacks. A resilient monitoring system, which meets the

above challenges, should possess the following properties:

• exhibit graceful degradation in performance, as op-

posed to sudden collapse, under severe disturbances;
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• capable of effectively accommodating ill-defined or ill-

characterized anomalies;

• capable of marshalling data according to assessed

health condition of the monitored system;

• dynamically select active sensors for data collection in

an untrackable manner that would complicate the task

of an attacker in inflicting severe consequences;

• utilize prediction calculations regarding performance

of solution alternatives when dynamically selecting

sensors;

• capable of accommodating partial and unreliable sen-

sory information;

• provide proper assessments of the monitored system

within specified decision periods despite severe distur-

bances, such as cyber-physical coordinated attacks.

A monitoring system with the above properties should exhibit

the behavior of resilient systems described in [1], [2]. This

paper develops a monitoring system that satisfies these

properties, being able to dynamically adapt based on assessed

conditions not only of the monitored facility but also of

its information infrastructure due to natural or malicious

physical and cyber attacks.

B. Brief review of relevant literature on resilient systems

Research on resilient systems is a relatively new subject

and recent work on resilient systems can be found in [1]–

[11]. In particular, [3] provides collections of papers that treat

resilience engineering as a paradigm for safety management

that focuses on “how to help people cope with complexity

under pressure to achieve success.” These papers explore

different facets of resilience as “the ability to anticipate and

adapt to the potential for surprise and failure.” Based on these

work, [4] further identifies four cornerstones of resilience as

knowing “what to do,” “what to look for,” “what to expect,”

and “what has happened.”
Relations between resilience and robustness have been

investigated. For example, [5] addresses different fire-prone

ecological systems and suggests that robustness tradeoffs in

these systems demonstrate resilience. In [6], resilient control

systems that emphasize control design in an adversarial

and uncertain cyber environment (as opposed to physical

disturbances) are developed. This control design is viewed as

pivoting on the tradeoff between robustness and resilience.

Optimality criteria are proposed for tradeoff between robust-

ness and resilience in modern industrial control systems.
Further developments of resilient systems with uncertain

cyber environments can be found in [1], [7]. Specifically,

[1] provides a conceptual framework and brief overview of

the architectural considerations for designing systems that

operate in hostile cyber environment with uncertainties in

complex networks and human interactions. The work in

[7] develops an intelligent resilient control algorithm for a
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wireless networked control system based on quantification

of the concept of resiliency in terms of quality of control.

Here, resiliency maintains normal operations in the face of

wireless interference incidents. Reference [12] further uses

the quality of control for designing resilient control strate-

gies for model-based building control, improving building

automation systems.

Resilient systems have also been considered regarding

security issues in, for example, [8], [9]. While [8] describes

experiences and success in cyber security programs leading

to more robust, secure, and resilient monitoring and control

systems in industrial assets, [9] discusses security-related

definitions for resilience, which includes integrity and con-

fidentiality in addition to availability.

Developments of resilient systems for computer systems

and for monitoring critical infrastructures can be found, for

instance, in [10] and [11]. In particular, in [10], metadata-

based resilience policies are enforced to design computing

systems that can dynamically adapt in a predictable way to

unexpected events. In [11], basic paradigms are proposed

for integration of diverse fault detection and identification

methods and control methods for achieving resilience in

critical infrastructures.

Finally, we mention that, although the resilient monitoring

structure in this work shares that developed in [2], the

design approaches are different. In particular, the monitoring

system designed here aims at selecting sensors to make

plant health assessments within desired time periods despite

cyber attacks, while that in [2] focuses on selecting sensor

configurations to maximize plant health assessment confi-

dence. Moreover, some advantages are also afforded by the

approach considered here, such as faster computations of the

monitored plant assessments.

C. Proposed monitoring system architecture

A resilient condition assessment monitoring (ReCAM)

system, as illustrated in Fig. 1, is addressed in this paper

that exhibits the properties envisioned in Section I-A. Natural

or malicious disturbances may occur at each unit operation

of the monitored system, while sensor data may not be

trustworthy due to cyber attacks, for example. The goal is to

dynamically collect and interpret sensor data and correctly

assess the physical condition or health of the monitored

system within desired timeliness requirements.

Fig. 1. Architecture of proposed ReCAM system.

Within this architecture, the quality of sensor data is

quantified by introducing the on-line assessed metric here

called information quality (IQ), which includes both data

quality (DQ) and data relevance (DR). While DQ quantifies

the trustworthiness of a given sensor data, DR quantifies

the importance of it. For example, consider two sensors

associated to the same process variable (e.g., temperature

in a given tank) in the monitored system. If one of the

sensor is already reporting data with high DQ about this

process variable, the DR associated with the other sensor

may be assigned to a low value. In this paper, we do not

explore DR further and only DQ is considered. In this regard,

there are numerous methods that can be used to online

compute sensor DQ, from techniques that rely on data- and

model-driven calculations and probing mechanisms to detect

data tampering to physical security procedures that rely on

surveillance to infer breaches at data centers such as I/O

boards, switches, programmable logic controllers (PLCs),

and supervisory control and data acquisition (SCADA) in-

stallations. Classically, DQ may be generated by statistical

analysis of sensor data. For example, suppose redundant

sensors are associated with a certain process variable. An

approach for generating DQ is investigating whether a sensor

data in question is statistically significantly different to other

redundant data. Voting techniques may also be used here.

DQ may also be computed using calibration methods (e.g.,

kernel regression techniques [13]). Comparing results of state

estimators and observed sensor data provides may yet be

another way to generate DQ. From the domain of cyber

security, monitoring network traffic around sensors may

provide another way of generating DQ based on detection

of suspicious and/or abnormal levels of message traffic,

which may indicate a cyber attack, hence potential tampering

of information. Finally, physical security violations (e.g.,

unlocked physical access points or observed breaches on

security measures) may also be used to qualitatively quantify

DQ for sensors located in suspected areas. In this work, DQ

is thus assumed to be given by some sort of watchdog entity

and interpreted via the notion of believability, defined in later

sections.

At each time instant, a (different) subset of the sensor

data (along with their IQ) may be active, which is chosen

by a sensor selection controller for condition assessments.

Although all sensor data may be available, only a subset

of active ones are utilized for plant assessment at each time

instant. The number of active sensors is accordingly selected

based on the particular needs for marshalling data in order

to meet observability requirements under varying conditions.

Benefits of this dynamic sensor selection include:

• Suppose all available sensors are always utilized for

plant condition assessment. Assume that a set of sen-

sors are compromised. Using all the data may lead

to confusion as sensor data may contradict with one

another. Considerable effort may have to be consumed

to filter out false sensor data.

• Due to selecting different subsets of active sensors at

different time instances, health assessment is not tied to

using only a particular set of sensor data. This feature

also makes it more difficult for attackers to identify

most important sensors to compromise.
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• Since only a subset of sensors is selected at each time

instant, information traffic is reduced and additional

number of active sensor are selected only when merited

to achieve required level of assessment quality.

In addition, since physical and cyber threats are typically

ill-characterized (e.g., due to lack of attack samples and the

intrinsic nature of malicious behaviors), thus limiting the use

of model-based techniques relying on assumed disturbance

characterizations, it is important to randomly search and

explore in a rational manner time-varying subsets of sensors

for selection, while exploiting sensors known to provide

best data for health assessments under observed conditions.

For this purpose, the theory of rational behavior (TRB)

is utilized here to synthesize sensor selection algorithms

[14]–[16]. Other work that introduce randomness to improve

system performance includes simulated annealing [17]. The

way sensors are selected avoids the so-called observation

stiffness, which implies that only a specific set of sensors

is used. While relying on a specific set of sensors may

provide improved performance under well characterized dis-

turbances, it is often an impediment to implementing graceful

degradation under ill-characterized situations. Contrarily, by

adaptively selecting different sets of sensors, observation

stiffness is relaxed and the monitoring system becomes more

flexible to handle disturbances. This is an example of duality

between performance and flexibility. Observation stiffness

provides optimal monitoring performance for well defined

disturbances but poor performance under unconsidered con-

ditions. Flexible observations, on the other hand, may yield

adequate (but suboptimal) observational performance but

may accommodate a variety of ill-defined situations.

In the proposed resilient monitoring architecture, data re-

trieved from the given set of active sensors is then processed

by a health condition assessment monitoring module. Due

to the time-varying mix of active sensors providing data for

plant assessment and the possible presence of cyber attacks,

the sensory information is partial and unreliable. To address

this, the health assessment module needs to have a network-

like topology capable to compute sufficiently accurate health

assessments under possible missing and/or unreliable data.

While Bayesian belief networks (BBN) are utilized in this

work for conducting these calculations, other network-based

probabilistic reasoning techniques may be used instead.

As illustrated in Fig. 1, the condition assessment monitor-

ing algorithms output health assessments of the monitored

plant for decision making, along with their associated assess-

ment quality (AQ), the latter metric used to judge confidence

on these assessments. This confidence is accordingly used

as input for the sensor selection controller to select sensor

configurations that meet expected levels of AQ.

D. Contributions and paper organization

By developing and evaluating the techniques discussed

for the proposed ReCAM system illustrated in Fig. 1, the

following contributions are achieved in this paper:

• formulation of a resilient monitoring approach for

adaptively meeting observability requirements under

severe disturbances, such as cyber-physical coordi-

nated attacks, to complex engineering facilities;

• development of the building blocks associated with the

proposed ReCAM system;

• demonstration of the resilient benefits associated with

the proposed monitoring solution.

The rest of this paper is organized as follows. Section

II provides a mathematical overview of the various layers

of the ReCAM system, while Section III describes the

monitored plant and sensors. The information, assessment,

and sensor selection layers of ReCAM system are developed

in Sections IV, V, and VI, respectively. The ReCAM system

is applied to a simplified power plant model in Section VII

and performance results are evaluated under non-resilient

and resilient approaches. Finally, conclusions are briefly

discussed in Section VIII.

II. RECAM STRUCTURE

A detailed structure of ReCAM is shown in Fig. 2. In this

Fig. 2. Detailed structure of ReCAM implementation.

structure, sensor observations from the monitored plant and

their associated DQs are first processed in the information

layer, which provides estimates of process variable PMFs,

PMF pv. These PMF estimates are then processed by a plant

assessment module modeling the monitored plant. Note that

instead of hard evidences (i.e., exact values of the observed

process variables), soft evidences (i.e., probability distribu-

tions of the variables) are entered. The plant assessment

module outputs PMF of plant assessment, PMFA. Using

PMFA, the entropy of this plant assessment is calculated.

If this entropy is less than a threshold, a definite decision is

made about plant conditions. If the entropy is higher than
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this threshold, a projected decision period, DP projected is

calculated. The value of DP projected is the estimated time

period from the previous definite decision of plant conditions

to the next definite decision. Based on the difference between

DP projected and a user defined (set point) decision period,

DPSP , penalties are generated and communicated to rational

controllers, which select sensor configurations that try to

keep DP projected as close as possible to DPSP .
Detailed descriptions of the constituent components of

the information and assessment layers are shown in Fig.

3. We briefly describe the building blocks in Fig. 3 from

Fig. 3. Details of ReCAM implementation.

bottom to top. To estimate the process variable PMF from

each (active) sensor, sensor DQ (or Dsensor) is interpreted

using the notion of believability. Demspter-Shafer Theory is

employed to combine PMF estimates from sensors assigned

to the same process variable. Smooth filtering, based on

first order dynamics, of combined process variable PMF

estimates is introduced so newly observed evidence for plant

assessment is not entered abruptly. Modeling relations among

process variables and plant conditions are used to assess plant

conditions based on the estimated process variable PMFs.

CPTs of BBNs are found assuming perfect sensor DQ and,

hence, they need to be accordingly tuned using aggregated

DQs of process variables. Aggregated DQ (or Dpv) is

calculated based on current estimates of process variable

PMF; the result often differs from Dsensor, especially when

multiple sensors are utilized for one variable and at early

phases of the PMF smooth filtering. When no sensor is

activated for a given process variable, smooth transition of

aggregated DQ (via first order dynamics) towards Dpv = 1
is introduced. An iterative procedure, which is a modification

of the iterative proportional fitting procedure (IPFP), is used

to enter estimated process variable PMF evidence into the

BBN. Assessments of plant condition is then computed by

the BBN. Implementation of the different components in the

ReCAM structure is further discussed throughout this paper.

III. MONITORED PLANT AND SENSORS

In this section, models of the monitored plant and sensor

measurements of process variables are introduced. Specifi-

cally, let V1, V2, . . . , VM denote random variables describing

discrete states of M process variables and G denote a

random variable describing plant state. The monitored plant

is modeled as a set of conditional probabilities of process

variables Vi, i = 1, 2, . . . ,M , given state of plant G and/or

other process variables. For convenience, BBN is used to

organize this information. In particular, the plant model is:{
[P (Vi|G)] for i ∈ I ⊆ {1, 2, . . . ,M},

[P (Vi|Vj)] for some pairs i, j ∈ {1, 2, . . . ,M}.
(1)

Notice that some Vi do not directly depend on the state

of plant G but on the state of certain process variable Vj .

On the other hand, sensor measurements are computed by

adding a given Gaussian noise to the true value of the process

variable. To model cyber attacks, the mean value of the noise

is accordingly modified based on the severity of the attack.

Sensor outputs are then computed by discretizing measured

process values into discrete quantities such as low, normal,

and high. A DQ model is used to calculate the effects of

the threat on the quality of the sensor measurements. The

output, Di, of this DQ model is the estimated sensor DQ.

IV. INFORMATION LAYER

For a given process variable V , Figure 4 illustrates the

operation of the information layer, which calculates the

estimated process variable PMF, P̂ (V ), that is subsequently

used as evidence at the assessment layer for computing

plant condition assessments. Suppose the DQ of sensor Si

Fig. 4. Information layer of proposed ReCAM system.

is Di and that Si observes σ ∈ Σ, where Σ is the set of

states of V (e.g., Low (L), Normal (N ), or High (H)). The

notion of believability of a sensor is employed to interpret

this observation in the form of PMF for V [2]. Formally,

believability is defined as follows:

B =
1

|Σ|
[(|Σ| − 1)Di + 1] , (2)

where |Σ| is the cardinality of the process variable state

space, Σ. Based on B, we calculate PMF ∗
i , where

PMF ∗
i (σ) denotes the probability of V = σ, used to

determine the target PMF for the smoothing process. In

particular, PMF ∗
i based on the observation s of Si is given

by:

PMF ∗
i (δ) = P{V = δ|s = σ} =

{
B if δ = σ,
1−B
|Σ|−1

if δ �= σ.
(3)

For example, suppose Σ = {L,N,H} and observation s is

N . Then PMF ∗
i is given by

PMF ∗
i =

[
PMF ∗

i (L) PMF ∗
i (N) PMF ∗

i (H)
]

=
[

1−B
2

B 1−B
2

]
. (4)
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Note that the calculation of PMF ∗
i results from only one

measurement reported by Si. If there is only one active

sensor, say Si, for V , we set PMF ∗ = PMF ∗
i . If there

are multiple (active) sensors observing V , Dempster-Shafer

combination rule [2] is used to combine multiple PMFs. The

formula for two sensors, say Si and Sj , is as follows:

PMF ∗
σ =

PMF ∗
i (σ)PMF ∗

j (σ)∑
δ∈Σ

PMF ∗
i (δ)PMF ∗

j (δ)
, σ∈Σ, (5)

where PMF ∗
i (δ) and PMF ∗

j (δ) is calculated by (3) and

PMF ∗
σ is the probability for V = σ in PMF ∗. Extension

of (5) to more than two sensors is straightforward. The

combined PMF ∗ is used as a target for the smoothing

process detailed below. The smoothing process serves as a

low pass filter and prevents abrupt changes in P̂ (V ). To

facilitate discussion, consider the following:

• measurements from all active sensors are syn-

chronously collected at the same time;

• let k (k = 1, 2, 3 . . .) denote the time index when

measurements from active sensors are collected.

For each time instant k, PMF ∗
i (k) for each active sensor is

calculated, which is then combined with others to compute

PMF ∗(k); notice that if Di(k) and s(k) do not change

within a given time window, PMF ∗(k) does not change

either. At each time instant k, the smoothing process in Fig.

4 is executed using the calculated PMF ∗(k) as a target

PMF. The dynamics for smoothing process is given by

τ
d

dt
PMF (t) = PMF ∗(k)− PMF (t), (6)

where

• at time t = 0, PMF (0) is uniform. For example,

PMF (0) = [ 1

3

1

3

1

3
] when Σ = {L,N,H};

• for time instant k, dynamics are simulated with target

PMF ∗(k) from tk−1 to tk = tk−1+∆t, where t0 = 0;

• ∆t and τ are design parameters;

• PMF (tk) is P̂ (V ) for time k;

To calculate P̂ (V ), ones does not have to wait first for

the collection of a long sequence of measurements (from

active sensors). The computation of P̂ (V ) is conducted as

measurements are sequentially collected from active sensors.

In the following, to quantify the information contained in

P̂ (V ), the information entropy of P̂ (V ) is defined as

HI =
∑

σ∈Σ

−P̂ (V = σ) log|Σ| P̂ (V = σ). (7)

V. ASSESSMENT LAYER

The assessment layer estimates the monitored plant condi-

tions based on the estimated process variable PMFs. Figure

5 shows the operations of the assessment layer, where Vi,

i = 1, 2, . . . ,M are the process variables and G represents

the status of the plant. While other probabilistic reasoning

methods may be used, the plant assessment module utilizes

a BBN in the present work, where estimated PMFs are

entered using a modification of the iterative proportional

fitting procedure (IPFP) documented in [18]. The assessment

algorithm is applied as P̂ (Vi), i = 1, 2, . . . ,M are calculated

from sensor measurements sequentially collected at time k =
1, 2, . . .. When using the assessment algorithm to compute

Fig. 5. Assessment layer of ReCAM system.

the a posteriori belief of plant state P̂ (G), the initial (a

priori) belief of plant state is the result from the assessment

computed at previous time step. That is, if the current time

index is k, the a priori belief for the assessment algorithm is

P̂ (G) calculated at time k−1. When P̂ (Vi), i = 1, 2, . . . ,M
at time k are consistent with P̂ (G) calculated at time k− 1,

the assessment entropy of the plant, defined as:

HA =
∑

σ∈ΣG

−P̂ (G = σ) log|ΣG| P̂ (G = σ), (8)

decreases from its previous value calculated at k−1. Once the

assessment entropy of plant decreases below a (user-defined)

decision threshold, a definite decision is made about the plant

state (e.g., whether the plant is normal, degrading, or down)

and the belief of plant state is reset to complete ignorance

(e.g., P (G) = [ 1/3 1/3 1/3 ]) for the subsequent

assessment, and the assessment procedure repeats. Resetting

here means resetting the roots of the BBN. Note that P̂ (G) is

used here as statistics for decision making and not reported

to the user, but rather the definite decisions (e.g., whether

plant is normal, degrading, or down). Moreover, the notion

of decision period is of importance. It is defined as the time

window that starts at the moment of resetting the plant belief

to complete ignorance and ends when a decision on plant

state is made. Decision period is the time needed to make a

definite decision regarding the state of the monitored plant.

During the decision period, no updated decision is available

to a user (e.g., a plant operator) and the monitoring system

reports/keeps the definite decision on plant state computed

during the previous decision period.

A. Modification of CPTs and aggregated data quality

Because CPTs of BBNs are trained assuming perfect

DQs, they need to be accordingly modified considering

the estimated DQs. A method used in this work calculates

the aggregated DQ corresponding to the estimated process

variable PMF. Specifically, consider an estimated PMF for

the process variable V , P̂ (V ) and calculate its entropy, HI ,

via (7) to find:

x̄ = argmax
σ∈Σ

P̂ (V = σ), (9)

and find D̄ such that

HI = Entropy(x̄, D̄) (10)

where Entropy(x,D) is the entropy of the PMF calculated

(by (2)–(3)) when a sensor measurement is x with DQ

D. Once the aggregated DQ is computed, the CPT for the

process variable is modified by

Probmodified(V = σ|A) = Prob(V = σ|A)

+ (
1

n
− Prob(V = σ|A))(1− D̄) (11)
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for σ ∈ Σ, where n is the number of possible states of

V and A represents parent nodes of V . Note that when

D̄ = 0, the modified conditional probabilities become 1

n
and

when D̄ = 1, the modified conditional probabilities are the

same as the original ones. Moreover, when modifying the

CPT by (11), the conditional probabilities, Prob(V = σ|A),
are always obtained from the original CPT. Similar to the

strategy used at the information layer, when no sensors for

the given process variable are active, the first order dynamics

shown below is employed to “fade” the aggregated DQ, thus

preventing abrupt changes to the monitoring system.

τD̄
˙̄D(t) = 1− D̄(t), (12)

where

• at time t = 0, D̄(0) is the last aggregated DQ before

all sensors associated with the process variable become

inactive;

• for time instant k, dynamics are simulated from tk−1

to tk = tk−1 +∆t, where t0 = 0;

• ∆t and τD̄ are design parameters;

• D̄(tk) is the faded aggregated DQ at time k.

This computation continues until at least one sensor asso-

ciated with the process variable becomes active. Then, the

aggregated DQ is again calculated as described above.

VI. SENSOR SELECTION LAYER

The goal of the sensor selection layer is to meet a certain

(user-defined) decision period. The goal is not to find an

optimal sensor configuration (SC) per se, but rather to control

selections of SCs so that the assessment entropy decreases

as needed to meet decision period requirements. There is

no need for plant operating conditions and sensor DQs (i.e.,

threats) to stay the same, but they can change. In this work,

each sensor is equipped with a rational controller (RC) to

select its operation mode. The RCs are designed to achieve

monitoring objectives based on the penalties received.

A. Rational Controller

The RCs designed here are based on the ring element [14].

The state space of the ring element is [0, 1). When the ring

element is in [0, 0.5), the sensor associated with it is inactive,

thus reporting no data. Similarly, when the ring element is in

[0.5, 1), the sensor associated with it is active. When sensors

switch to active (inactive), their RCs pick a state in [0.5, 1)
([0, 0.5)) with uniform probability. The dynamics of the ring

element is described as follows:

ẋ = ϕN ({x}) (13)

where {x} takes the fractional part of x, ϕ(x) is the penalty

associated with x, and N is a positive number referred

to as the measure of rationality. The dynamics in (13) is

approximated as

x(k + 1) = x(k) + ∆tϕN ({x(k)}) (14)

where k denoted the index of the measurement step and

∆t = 0.001 in this work.

B. Penalty Function

Ring elements are penalized so that the desired decision

period is achieved within some tolerance. To this end, the

expected decision period is estimated based on the time

elapsed since last decision and the current rate of assessment

entropy change. That is, assume the current measurement

step is k and the assessment module has just processed the

soft evidences computed from measurements collected at k.

The decision period is then estimated as follows:

D̂P = TE +
(DT −H(k))

(HA(k)−HA(k − 1))
, (15)

where DT is the decision threshold, TE is the time elapsed

since last decision, HA(k) is the assessment entropy at time

k, and D̂P is the projected decision period. The assessment

entropy is calculated using (8). Appropriate penalty functions

can be found from numerical experiments following the

rationale bellow:

• If projected decision period is longer than desired,

penalize inactive sensors more;

• If projected decision period is shorter than desired,

penalize active sensors more;

• Sensors with high D incur less penalty when active

and more penalty when inactive;

• Sensors with low D incur more penalty when active

and less penalty when inactive.

VII. APPLICATION

A. Simplified power plant

Application of ReCAM to a simplified power plant model

is considered here, consisting of six unit operations and 16
process variables as shown in Fig. 6. The six unit operations

Fig. 6. Simplified power plant for demonstration.

are: main steam generator (MSG), reheat steam generator

(RSG), high pressure turbine (HPT), low pressure turbine

(LPT), feed water pump (FWP), and condenser (C). The 16
process variables considered are listed below.

• Twelve of the 16 process variables are tempera-

tures and pressures at the six unit operations. These

process variables are denoted by Pi and Ti, i ∈
{M,R,H,L, F,C}, for pressure and temperature, re-

spectively, at the unit operation with i as the first letter
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in its abbreviation. For example, temperature at LPT

is indicated by TL.

• The remaining four process variables are strain at

boiler near MSG (SM ), humidity around RSG (HR),

temperature in atmosphere around HPT (Ta), and ac-

celeration at LPT (AL).

Two sensors are assigned to each process variable. We use

the index j, j = 1, 2, to denote the jth sensor for a process

variable. For example, TM1 and TM2 denote the first and

second sensor for TM , respectively.

Four types of physical anomalies are considered:

• Anomaly #1, in MSG: Low heat transfer;

• Anomaly #2, in RSG: Pipeline rupture;

• Anomaly #3, in HPT: Improper heat insulation;

• Anomaly #4, in LPT: Decreased efficiency;

Process variables not mentioned in the characterization of a

particular anomaly may also be affected. For example, when

MSG is malfunctioning, TM is low. In this case, TH will

also be low due to physical association.

B. Sensor models

We consider two sets of redundant sensors, A and B,

each associated with the sixteen process variables introduced

above. Set A (or B) is the set of sensors with subscript 1
(or 2). Sensors are assumed to have additive Gaussian white

noise with zero mean and variance σ2 = (m×L)2, where L
is the absolute value of the difference between the baseline

value of the process variable corresponding to the given

sensor and its high/low threshold. Moreover, m is tunable

and chosen to be 0.2. If a sensor is attacked, the attacker

adds bias according to whether true value of the measured

process variable is:
⎧
⎪⎨
⎪⎩

> high threshold, add bias − (TL)× n× L,

< low threshold, add bias (TL)× n× L,

otherwise, add bias − (TL)× n× L,

(16)

where TL ∈ [0, 1] is the treat level of attack, chosen to be

0.7, and n is tunable, chosen to be 8. It is assumed that the

assessed DQ of a sensor is given by D = 1 − TL, where

TL = 0 if the sensor is not attacked. Equation (16) indicates

that the attacker makes the sensor output low (high), while

the true value of the process variable is high (low). Moreover,

when the true value is between high and low, the attacker

makes the sensor output low.

C. Comparison with non-resilient monitoring

In this subsection, we compare the performance of the

proposed ReCAM system against a non-resilient approach.

A non-resilient approach refers to a monitoring system that

always uses all sensors deployed, without utilizing DQ infor-

mation. Hard evidences from sensors are thus always directly

entered into the plant assessment module. For simplicity, we

assume that only sensors in set A are utilized for the non-

resilient case.

In the experimental run here presented, the power plant

is assumed to operate normal from 0 to 749 seconds. From

750 to 4000 seconds, Anomaly #2 is introduced. Moreover,

two different cyber attacks are considered in coordination

with this physical attack. Specifically, assume that no cyber

attack is present from 0 to 1499 seconds. Then,

• Attack #1: From 1500 to 2499 seconds, 12 sensors

compromised:

– in set A, three sensors are attacked: PR1, TR1,

and HR1;

– three additional sensors in set A are randomly

chosen to be attacked;

– six sensors from set B other than PR2, TR2, and

HR2 are randomly chosen to be attacked.

• Attack #2: From 2500 to 4000 seconds, 12 sensors

compromised:

– previously attacked sensors are restored;

– similar procedure is followed to choose the sen-

sors to be attacked.

Figure 7 shows the conditions assessed for MSG and RSG

by ReCAM and the non-resilient system. Simulation results

Fig. 7. Assessments for MSG and RSG.

shown that for the cyber-physical attack considered here,

the ReCAM system is able to correctly identify physical

anomalies and assess the condition of the monitored system,

while the non-resilient monitoring system is often confused,

identifying incorrect anomalies and making wrong plant

assessments. Table I shows that there is significant confusion

in making a conclusive assessment under non-resilient mon-

itoring case. Specifically, in period 4, the ReCAM system

does not get confused as cyber attacks are injected, correctly

assessing that only one device is malfunctioning, while the

non-resilient system wrongly indicates three malfunctioning

devices 77.37% of the time.

TABLE I

NUMBER OF DEVICES CONSIDERED MALFUNCTIONING WITH

CERTAINTY

# of Period 1 Period 2 Period 3 Period 4
Devices (Normal) (anomaly #2) (attack #1) (attack #2)

R NR R NR R NR R NR
0 100% 100% 0% 0.13% 0% 0% 0% 0.26%
1 0% 0% 100% 99.87% 100% 82.58% 100% 0.26%
2 0% 0% 0% 0% 0% 17.42% 0% 22.11%
3 0% 0% 0% 0% 0% 0% 0% 77.37%

In order to compare the performance of ReCAM and non-

resilient approach, we introduce the measure of resiliency,

�
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defined as the norm-2 distance, ‖T − T̂‖ with

T =
[
pMSG pRSG pHPT pLPT pFWP pCondenser

]
(17)

and

T̂=
[
p̂MSG p̂RSG p̂HPT p̂LPT p̂FWP p̂Condenser

]
, (18)

where pi and p̂i are, respectively, the true and estimated

probabilities that component i is malfunctioning. We conduct

a longer simulation with scenarios similar to those considered

in Subsection VII-C. However, we assume that the RSG

anomaly occurs starting from time 2100 and attacks 1 and

2 commence at 7500 and 12750, respectively. Note that,

within this scenario, pi = 0 for i �= RSG, pRSG = 0
for time < 2100, and pRSG = 1 otherwise. Figure 8

compares the measures of resiliency for resilient and non-

resilient systems. When sensors are not attacked, systems

Fig. 8. Measures of resiliency for resilient and non-resilient systems

with and without resilient monitoring algorithms have similar

‖T − T̂‖2 values. When cyber attacks occur, system without

resilient monitoring algorithms performs much worse (with

‖T − T̂‖2 > 1 most of the time) than system with resilient

monitoring algorithm (‖T − T̂‖2 < 0.8).

VIII. CONCLUSION

In this paper, a ReCAM system is proposed to meet

resiliency challenges when monitoring complex engineering

facilities. Chief among the challenges is the ability for the

monitoring system to correctly assess facility health within

desired decision period despite cyber-physical coordinated

attacks. The proposed ReCAM system, which is comprised

of information, assessment, and sensor selection layers, is

able to meet the challenges considered. In particular, the

ReCAM system exhibits resiliency and is able to dynamically

adapt and reconfigure depending on assessed conditions not

only on the monitored facility but also on the information

infrastructure. Algorithms for the various ReCAM system

layers were developed and benefits of the ReCAM system

were demonstrated using a simplified power plant model.

Although comparisons of the resilient monitoring system

developed here to existing monitoring systems are not con-

ducted in this paper, they will be addressed in the future.

A number of scenarios will also be developed to further

illustrate the effectiveness of the methods used here.
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