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ABSTRACT 

The objective of this dissertation is to develop a resilient control approach to secure 

Cyber Physical Systems (CPS) against cyber-attacks, network failures and potential 

physical faults. Despite being potentially beneficial in several aspects, the connectivity in 

CPSs poses a set of specific challenges from safety and reliability standpoint. The first 

challenge arises from unreliable communication network which affects the 

control/management of overall system. Second, faulty sensors and actuators can degrade 

the performance of CPS and send wrong information to the controller or other subsystems 

of the CPS. Finally, CPSs are vulnerable to cyber-attacks which can potentially lead to 

dangerous scenarios by affecting the information transmitted among various components of 

CPSs. Hence, a resilient control approach is proposed to address these challenges. The 

control approach consists of three main parts:(1) Physical fault diagnostics: This part makes 

sure the CPS works normally while there is no cyber-attacks/ network failure in the 

communication network; (2) Cyber-attack/failure resilient strategy: This part  consists of  a 

resilient strategy for specific cyber-attacks to compensate for their malicious effects ; (3) 

Decision making algorithm: The decision making block identifies the specific existing 

cyber-attacks/ network failure in the system and deploys corresponding control strategy to 

minimize the effect of abnormality in the system performance. In this dissertation, we 

consider a platoon of connected vehicle system under Co-operative Adaptive Cruise Control 

(CACC) strategy as a CPS and develop a resilient control approach to address the 

aforementioned challenges. 
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The first part of this dissertation investigates fault diagnostics of connected vehicles 

assuming ideal communication network. Very few works address the real-time diagnostics 

problem in connected vehicles. This study models the effect of different faults in sensors 

and actuators, and also develops fault diagnosis scheme for detectable and identifiable 

faults. The proposed diagnostics scheme is based on sliding model observers to detect, 

isolate and estimate faults in the sensors and actuators. One of the main advantages of 

sliding model approach lies in applicability to nonlinear systems. Therefore, the proposed 

method can be extended for other nonlinear cyber physical systems as well.  

The second part of the proposed research deals with developing strategies to 

maintain performance of cyber-physical systems close to the normal, in the presence of 

common cyber-attacks and network failures. Specifically, the behavior of Dedicated Short-

Range Communication (DSRC) network is analyzed under cyber-attacks and failures 

including packet dropping, Denial of Service (DOS) attack and false data injection attack. 

To start with, packet dropping in network communication is modeled by Bernoulli random 

variable. Then an observer based modifying algorithm is proposed to modify the existing 

CACC strategy against the effect of packet dropping phenomena. In contrast to the existing 

works on state estimation over imperfect communication network in CPS which mainly use 

either holding previous received data or Kalman filter with intermittent observation, a 

combination of these two approaches is used to construct the missing data over packet 

dropping phenomena. Furthermore, an observer based fault diagnostics based on sliding 

mode approach is proposed to detect, isolate and estimate sensor faults in connected vehicles 

platoon.  
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Next, Denial of Service (DoS) attack is considered on the communication network. 

The effect of DoS attack is modeled as an unknown stochastic delay in data delivery in the 

communication network. Then an observer based approach is proposed to estimate the real 

data from the delayed measured data over the network. A novel approach based on LMI 

theory is presented to design observer and estimate the states of the system via delayed 

measurements. Next, we explore and alternative approach by modeling DoS with unknown 

constant time delay and propose an adaptive observer to estimate the delay. Furthermore, 

we study the effects of system uncertainties on the DoS algorithm. In the third algorithm, 

we considered a general CPS with a saturated DoS attack modeled with constant unknown 

delay. In this part, we modeled the DoS via a PDE and developed a PDE based observer to 

estimate the delay as well as states of the system while the only available measurements are 

delayed.  

Furthermore, as the last cyber-attack of the second part of the dissertation, we 

consider false data injection attack as the fake vehicle identity in the platoon of vehicles. In 

this part, we develop a novel PDE-based modeling strategy for the platoon of vehicles 

equipped with CACC.  Moreover, we propose a PDE based observer to detect and isolate 

the location of the false data injection attack injected into the platoon as fake identity.   

Finally, the third part of the dissertation deals with the ongoing works on an 

optimum decision making strategy formulated via Model Predictive Control (MPC). The 

decision making block is developed to choose the optimum strategy among available 

strategies designed in the second part of the dissertation.  
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CHAPTER ONE 

INTRODUCTION 

1.1. Research Objectives 

Cyber Physical Systems (CPS) represent a diverse class of systems with various 

applications in critical industrial systems as well as infrastructures such as power grids [1], 

water distribution systems [2]-[3], Intelligent Transportation System (ITS)[4]-[5], building 

automation and many other systems vital for human well-being [5]. In general, CPS denoted 

to a certain category of systems containing three main parts: (i) Physical plants, (ii) 

Controller and (iii) Communication network (see Fig. 1). Connectivity among different 

subsystems and the controller via communication network makes CPS faster, more efficient 

and cost effective.  Indeed, communication network eases data transfer process between 

sensors to controller and controller to actuators. Furthermore, shared communication 

network is less expensive comparing to wired network of private communication network 

for each subsystem.  However, due to the control center and multi-purpose communication 

network, critical cyber physical systems are vulnerable to cyber-attacks and network failures 

as well as physical faults [6]. 
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Figure 1: Cyber physical systems and schematic representation of it. 

Cyber-attacks, network failures and physical faults (in the physical parts of the CPS) 

are potential causes that degrade the performance of the cyber physical systems. Physical 

fault diagnostics of CPS is possible by utilizing the following approaches: 1) model-based 

approaches, 2) Signal processing based approaches, and 3) Knowledge-based approaches. 

In contrast, from the system control perspective, security and resiliency of cyber physical 

systems against cyber-attacks and network failures is more challenging due to the 

unexpected inherent of cyber-attacks. Some of the common network failures and possible 

cyber-attacks in CPS referring to the existing literatures are packet drop out [7]-[8], Denial 

of Service (DoS) attack [9]-[10], replay attack [11] and false data injection [12].   

Resiliency of cyber physical systems is indeed a 3S-oriented design, that is, stability, 

security, and systematicness: Stability means the CPS can achieve a stable sensing-actuation 

close-loop control even though the inputs (sensing data) have noise or attacks; Security 

means that the system can overcome the cyber–physical interaction attacks; and 

Systematicness means that the system has a seamless integration of sensors and actuators. 
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There two main approaches to tackle the security problem of cyber physical systems: (i) 

computer science methods (ii) Control oriented methods.  

Some of the most common cyber-attacks modeled in CPS in control oriented frame 

works are depicted in Fig. 3. In majority of the modeling approaches, the CPS is is 

considered as a linear time invariant (LTI) system or descriptor system. 

 

Figure 2: Potential cyber-attacks for a subsystem of CPS 

Referring to the control oriented attack analysis in CPS, the false information can 

include: an incorrect measurement, an incorrect time when the measurement was observed, 

or an incorrect sender id. The adversary can launch these attacks by obtaining the secret key 

or by compromising some sensors (A1) or controllers (A3). A2 and A4 represent denial of 

service (DoS) attacks where the adversary prevents the controller from receiving sensor 

measurements or sending an input update. To launch a DoS the adversary can jam the 

communication channels, compromise devices and prevent them from sending data, attack 

the routing protocols, etc. A5 represents a direct attack (false data injection) against the 

actuators or an external physical attack on the plant. Along with cyber-attacks and network 

failures (such as packet dropping), CPSs subject to physical failures and faults. To secure 

cyber physical systems against cyber-attacks, we need to make sure that anomaly in CPS 
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performance is not caused by physical faults of the system. Hence, as a pre-requisite for 

securing the CPS, a fault diagnostics algorithm is designed to detect potential faults in the 

system [9]. 

In light of the above discussion, the objective of this proposed research is to develop 

a general approach that improves the performance of cyber physical systems making them 

more resilient to cyber-attacks/ network failures as well as physical failures. Hence, for each 

possible cyber-attacks/network failure, an algorithm to modify the controller of system and 

maintain the performance of whole CPS close to normal is presented. Also, along with 

modified controllers, a fault diagnosis scheme is presented to detect, isolate and estimate 

physical faults in CPS. Furthermore, as the last part of thesis, we develop a decision making 

strategy to switch among available control signals to choose the optimum control strategy 

which guarantees the smoothness of the performance as well as safety. As a case study of 

this approach, a platoon of connected vehicles communicating through Dedicated Short-

Range Communication (DSRC) network is considered.  

1.2. Research Motivation 

In recent years, we have noticed a rise of smart vehicles with capabilities like 

wireless communication, gateways and driving assistance systems. Such smart vehicular 

advancements have led to several emerging vehicular technologies. One of such 

technologies as a particular focus of this research is connected vehicles which is classified 

as a distributed cyber physical system.  Indeed the concept of the connectivity in vehicular 

network can potentially results in improvements, e.g. minimizing the risk of accident and 
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increasing traffic throughput. However, this connectivity also introduces new challenges 

from security point of view.  

In modern transportation systems, smart vehicles are not isolated mechanical 

devices with merely mobility purposes anymore. Nowadays, smart vehicles are equipped 

with wireless gateways, Bluetooth and Wi-Fi connection enabling them to connect and 

communicate with external world [13]-[14]. Hence, by developing the communication 

capabilities to peer to peer, vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) 

communication, the new promising technology as connected vehicles will emerge which, 

essentially, can improve the safety, efficiency, and effectiveness of the overall 

transportation system. However, similar to other CPSs, this technology suffers from several 

challenges, mainly from safety and reliability point of view and is vulnerable to the 

aforementioned cyber-attacks and network failures [15]-[16]. 

Hacking the smart vehicles is not an impossible mission and several existing 

literature explore the vulnerabilities of the smart car regarding to cyber-attack and hacking 

issues. In [13]-[14], and [17] vulnerabilities of car regarding to the Control Area Network 

(CAN) bus are explored. Although for the aforementioned vulnerabilities having physical 

access to the car and more specifically to the On-Board Diagnostics, attacker do not limit 

themselves to having physical access to the car. Indeed, comprehensive studies in University 

of California San Diego, University of Washingtonand University of South Carolina reveal 

that, car hacking without physical access is possible [20]-[18]. In [20], authors present a 

privacy and security evaluation of wireless Tire Pressure Monitoring Systems (TPMS) using 

both laboratory experiments with isolated tire pressure sensor modules and experiments 
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with a complete vehicle system. Fig. 3 shows existing vulnerabilities of a smart car to 

potential cyber-attacks. 

Since each individual smart car is already vulnerable to cyber-attacks, the threat is 

more critical when a group of vehicles share their information through communication 

network together as connected vehicles. Fig. 4 explains the potential threat through the 

internet and telematics units to compromise data in connected vehicles. More specifically, 

connected vehicular networks are vulnerable to packet dropping [21], communication 

induced delay [22], scheduling issues and malicious cyber-attacks [23]. Hence, the vehicular 

control systems must be capable of handling and surviving such adverse situations.  The 

outcome of these researches support importance of the treat of cyber-attacks in connected 

vehicles that can be injected to the communication network via a hacked car or with a 

malicious car generating fake identity. A crucial need for designing the in-vehicle 

control/management systems that takes such issues into consideration and maintains the 

safety and reliability of the overall system does exist in automotive industries. 
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Figure 3: Vulnerabilities in a smart car  

 
Figure 4: Flow of hacking a car via smart phone 

 
1.3. Research Contributions 

The main contribution is the development of control oriented algorithm to provide 

resiliency in cyber physical systems toward physical faults, network failures and cyber-

attacks. This algorithm is an observer based methodology consisting different strategy for 

different attack scenarios. The best strategy is selected via optimum decision making block 
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to apply the best available control strategy to the system to maintain the performance under 

failure or attack.  To fulfill this objective, the following contributions are obtained: 

 The development of Ordinary Differential Equation (ODE) based and Partial 

Differential Equation (PDE) based models of connected vehicles for behavior 

analysis under various cyber-attacks and network failures.  

 The development of a fault diagnosis algorithm that detects, isolates and 

estimates specific sensor faults (relative distance and velocity sensors) and 

actuator failures (acceleration pedal) in connected vehicles. 

 The development of estimation algorithm that estimates the lost pack in the 

packet dropping phenomena to provide the correct information to the controller. 

So, the control action maintains resiliency against packet drop incident.   

 The development resilient algorithms against DoS attack in the communication 

network. These algorithms consist of three methodologies for different modeling 

of DoS attack.  

 The development of novel method to model false data injection attack in cyber 

physical systems as fake node (ghost node).  

 The development of PDE based diagnostics algorithm to detect and isolate the 

false injection attack into the system.  

 The development of optimum decision making methodology to select the best in 

the fault/ cyber-attack occurrence in the system to maintain the performance of the 

system close to the normal condition. 
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1.4. Dissertation Organization 

The rest of the proposal is organized as follows. Chapter2 includes a brief overview 

of connected vehicles modeling and working principals. Chapter 3 discusses the security 

problems in cyber physical systems along with state of the art literature review, gap analysis 

and a brief review on fault diagnostics and observer design tools. In Chapter 4 provides the 

proposed algorithm for physical fault diagnostics including faults detection, isolation and 

estimation. Then, Chapter 5 discusses the proposed algorithm on packet dropping 

phenomena as network failure. Chapter 5 includes three algorithms on DoS attack detection 

and estimation along with resiliency to the attack. In Chapter 6, a PDE model of connected 

vehicles along with novel approach for false data injection attack detection is provided. 

Chapter 7 explain the decision making strategy for the aforementioned algorithms. Finally, 

Chapter 9 concludes the dissertation along with the discussion of the future extensions.   
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CHAPTER TWO 

WORKING PRINCIPLE AND MODELING OF CONNECTED VEHICLES 

 

2.1. Working Principle 

Some principal simplifying assumptions which will hold for the duration of all our analysis 

in this proposed research are as the following: 

1- A single lane highway only is considered; multi-lane scenarios with lane changing 

effects are not considered.  

2- We assume that the characteristics of all vehicles and drivers are the same. This 

assumption simplifies calculations but is probably not necessary for our analysis to 

work. 

3- DSRC communication network is a shared broadcasting network. Therefore, each 

vehicle in the platoon is required to listen to the safety messages communicated in 

the specific time slot dedicated to safety messages. 

 
2.2. Modeling 

The car-following methodology for the simulation and analysis of highway traffic 

models vehicles as discrete entities moving in continuous space. Referring to the existing 

works, two common car-following methodologies are Gipps’s model and Adaptive Cruise 

Control (ACC).  Gipp’s model contains a number of parameters which purport to model 

different behavioral features of driver, and is thus rather more complicated than the 

reductionist models which can be found in the mathematical literatures. However, Gipps’s 
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model which is explained in detail in [24]-[25], still too mathematical for control purposes. 

In contrast to Gipps’s model a simplified control oriented car-modeling used in several 

existing literatures is ACC [26]-[28]. In the current existing Adaptive Cruise Control (ACC) 

system, the range (i.e., relative distance) and range rate to the preceding vehicle are 

measured with a radar or LIDAR sensor [26]. While, Cooperative Cruise Control (CCC) 

[15]-[16] and Cooperative Adaptive Cruise Control (CACC) [29]-[33][33]are essentially a 

vehicle-following control methodology that automatically accelerates and decelerates so as 

to keep a desired distance to the preceding vehicle. To do this, in addition to onboard sensors 

like radars, vehicles should be equipped with wireless communication devices, such as 

Dedicated Short-Range Communication (DSRC), to receive extra information of the 

preceding vehicle(s).  

The use of CACC control strategy, especially in heavy duty vehicles, can cause 

lower traffic flow in roads. To achieve this task, onboard sensors such as radar are employed 

that measures relative distance and velocity between vehicles. Further, additional 

information of preceding vehicle(s), such as the desired acceleration is received through the 

wireless communication network. In a cooperative setting, a vehicle should adjust its speed/ 

acceleration using the information from multiple vehicles ahead and behind. To address this 

objective several control strategies are considered to be implemented in the vehicle to use 

the receiving information for vehicle in front and behind, combine them with current states 

of the car and generate corresponding control input for vehicle. Some of the most important 

control approaches in cooperative adaptive cruise control are model predictive [33], and 
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PID [30]-[31] controller. Among these controller, the PID is the most common and more 

effective and less computationally burden.  

Following similar notation of [30], a homogenous platoon of 𝑚 vehicle equipped 

with CACC strategy is considered as the case study of this proposed research (see Fig. 5).  

 

Figure 5: Platoon of vehicles equipped with CACC. 

 Each vehicle in the platoon can be modeled as a linear system with (1).   
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iL  is the length of vehicle i ; 

iv  is the velocity and 
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is the acceleration of vehicle i . Moreover, 
iu is the vehicle input, to be interpreted as 

desired acceleration, and  is the time constant representing the driveline dynamics. Also, 

the following control policy for the inter-vehicle spacing is adopted: 
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where 
,r id  is the desired distance between vehicle i  and 1i  , h is the time headway. The 

main objective is to regulate the 
id  to , ( )r i td  , i.e.,   

,( ) ( ) ( ) 0
i i r i

e t d t d t as t     (3) 

without losing the generality, we consider 0iL   for simplicity. Substituting the equation 

1i i i i
d q q L


    in (3), the regulating error can be re-written as: 

1( ) ( ) ( ) ( )i i i ie t q t q t hv t    (4) 

The following dynamic controller is considered to achieve the zero regulation error: 

1

1 1 1
( )

i i p i d i i
u u k e k e u

h h h
   

 (5) 

where 1iu  is the desired acceleration for the preceding vehicle. This information is 

communicated through the DSRC network, hence, it is subject to packet drop failure in the 

network.
pk and 

dk are the controller coefficients. Furthermore, it is shown that for a 

bounded 1iu   and subject to following constraints on the controller gains: , 0p pk k  , the 

inter-vehicle distance 
id  is regulated to 

,i rd  as defined by spacing policy (2)[31]. 

The block diagram of the closed- loop system for vehicle i, subject to the controller is 

shown in Fig.6  

with 
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Figure 6: Block scheme of the CACC system 

 
TABLE I: Vehicle platooning model nomenclature 

Symbol Definition and Unit Symbol Definition and Unit 𝑑𝑟,𝑖  reference relative distance 𝑇𝑠  network sampling time ℎ time headway. 𝜒(𝑘) 
a variable that represents the packet drop out 

phenomenon at time instant 𝑘 𝑒𝑖(𝑡) error 𝑢𝑖  control input of vehicle 𝑖 𝑢𝑖−1 
the desired acceleration for the preceding 

vehicle (vehicle 𝑖 − 1) 𝜏 time constant 𝑘𝑝 controller coefficients 𝜃𝑑  equivalent output error injection 𝑘𝑑  controller coefficients 𝜃𝑣  equivalent output error injection 𝑑𝑖  inter-vehicle distance   

Superscript ± positive/negative electrode 



 

CHAPTER THREE 

SECURITY PROBLEMS IN CYBER PHYSICAL SYSTEMS 

As it mentioned in the introduction section, cyber physical systems are subject to 

physical faults, network failures and cyber-attack. To secure a CPS against these potential 

sources of performance degradation, a control oriented algorithm is proposed. The 

algorithm contains three main parts: (1) Physical fault diagnostics; (2) Cyber-attacks/failure 

resilient strategies; (3) Decision making.   

1) Physical Faults Diagnostics: This part includes an observer based fault diagnostics 

scheme to address issues regarding to the potential physical faults and failures in 

hardware components in the CPS. 

2) Cyber-attacks/network failure resilient strategies: This component acts as a state 

machine system with several strategies designed for specific cyber-attacks or 

network failure. Each strategy is designed by utilizing different control theory tools 

e.g. observer design, adaptive control, and sliding mode theory.  These 

methodologies are used to design resilient strategies for CPS to maintain the 

functionality of CPS and keep its performance close to the normal when cyber-

attacks occur. Hence, by applying corresponding strategy, the CPS will be resilient 

to that specific attack or network failure.  

3) Decision maker: Since all strategies in the Cyber resilient component are 

independent from each other, to apply the best strategy for the existing cyber-attack 

or network failure, a decision needs to be made. To obtain this objective a decision 

making block based on Model Predictive Control (MPC) is designed.  At each 
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sample time, the decision maker block chooses best available control action 

designed in the previous part while guaranteeing smooth behavior of CPS.  

The overview of this research is depicted in Fig.7. In the following each of this 

component with their design approach will be discussed in details.   

 
Figure 7: Overview of proposed scheme to secure a CPS 

 
Next, we have a literature review for each component in more detail to provide the existing 

research gaps. 

3.1. Physical Fault Diagnostics Problem  

3.1.1. Problem Formulation and Challenges 

Similar to any physical systems, cyber physical systems are subjected to physical 

faults in their components including sensors and actuators and hardware. To secure the CPS 

against cyber-attacks, normal operation of CPS in no cyber-attacks condition should be 

guaranteed. This is important due to the connectivity of different parts of a CPS which can 
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causes to propagate the error of one part to other components of CPS. In more detailed 

explanation, small error in a sensor readings which is transmitted and propagated to several 

controller of supplants of a CPS can compromise performance of those sub-plants and 

interpreted as cyber-attacks while in reality there is no cyber-threat in the system. Similarly, 

in our case study of connected vehicles, wrong velocity sensor or acceleration information 

can be transmitted to follower vehicles and degrade their control strategy and provide an 

error in regulating the desire distance. Consequently, the error propagation inside the string 

of the platoon can treat the stability of sting by either breaking the platoon or causing 

accident in the platoon.  Hence, reliability of CPS is a critical issue that need to be addressed. 

Different failure mechanisms can occur in a CPS during operation, but, the most important 

and significant ones relate to sensor and actuator faults. Some of these faults, if not detected 

or isolated, may lead to catastrophic failures. At a higher level, diagnostic problem in a CPS 

can be classified into three types based on the component where the failure occurs: sensor 

fault, process/system fault, actuation fault.  

In a broad classification, existing approaches can be divided into three groups: 1) 

Model-based approaches, 2) Signal processing based approaches, and 3) Knowledge-based 

approaches. Model-based approaches utilize a dynamic model of the system in their 

diagnostic algorithm. Signal processing based approaches use different kinds of spectral 

analysis, time series analysis and statistical methods such as pattern recognition, feature 

extraction etc. In knowledge based approaches, a priori knowledge of the system is used 

along with some reasoning algorithms. In this discussion, we will concentrate on model-
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based diagnostic approaches due to the availability of the dynamic model of most of the 

CPSs. 

3.1.2. Literature Review 

In this research, we focus on model-based fault diagnostics approach to detect, 

isolate faults and failures in CPS. In the model-based diagnostics a dynamic model of the 

system is used to predict the output which is compared to the measured signals from the 

physical system. The difference between the measured data and predicted data is used to 

generate a residual signal which has the idealized property of being zero in case of no faults 

and nonzero in presence of faults. This residual signal is then processed further to achieve 

isolation of the detected faults. Model-based designs of fault diagnosis scheme follow the 

sequential steps: system and fault modeling, fault detectability analysis, residual generation, 

fault isolation and decision making. Surveys of different model-based schemes can be found 

in [34]-[35]. Faults generally occur in sensors, actuators or in the process. Actuator and 

sensor faults are generally modeled as additive deviations from the nominal model whereas 

process faults are generally modeled as multiplicative faults which reflect as changes in 

parameters. In our case study as CPS, the potential faults and failures can occur in vehicles 

actuators and sensor measurements which are transmitted to other vehicles in the platooning 

network via DSRC.  

Vehicle diagnostics are widely explored and is one of the utmost interest for 

automotive industries and OEMS. Hence, several researches for improving the functionality 

of On-Board Diagnostics (OBD_II) are going on. However, unlike fault diagnostics on 

engine operation which is explored widely, kinematic characteristics of the vehicle such 
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velocity sensor, radar sensor faults as well as acceleration pedal failure are not considered 

in the on-board diagnostics [36]-[37].In the intelligent transportation where a vehicle shares 

its information among other vehicles in the vehicular network, wrong information not only 

treat the safety of individual car, but also, it can threaten other vehicles performance. Faulty 

sensors can affect the individual vehicle’s safe operation and in turn will create a potentially 

unsafe node in the vehicular network. Nevertheless, there are very few literatures address 

this issue of connected vehicles. [38], presents an approach to address some of the 

challenges in connected vehicle system fault diagnostics, such as the diagnostics of 

unexpected faults, and infrequent or intermittent faults.  However, the existing literatures 

do not consider potential faults in the sensor measurements which can be transmitted 

through the DSRC communication network to other vehicles in the vehicular network.  In 

this research, we address the sensor and actuator fault detection and analyze the 

identifiability of these faults and failures in connected vehicles. 

3.1.2. Gaps in Existing Literature 

 There is no complete research on connected vehicles fault diagnostics with specific 

focus on sensor and actuator fault detection which their data is transmitted through 

communication network.  

 No fault estimation approach to compensate the effect of existing faults in the 

system and design fault tolerant control.  

 Most of the existing model-based fault detection approaches have one or more of 

the following issues: 1) utilize a linearized model, 2) are computationally 

expensive, and 3) lack theoretical guarantees of the convergence of the estimator. 
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3.2. Cyber Attacks/Network Failures Problem  

3.2.1. Problem Formulation and Challenges 

The performance of CPS highly relies on the reliability of its communication 

network specifically if there is no physical malfunctioning in the system. Hence, providing 

good maintenance on the hardware of the CPS and health monitoring via fault diagnostics 

approaches, guarantees the physical performance of a CPS. However, cyber-attacks, 

malicious adversaries and network failure are still some of the crucial sources of 

performance degradation in cyber physical systems which are not possible to detect via 

physical fault diagnostics methods.  

One of the most common failure in the communication network is packet dropping 

phenomena.  Wireless links are known to be prone to errors and failures. Packet dropping 

occurs due to a number of factors including occasional hardware failures, degradation in 

link quality, and channel congestion etc. Although many network protocols have re-

transmission mechanisms embedded, for real-time feedback control data, it may be 

advantageous to discard the failed packets on their first transmission because re-transmitted 

packets may have too large latency to be useful [39]. Re-transmission may also delay the 

transmission of new packets. In a typical CPS, due to limited computing power of the 

communication modules, error correction techniques are not common on the lower network 

levels. However, cyber-attacks are not considered as network failures and in fact they have 

designed smartly by attacker. Hence, modeling the cyber-attacks from control perspective 

is more challenging than network failures and requires detailed analyses over network and 

attacker capabilities. The most common cyber-attacks on CPS referring to the existing 
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literature consists of Denial of Service (DoS) attack, False Data Injection attack (or 

deception attack), Replay attack and Stealthy attack.  

Denial of service (DoS) attacks are perhaps the most detrimental attack to CPSs that 

affects the packet delivery because they have been proven capable of shutting an 

organization off from the Internet or dramatically slowing down network links [40]. 

Definition of DoS attack may vary in different studies on DoS attack, however, all these 

studies describe the effect of DoS attack as the same. The violation of availability of sensor 

and control data is known as denial-of-service (DoS). DoS attacks can be classified into 

several different types, in which the packet flooding attack and data jamming or 

compromising by a malicious adversary are prevalent [41]-[42]. Attackers may flood a 

network with a large volume of data to deliberately consume the limited resources, such as 

CPU cycles, memory, network bandwidth, and packet buffers. Consequently, time delay 

and packet loss of transmitted information in CPS become worse under such attacks, which 

in turn may significantly impair the system performance. False data injection attack is a 

well-studied attack in cyber physical systems particularly in recent years.  In false  data 

injection  attack  scenario,  the  attacker  has  the  capability  to corrupt the original message 

by injecting additional false data into the actual value. The message either is transmitted 

form sensors to the controller or from the controller to actuators [43]. The attacker in the 

replay attack intercepts data of the system and re-transmits it while corrupting the 

performance of the system [44] . Another cyber-attack studied in the cyber physical systems 

is stealthy attack. In the stealthy attack, the attacker wishes to induce perturbation in the 
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control loop by compromising a subset of the sensors and injecting an exogenous control 

input, without incurring detection from an anomaly detector [45].  

With every day new emerging technologies, new cyber-attacks are developed and it 

is not possible to keep track of all existing cyber-attacks in one research. However, the effect 

of the majority of these attacks can be modeled with one or several of these existing 

dominant attacks. 

3.2.2. Literature Review 

The main challenges regarding to securing a CPS toward cyber-attacks contains of 

modeling the cyber-attacks, detecting and developing resilient strategy to maintain the 

functionality of the CPS in the presence of cyber-attacks. In this section, we provide 

literature review over all these three challenges on cyber-attacks in cyber physical systems. 

Modeling cyber-attacks is essential for understanding and analyzing their impacts 

on Cyber-physical Systems (CPSs). There are two main methods for modeling cyber-

attacks: graph-based approaches, and mathematical (Control-oriented) modeling 

approaches.  

Both static and dynamic graph-based techniques such as attack trees and Bayesian 

networks are well-known for attack modeling as they have the advantage of combining user 

friendly, visual features with algorithms that allow analysis of the behavior of the attack in 

the network [46]-[49]. For example, Petri net modeling approaches [49] have been used as 

a more flexible method for modeling the cyber-attacks in large cyber physical 

infrastructures such as smart grids. For such a complex CPS, hierarchical methods for 
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constructing large petri nets from smaller size petri nets have also been proposed [49]. 

Although graph-based approaches have their advantages for engineering applications that 

involve the design of attack detection methods, security analysis and security design in large 

scale CPSs, in industrial applications these models are too complex to be used. Instead of 

graph-based models, mathematical approaches for modeling the attack in SCADA 

(Supervisory Control and Data Acquisition) have been used for CPSs such as power 

networks and smart grids. In [50] In mathematical approaches, cyber-physical systems are 

typically modeled as time-varying or, the authors considered the large scale CPS as linear 

discrete-time decentralized system, which can be modeled by state space equations and the 

cyber-attacks are modeled as additional exogenous inputs that comprise behavior of 

system’s components [51]-[53]. However, it is not possible to model all cyber-attacks and 

network failures just as an exogenous inputs in the system as they affect the whole CPS 

dynamics in different manners. Several investigation are done on modeling the cyber-

attacks in control frameworks with particular focus on specific attack.   

A wide range of works exists on that explored the data loss problem and physical 

fault diagnosis problem in general networked control systems. Packet dropping phenomena 

provides unreliability and uncertainty into the communication which makes the modeling 

of the network and analysis of data more challenging task [27]-[28], [37]. In general, there 

are two methods to model the packet drop out phenomenon in communication networks: 

(1) Bernoulli model [54],[15] [58]- [64]and (2) Markov Model [7]-[8], [55]-[56]. Bernoulli 

random variable is a simple memory less random variable while, modeling the packet 
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dropping with Markov Model is a more complex and sophisticated methodology which 

captures most of the characteristics of the packet dropping phenomena.  

Cyber-attacks are explored and modeled in various cyber physical systems. DoS 

attack is explore in power system [66] [68], smart grids [69], SCADA [70], and networked 

control systems [66]-[67]. [69] discusses Malicious attacks targeting availability of gird 

network as denial-of-service (DoS) attacks, which attempt to delay, block or even corrupt 

information transmission in order to make network resources unavailable to communicating 

nodes that need information exchange in the smart grid. In the existing literature on DoS 

modeling, there are two main methodologies to model Denial of Service attack in a CPS 

with control frame work; 1) time delay 2) packet loss [40]-[41].  Indeed, based on the 

network communication protocol and attacker capabilities, DoS attacker can flood too much 

data on the network to make packet congestion on the network and consequently packet will 

loss. However, if the attacker does not make the attack too obvious on the network, it may 

flood the packets randomly on the network and try to increase the service time on the 

communication network [42].   

False  Data  Injection  attack  is  widely  explored  in  cyber physical systems e.g. 

power grid [75]-[76] electricity marker [71],  water  distribution  and  control  systems  [72]-

[73]. The  false  data  injection  attack  in  CPS  refers  to  a  class of  cyber-attacks  in  which  

the  attacker  wishes  to  alter  the integrity of system by compromising a subset of sensors 

and sending inaccurate readings to controller or actuators data from controller. To operate 

the attack, the attacker needs to carefully design  his  input  to  fool  the  controller  since  

abnormal  sensor measurements  will  generally  trigger  an  alarm  [72]. In   the majority of 
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existing literature on modeling false data injection attack in control oriented framework, the 

attack is modeled as an additive sensor/actuator fault on the original data.  Hence, existing  

fault  detection  algorithms,  including  Kalman  filter [71]-[72]  observer  design  [75],  are  

capable  of  detecting  the false data injection attack in the system. However, developing 

new  skills  to  inject  the  cyber-attacks  in  the  cyber  physical system,  attackers  can  

induce  more  intelligent  attacks  which are not diagnosable with fault detection 

methodologies.  

The second challenge in securing the CPS toward cyber-attacks is to provide the 

CPS with an attack detection algorithm. There exist several investigations on modeling and 

detection of cyber-attacks from computer science perspective. The current state of the art 

methods used for cyber-attack detections are utilization of Intrusion Detection Systems 

(IDS) and Honeypots. Intrusion detection systems continuously monitor the computer 

system or network and generate alarms to inform the system administrator of suspicious 

events. IDSs are now considered a necessary addition to the security infrastructure of an 

organization [77]-[78]. The objective of intrusion detection is to detect malicious activities, 

and accurately differentiate them from benign activities. Honeypots are needed to 

supplement IDSs in the proposed security scheme because they complement most other 

security technologies by taking a proactive stance. A honeypot is a closely monitored 

computing resource used as a trap to ensnare attackers. As defined by Spitzner, “A honeypot 

is a security resource whose value lies in being probed, attacked, or compromised [79].” 

The principal objectives of honeypots are to divert attackers away from the critical resources 

and study attacker exploits to create signatures for intrusion detection. The attraction of 
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attackers to honeypots mitigates the threat of malicious attacks and thus helps secure 

valuable information and important services located on the real targets.  

As the last but very crucial challenge of cyber security in CPS, attack resiliency is 

utmost importance to maintain the functional of the CPS in the presence of cyber-attacks. 

However, very few works explore resiliency of systems under attacks and network failures. 

Several groups have looked at control systems with packet loss in their communication 

network, an area that has been recently surveyed in the context of packet-switched networks 

by Hespanha [57].  In particular, there has been considerable effort in analyzing the effect 

of packet loss [58]-[60]. Also, several approaches have been used to compensate the impact 

of packet drop out in networked control systems. For instance [61], uses a predictor to 

modify the controller in the presence of packet drop out. Generally speaking referring to the 

existing literature, to modify the controller in most of the networked control systems and 

cyber physical systems, a good state estimation is required. State estimation over packet 

dropping networks is explored in the existing literature with different methodologies such 

as discrete Kalman filter with intermittent observation [54], [64], optimal estimation 

[59],[61], and using multiple description coding [62]. Although these general results exist 

for networked control systems, very few attempts have been made towards the similar issues 

in connected vehicle applications [64].  In [10],[113] DoS is considered as a class of attack 

strategies primarily intended to affect the timeliness of information exchange. The 

fundamental challenge in DoS attack compensation is to develop a resilient controller to 

keep the performance of the CPS close to the normal while measured sensor information 
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are corrupted by attacker. In [5],[113][112], authors comprehensively survey the concept 

and strategies for building a resilient and integrated cyber–physical system (CPS).  

Furthermore, the DoS attack in the DSRC network degrades the quality of packet 

transmission and induce delay in network service time and consequently in transmission. 

Therefore, to develop a countermeasure on DoS attack in the connected vehicles system, an 

estimation of states over delay induced by the attack on communication network is required. 

The state estimation and fault detection problems over random measurement delays are 

studied for cyber physical systems and the networked control systems in several existing 

literatures [114]-[118].  Different approaches including sliding mode observer design [118], 

robust estimation [119], Continuous Time Hidden Markov Model (CTHMM) [120] and 

discrete time approaches based on state feedback theory and Kalman filter observer design 

[115] are developed and proposed in literatures to estimate the states of the CPS under 

delayed measurements. However, in majority of the existing literatures, the delay induced 

in the measurements due to the communication network is considered to be known. While, 

under the DoS attack this assumption no longer is valid. Consequently, a new approach to 

estimate the state of the CPS under DoS attach which degrade the service time of the 

communication network is required. 

3.2.3. Gaps in Existing Literature 

 Majority of existing literature address the effect of packet dropping in CPS system 

by holding the previous value of lost data which is not necessarily applicable for 

connected vehicles system with changing driving profile.  



 31 

 Several studies try to estimate the lost information using Kalman filter with 

intermittent observation, while this approach is limited for discrete time systems. 

 Very few study on fault estimation over imperfect communication network and in 

all these works the dynamics of fault are known and it changes very slow which is 

a big assumption. 

  Real time fault diagnostics under communication failure was not explored for 

connected vehicles 

   Very few literature exists on actuator fault detection in connected vehicles 

 State estimation under unknown delay are not explored for CPS and connected 

vehicles.  

 Very few researches on probabilistic delay with known distribution, however, there 

is no estimation on delay in observer.  

 Lack of theoretical proof of estimation error convergence 

 In  the  majority  of  existing  literature,  the  false  data  injection  attack  is  modeled  

very  similar  to  additive  fault/failure in  the  control  oriented  frameworks  

Considering general topology (configuration) for cyber physical   systems,   it   is   

very   likely   to   detect   the   injected attack using different methodologies available 

for model-based diagnosis e.g. Kalman filter [28]. However, with all technology 

enhancements, cyber-attacks are become smarter and smarter which make them 

impossible to be detected via traditional fault diagnosis methods. 

 The effects of fake identity (fake node) in cyber physical systems is explored very 

rarely.  
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 There is no work on detection and isolating the fake identity in cyber physical 

system as well as connected vehicles.  

 

3.3. Brief Review of Existing Fault Diagnosis and Observer Design 

Approaches 

In this section, a brief review of the existing fault diagnosis approaches for general 

systems has been provided. In a broad classification, existing approaches can be divided 

into three groups: 1) Model-based approaches, 2) Signal processing based approaches, and 

3) Knowledge-based approaches [34]. Model-based approaches utilize a dynamic model of 

the system in their diagnostic algorithm. Signal processing based approaches use different 

kinds of spectral analysis, time series analysis and statistical methods such as pattern 

recognition, feature extraction etc. In knowledge based approaches, a priori knowledge of 

the system is used along with some reasoning algorithms. In model-based approaches, 

dynamic system model is used to predict the output which is compared to the measured 

signals from the physical system. The difference between the measured data and predicted 

data is used to generate a residual signal which has the idealized property of being zero in 

case of no faults and nonzero in presence of faults. This residual signal is then processed 

further to achieve isolation of the detected faults. 

Model-based designs of fault diagnosis scheme follow the sequential steps: system and fault 

modeling, fault detectability analysis, residual generation, fault isolation and decision 

making. Surveys of different model-based schemes can be found in [35], [83]. Faults 

generally occur in sensors, actuators or in the process. Actuator and sensor faults are 



 33 

generally modeled as additive deviations from the nominal model whereas process faults 

are generally modeled as multiplicative faults which reflect as changes in parameters. 

Coming to the residual generation, there are various existing approaches some of which are 

given below: 

Parity relation approach: In parity space approach [86], the fundamental idea of 

diagnosing a fault is by checking consistency of the mathematical relationships of the 

system using available measurements [35].  

Observer based method: In this method, an observer is used to estimate the states of the 

system using available measurements. Then the estimated states along with the 

measurements are used to generate the residual signals. There are several variations of the 

observer based methods. For example, in unknown input observers [84], the state estimation 

error is decoupled from the unknown input disturbance and noise. In Kalman filter based 

method [85], the innovation sequence is used as residual signals. 

 

Parameter estimation approach: This approach is based on the hypothesis that faults in 

the system change the system parameters Error! Reference source not found.. Therefore, 

ny deviation from the nominal parameter value will be an indication of fault. 

Decision making is another important aspect of the fault diagnosis scheme. After the 

residual is generated, it needs to be evaluated. This is critical because in general the residuals 

do not have the ideal property of being zero in non-faulty condition due to model 

uncertainties, disturbances, noise etc.  
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CHAPTER FOUR 

PHYSICAL FAULT DIAGNOSTICS ALGORITHM 

Fault detection, isolation and estimation play important roles in assuring normal 

performance of the CPS. Health monitoring of the CPS including the fault diagnostics 

improves the reliability of the system and prohibits physical malfunctions to degrade the 

whole functionality of the CPS. Indeed, fault detection and estimation provide necessary 

information for the system to make the controller fault tolerant.  In this chapter, a model 

based diagnostics scheme based on sliding mode approach is proposed to detect and isolate 

sensors faults and actuator failures in the platoon of vehicles as an example of CPSs.  

In this part, we consider a platoon of connected vehicles equipped with CACC as 

our case study. Furthermore, two nonlinear observer designs have been presented based-on 

a linear model of each vehicle in the platoon. Both observers are based on sliding mode 

approach based on the measurement on relative distance and velocity of each vehicle. Using 

this algorithm, apart from detecting and isolating faults in relative distance and velocity and 

failure in actuator, it is possible to estimate the fault in both sensors. The convergence of 

error dynamics is proved using Lyapunov theorem. The developed scheme is a new 

contribution to connected vehicles diagnostics research area with the following 

characteristics: 1) Considers essential faults and failures in the system, 2) Theoretical 

verification of the convergence of the state estimation error, 3) Theoretical verification of 

fault estimation, and 4) Simple design and computationally efficient.  
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4.1. State Space Modeling  

Each vehicle in the platooning can be modeled as a linear time invariant system as 

it is discussed in Chapter 2. This linear model is written in the form of state space 

representation as following  

[�̇�𝑖�̇�𝑖�̇�𝑖] = [ 𝑣𝑖−1 − 𝑣𝑖𝑎𝑖− 1𝜏 𝑎𝑖 + 1𝜏 𝑢𝑖]  ,         𝑖 = 𝑆𝑚\{ 1} (7) 

where the control input dynamics changes with state feedback and external inputs coming 

from the vehicle in front through the DSRC network. 

�̇�𝑖   =   − 1ℎ 𝑢𝑖 + 1ℎ (𝑘𝑝𝑒𝑖 + 𝑘𝑑�̇�𝑖) + 1ℎ 𝑢𝑖−1 (8) 

and  

𝑒𝑖(𝑡) = 𝑑𝑖(𝑡) − ℎ𝑣𝑖(𝑡) (9) 

Remark 1: We consider a homogenous platoon of vehicles. Therefore, all vehicles 

in the platoon the same parameters. Also, each vehicle in the platoon, measures relative 

distance with respect to preceding vehicle 𝑑𝑖  and its velocity.  

Remark 2: The estimates of the sensor faults are fed back to the control policy to 

compensate for the effect of these faults. Therefore, the control policy is extended 

to be reconfigurable under such sensor faults.  

Remark 3: Considering measurement on actuator signal of the vehicle, similar 

approach can be applied for actuator fault to detect and estimate the failure in acceleration 

pedal position. To avoid redundancy for now we focus on sensor faults. 
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4.2. Diagnostics Scheme  

The objective of the Sensor Fault Observers is to detect, isolate and estimate faults 

in the on-board sensors, namely the range sensor (which measures 𝑑𝑖) and velocity sensor 

(which measures 𝑣𝑖). It consists of two observers designed based on sliding mode 

methodology which will be discussed shortly.   

In presence of the faults, the measurements from the sensors can be written as:  

𝑑𝑖𝑚 = 𝑑𝑖 + 𝛥𝑑𝑖 (10) 

𝑣𝑖𝑚 = 𝑣𝑖 + 𝛥𝑣𝑖 (11) 

where 𝑑𝑖𝑚 and 𝑣𝑖𝑚 are the measured variables and, 𝛥𝑑𝑖 and 𝛥𝑣𝑖 represent the sensor faults.  

Remark 4: Note that, we have modelled the sensor faults as additive variables. These 

additive variables represent: 1) bias type of faults which could be constant or time-varying, 

or, 2) sensor gain faults where 𝑑𝑖𝑚 = 𝐾𝑑𝑖 = 𝑑𝑖 + 𝛥𝑑𝑖 with 𝛥𝑑𝑖 = (𝐾 − 1)𝑑𝑖 where 𝐾 

represents the gain fault. 

The observer structure is depicted in Fig. 8 and mathematically expressed as  

[�̇̂�𝑖�̇�𝑖�̇̂�𝑖] = [0 −1 00 0 10 0 −1𝜏] [�̂�𝑖𝑣𝑖�̂�𝑖] + [100] 𝑣𝑖−1 + [001𝜏] 𝑢𝑖 + [𝐿1200 ] (𝑣𝑖𝑚 − 𝑣𝑖)
+ [𝜂11 00 𝜂220 0 ] [sgn(𝑑𝑖𝑚 − �̂�𝑖)sgn(𝑣𝑖𝑚 − 𝑣𝑖)] 

          𝑖 = 𝑆𝑚\{ 1 , 2} (12) 

Furthermore, we define 
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�̃�𝑖 = 𝑑𝑖 − �̂�𝑖 , �̃�𝑖 = 𝑣𝑖 − 𝑣𝑖 , �̃�𝑖 = 𝑎𝑖 − �̂�𝑖 (13) 

 
Figure 8: Fault diagnostics scheme for connected vehicles 

Remark 5: Note that, 𝑢𝑖 is control input of vehicle 𝑖 which derived by the following 

dynamics: 

 �̇�𝑖   =   − 1ℎ 𝑢𝑖 + 1ℎ (𝑘𝑝𝑒𝑖 + 𝑘𝑑�̇�𝑖) + 1ℎ 𝑢𝑖−1  

Next, choosing 12 1L   , the error dynamics under faults can be written as: 

[�̇̃�𝑖�̇̃�𝑖�̇̃�𝑖] = [𝛥𝑣𝑖 − 𝜂11sgn(�̃�𝑖 + 𝛥𝑑𝑖)�̃�𝑖 − 𝜂22sgn(�̃�𝑖 + 𝛥𝑣𝑖)− 1𝜏 �̃�𝑖 ] (14) 

Note that, under asymptotic condition, �̃�𝑖 → 0 as 𝑡 → ∞ due to its first order stable 

dynamics represented by the time constant 𝜏. Under the condition �̃�𝑖 → 0, we analyze the 

observer error under two different fault cases. 

The sliding surfaces (which are defined by the terms inside ‘sign’) are 𝑆𝑑 = �̃�𝑖 +𝛥𝑑𝑖 and 𝑆𝑣 = �̃�𝑖 + 𝛥𝑣𝑖. The convergence to the first sliding surface can be analyzed using 
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the Lyapunov function candidate 𝑉𝑑 = 0.5𝑆𝑑2. The derivative of the Lyapunov function 

candidate can be written as: 

�̇�𝑑 = 𝑆𝑑�̇�𝑑 = 𝑆𝑑 (�̇̃�𝑖 + 𝛥�̇�𝑖)  

�̇�𝑑 = 𝑆𝑑(𝛥𝑣𝑖 − 𝜂11sgn(𝑆𝑑) + 𝛥�̇�𝑖)  

⇒ �̇�𝑑 ≤ |𝑆𝑑|(|𝛥𝑣𝑖 + 𝛥�̇�𝑖| − 𝜂11) (15) 

Therefore, under the assumption of bounded 𝛥𝑣𝑖 and 𝛥�̇�𝑖, and a choice of 

sufficiently high positive gain 𝜂11, we have �̇�𝑑 < 0 and, hence the sliding surface 𝑆𝑑 = 0 

can be reached. Now, on the sliding surface, we have 𝑆𝑑 = �̇�𝑑 = 0 [88]. Therefore, based 

on the error dynamics equation (14) and the aforementioned conditions 𝑆𝑑 = �̇�𝑑 = 0, we 

can write that: 

−𝛥�̇�𝑖 = 𝛥𝑣𝑖 − 𝜃𝑑  

⇒ 𝛥�̇�𝑖 + 𝛥𝑣𝑖 = 𝜃𝑑 (16) 

where 𝜃𝑑 is the equivalent output error injection which is the filtered version of the 

switching term 𝜂11sgn(𝑆𝑑). For implementation, we can extract 𝜃𝑑 by passing 𝜂11sgn(𝑆𝑑) 

through a low-pass filter of unity gain [88]. 

Similarly, the convergence to the second sliding surface can be analyzed using 𝑉𝑣 =0.5𝑆𝑣2. The derivative can be written as: 

�̇�𝑣 = 𝑆𝑣�̇�𝑣 = 𝑆𝑣(�̇̃�𝑖 + 𝛥�̇�𝑖) 

⇒ �̇�𝑣 = 𝑆𝑣(−𝜂22sgn(𝑆𝑣) + 𝛥�̇�𝑖) 
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⇒ �̇�𝑣 ≤ |𝑆𝑣|(|𝛥�̇�𝑖| − 𝜂22) (17) 

Therefore, under the assumption of bounded 𝛥�̇�𝑖 and a choice of sufficiently high 

positive gain 𝜂22, we have �̇�𝑣 < 0 and, hence the sliding surface 𝑆𝑣 = 0 can be reached. 

Now, on the sliding surface, we have 𝑆𝑣 = �̇�𝑣 = 0 [88]. Therefore, based on the error 

dynamics equation (14) and the aforementioned conditions, we can write that: 

𝛥�̇�𝑖 = 𝜃𝑣 (18) 

where 𝜃𝑣 is the equivalent output error injection which is the filtered version of the 

switching term 𝜂22sgn(𝑆𝑣)[74]. For implementation, we can extract 𝜃𝑣 by passing 𝜂22sgn(𝑆𝑣) through a low-pass filter of unity gain [88]. 

Assumption 1: we consider only one fault can occur at the same time (either 𝛥𝑣𝑖 or 𝛥𝑑𝑖) as single fault scenario.  

 Next, we analyze these two fault cases separately: 

Case 1 (𝛥𝑣𝑖 = 0, 𝛥𝑑𝑖 ≠ 0): We have 𝛥�̇�𝑖 = 𝜃𝑑 ,  𝜃𝑣 = 0. Therefore, we can 

construct the following filter to estimate the fault: 

�̇�1𝑖 = 𝜃𝑑  (19) 

where 𝑅1𝑖 is the residual signal (output of the filter (30)) which serves as an estimate 

of the fault 𝛥𝑑𝑖; and the input signal 𝜃𝑑 to the filter (19) is extracted from the switching 

term 𝜂11sgn(𝑆𝑑) as mentioned before. 

Case 2 (𝛥𝑣𝑖 ≠ 0, 𝛥𝑑𝑖 = 0): We have  𝛥𝑣𝑖 = 𝜃𝑑 , 𝛥�̇�𝑖 = 𝜃𝑣. Therefore, we can 

construct the following filter to estimate the fault: 
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�̇�2𝑖 = 𝜃𝑣 (20) 

where 𝑅1𝑖 is the residual signal (output of the filter (20)) which serves as an estimate 

of the fault 
iv ; and the input signal 𝜃𝑣 to the filter (20) is extracted from the switching term 𝜂22sgn(𝑆𝑣) as mentioned before. 

Based on the above analysis, the following fault signature table (Table 3) can be 

constructed. Note that, in case of 
id  fault, we have 𝜃𝑑 ≠ 0, 𝜃𝑣 = 0 and hence 𝑅1𝑖 ≠0, 𝑅2𝑖 = 0. In case of 𝛥𝑣𝑖 fault, we have 𝜃𝑑 ≠ 0, 𝜃𝑣 ≠ 0 and hence 𝑅1𝑖 ≠ 0, 𝑅2𝑖 ≠ 0. This 

signature can be used to detect and isolate the faults. Further, the estimates of the faults 
id  

and  𝛥𝑣𝑖 will be 𝑅1𝑖 and 𝑅2𝑖 respectively. 

Table 2. Fault signature table 

Residual Velocity sensor fault Range sensor fault 

𝑅1𝑖 1 1 

𝑅2𝑖 1 0 

 

4.3. Simulation studies 

This subsection shows the results regarding the performance of Sensor Fault 

Observers. Note that, the estimated value of the fault under fault occurrence is fed back to 

the CACC controller to compensate for the fault effect. To evaluate the performance of the 

proposed diagnostic scheme, two scenarios are considered: 
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Scenario 1: A bias fault of 3 m/s is injected in the velocity sensor of vehicle 3 at 𝑡 = 450 𝑠. Fig. 9 illustrates the performance of the diagnostic scheme (Sensor Fault 

Observers) under two cases: 1) typical CACC without the diagnostic scheme, 2) CACC 

with the proposed diagnostic scheme. The first subplot of Fig.9 shows the injected velocity 

sensor fault and the estimated value of this fault by the Sensor Fault Observer. In the second 

subplot of Fig. 9, the relative distance between vehicle 3 and vehicle 2 is shown. It can be 

seen from Fig. 9 that at least four crashes happen in this specific driving cycle under typical 

CACC. However, applying the CACC with the proposed diagnostic scheme, these crashes 

are avoided. Therefore, it can be concluded that the proposed diagnostic scheme is able to 

improve the performance of the connected vehicle system. 

Scenario 2: Similar to the velocity sensor’s fault scenario, a bias fault with 

amplitude of 1.5 𝑚 is injected on range sensor at 𝑡 = 350 𝑠. Fig.10 illustrates the 

performance of the diagnostic scheme (Sensor Fault Observers) under two cases: 1) typical 

CACC without the diagnostic scheme, 2) CACC with the proposed diagnostic scheme. The 

first subplot of Fig.10 shows the injected range sensor fault and the estimated value of this 

fault by the Sensor Fault Observer. In the second subplot of Fig. 10, the relative distance 

between vehicle 3 and vehicle 2 is shown. It can be seen from Fig. 10 that six crashes happen 

in this specific driving cycle under typical CACC. However, applying the CACC with the 

proposed diagnostic scheme, these crashes are avoided. Therefore, it can be concluded that 

the proposed diagnostic scheme is able to improve the performance of the connected vehicle 

system. 
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Simulation Scenario: A homogenous platoon of five vehicles equipped with CACC 

control strategy is considered. The leader of the platoon follows the scaled and modified 

US06 driving cycle. Vehicle parameters are taken from [30] and [31]. The results are 

illustrated as the follows.   

 
Figure 9: (a) Injected and estimated velocity sensor bias fault. Fault amplitude 3 m/s 

and injection time t=450 s. (b) Relative distance between vehicle 2 and vehicle 3 (𝑑3) 
under the velocity sensor fault. Two cases are considered: 1) typical CACC without the 
diagnostic scheme, 2) CACC with the proposed diagnostic scheme. 

 
Figure 10: (a) Injected and estimated range sensor bias fault. Fault amplitude 1.5 m 

and injection time t=350 s. (b) Relative distance between vehicle 2 and vehicle 3 (𝑑3) 
under the range sensor fault. Two cases are considered: 1) typical CACC without the 
diagnostic scheme, 2) CACC with the proposed diagnostic scheme. 
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Remark 6: In case of having measurement on acceleration of the system, we can 

isolate and estimate the actuator fault in the similar way.  

Table 3. Fault signature table II 

Residual Velocity sensor fault Range sensor fault Actuator fault 𝑅1𝑖 1 1 0 𝑅2𝑖 1 0 1 

 
Fig.11 shows the results of having fault in relative distance sensor, velocity sensor 

and acceleration pedal sensor. In order to distinguish and estimate failure in actuator we 

need measurement on acceleration pedal position. However, with lack information we still 

can detect this failure too.   

 
Figure 11: Physical faults and failures signatures 
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CHAPTER FIVE 

RESILIENT STRATEGY TOWARD PACKET DROP OUT  

In this section, we explore the problem of network failure simultaneously with on-

board sensor faults for a connected vehicle system. A homogeneous platoon of vehicles 

under Cooperative Adaptive Cruise Control (CACC) strategy is considered as a case study 

of connected vehicles. The aim of this section of the proposed research is to modify the 

existing control strategy by adding a new modifying observer based strategy to estimate 

the lost information due to the packet dropping of the communication network. This will 

make the CACC controller robust to the packet drop out in the network. The proposed 

scheme consists of two components: 1) a Kalman filter to reconstruct the data received via 

unreliable communication network and by adding the fault diagnostics in previous section 

we can have, 2) sensor fault observers based on sliding mode methodology to detect, isolate 

and estimate the sensor faults under packet dropping phenomena. 

5.1. Packet Dropping Modeling  

Analyzing DSRC communication network [23],[110]-[111] with particular attention 

of sending safety messages, we concluded that Bernoulli approach is a proper methodology 

to model the packet dropping in DSRC network [15], [23].  Consider 𝑇𝑠 as the network 

sampling time. The time instant 𝑘 is defined as 𝑘 × 𝑇𝑠 ≤ 𝑡 < (𝑘 + 1) × 𝑇𝑠 . Between each 

sample time instant, the value of information received through the communication network 

will be held. 

In occurrence of packet drop out in the communication network, the control 

dynamics (5) can be rewritten as the following:  
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�̇�𝑖   =   − 1ℎ 𝑢𝑖 + 1ℎ (𝑘𝑝𝑒𝑖 + 𝑘𝑑�̇�𝑖) + 1ℎ × 𝜒(𝑘) × 𝑢𝑖−1 (21) 

where 𝜒(𝑘) a variable that represents the packet drop out phenomenon at time instant 𝑘. 

The variable 𝜒 is modeled as a Bernoulli random variable. If the packet is delivered 

correctly, we have 𝜒(𝑘) = 1; otherwise, if packet is lost in the network, we have 𝜒(𝑘) = 0. 

Therefore, we can model packet drop out in the communication network as below:  

𝜒(𝑘) ∈ {0,1} (22) 

where the probability of packet loss is 𝑝(𝜒(𝑘) = 0) = 𝜆 and the probability of successful 

arrival of packet is 𝑝(𝜒(𝑘) = 1) = 1 − 𝜆.  

Remark 7: With the probability of 𝜆, the packet in the network will be lost and the 

vehicle receives no information on the preceding vehicle’s desired acceleration. With the 

probability of 1 − 𝜆, the vehicle will receive correct data from the network 

Assumption 2: Each vehicle in the platoon receives the desired acceleration data of 

the preceding vehicle through DSRC network. 

5.2. Proposed Strategy  

The control policy of CACC strategy for vehicle 𝑖, shown in  (5), depends on two 

crucial sets of information: 1) desired acceleration of the preceding vehicle (𝑢𝑖−1) which is 

received via communication network (Assumption 2) and, 2) velocity of vehicle 𝑖 (𝑣𝑖) and 

the relative distance between vehicle 𝑖 and vehicle 𝑖 − 1 (𝑑𝑖), both of which are measured 

by on-board sensors (Assumption 1). Therefore, data loss due to packet drop out in the 

communication network, and faults in these on-board sensors, will affect the individual 
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vehicle’s behavior and create potentially unsafe situations in the connected vehicle system.  

In this section of proposed research, we propose a diagnostic scheme that improves the 

performance of CACC in presence of these issues. The scheme is shown in Fig. 14. As it 

can be inferred from the schematic, the diagnostic scheme has two components: Filter to 

compensate the packet dropping and fault diagnostics which discussed in the previous 

section  

 

Figure 12: Packet dropping strategy for connected vehicles combined with physical 

fault diagnostics 

Filter 1: The objective of the Filter 1 is to receive the data from communication 

network (DSRC) which is possibly subjected to packet drop and reconstruct the actual data (𝑢𝑖−1) with certain accuracy. Filter 1 is essentially a Kalman filter which will be detailed 

shortly.  
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We take the following assumptions which facilitate the filter design. 

Assumption 3: Vehicle 𝑖 receives the following information through the DSRC. 

𝑑𝑖−1: The relative distance of vehicle 𝑖 − 1.  

𝑢𝑖−1: The desire acceleration of vehicle 𝑖 − 1. 

𝑑𝑖−2: The relative distance of vehicle 𝑖 − 2.  

𝑢𝑖−2: The desire acceleration of vehicle 𝑖 − 2.  

Assumption 4: Vehicle 𝑖 measures 𝑣𝑖−1 using its own velocity information and on 

board relative velocity sensor data.  

As mentioned before, the goal of Filter 1 is to reconstruct   𝑢𝑖−1 which is subjected 

to packet drop out.  

Considering the control policy (8) for vehicle 𝑖 − 1, the dynamics of 𝑢𝑖−1 can be 

written as  

�̇�𝑖−1  =   − 1ℎ 𝑢𝑖−1 + 1ℎ (𝑘𝑝𝑒𝑖−1 + 𝑘𝑑�̇�𝑖−1) + 1ℎ 𝑢𝑖−2 (23) 

where  

𝑒𝑖−1(𝑡) = 𝑑𝑖−1(𝑡) − ℎ𝑣𝑖−1(𝑡) (24) 

The structure of Filter 1, which is implemented in vehicle 𝑖, is chosen as: 

�̇̂�𝑖−1  = −1ℎ �̂�𝑖−1 + 1ℎ (𝑘𝑝�̂�𝑖−1 + 𝑘𝑑 �̇̂�𝑖−1) + 1ℎ �̂�𝑖−2  
         +𝐿𝐾(𝑢𝑖−1 − �̂�𝑖−1) (25) 
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where 
KL  is the Kalman gain and , �̂�𝑖−1 and �̂�𝑖−2 are defined as follows: 

�̂�𝑖−1(𝑡) = {𝑑𝑖−1((𝑘 − 1)𝑇𝑠)     𝑖𝑓 𝜒(𝑘) = 0𝑑𝑖−1(𝑘𝑇𝑠)                𝑖𝑓 𝜒(𝑘) = 1𝑓𝑜𝑟  𝑘𝑇𝑠 ≤ 𝑡 < (𝑘 + 1)𝑇𝑠  (26) 

�̂�𝑖−2(𝑡) = {𝑢𝑖−2((𝑘 − 1)𝑇𝑠)     𝑖𝑓 𝜒(𝑘) = 0𝑢𝑖−2(𝑘𝑇𝑠)                𝑖𝑓 𝜒(𝑘) = 1𝑓𝑜𝑟  𝑘𝑇𝑠 ≤ 𝑡 < (𝑘 + 1)𝑇𝑠  (27) 

Note that, the variables �̂�𝑖−1 and �̂�𝑖−2 are the modified from the data 𝑑𝑖−1 and 𝑢𝑖−2, 

received by vehicle 𝑖. Using the holding strategy, explained in (26)-(27), the error (24) in 

presence of packet dropping will be: 

�̂�𝑖−1(𝑡) = �̂�𝑖−1(𝑡) − ℎ𝑣𝑖−1(𝑡) (28) 

Assumption 5: The probability of having packet drop outs on consecutive time 

instants 𝑡 =  𝑘𝑇𝑠 and 𝑡 = (𝑘 − 1)𝑇𝑠 is assumed to be negligible. 

Subtracting (14) from (12), the filter estimation error dynamic can be written as: 

�̇̃�𝑖−1  = − 1ℎ �̃�𝑖−1 − 𝐿𝐾�̃�𝑖−1 + 𝛥𝑢𝑃𝐷 (29) 

�̃�𝑖−1 = 𝑢𝑖−1 − �̂�𝑖−1 (30) 

where �̃�𝑖−1 is the estimation error, 𝛥𝑢𝑃𝐷 represents lumped effect of the 

uncertainties due to packet drop outs, holding strategy (26)-(27) and measurement noise. 

The Kalman gain 𝐿𝐾 is designed following the process detailed in [89]. In the design, the 

uncertain term 𝛥𝑢𝑃𝐷 is considered as a bounded Gaussian process noise which can 

potentially be suppressed by tuning the error covariance matrices. 
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5.3. Simulation Studies 

In this section, we present the simulation studies to verify the effectiveness of the 

scheme.  

Simulation Scenario: A homogenous platoon of five vehicles equipped with CACC 

control strategy is considered. The leader of the platoon follows the scaled and modified 

US06 driving cycle (Fig. 13). Performance of Filter 1 (Data reconstruction under packet 

drop out). This subsection shows the results regarding the performance of Filter 1. It verifies 

the effectiveness of the Filter 1 in reconstructing the actual data which is subjected to packet 

drop outs. Furthermore, it also shows how CACC performance is improved by the addition 

of Filter 1. 

 
Figure 13. Velocity profile of US06 Driving cycle 

The performance of the vehicle 𝑖 in the platoon can be evaluated by considering its 

relative distance 𝑑𝑖 with respect to the preceding vehicle. The CACC strategy attempts to 
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keep the relative distance very small to enhance the traffic throughput. However, failure in 

the communication network may cause degraded performance in CACC and consequently, 

lead to crashes. The relative distance 𝑑𝑖 should be greater than zero to avoid crashes between 

two consecutive vehicles.  

In this simulation study, the relative distance between vehicle 3 and vehicle 2 is used 

to illustrate the scheme. Fig. 14 shows the relative distance in the presence of packet drop 

outs with different probabilities. Note that, the vehicles are not equipped with the proposed 

scheme and only have typical CACC. It can be seen from Fig. 14 that under higher packet 

drop out probabilities, the relative distance between vehicle 2 and 3 becomes negative 

indicating crashes. 

Next, we evaluate the proposed scheme where the vehicles are equipped with 

diagnostic scheme (Filter 1). A network with probability of packet drop out 𝜆 = 0.2 is 

considered. Fig.15 shows the relative distance of vehicle 2 and vehicle 3 under two cases: 

1) typical CACC without the diagnostic scheme, 2) CACC with the proposed diagnostic 

scheme. It can be seen from Fig. 15 that at least four crashes happen in this specific driving 

cycle under typical CACC. However, applying the CACC with the proposed diagnostic 

scheme, these crashes are avoided. Therefore, it can be concluded that the proposed 

diagnostic scheme is able to improve the performance of the connected vehicle system. 
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Figure 14: Relative distance between vehicle 2 and vehicle 3 (𝑑3), with different 

probabilities of packet drop out in the communication network. 

 
Figure 15: Relative distance between vehicle 2 and vehicle 3 (𝑑3) with the probability 

of packet drop out 𝜆 = 0.2, under two cases: 1) typical CACC without the diagnostic 
scheme, 2) CACC with the proposed diagnostic scheme. 
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CHAPTER SIX 

RESILIENT STRATEGIES TOWARD DENIAL OF SERVICE ATTACK  

In cyber physical systems such as connected vehicles, DoS attack changes the 

average service time of the communication network by imposing illegitimate requests. 

Indeed, the DoS attack induces an additional service time which in turn corresponds to 

additional delay in the transmission network [42]. In the majority of the existing control 

frameworks, the effect of DoS attack has been modelled in two ways: (i) stochastic time 

delay which can be represented by random variables e.g. Bernoulli [41] or probabilistic 

approaches with memory e.g Markov Model [90] ; (ii) constant time delay [42]. In this 

chapter, our main case study is connected vehicle system with Co-operative Adaptive Cruise 

Control (CACC). We develop three different strategies to detect and estimate the effect of 

DoS attack as time-delay. In the first algorithm, we model the DoS attack with stochastic 

time delay in DSRC network. We propose a strategy to estimate the mean value of the delay 

as well as estimating correct value of signal subjected to the delay to modify the CACC 

algorithm correspondingly to maintain the functionality of the platoon. In the second 

strategy, we model DoS attack in DSRC with as constant unknown delay and proposed an 

adaptive observer to estimate the delay. Also, we studied the effects of system uncertainties 

on the DoS estimation algorithm. Finally, in the third algorithm, we considered a general 

CPS system with a saturated DoS attack modeled with constant unknown delay. In this part 

we modeled DoS via a PDE and developed a PDE based observer and an adaptive observer 

to estimate the delay as well as states of the system while the only available measurements 

are delayed.  
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6.1. Strategy Number One  

 
In this section we consider DoS attack in DSRC which degrades the quality of 

packet delivery of the communication network. To countermeasure the DoS attack in the 

platoon system, the conventional CACC algorithm is modified by adding an estimation 

algorithm consisting of two Luenberger observers and a delay estimator. The effectiveness 

of the overall online algorithm scheme is verified via simulation studies. The developed 

scheme is a new contribution to connected vehicles security research area with the following 

characteristics: 1) Considers stochastic delay to model the effect of DoS attack in connected 

vehicles as an example of CPS, 2) Theoretical verification of the convergence of the state 

estimation error, 3) Theoretical verification of delay estimation, and 4) Simple design and 

computationally efficient. 

6.1.1 DoS Attack Modeling  

In this section we simplified the model of the platoon by considering the following 

dynamic controller is considered to achieve the zero regulation error: 

1

1 1 1
( )

i i p i d i i
a a k e k e a

h h h
   

 (31) 

1 1

1 1
( ) ( )

p d d

i i p i p i i i

k k k
a d k v k a v a

h h h h h
       

 (32) 

where 𝑎𝑖−1 and 𝑣𝑖−1  are the desired acceleration and velocity of the preceding vehicle 

received through DSRC network. The parameters 𝐾𝑝, 𝐾𝑑 > 0 are controller gains designed 

such that (i) the inter-vehicle distance is maintained to 𝑑𝑟,𝑖 and (ii) the 𝑎𝑖 is bounded and 

changes smoothly. As it can be inferred from (32), control signal of vehicle 𝑖 derived from 
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CACC algorithm, 𝑎𝑖, depends on states of vehicle 𝑖 and information received from 

preceding vehicle 𝑖 − 1. 

 Considering (1) and (6), a new augmented state space representation for vehicle 𝑖 
is shown in (33), where, 𝑎𝑖−1 and 𝑣𝑖−1 are two external inputs of the system related to the 

preceding vehicle 𝑖 − 1. 

1 1
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        (33) 

Remark 8: Vehicle 𝑖 receives the absolute velocity, 𝑣𝑖−1 and acceleration 

information of preceding vehicle, 𝑎𝑖−1, through DSRC network. Hence, these signals are 

subjected to network failures and cyber-attacks.  

We can write (33) in the form of general state space representation as (8) considering 

that all states of the system are measured via on-board sensors. 

1( ) ( ) ( )

( ) ( )

i i i

i i

x t Ax t Bu t

y t Cx t

 
  (34) 

where 𝑥𝑖 = [𝑑𝑖, 𝑣𝑖, 𝑎𝑖]𝑇 ∈ 𝑅3, represents the states of vehicle 𝑖. 𝑢𝑖−1 = [𝑣𝑖−1, 𝑎𝑖−1 ]𝑇 ∈𝑅2  are external inputs of the system coming from vehicle 𝑖 − 1, and 𝑦𝑖 = [𝑑𝑖, 𝑣𝑖 , 𝑎𝑖]𝑇 ∈𝑅3  stands for measureable outputs of the system. 
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Denial of Service (DoS) Attack  

Denial of service attack is a cyber-attack that affects the timeliness of information 

exchange. In this section of proposed research, DoS attack is modeled as a stochastic delay 

on data transmission time in the network. We consider each vehicle updates its data for 

transmission periodically [15]-[16]. Fig.16 shows the packet transmission in ideal network 

and network under DoS attack.  

If there is no attack in the communication network, the packet is delivered with no 

delay. However, in presence of DoS, the attacker increases the service time of the network 

and keeps the network busy. Consequently, vehicle 𝑖 will not receive the new information 

of vehicle 𝑖 − 1, to update its own information. Therefore, vehicle 𝑖 holds the previous data 

of vehicle 𝑖 − 1 [15]-[16],[10] . 
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Figure 16: Modeling of Denial of Service attack on signal 𝑎𝑖−1 

Consider 𝑝 as the probability of network being idle to transmit a packet and 𝑞 =(1 − 𝑝) as the probability of network being busy. The impact of DoS attack can be modeled 

as a stochastic delay as the following: 

𝜏 = 𝑙∆𝑇 < 𝑑 = 𝑙𝑚𝑎𝑥∆𝑇, 𝑙 ∈ {1,2, … , 𝑙𝑚𝑎𝑥} (35) 

where ∆𝑇 is the sample time of updating safety messages in vehicles. Therefore, the 

probability distribution of delay 𝜏 can be defined using Bernoulli random variable 

        𝑃(𝜏 = 0) = 𝑝 

𝑃(𝜏 = ∆𝑇) = 𝑝 × (1 − 𝑝) (36) 

      𝑃(𝜏 = 𝑖 × ∆𝑇) = 𝑝 × (1 − 𝑝)𝑖 
The 𝑝 depends on the DoS attacker capability to keep network busy. Since the DoS 

attack increases the service time [42] and consequently𝑞, in presence of the attack, the 

probability of finding network idle will be reduced.  

In presence of attack the dynamic of the vehicle 𝑖 will change as (37) 

1( ) ( ) ( )

( ) ( )

i i i

i i

x t Ax t Bu t

y t Cx t

  
  (37) 

where 𝜏 is stochastic delay. 

Assumption 6: The attacker has a limited access to increase the service time of the 

network [42]. Hence, the injected delay in data transmission is bounded with an upper limit 

of 𝜏𝑚𝑎𝑥 
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6.1.2. Diagnostics Algorithm 

Transmitted data 𝑢𝑖−1, is subjected to DoS attack and hence affected by the 

stochastic delay in the network. The stochastic delay in the receiving data can diminish the 

performance of platoon and cause collisions. Hence, to avoid collisions and enhance the 

performance of platoon, a precise estimation of actual 𝑢𝑖−1 is required. The estimated 𝑢𝑖−1  

can be used in CACC strategy instead of actual 𝑢𝑖−1under DoS attack. This strategy can be 

called modified CACC. To achieve this goal, an estimation algorithm containing three 

components is proposed: (1) Observer I estimates the states of the preceding car in normal 

condition. The output error of the observer I is used as a residual signal to detect the attack. 

(2) Observer II estimates the states of the preceding car with certain accuracy in presence 

DoS attack. These estimates are used in the modified CACC strategy. (3) Delay estimator 

estimates the stochastic delay induced by DoS. The schematic of the online estimation 

scheme is shown in Fig. 17.  
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Figure 17: DoS strategy schematic for connected vehicles to modify CACC 

 

In brief, observer I estimates the states of preceding vehicle in ideal case when there 

is no delay in communication network. In occurrence of DoS, the residual of this observer 

will be non-zero, detects the DoS attack. Therefore, system switches to observer II and delay 

estimator to estimate the states of preceding vehicle accurately even in presence of DoS.  

Real time measurements from vehicle 𝑖 − 1 are 𝑑𝑖−1, 𝑣𝑖−1, 𝑎𝑖−1 and inputs for both 

observers are states of vehicle 𝑖 − 2 𝑣𝑖−2, 𝑎𝑖−2 which are received through DSRC under 

stochastic delay.   

Observer I 

Assumption 7: There is no sensor faults in the on-board sensors.  

Similar to (34), dynamics of vehicle 𝑖 − 1 can be written as: 
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( ) ( ) ( )

( ) ( )
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  (38) 

where 𝑥 = [𝑑𝑖−1, 𝑣𝑖−1, 𝑎𝑖−1]𝑇 ∈ 𝑅3, represents the states of vehicle 𝑖 − 1. 𝑢 =[𝑣𝑖−2, 𝑎𝑖−2 ]𝑇 ∈ 𝑅2 are inputs of the system and 𝑦 = [𝑑𝑖−1, 𝑣𝑖−1, 𝑎𝑖−1]𝑇 ∈ 𝑅3stands for 

measureable outputs of the system. 

A Luenberger observer can be designed as (39) and implemented in vehicle 𝑖: 
 1

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )
m

x t Ax t Bu t L y t y t     (39) 

where 𝑦𝑚(𝑡) is the transmitted measurements of vehicle 𝑖 − 1 including relative distance, 

velocity and acceleration. In ideal network with no DoS attack,  

( ) ( )my t Cx t  (40) 

Therefore, error dynamics is derived as: 

1( ) ( ) ( )x t Ax t L Cx t   (41) 

The observer gain, 𝐿1, is selected such that the estimation error �̃�(𝑡) , with dynamics 

of (41), converges to zero exponentially. To do this, 𝐴 − 𝐿1𝐶 should be negative definite 

matrix. The residual 𝑆1 is defined as 

𝑆1(𝑡) = 𝑦𝑚(𝑡) − 𝑦 ̂(𝑡) = 𝐶(𝑥𝑚(𝑡) − 𝑥 ̂(𝑡)) (42) 

In occurrence of DoS attack, since the estimated value is not equal with the 

measurement due to the delay, the residual will be non-zero. This residual is used as an 

indicator of DoS attack in the network. 
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Observer II 

Assumption 8: DSRC is a shared communicating network. Therefore, in presence 

of attack in the network, all exchanging data experience the same delay on the same 

time, 𝜏(𝑡) ∈ {𝜏 | 𝑝(𝜏) < 1 , 0 ≤ 𝜏 ≤  𝑑}. 
Assumption 9: The derivative of vehicle acceleration is bounded. 

In presence of DoS attack, since vehicle 𝑖 receives the measurement of vehicle 𝑖 − 1 

through the DSRC network, (38) can be re-written as (43) 

( ) ( ) ( )

( ) ( )

x t Ax t Bu t

y t Cx t

  
  (43) 

Considering the mentioned assumptions, the observer dynamics is given as: 

 ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )
m

x t Ax t Bu t L y t y t        (44) 

where �̂� is the mean value of estimated delay derived from delay estimator explained in the 

next section. 𝑦𝑚(𝑡) is the transmitted measurements of vehicle 𝑖 − 1 .These information are 

transferred from vehicle 𝑖 − 1 through the DSRC network which is subjected to delay 𝜏. 

Therefore, the received measurements of vehicle 𝑖 − 1 in the vehicle 𝑖 have delay of 𝜏 

seconds as it is described in (45).  

( ) ( )my t y t    (45) 

Consequently, the error dynamics can be written as (46) 

 ˆ ˆ( ) ( ) ( ) ( )x t Ax t LC x t x t     
  (46) 
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 ( ) ( ) ( ) ( )x t Ax t LC x t M t     (47) 

With initial condition   

�̃�(𝑡0) = �̃�0 (48) 

where 𝑀(𝑡) represents the lumped noise and uncertainties caused by error in estimating the 

delay. It is assumed that 𝑀(𝑡)is bounded as: 

|𝑀[𝑡0,𝑡∞]|∞ < 𝐾. ∆ (49) 

The upper bound of the uncertainty can be derived from the driving cycle, maximum 

delay and maximum permitted acceleration. 

Remark 9: The error dynamics (47) is stable and converges to a bounded region 

exponentially, if there exists 𝐿 matrix such that the following Lyapunov-Krasovskii function 

satisfies Proposition 1 [99]. 

 𝑉(𝑡, �̃�, �̇̃�) = �̃�𝑇(𝑡)𝑃�̃�(𝑡) + ∫ 𝑒𝑎(𝑠−𝑡)�̃�𝑇(𝑠)𝑆�̃�(𝑠)𝑑𝑠𝑡𝑡−d
       + d∫ ∫ 𝑒𝑎(𝑠−𝑡)�̇̃�𝑇(𝑠)𝑅�̇̃�(𝑠)𝑑𝑠𝑡𝑡+𝜃0

−d 𝑑𝜃     (50) 

Proposition 1: If there exist 𝑎 > 0, 𝑏 > 0 𝑎𝑛𝑑 3 × 3 − 𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠 𝑃 > 0, 𝑆 >0, 𝑎𝑛𝑑 𝑅 > 0 such that along trajectories of (47) the Lyapunov-Krasovskii function (50) 

satisfies the condition (51)  

𝑊 𝑎𝑉=∆ − 𝑏|𝑀|2 + 𝑑𝑑𝑡 𝑉 < 0 (51) 

Then the solution of (21) with initial condition of �̃�(𝑡0) = �̃�0 satisfies the inequality  
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�̃�𝑇(𝑡)𝑃�̃�(𝑡) < 𝑒−𝑎(𝑡−𝑡0)�̃�0𝑇𝑃�̃�0 + [1 − 𝑒−𝑎(𝑡−𝑡0)] 𝑏𝑎 |𝑀[𝑡0,𝑡∞]|∞2  (52) 

Proof: Applying comparison principle [78], we have  

�̃�𝑇(𝑡)𝑃�̃�(𝑡) ≤ 𝑉(𝑡, �̃�𝑡 , �̃��̇�) < 𝑒−𝑎(𝑡−𝑡0)𝑉(𝑡, �̃�𝑡0, �̃�𝑡0̇ ) + ∫ 𝑒−𝑎(𝑡−𝑠)𝑏|𝑀(𝑠)|2𝑑𝑠𝑡𝑡0  (53) 

We find  

𝑊 ≤ 2�̃�𝑇(𝑡)𝑃�̇̃�(𝑡) + 𝑎�̃�𝑇(𝑡)𝑃�̃�(𝑡) − 𝑏𝑀𝑇(𝑡)𝑀(𝑡)
+ 𝑑2�̇̃�𝑇(𝑡)𝑅�̇̃�(𝑡) − 𝑑𝑒−𝑎𝑑 ∫ �̇̃�𝑇(𝑠)𝑅�̇̃�(𝑠)𝑑𝑠𝑡

𝑡−𝑑 + �̃�𝑇(𝑡)𝑆�̃�(𝑡)
− [�̃�𝑇(𝑡 − ℎ)𝑆(�̃�(𝑡 − ℎ)]𝑒−𝑎𝑑 

 (54) 

Applying the standard arguments, we obtain that 

𝑊 ≤ 𝜂𝑇(𝑡)Φη(𝑡) < 0        ∀η(𝑡) ≠ 0 (55) 

where 

 η(𝑡) = 𝑐𝑜𝑙 {�̃�(𝑡), �̇̃�(𝑡), �̃�(𝑡 − 𝑑), �̃�(𝑡 − 𝜏(𝑡)),𝑀(𝑡)} if the matrix inequality  

𝛷 = [  
  𝜙11 𝜙12 0 𝑃2𝑇𝐴1 + Re−𝑎𝑑 𝑃2𝑇∗ 𝜙22 0 𝑃3𝑇𝐴1 𝑃3𝑇∗ ∗ −(𝑆 + 𝑅)𝑒−𝑎𝑑 𝑅𝑒−𝑎𝑑 0∗ ∗ ∗ −2𝑅𝑒−𝑎𝑑 0∗ ∗ ∗ ∗ −𝑏𝐼]  

  𝛷 < 0    (56) 

is feasible, where 

𝐴1 = −𝐿𝐶  

𝜙11 = 𝐴𝑇𝑃2 + 𝑃2𝑇 + 𝑎𝑃 + 𝑆 − Re−𝑎𝑑 (57) 
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𝜙12 = 𝑃 − 𝑃2𝑇 + 𝐴𝑇𝑃3 (58) 

𝜙22 = −𝑃3 − 𝑃3𝑇 + 𝑑2𝑅 (59) 

Thus, the following results will be obtained 

Lemma 1. Given 𝑎 > 0, 𝑏 > 0 , 𝑎𝑛𝑑  𝑑 > 0 , let there exist 3 × 3 𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠 𝑃 >0, 𝑃2, 𝑃3, 𝑆 > 0, 𝑎𝑛𝑑 𝑅 > 0 such that the LMI (56) with notation given in (57)-(59) holds. 

Then the solution of (47) satisfies (50) for all delays  0 ≤ 𝜏(𝑡) ≤  𝑑. Moreover, the ellipsoid 

𝜒∞ = {�̃� ∈ 𝑅3:  �̃�𝑇(𝑡)𝑃�̃�(𝑡) <  𝑏𝑎 𝐾2. ∆2} (60) 

is exponentially attractive with the decay rate a/2 for all |𝑀(𝑡)|2 ≤ 𝐾2. ∆2. 

Delay Estimator  

To estimate states of preceding vehicle, the observer needs estimated average value 

of delay. We define the following residual  

𝑆2(𝑡) = 𝑦𝑚(𝑡) − �̂�(𝑡 − �̂�) = 𝑦(𝑡 − 𝜏) − �̂�(𝑡 − �̂�) (61) 

By discretizing the residual, (61) can be re-written as  

𝑟𝑘 = 𝑆2(𝑘. ∆𝑇) = 𝑦(𝑘. ∆𝑇 − 𝜏) − �̂�(𝑘. ∆𝑇 − 𝑙∆𝑇) (62) 

𝑟𝑘 = 𝑦(𝑘 − 𝑙) − �̂�(𝑘 − 𝑙) (63) 

Assume that we have observed the data set 𝑟 = {𝑟1, 𝑟2, … , 𝑟𝑘 } and we want to 

estimate the average value of stochastic delay. Since in section III, we have proven that the 

estimation error converges to a bounded area, we can assume obtained residual is a 

stationary Gaussian random process [80], with mean 𝜇 and variance 𝜎  
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 𝑟𝑘~𝒩(𝜇, 𝜎𝑘)   (64) 

Considering (47), we can write:  

 𝑟𝑘+1 = 𝐴𝑟𝑘 − 𝐿𝐶𝑟𝑘−𝑙 + 𝑀𝑘 (65) 

𝐸(𝑟𝑘+1) = 𝐴. 𝐸(𝑟𝑘) − 𝐿𝐶. 𝐸(𝑟𝑘−𝑙) + 𝐸(𝑀𝑘) (66) 

where 𝐸(. ) is the expectation operator. Since 𝑀 is assumed to be zero mean white noise, 

the expected value of 𝑟 will be  

𝐸(𝑟𝑘+1) = 𝐸(𝑟𝑘) = 𝜇 = 0     𝑎𝑠     𝑘 → ∞      (67) 

Furthermore,  

𝐸(𝑟𝑘+12 ) = 𝐴2𝐸(𝑟𝑘2) + 𝐿2𝐶2𝐸(𝑟𝑘−𝑙2 ) + 2𝐴𝐿𝐶𝐸(𝑟𝑘 . 𝑟𝑘−𝑙) + 𝐸(𝑀𝑘2)  (68) 

Based on the definition of the variance of a signal, we have 

𝜎𝑘+12 = 𝐸(𝑟𝑘+12 ) − 𝐸(𝑟𝑘+1)2 (69) 

Substituting (40) and (42) in (43), the following equation can be derived:  

𝜎𝑘+12 = 𝐴2𝜎𝑘2 + 𝐿2𝐶2𝜎𝑘−12 + 2𝐴𝐿𝐶𝐸(𝑟𝑘. 𝑟𝑘−𝑙) + 𝜎𝑀2  (70) 

Considering we have enough observation on 𝑟, as 𝑘 → ∞, we have 

𝜎𝑘+12 = 𝜎𝑘2 = 𝜎𝑘−𝑙2 = 𝜎2           (71) 

Therefore, we can write 

𝜎𝑘2 = (𝐴2 + 𝐿2𝐶2)𝜎𝑘2 + 2𝐴𝐿𝐶𝑅𝑟(𝑟𝑘. 𝑟𝑘−𝑙) + 𝜎𝑀2  (72) 
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Since 𝑟 = {𝑟1, 𝑟2 , … , 𝑟𝑘} is Gaussian wide sense stationary signal, the correlation is related 

to delay as 

𝑅𝑟(𝑙) = 𝜎2𝑒−|𝑙|/∆𝑇 (73) 

Substituting (45) and (47) in (46), we have:  

𝜎2 = (𝐴2 + 𝐿2𝐶2)𝜎2 + 2𝐴𝐿𝐶𝜎2𝑒−|𝑙|/∆𝑇 + 𝜎𝑀2  (74) 

(𝐼 − 𝐴2 − 𝐿2𝐶2)𝜎2 − 𝜎𝑀2 = 2𝐴𝐿𝐶𝜎2𝑒− |𝑙|∆𝑇 (75) 

(𝐼−𝐴2−𝐿2𝐶2)𝜎2−𝜎𝑀22𝐴𝐿𝐶𝜎2 = 𝑒− |𝑙|∆𝑇 (76) 

𝑙 = |𝑙| = ∆𝑇. 𝐿𝑛 ( 2𝐴𝐿𝐶𝜎2(𝐼−𝐴2−𝐿2𝐶2)𝜎2−𝜎𝑀2 ) (77) 

Using the probability distribution of 𝑟 and measuring the variance of residual, we can 

measure the delay 𝑙 and have an approximation of total delay 𝜏 = ∆𝑇. 𝑙.  
Therefore, we can write  

�̂� = ∆𝑇. 𝑙 (78) 

Every sample time, using the updated 𝜏 and updated estimation and new 

observation, all calculation will be updated. Note that, better estimation of the delay, reduces 

the uncertainties boundary in (47) and (49). 

6.1.3. Results and Discussion 

In this section, we simulate a homogenous platoon of 5 vehicles equipped with 

CACC strategy. Vehicle 1 as the leader of platoon, follows UDDS driving cycle. 
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Considering ℎ = 0.3 𝑠 and tuning the controller to track the desire relative distance, the 

nominal system will have the following matrices: 

𝐴 = [ 0 −1 00 0 13.33 −4.33 −4.33] ,     𝐵 = [ 1 00 03.33 3.33],   
𝐶 = 𝐼3×3  

We consider vehicle 3 as a case study to demonstrate the results. In vehicle 3, the 

external input signal is 𝑢2 = [𝑣2, 𝑎2] 𝑇coming from vehicle 2 through the DSRC. The 

parameters 𝐿, 𝑎 > 0, 𝑏 > 0  are chosen as  

𝐿 = [0.15 0.15 01 0.1 0.10.1 −0.15 0.1]  , 𝑎 = 1 , 𝑏 = 2 

These values are selected such that the LMI in (24) is satisfied and matrix Φ is 

negative definite. Solving the LMI the following positive definite matrixes are obtained.  

𝑃1 = [ 2.0101 −1.8057 −2.2541−1.8057 1.6804 2.0358−2.2541 2.0358 2.5418 ] 
𝑃2 = [ 2.5974 −2.1479 −2.2241−2.1479 2.1467 2.0514−2.2241 2.0514 2.3303 ] 

𝑃3 = [0.7698 0.3989 0.05890.3989 0.3689 0.01230.0589 0.0123 0.0743] 
𝑆 = [ 1.5109 −1.3036 −1.05442−1.3036 1.1607 1.3589−1.05442 1.3589 1.6182 ] 
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𝑅 = [0.4951 0.2406 0.05990.2406 0.2143 0.06180.0599 0.0618 1.6182] 
To simulate DoS attack in the platoon, a Bernoulli random variable with probability 

of success 𝑝 = 0.5 is considered. The corresponding delay in injected as the DoS attack into 

the communication network at 𝑡 = 300 𝑠𝑒𝑐 and remains in the system. In occurrence of 

DoS attack, the states of vehicle 2 consisting 𝑣2 and 𝑎2 are estimated by proposed observer 

II and delay estimator. The modified CACC strategy, uses the estimated �̂�2 = [𝑣2, �̂�2] 
instead of actual one. Hence, the performance of platoon in presence of DoS enhances. 

Fig.18 shows the states of vehicle 3, relative distance (𝑑3) velocity (𝑣3) and acceleration 

(𝑎3) in different scenarios.  Solid blue curves represent the states of vehicle 3 in indeal case 

with no DoS attack in the communication network. Solid red curves show states of vehicle 

3 in occurrence of the DoS attack injected at 𝑡 = 300 𝑠𝑒𝑐  when the normal CACC is 

applied as control strategy. Finally, the green curves represent the states of vehicle 3 in 

presence of DoS attack when modified CACC control strategy uses the estimated states of 

vehicle 2.  
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Figure 18: States of vehicle 3, 𝑑3, 𝑣3 and 𝑎3 in ideal network (blue), under attack with 

normal CACC (red), with modified CACC which uses estimated signals of vehicle 2 �̂�2 = [𝑣2, �̂�2] 

 
Figure 19: States of vehicle 3, zoomed results for 𝑡 = [290 350], before occurrence of 

DoS and after that. 
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To visualize the results better, Fig. 19 depicts the zoomed area of results for the 

time interval𝑡 = [ 290, 350]. As it can be inferred from Fig.18 and Fig.19, in presence of 

DoS attack, due to the delay in the receiving data, the relative distance in several points is 

less than critical safety distance. However, using correct estimation, platoon has better 

performance which is close to ideal case 

 

6.2. Strategy Number Two 

The main contribution of the present section is a control-oriented  diagnostic  

framework  for  connected  vehicle systems  that  is  capable  of  (i)  detecting  the  occurrence  

of DoS  attack  and,  (ii)  providing  an  estimate  of  the  effect  of the  attack.  Note  that,  

the  estimate  of  the  effect  of  the  attack can  be  extremely  useful  for  designing  secure  

control  system for  the  vehicles.  In  this  section  we  model  the  DoS  attack  by a  time  

delay  in  information  processing  by  the  network.  The DoS detection scheme consists of 

a set of observers designed by combining adaptive estimation and sliding mode theory. 

Essentially,  the  goal  of  the  scheme  is  to  track  the  delay  in the  information  processing  

by  the  DSRC.  When the delay exceeds a pre-defined threshold, a DoS occurrence is 

detected. The pre-defined threshold is computed offline considering the modeling, 

measurement and communication uncertainties. The scheme also estimates the delay 

providing an estimate of the effect of DoS. This estimated delay can be used for updating 

(modifying) the safety relative distance to avoid collision. 
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6.2.1. DoS Attack Modeling  

In this section, we assume the DoS attacker focuses on the endpoint (the following 

vehicle) and flood the communication network with excessive amount of packets; therefore, 

the authorized user (vehicle 𝑖) cannot access to the DSRC network on time and the 

acceleration data of the leading vehicle 𝑖 − 1 will be delivered to the follower with a  delay. 

Since the capability of the attacker is not known, in this section, the delay induced by DoS 

attack is modeled as unknown constant delay. Considering Remark 1, dynamics of vehicle 𝑖 in (\ref{vehicle}) under DoS attack can be written as  

1 1

( ) 0 1 0 ( ) 1 0

( ) 0 0 1 ( ) 0 ( ) 0 ( )

( ) ( ) 11
( ) ( )

 
i i

i i i i

i p i dd
p p

d t d t

v t v t v t a t

a t k a t kk
k k

hhh h h

 

     
         
                   
                  
        (79) 

where vehicle 𝑖 receives the acceleration information of vehicle 𝑖 − 1 with unknown delay 

induced by DoS attack, 𝜏.  

Assumption 10: The attacker has a limited capability to keep the network busy. Hence, the 

effect of DoS attack as the unknown delay has an upper bound corresponding to the 

maximum capability of the attacker. i.e. 𝜏 ∈ [0, 𝜏𝑚𝑎𝑥]. 
Assumption 11: We consider a homogeneous platoon of vehicles. Therefore, all vehicles 

in the platoon have the same parameters e.g. mass, inertia, rolling resistance coefficient.  

Assumption 12: Each vehicle in the platoon measures relative distance with respect to 

preceding vehicle 𝑑𝑖 and following vehicle 𝑑𝑖+1. 
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Remark 10: Vehicle 𝑖 measures the relative velocity via radar and hence can compute the 

absolute velocity 𝑣𝑖−1 of vehicle 𝑖 − 1. Vehicle 𝑖 also receives acceleration 𝑎i−1  

information of vehicle 𝑖 − 1 via DSRC network which is subjected to network failures and 

cyber-attacks.  

6.2.2. Real-time Detection and Estimation Scheme for DoS Attack 

With the formulation discussed in the previous section, the diagnostic problem is to detect 

when the delay parameter 𝜏 is non-zero and if so, estimate the value of 𝜏. The detection 

and estimation scheme for DoS attack is presented in Fig. 20.  

Remark 11: The DoS detection module is implemented in vehicle 𝑖 − 1. As 

mentioned in the previous section, vehicle 𝑖 − 1 has access to the following information: (i) 𝑑𝑖(𝑡) and 𝑣𝑖(𝑡) measured by rear radar of vehicle 𝑖 − 1 and, (ii) 𝑎𝑖(𝑡) directly measured in 

vehicle 𝑖 − 1. Note that, these measurements are not affected by the occurrence of the DoS 

attack.  

 

Figure 20. DoS attack detection and estimation scheme. 
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The proposed scheme consists of a model-based observer, denoted by Vehicle i 

Observer. Based on the available measurements and the model (79), Vehicle i Observer 

detects the occurrence and estimates size of the delay𝜏. Before detailing the design of the 

Vehicle i Observer, we make the following assumptions. 

Assumption 13: The signal 𝑎𝑖−1(𝑡) is at least two times differentiable with respect 

to time. Furthermore, the derivative is bounded by some finite value, i.e. |�̇�𝑖−1(𝑡)| <�̅�𝑑, ∀𝑡 > 0 

Assumption 14: Using Taylor's series expansion [91], the delayed signal 𝑎𝑖−1(𝑡 − 𝜏)can be written as 

1 1 1( ) ( ) ( ) . .i i ia t a t a t H OT         (80) 

where 𝐻.𝑂. 𝑇 represents the higher order terms of the Taylor's series expansion. We 

assume that $H.O.T$ is negligible and hence 𝑎𝑖−1(𝑡 − 𝜏) ≈  𝑎𝑖−1(𝑡) − 𝜏�̇�𝑖−1(𝑡). 

DoS Attack Detection 

Applying Assumption 14, the system dynamics (79) can be written as: 

1( ) ( ) ( )i i id t v t v t 
  (81) 

( ) ( )i iv t a t   (82) 

1 1 1

1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ) ,( ) ( ) ( )p d d

i i p i p i i i i

k k k
a t d t k v t k a t v t a t a t

h h h h h
         

  (83) 

We choose the following structure for Vehicle i Observer. 
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ˆ ˆ( ) ( ) ( )( )i v i iv t L sgn v t v t 
   (84) 
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1
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  (86) 

where 𝑣𝑖(𝑡), and �̂�𝑖(𝑡) are the estimated relative velocity and acceleration, respectively; �̂�(𝑡) is the estimated delay; 𝐿𝑣 , 𝐿𝑎, 𝐿𝑏 are the constant observer gains to be designed; 𝑣𝑖−1(𝑡) and 𝑎𝑖−1(𝑡)are measured via on-board sensors in Vehicle i-1; 𝑑𝑖(𝑡) and 𝑣𝑖(𝑡)are 

measured by Vehicle i-1 using radar; 𝜂 is a filtered version of the signal 𝐿𝑣𝑠𝑔𝑛(𝑣𝑖(𝑡) −𝑣𝑖(𝑡). Next, we state the main result of the proposed approach.  

Main Result: Consider the system model described in (81)-(83), and the observer 

structure (84)-(86). If the assumptions 13-14 hold true, then the estimated value of DoS 

attack, �̂�(𝑡), converges to its true value 𝜏, as 𝑡 → ∞, given the the observer gains satisfy the 

following conditions:  

 ,  0a bL L    (87) 

( ) 0, 0v iL a t t   
  (88) 

Proof: Subtracting (84)-(85) from (82)-(83), we can write the error dynamics of the 

observer as: 

( ) ( ) ( )( )i i v iv t a t L sgn v t 
  (89) 
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1

1 1 ˆ( ) ( ) ( ( ) ( )) ( ) ( ) ( ) ( ) ,( ) ( ) ( )d
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  (90) 

where 𝐿𝑣𝑠𝑔𝑛(𝑣𝑖(𝑡) − 𝑣𝑖(𝑡), �̃�𝑖(𝑡) = 𝑎𝑖(𝑡) − �̂�𝑖(𝑡) and �̃�(𝑡) = 𝜏(𝑡) − �̂�(𝑡)  are the 

estimation errors. We start with analyzing (89) by choosing the following Lyapunov 

function candidate𝑉𝑣(𝑡) = 12 �̃�𝑖2(𝑡). The derivative of the Lyapunov function candidate can 

be written as: 

. .

( ) ( ) ( ) ( ) ( ) ( ) ( )( )iv i i i v i iV t v t v t v t a t L v t sgn v t     (91) 

Applying the inequality 𝐴𝐵 ≤ |𝐴||𝐵| on the first term of the right hand side of (91), 

we can write  

.

( ) ( ) ( ) ( ) ( ) ( )( )v i i v i i i vV t v t a t L v t v t a t L   
  (92) 

If the observer gain is such that 𝐿𝑣 > |𝑎𝑖(𝑡)| > 0, ∀𝑡 ≥ 0, 𝑡ℎ𝑒𝑛 𝑉𝑣. (𝑡) ≤ 0, and 

hence we can write: 

.

( ) ( )v vV t V t 
  (93) 

where 𝛼 = min𝑡≥0 √2(𝐿𝑣 − |𝑎𝑖(𝑡)|) ≥ 0. The solution of the differential inequality 

(\ref{Lyap3}) is given by 𝑉𝑣(𝑡) ≤ (− 𝛼2 𝑡 + √𝑉𝑣(0))2
. Therefore, we can conclude that 

𝑉𝑣(𝑡) → 0  after some finite time 𝑡𝑓 < 2𝛼 √𝑉𝑣(0). After 𝑡 > 𝑡𝑓, we have 𝑉𝑣(𝑡) = 0, 𝑉𝑣. (𝑡) =0, hence �̃�𝑖(𝑡) = 0, �̇̃�𝑖(𝑡) = 0  [88]. Therefore, after 𝑡 > 𝑡𝑓 we can re-write (89) as 

0 ( ) ( ) ( ) ( )i ia t t t a t    
  (94) 
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where 𝜂 is called equivalent output error injection to maintain the sliding motion [88]. In 

practice, 𝜂  can be extracted by passing the switching signal 𝐿𝑣𝑠𝑔𝑛(�̃�𝑖(𝑡)) through a low-

pass filter with unity steady-state gain. Next, we analyze the error dynamics (90) using the 

Lyapunov function candidate 𝑉𝑎(𝑡) = 12 �̃�𝑖2(𝑡) + 𝐾2 �̃�2(𝑡) where 𝐾 > 0. The derivative of 

the Lyapunov function candidate can be written as: 

.

( ) ( ) ( ) ( ) ( )a i iV t a t a t K t t     (95) 

After 𝑡 > 𝑡𝑓 we have 𝜂(𝑡) = 𝑎𝑖(𝑡)  and �̃�𝑖(𝑡) = 0. Hence, we can re-write (95) as 

.

1

1
( ) ( ) ( ) ( ) ( )( ( )) ( ) ( )a i i a i iV t a t a t t L a t a t K t t

h
     

  (96) 

Considering the fact 𝜏 is constant and hence �̇� = 0, we can re-write (96) as 

.

1

1 ˆ( ) ( ) ( ) ( ) ( )( ( )) ( ) ( )a i i a i iV t a t a t t L a t a t K t t
h

     
  (97) 

Applying the update law (86) and choosing 𝐾 = 1𝐿𝑏, (97) becomes 

.
2( ) ( ) 0a a iV t L a t     (98) 

This concludes the decaying behavior of 𝑉𝑎(𝑡)that is 𝑉𝑎(𝑡) ≤ 𝑉(0). So, starting 

from any positive initial value of 𝑉𝑎(0), 𝑉𝑎(𝑡) → 𝛾 < ∞  is bounded as 𝑡 → ∞. Hence, by 

recalling 𝑉𝑎(𝑡) = 12 �̃�𝑖2(𝑡) + 𝐾2 �̃�2(𝑡), we conclude that �̃�𝑖(𝑡) and �̃�(𝑡)are bounded as well.  

Convergence of �̃�𝑖: In this part, we prove �̃�𝑖(𝑡) → 0  as 𝑡 → ∞. We derive the second 

derivative of Lyapunov candidate 𝑉𝑎(𝑡) with respect to time as  
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( ) 2 ( ) ( )a a i iV t L a t a t    (99) 

After 𝑡 > 𝑡𝑓, replacing �̇̃�𝑖(𝑡) by 

.

1
1

( ) ( ) ( )ii a i
a t a t L a t

h
  

  (100) 

we have 

2 2
1( ) 2 ( ) ( ) 2 ( )a

a i i a i

L
V t a t a t L a t

h
 

  (101) 

As it mentioned earlier, �̃�𝑖(𝑡) and �̃�  are bounded. Furthermore, referring to 

Assumption 13, �̇�𝑖−1 is bounded. Hence, (101)shows the boundedness of �̈�𝑎(𝑡) < ∞ which 

equivalently verifies that �̇�𝑎(𝑡) is uniformly continuous. Now, applying Barbalat's lemma 

[92] on �̇�𝑎(𝑡) combined with the fact that 𝑉𝑎(𝑡) is bounded, we have �̇�𝑎(𝑡) → 0 as 𝑡 → ∞. 

Consequently, �̇�𝑎(𝑡) = −2𝐿𝑎�̃�𝑖2(𝑡) → 0. indicates that �̃�𝑖(𝑡) → 0as 𝑡 → ∞.  

Convergence of �̃� 

 In this part, we prove �̃� → 0as 𝑡 → ∞. We know that  

0
( ) ( ) (0) (0)i i i ia t dx a a a


         (102) 

Furthermore, �̇�𝑎(𝑡), �̃�𝑖(𝑡) and �̃� are uniformly continuous. Also, referring to 

Assumption 13, second derivative of 𝑎𝑖−1(𝑡) exists and is finite which equivalently imply 

that, �̇�𝑖−1(𝑡) is uniformly continuous. Hence, using (100) we conclude �̇̃�𝑖(𝑡)is uniformly 

continuous. Therefore, by applying Barbalat's lemma [92], and considering the fact that �̇̃�𝑖(𝑡)is bounded, we can conclude �̇̃�𝑖(𝑡) → 0as 𝑡 → ∞. Next, considering (78), where �̇̃�𝑖(𝑡) → 0 and �̃�𝑖(𝑡) → 0 as 𝑡 → ∞, it is clear that �̃� → 0 as 𝑡 → ∞. 
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Remark 12: The estimate of the delay parameter, �̂�, will be used to detect the 

occurrence of the DoS attack. Ideally, a DoS occurrence will be detected when �̂� > 0. 

Furthermore, the magnitude of �̂� will serve as an estimate of the effect of DoS. 

The effects of uncertainties have not been considered in the design of the detection 

observers. However, possible sources of uncertainty that affect the diagnostic scheme are: 

1) unmodeled dynamics, 2) Radar measurement noise [93]-[94] 3) inherent communication 

delay in a practical DSRC network, 4) Driver behavior which affects CACC gains e.g. 𝑘𝑝 

and 𝑘𝑑 [95]. The presence of these uncertainties prohibits �̂� from having the idealized 

property of being zero even in the absence of any DoS attack. One of the possible ways to 

deal with this is to use nonzero threshold set based on a realistic DSRC network behavior. 

The detection logic will be: DoS attack is detected when �̂� > 𝛿 and no DoS when �̂� ≤𝛿where 𝛿 is the threshold. The effect of the uncertainties on �̂� will be suppressed below 

this threshold value.  

Below are the guidelines for selection of constant threshold values for the evaluation of the 

residual:  

Step 1: Collect �̂� data under no DoS attack in normal DSRC network conditions from 

Monte-Carlo simulations or experimental studies.  

Step 2: Plot the probability distribution of �̂�. An example probability distribution is 

shown in Fig. 21.In practice, this probability distribution will depend on uncertainties in the 

experimental data or of the Monte-Carlo study.  

 Step 3: Select a maximum allowable probability of false alarms. 



 78 

Step 4: It can be seen from Fig. 21 that the probability of the false alarms can be 

computed by the following equation:  

0 ( ) ,FAP p x dx



    (103) 

where 𝑃𝐹𝐴 is the probability of DoS false alarm, 𝛿 is the selected threshold for DoS attack 

and 𝑝0(𝑥) is the �̂� probability distribution under no DoS attack in the DSRC network. The 

goal here is to select 𝛿 which will yield an acceptable 𝑃𝐹𝐴. 

 

Figure 21. Residual probability distribution under no attack condition 

 

6.2.3. Simulation Studies 

In this section, we present simulation studies to evaluate the effectiveness of the 

proposed scheme. In this simulation setup, we consider a platoon of four identical vehicles 

equipped with CACC system. The vehicles in the platoon exchange their safety related 

messages including acceleration information through DSRC network. Furthermore, we 

assume that the platoon follows a dynamic velocity profile, namely the US06 driving cycle 
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shown in Fig. 13. In simulation, we repeat this driving cycle 13 times to create velocity 

trajectory followed by the leader vehicle. Model and control parameters of the platoon and 

CACC system are chosen as ℎ =  0.3 𝑠, 𝑘𝑝 = 0.7, and 𝑘𝑑 = 1 [30]-[31]. To illustrate the 

results of the proposed algorithm, we particularly focus on the performance of the Vehicle 

3 in the platoon. Since we focus on Vehicle 3, the presented algorithm containing two 

observers implemented in Vehicle 2, as noted in Remark 12. Next, we present the following 

case studies.  

Case 1: In this case study, we motivate the need for the DoS attack detection 

algorithm by illustrating the adverse effects of the attacks on the platoon. In Fig. 22, we 

show the relative distance (𝑑3), velocity (𝑣3) and acceleration (𝑎3) of Vehicle 3 in the 

presence of the DoS attacks. To simulate the the effect of the DoS attacks, different 

magnitudes of delays are injected to the DSRC network. In the ideal case when there is no 

delay in DSRC network, i.e.𝜏 = 0 𝑠, the relative distance of Vehicle 3 is maintained above 

the minimum safety distance 𝑑𝑠 for all time. However, the performance of Vehicle 3 

degrades when we increase the magnitude of the DoS attacks, i.e. 𝜏 > 0.2 𝑠. In these 

scenarios, the minimum distance requirement is violated as shown in the top plot in Fig.22. 

These violations represent crash scenarios in a platoon of self-driving vehicles. From this 

case study, we can conclude that DoS attack might lead to potentially dangerous situations. 

Hence, the need for DoS detection is evident for secure control of connected vehicles.  
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Figure 22: Performance of the Vehicle 3 in the platoon under DoS Attacks in DSRC 
Network 

 

 Case 2: In the second case study, we consider a more realistic scenario in the 

simulation. Ideal communication does not exist in practical applications, especially for 

DSRC [23]. Hence, we add a random non-zero mean delay with Gaussian distribution to 

the communication network. This random delay represents the inherent uncertainties in 

DSRC communication. The mean value and standard deviation of the network induced 

delay are chosen as 𝜇𝑁 = 0.1 𝑠 and 𝜎𝑁 = 0.03 𝑠, respectively. Next, we show the 

performance of the scheme in presence of this inherent communication delay. Note that, 

there is no DoS attack in this case study. The relative distance (𝑑3), velocity (𝑣3) and 

acceleration (𝑎3) corresponding to Vehicle 3 are shown in Fig. 23 under this scenario. We 
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can see in the top plot of Fig. 23 that the CACC performs reasonably as the inter-vehicle 

distance between two cars is more than the assigned safety distance, 𝑑𝑠 = 0.5 𝑚. Regarding 

the detection scheme, observers are initialized with incorrect values of �̂�3(0) = 0 and �̂�(0) = 0, respectively. The estimated value of acceleration in Vehicle 3 is shown in the first 

plot of Fig. 24. As can be seen in Fig. 24, the estimated value (�̂�3) converges to its actual 

value (𝑎3). The estimation error is given in the bottom plot in Fig. 24. Furthermore, the 

detection algorithm is able to estimate the mean value of this network-induced delay as 

shown in the first plot of Fig. 25. We quantify the estimation performance in terms of 

convergence time. Referring to Fig. 25, the convergence time is within 100 seconds for the 

delay estimation. Importantly, the estimated delay is within the predefined threshold (𝛿) 

indicating no occurrence of DoS.  

 

Figure 23: Performance of the Vehicle 3 in the platoon under normal DSRC Network 
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Figure 24: Acceleration estimation in Vehicle 3. The variable 𝑎3denotes actual value 
and 𝜂 denotes estimated value. 

 

Figure 25: Network induced delay and estimation of the delay in normal DSRC 
Network 
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Case 3: In this case, we test the effectiveness of the proposed approach under DoS 

attack. To emulate the DoS attack, a delay of 𝜏 = 0.5 𝑠 is injected at 𝑡 =  3000 𝑠 to the 

communication network apart from the a aforementioned network induced delay. The 

induced delay takes certain time to reach a constant steady-state value as shown in Fig. 28. 

This is due to the assumption that it takes certain time for the attacker to jam the network. 

Fig. 26 shows the relative distance 𝑑3, velocity 𝑣3 and acceleration 𝑎3 of Vehicle 3 in the 

presence of this DoS attack. Observers are initialized with incorrect values of �̂�3(0) = 0 

and �̂�(0) = 0, respectively. The estimated acceleration of vehicle 3, �̂�3 is shown in the top 

plot of Fig. 27 along with the actual value of 𝑎3. The acceleration estimation error given by 

bottom plot of Fig. 27. These two figures illustrate that the estimated value �̂�3(𝑡) converges 

to the actual value in finite time. Furthermore, the algorithm is also able to detect and 

estimate the DoS attack. The top plot in Fig. 28 shows the delay estimation performance. 

The DoS estimation error is given in the bottom plot of Fig. 28. The attack is detected when 

the estimated delay (�̂�) crossed the threshold (𝛿) after the attack occurrence. The estimate �̂� closely tracks the true delay 𝜏. The steady-state delay estimation error lies within less than 

10% of the original value.  
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Figure 26: Performance of the Vehicle 3 in the platoon under DoS attack in DSRC 
network 

     

 

Figure 27: Acceleration estimation in Vehicle 3. The variable 𝑎3denotes actual value 
and 𝜂 denotes estimated value. 
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Figure 28: Delay estimation under DoS attack 

 

Next, we illustrate the effectiveness of the proposed approach under several form of 

uncertainties. In all these following scenarios, a non-zero mean Gaussian delay with the 

mean value of 𝜇𝑁 = 0.1 𝑠 and standard deviation of 𝜎𝑁 = 0. 03 𝑠 is considered as the 

network induced delay. Furthermore, a constant delay of 𝜏 = 0.5 𝑠 is added to represent the 

attack at  𝑡 =  3000𝑠.  

 

Case 4: In this case study we demonstrate the robustness of DoS detection algorithm 

to the uncertainty in the proportional gain 𝑘𝑝. Note that the observers are designed based on 

the nominal parameter value whereas the actual vehicle parameter is different than the 

nominal value. The nature of the uncertainty is an additive constant offset added to the 

nominal value of parameter 𝑘𝑝. We inject 5%, 10%, 15%, and 20% uncertainties to the 𝑘𝑝, 



 86 

i.e. 𝑘𝑝 = 𝑘𝑝0 + ∆𝑘𝑝  where 𝑘𝑝0 is the nominal value and ∆𝑘𝑝 is the injected uncertainty. 

Figure.29 presents the estimated values of the delay under these uncertainties. As can be 

seen from Fig. 29, the proposed scheme can detect the DoS attack in less than 70 seconds 

after the attack injection even in the presence of uncertainties. However, delay estimation 

suffers from these uncertainties leading to 15% or more error.  

 

 

Figure 29: Delay estimation performance under different levels of uncertainties in the 
parameter 𝑘𝑝. The scenario is based on Case 4. 

     

Case 5: In this scenario, the robustness of the proposed scheme is evaluated under 

uncertain 𝑘𝑑. To study the effect of uncertainties, we inject 5%, 10%, 15% , and 20% 

uncertainties to the nominal value of 𝑘𝑑 in the model. Same as before, the observers are 

designed based on the nominal parameter value. Figure. 30 shows the delay estimation for 

different levels of uncertainties in 𝑘𝑑. As can be inferred from Fig. 30, the DoS detection 

algorithm can detect the DoS attack despite the uncertainties. However, the presence of 
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uncertainties affects the accurate delay estimation. For example, there is 15% estimation 

error under 20% uncertain 𝑘𝑑.  

 

Figure 30: Delay estimation performance under different levels of uncertainties in the 
parameter𝑘𝑑. The scenario is based on Case 5. 

 

Case 6: In this case study the effects of measurement noise is discussed. A zero 

mean Gaussian noise with standard deviation of 𝜎 is added to the velocity measurement.  

To illustrate the robustness of the proposed scheme under measurement uncertainty in 𝑉𝑖, 
different levels of noises as   𝜎 =  0.07, 0.1, 0.14, 0.21 are added to the velocity 

measurement. Figure 31 shows the delay estimation for different levels of measurement 

noises in 𝑉𝑖. It can be seen in Fig. 31 that the DoS detection algorithm detects the DoS attack 

in all cases. However, the presence of uncertainties affects the accurate delay estimation. 

For example, there is 25% estimation error under 𝜎 = 0.21. 
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Figure 31: Delay estimation performance under different levels of uncertainties in 𝑉𝑖 measurement. The scenario is based on Case 6. 

 
6.3. Strategy Number Three 

 

In this section, we consider a distributed cyber physical system with a shared 

communication network where the local controller of a sub-system receives measurements 

with delay. The amount of lumped delay produced by sensor measurements and network 

communication, is unknown. A new observer-based algorithm is proposed to estimate the 

states of the system at the time 𝑡 when only delayed measurements are available. The main 

contribution of this section of the thesis is the idea of using new observer-based algorithm 

to estimate an unknown delay and states of a system in the presence of delayed 

measurements. This study under the condition of unknown delay in the measurements has 

not been explored in the existing literatures. To address this research gap, a new approach 

consisting of two observers is presented. i) a PDE-based observer to estimate the unknown 

delay with adaptive estimation ; and ii) an ODE-based observer to predict the states of the 
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system using the information from the former observer. Theoretical contributions of this 

section are devoted to mathematically proving the convergence of estimation error in both 

ODE delayed observer as well as PDE observer.   

Notation: In this section, the following notations are used: 

𝑧𝑡(𝑥, 𝑡) = 𝜕𝑧(𝑥,𝑡)𝜕𝑡  , 𝑧𝑥(𝑥, 𝑡) = 𝜕𝑧(𝑥,𝑡)𝜕𝑥 , ‖𝑧(. )‖ = √∫ 𝑧2(𝑥, 𝑡)𝑑𝑥10  

6.3.1. Problem Statement  

Consider a distributed cyber physical system with a shared communication network 

shown in Fig.32. Each plant as a subsystem of the CPS transfers sensor measurements to 

the local controller using the communication network.  

 

Figure 32. A distributed CPS with a shared network. 

For simplicity, we mainly focus on one subsystem of the CPS as it is depicted in 

Fig.33. In this section, we consider a lumped constant unknown delay, 𝐷, between the actual 

measureable data and the data the controller receives. The system dynamics can be modelled 

as: 
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�̇�(𝑡) = 𝐴𝑋(𝑡) + 𝐵𝑈(𝑡) (104) 

𝑌(𝑡) = 𝐶𝑋(𝑡 − 𝐷) (105) 

 

 

Figure 33.  A schematic of a sub-plant of the distributed CPS. 

Where ∈ ℝ𝑛 , 𝑌 ∈ ℝ𝑚 and 𝑈 ∈ ℝ𝑝  are states, output and input of the system 

respectively. 𝐴: ℝ𝑛 × ℝ𝑛, 𝐵: ℝ𝑛 × ℝ𝑝 , 𝐶: ℝ𝑚 × ℝ𝑛 are well defined matrices and all 

eigenvalues of 𝐴 have negative real part. 𝐷 ∈ ℝ+ , 𝐷 ≤ 𝐷 ≤ 𝐷 is a nonzero lumped 

unknown constant delay where the upper and lower bounds of the delay are known. 

Dynamics of the delay is modelled with a transport PDE which allows a linear 

parameterization in the unknown delay [98]. 𝐷𝑧𝑡(𝑥, 𝑡) = 𝑧𝑥(𝑥, 𝑡)      , 𝑥 ∈ [0,1] (106) 

𝑧(0, 𝑡) = 𝐶𝑋(𝑡 − 𝐷) (107)  

𝑧(1, 𝑡) = 𝐶𝑋(𝑡) (108) 

NOTE: Measured value in the plant at time t is 𝐶𝑋(𝑡), but the available 

measurement in the controller is 𝐶𝑋(𝑡 − 𝐷).  

Where 𝑧(𝑥, 𝑡) is the state of communication network in the transport PDE model 

and only 𝑧(0, 𝑡) is available as the measurement in the controller.  
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𝑧(𝑥, 𝑡) = 𝐶𝑋(𝑡 + 𝐷(𝑥 − 1)) (109) 

Therefore, we can write 𝑧(𝑥, 𝑡) as the solution of the PDE (106)-(108) and Ordinary 

Differential Equation (ODE) system (1)-(2) as follows: 𝑋(𝑡) = 𝑒𝐴𝑡𝑋0 + ∫ 𝑒𝐴(𝑡−𝜃)𝐵𝑈(𝜃)𝑑𝜃𝑡𝑡0   

Where, 𝑋0 = 𝑋(𝑡 = 𝑡0) 

Considering (6), the solution of the PDE (3)-(5) is derived as: 𝑧(𝑥, 𝑡) = 𝐶 [𝑒𝐴𝐷(𝑥−1)𝑋(𝑡) − ∫ 𝑒𝐴(𝑡+𝐷(𝑥−1)−𝜃)𝐵𝑈(𝜃)𝑑𝜃𝑡𝑡+𝐷(𝑥−1) ] (110) 

The goal of this section is to design a state estimation to predict (𝑡) , while only the 

delayed measurements, 𝐶𝑋(𝑡 − 𝐷), is available.  

6.3.2. Estimation Algorithm  

In this section, we will discuss the proposed scheme in detail. As mentioned before, 

the main objective of this scheme is to estimate the unknown delay, 𝐷, and predict the states 

of the system 𝑋(𝑡). From the schematic depicted in Fig. 24, it can be inferred that the 

algorithm consists of two observers working in cascade manner as follows. 

Observer I:  This observer is an adaptive observer based on the PDE dynamics of 

the unknown delay. Using the available measurements affected by the delay, the observer 

estimates the unknown delay and updates the adaptation law.  The estimated delay is fed 

into the Observer II to predict 𝑋(𝑡).  

Observer II: The second observer is an ODE based linear observer which is 

designed using the estimated delay and available system inputs and outputs. 
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The details of the design of these individual elements are discussed in the 

subsequent sections. 

Remark 14: The presented scheme is designed and implemented in the local 

controller. Hence, observers only use available information in the controller.  

 

Figure 34.  The schematic of the proposed algorithm. 

Observer I 

We consider the observer dynamics as the following [96]-[97] �̇̂�(𝑡) = 𝐴�̂�(𝑡) + 𝐵𝑈(𝑡) + 𝐿1�̂�(𝑌(𝑡) − �̂�(𝑡))  (111) 

�̂�(𝑡) = 𝐶�̂�(𝑡 − �̂�) (112) 

Where, �̂�(𝑡) is the estimated value of unknown delay, �̂� (𝑡) and �̂�(𝑡)  are the 

estimations of 𝑋(𝑡) and 𝑌(𝑡) respectively. Similar to the original system, in the observer 

design, the estimated delay is modelled with a transport PDE: �̂�(0, 𝑡) = �̂�(𝑡) = 𝐶�̂�(𝑡 − �̂�) (113) 
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�̂�(1, 𝑡) = 𝐶�̂�(𝑡) (114) 

where  

�̂�(𝑥, 𝑡) = 𝐶�̂� (𝑡 + �̂�(𝑥 − 1)) = 𝐶 [�̂�𝑒𝐴�̂�(𝑥−1)�̂�(𝑡) − ∫ 𝑒𝐴(𝑡+�̂�(𝑥−1)−𝜃)𝐵𝑈(𝜃)𝑑𝜃𝑡
𝑡+�̂�(𝑥−1) ] 

 (115) 

Using (12), dynamic of the estimated delay is given as   �̂��̂�𝑡(𝑥, 𝑡) = �̂�𝑥(𝑥, 𝑡) (1 + �̇̂�(𝑥 − 1)) + �̂�𝐿1�̃�(0, 𝑡)    (116) 

Next, we implement (116) in (111)-(112) to re-write the observer dynamics  �̇̂�(𝑡) = 𝐴�̂�(𝑡) + 𝐵𝑈(𝑡) + 𝐿1(�̃�(0, 𝑡)) (117) 

�̂��̂�𝑡(𝑥, 𝑡) = �̂�𝑥(𝑥, 𝑡) (1 + �̇̂�(𝑥 − 1)) + �̂�𝐿1�̃�(0, 𝑡)    (118) 

�̂�(0, 𝑡) = �̂�(𝑡) = 𝐶�̂�(𝑡 − �̂�)    ,    �̂�(1, 𝑡) = 𝐶�̂�(𝑡)  (119) 

where, �̃�(𝑥, 𝑡) = 𝑧(𝑥, 𝑡) − �̂�(𝑥, 𝑡). Defining �̃� = 𝐷 − �̂� as the delay estimation 

error, �̂� in the left side of (118) can be substituted by �̂� = 𝐷 − �̃� . Further, (118) as the 

observer dynamic can be re-written as 𝐷�̂�𝑡(𝑥, 𝑡) = �̃��̂�𝑡(𝑥, 𝑡) + �̂�𝑥(𝑥, 𝑡) (1 + �̇̂�(𝑥 − 1)) + �̂�𝐿1�̃�(0, 𝑡) (120) 

The standard projector operator is given by 

�̇̂� = 𝛾𝑃𝑟𝑜𝑗 {𝜏(𝑡)} = { 0,     �̂� = 𝐷 𝑎𝑛𝑑 𝜏 < 00,     �̂� = 𝐷 𝑎𝑛𝑑 𝜏 > 0𝜏(𝑡) ,                 𝑒𝑙𝑠𝑒         (121) 

Where 𝜏(𝑡) based on Lyapunov analysis in Theorem 1, is designed as   
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𝜏(𝑡) = − 1�̂� �̃�(0, 𝑡)�̂�𝑥(0, 𝑡) (122) 

And 𝛾 > 0 is the adaptation gain which can be selected as a small enough value. 

The estimation error dynamics are derived by subtracting (120) from (106),  �̇̃�(𝑡) = 𝐴�̃�(𝑡) − 𝐿1�̃�(0, 𝑡) (123) 

𝐷�̃�𝑡(𝑥, 𝑡) =  �̃�𝑥(𝑥, 𝑡) − �̃��̂� �̂�𝑥(𝑥, 𝑡) − 𝐷�̇̂��̂� (𝑥 − 1)�̂�𝑥(𝑥, 𝑡) − 𝐿1𝐷�̃�(0, 𝑡) (124) 

�̃�(1, 𝑡) = 𝐶�̃�(𝑡) 

�̇̃�(𝑡) = −�̇̂�(𝑡) (125) 

Theorem 1: Consider a system described with (104)-(106) and unknown delay 

dynamics as (107)-(108). For the observer designed as (111)-(114) and adaptive delay 

estimator of (121), the output estimation error �̃�(0, 𝑡) and delay estimation error, �̃�, will 

converge to a bounded area as 𝑡 →  ∞, if the observer gain 𝐿1 is selected large enough to 

satisfy the following condition, 

𝐿1 > |�̃�𝑥(0, 𝑡)|𝐷|�̃�(0, 𝑡)| 
Proof: To analyse the estimation error dynamics, we consider function (126) as 

Lyapunov candidate 𝑊(𝑡) =  𝑎1𝐷�̃�(0, 𝑡)2 + 𝑎2�̃�2 (126) 

Where, 𝑎1 > 0 , 𝑎2 > 0 and 𝐷 > 0, derivate of 𝑊(𝑡) with respect to time is given 

as   �̇�(𝑡) = 𝑎1𝐷 𝜕𝜕𝑡 (�̃�(0, 𝑡)2) − 2𝑎2�̃��̇̂� (127) 
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Therefore, �̇�(𝑡) = 2𝑎1𝐷�̃�(0, 𝑡)�̃�𝑡(0, 𝑡) − 2𝑎2�̃��̇̂� (128) 

Substituting �̃�𝑡(0, 𝑡) from (124) at 𝑥 = 0 

�̇�(𝑡) = 2𝑎1�̃�(0, 𝑡) (�̃�𝑥(0, 𝑡) − �̃��̂� �̂�𝑥(0, 𝑡) + 𝐷�̇̂��̂� �̂�𝑥(0, 𝑡) − 𝐷𝐿1�̃�(0, 𝑡)) − 2𝑎2�̃��̇̂� 

 (129) 

The updating rule of �̇̂� as given by (121)-(122), simplifies (129) to the following 

equation  

�̇�(𝑡) = 2𝑎1�̃�(0, 𝑡)�̃�𝑥(0, 𝑡) −  2�̃� (𝑎1 �̂�𝑥(0, 𝑡)�̂� �̃�(0, 𝑡) − 𝑎2�̇̂�) + 2𝑎1�̃�(0, 𝑡) 𝐷�̇̂��̂� �̂�𝑥(0, 𝑡)
− 2𝑎1𝐷𝐿1�̃�(0, 𝑡)2 

 (130) 

 Choosing  𝑎2 = 𝑎1 and substituting the expressions of (122), we get �̇�(𝑡) = 2𝑎1�̃�(0, 𝑡)�̃�𝑥(0, 𝑡) − 2𝑎1 𝐷�̂�2 �̃�(0, 𝑡)2�̂�𝑥(0, 𝑡)2 − 2 𝑎1𝐷𝐿�̃�(0, 𝑡)2  (131) 

�̇�(𝑡) ≤ 2𝑎1(|�̃�(0, 𝑡)||�̃�𝑥(0, 𝑡)|) − 2𝑎1 𝐷�̂� �̃�(0, 𝑡)2�̂�𝑥(0, 𝑡)2 − 2 𝑎1𝐷𝐿1|�̃�(0, 𝑡)|2(132) 

�̇�(𝑡) ≤ 2𝑎1|�̃�(0, 𝑡)|(|�̃�𝑥(0, 𝑡)| − 𝐷𝐿1|�̃�(0, 𝑡)|) − 2𝑎1 𝐷�̂� �̃�(0, 𝑡)2�̂�𝑥(0, 𝑡)2  (133) 

As long as we can choose observer gain 𝐿1 to satisfy the following condition, 

𝐿1 > |�̃�𝑥(0, 𝑡)|𝐷|�̃�(0, 𝑡)| 
 (134) 
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Therefore, we can conclude the negative semi definiteness of  �̇�(𝑡). Hence, �̇�(𝑡) will settle on or within a bounded ball of radius 𝑅𝑜𝐶 as  𝑡 → ∞. Note that the 

magnitude of 𝑅𝑜𝐶 can be made arbitrarily small by choosing a high value of 𝐿1.  

𝑅𝑜𝐶:  |�̃�𝑥(0, 𝑡)|𝐷|�̃�(0, 𝑡)| − 𝐿1 < 0 

Observer II 

Observer II utilizes the estimated delay obtained from Observe I to predict states of 

the system at time 𝑡; while, only the delayed measurements at 𝑡 − 𝐷  are available.  

Assumption 15: The signal 𝑋(𝑡) is at least once differentiable with respect to time. 

Furthermore, the derivative is bounded by some finite value, i.e. |�̇�(𝑡)| < 𝑋𝑑𝑚𝑎𝑥 , ∀ 𝑡 >0. 

Considering the system dynamics (104)-(105), we design the second observer as 

follows        �̇̂�(𝑡) = 𝐴�̂�(𝑡) + 𝐵𝑈(𝑡) + 𝐿2 (𝑌(𝑡) − �̂�(𝑡)) 

�̂�(𝑡) = 𝐶�̂�(𝑡 − �̂�) (135) 

Where �̂�(𝑡)  ∈ [𝐷 , 𝐷] is the estimated delay derived from the Observer I. 

Remark 15: Referring to (121), �̂�(𝑡)  has a bounded derivative with respect to time.  

Substituting the (135) in the dynamic of Observer II is given as,  �̇̂�(𝑡) = 𝐴�̂�(𝑡) + 𝐵𝑈(𝑡) + 𝐿2 (𝑌(𝑡) − C�̂�(𝑡 − �̂�(𝑡)))  (136) 

Next, by subtracting (136) from first equation of (134), the estimation error 

dynamic is derived as 
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�̇̃�(𝑡) = 𝐴�̃�(𝑡) − 𝐿2𝐶 (�̃�(𝑡 − �̂�(𝑡))) + 𝑀(𝑡) (137) 

where, 𝐿2 is the second observer’s gain and 𝑀(𝑡) is the bounded uncertainty due the delay 

estimation error.  

With initial condition as  �̃�(𝑡0) = �̃�0,   �̃�(𝑠) = 0,   𝑠 < 𝑡0, we will apply the following 

Lyapunov-Krasovskii functional for delay-dependent analysis of (137) 

𝑉(𝑡, �̃�, �̇̃�) = �̃�𝑇(𝑡)𝑃�̃�(𝑡) + ∫ 𝑒𝑎(𝑠−𝑡)�̃�𝑇(𝑠)𝑆�̃�(𝑠)𝑑𝑠𝑡
𝑡−D∫ 𝑒𝑎(𝑠−𝑡)�̃�𝑇(𝑠)𝐸�̃�(𝑠)𝑑𝑠𝑡

𝑡−𝐷+D∫ ∫ 𝑒𝑎(𝑠−𝑡)�̇̃�𝑇(𝑠)𝑅�̇̃�(𝑠)𝑑𝑠𝑡
𝑡+𝜃

0
−D 𝑑𝜃

 

 (138) 

where 𝑎 > 0, 𝑏 > 0 𝑎𝑛𝑑 𝑛 × 𝑛 − 𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠 𝑃 > 0, 𝑆 > 0, 𝐸 > 0 𝑎𝑛𝑑 𝑅 > 0 

Preposition 1: The error dynamics represented in  (34) is stable and converges to 

a bounded region exponentially, if there exist   𝐿2 > 0 and 𝑎 > 0, 𝑏 > 0 𝑎𝑛𝑑 𝑛 × 𝑛 −𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠 𝑃 > 0, 𝑆 > 0, 𝐸 > 0 𝑎𝑛𝑑 𝑅 > 0 matrix such that along trajectories of (137), the 

Lyapunov-Krasovskii function (138) satisfies the following condition [99]-[100].   𝑊2 𝑎𝑉=∆ − 𝑏|𝑀|2 + �̇� < 0 (139) 

Then, the solution of (124) with initial condition of �̃�(𝑡0) = �̃�0 satisfies the 

inequality  �̃�𝑇(𝑡)𝑃�̃�(𝑡) < 𝑒−𝑎(𝑡−𝑡0)�̃�0𝑇𝑃�̃�0 + [1 − 𝑒−𝑎(𝑡−𝑡0)] 𝑏𝑎 |𝑀[𝑡0,𝑡∞]|∞2    (140) 
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Proof: Applying comparison principle [99], we have  

�̃�𝑇(𝑡)𝑃�̃�(𝑡) ≤ 𝑉(𝑡, �̃�𝑡, �̃��̇�) < 𝑒−𝑎(𝑡−𝑡0)𝑉(𝑡, �̃�𝑡0, �̃�𝑡0̇ ) + ∫ 𝑒−𝑎(𝑡−𝑠)𝑏|𝑀(𝑠)|2𝑑𝑠𝑡
𝑡0  

 (141) 

Lyapunov candidate 𝑉 can be written as (142) as a positive definite function 𝑉 (𝑡, �̃�, �̇̃�) =  𝑉1 +  𝑉2 +  𝑉3 + 𝑉4 (142) 

where  𝑉1 = �̃�𝑇(𝑡)𝑃�̃�(𝑡) (143) 

𝑉2 = ∫ 𝑒𝑎(𝑠−𝑡)�̃�𝑇(𝑠)𝑆�̃�(𝑠)𝑑𝑠𝑡𝑡−D  (144) 

𝑉3 = ∫ 𝑒𝑎(𝑠−𝑡)�̃�𝑇(𝑠)𝐸�̃�(𝑠)𝑑𝑠𝑡𝑡−D  (145) 

𝑉4 = D∫ ∫ 𝑒𝑎(𝑠−𝑡)�̇̃�𝑇(𝑠)𝑅�̇̃�(𝑠)𝑑𝑠𝑡
𝑡+𝜃

0
−D 𝑑𝜃 (146) 

Making derivative of 𝑉 with respect to time, �̇�1 = 2�̃�𝑇(𝑡)𝑃�̇̃�(𝑡) (147) 

�̇�2 = 𝜕𝜕𝑡 [𝑒−𝑎𝑡 ∫ 𝑒𝑎𝑠�̃�𝑇(𝑠)𝑆�̃�(𝑠)𝑑𝑠𝑡
𝑡−D ]

= −𝑎𝑒−𝑎𝑡 (∫ 𝑒𝑎𝑠𝑋𝑇(𝑠)𝑆�̃�(𝑠)𝑑𝑠𝑡
𝑡−D ) + �̃�𝑇(𝑡)𝑆�̃�(𝑡)

+ 𝑒−𝐷𝑡�̃�𝑇(𝑡 − 𝐷)𝑆�̃�(𝑡 − 𝐷) 

 (148) 
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Similarly, 

�̇�3 = −𝑎𝑒−𝑎𝑡 (∫ 𝑒𝑎𝑠�̃�𝑇(𝑠)𝐸�̃�(𝑠)𝑑𝑠𝑡
𝑡−D ) + �̃�𝑇(𝑡)𝐸�̃�(𝑡) + 𝑒−𝐷𝑡�̃�𝑇(𝑡 − 𝐷)𝐸�̃�(𝑡 − 𝐷) 

 (149) 

�̇�4 = −𝑎𝐷 (∫ ∫ 𝑒𝑎(𝑠−𝑡)�̇̃�𝑇(𝑠)𝑅�̇̃�(𝑠)𝑑𝑠𝑡
𝑡+𝜃

0
−D 𝑑𝜃) + 𝐷2�̇̃�𝑇(𝑡)𝑅�̇̃�(𝑡)
− 𝐷 ∫ 𝑒−𝑎(𝑠−𝑡)�̇̃�𝑇(𝑠)𝑅�̇̃�(𝑠)𝑑𝑠𝑡

𝑡−D  

 (150) 

Substituting (142)-(146) and (147)-(150) in (139), we find  𝑊2 ≤ 2�̃�𝑇(𝑡)𝑃�̇̃�(𝑡) + 𝑎�̃�𝑇(𝑡)𝑃�̃�(𝑡) − 𝑏𝑀𝑇(𝑡)𝑀(𝑡)
+ 𝐷2�̇̃�𝑇(𝑡)𝑅�̇̃�(𝑡) − 𝐷𝑒−𝑎𝐷 ∫ �̇̃�𝑇(𝑠)𝑅�̇̃�(𝑠)𝑑𝑠𝑡

𝑡−𝐷 + �̃�𝑇(𝑡)𝑆�̃�(𝑡) + �̃�𝑇(𝑡)[𝑆
+ 𝐸]�̃�(𝑡) − �̃�𝑇(𝑡 − 𝐷)𝑆�̃�(𝑡 − 𝐷) + [�̃�𝑇(𝑡 − 𝐷)𝐸(�̃�(𝑡 − 𝐷)]𝑒−𝑎𝐷 

 (151) 

Next, applying the standard arguments we obtain that 𝑊2 ≤ 𝜂𝑇(𝑡)Φη(𝑡) < 0        ∀η(𝑡) ≠ 0 (152) 

where, η(𝑡) = 𝑐𝑜𝑙 {�̃�(𝑡), �̇̃�(𝑡), �̃�(𝑡 − 𝐷), �̃�(𝑡 − 𝐷),𝑀(𝑡)} if the matrix inequality  
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𝛷 =
[  
   𝜙11 𝜙12 0 −𝑃2𝑇𝐿2𝐶 + Re−𝑎𝐷 𝑃2𝑇∗ 𝜙22 0 −𝑃3𝑇𝐿2𝐶 𝑃3𝑇∗ ∗ −(𝑆 + 𝑅)𝑒−𝑎𝐷 𝑅𝑒−𝑎𝐷 0∗ ∗ ∗ −(2𝑅 + 𝐸)𝑒−𝑎𝐷 0∗ ∗ ∗ ∗ −𝑏𝐼]  

   < 0 (153) 

is feasible, where 𝜙11 = 𝐴𝑇𝑃2 + 𝑃2𝑇 + 𝑎𝑃 + 𝑆 + 𝐸 − Re−𝑎𝐷 (154) 

𝜙12 = 𝑃 − 𝑃2𝑇 + 𝐴𝑇𝑃3 (155) 

𝜙22 = −𝑃3 − 𝑃3𝑇 + 𝐷2𝑅 (156) 

Thus, the following results will be obtained 

Lemma 1: Given 𝑎 > 0, 𝑏 > 0 , 𝑎𝑛𝑑  𝐷 > 0 , let there exist 𝑛 × 𝑛 𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠 𝑃 >0, 𝑃2, 𝑃3, 𝑆 > 0, 𝐸 > 0 𝑎𝑛𝑑 𝑅 > 0 such that the LMI (153) with notation given in (154)-

(156) holds. Then, the solution of (137) satisfies (140) for all delays  𝐷 ≤ 𝐷 ≤  𝐷. 

Moreover, the ellipsoid 𝜒∞ = {�̃� ∈ 𝑅𝑛:  𝑋𝑇(𝑡)𝑃�̃�(𝑡) <  𝑏𝑎 𝐾2. ∆2} (157) 

is exponentially attractive with the decay rate 𝑎 2⁄  for all |𝑀(𝑡)|2 ≤ 𝐾2. ∆2.   ∎  

 

 

6.3.3. Simulation Results and Discussion 

To evaluate the effectiveness of the proposed scheme, we conducted simulation 

study on a general system with the following dynamics. 
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[𝑋1̇𝑋2̇] = [−0.5 06 −5] [𝑋1𝑋2] + [10]𝑈 (158) 

𝑌 = [1 00 1] [𝑋1𝑋2] (159) 

Where, 𝑈 is the system input as  𝑈 = 3sin (𝜋2 𝑡) (160) 

To illustrate the impact of the delay in the system, we simulate the system in two 

cases of no delay and 0.9 𝑠𝑒𝑐 delay in the measurements in Fig. 35. The outputs of the 

system with no delay are plotted in solid blue lines; while, the outputs of the system with 

delay are shown with red dashed lines.  

 

Figure 35. System performance in presence of delay 

To estimate the delay and states of the system in the presence of the injected delay, two 

observers are designed based on the proposed algorithm. 
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 Observer I 

A constant delay of 𝐷 = 0.9 𝑠𝑒𝑐 is injected to system output measurements in 

(159), therefore, available measurements are as follows:  

𝑌 = [1 00 1] [𝑋1(𝑡 − 𝐷)𝑋2(𝑡 − 𝐷)] (161) 

We model the delay with a transport PDE model where the boundary conditions of 

the PDE are related to the system dynamics. To design the observer we assume the known 

boundaries of delay as  𝐷 ∈ [𝐷, 𝐷] = [0.1, 1.5]. The gain 𝐿1 is designed as 𝐿1 =
[𝐿11 𝐿12𝐿21 𝐿22] , therefore, referring to (20) the error dynamics is 

[�̃�1̇�̃�2̇] = [−0.5 06 −5] [�̃�1�̃�2] − [𝐿11 𝐿12𝐿21 𝐿22] [�̃�1(0, 𝑡)�̃�2(0, 𝑡)] (162) 

Choosing 𝐿1 large enough to satisfy (134), and initial guess of  �̂� = 0.5 𝑠 for the 

delay, the observer estimates on delay and outputs 𝐶�̂�(𝑡 − �̂�) = �̂�(0, 𝑡) are provided in 

Fig. 4 and Fig. 5 respectively. To verify the convergence of Observer I, initial condition 

for states are �̂�1(0,0) = 13, �̂�2(0,0) = 16.5. Furthermore, we will quantify the 

convergence performance of the estimates in terms of convergence time defined as the time 

taken to reach within ±2% band of the true value starting from the incorrect initial 

condition. The delay estimation in Fig. 36 and delay estimation error in Fig. 37 prove that 

the estimated value of delay converges to the exact value of 0.9 after 15 𝑠. 
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Figure 36. Estimated delay. 

 
Figure 37. Delay estimation error 

Observe I also estimates the available outputs of the system, �̂�(0, 𝑡) = 𝐶�̂�(𝑡 − �̂�). 

Fig. 38, shows the estimates of the outputs considering the on-line estimated value of delay. 
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The actual outputs of the system which is can be measured in the controller are drawn with 

solid blue lines and the estimated values are shown with red dashed lines.  

 

Figure 38. Measured and estimated output. 

Fig. 39 shows the estimation error, �̃�(0, 𝑡) = [�̃�1(0, 𝑡) �̃�2(0, 𝑡)]𝑇, for our case 

study. The estimation error converges to a small bounded area of ±2% band of the true 

value after 5 seconds. Along with output estimation from Observer I, Fig.40 depicts the 

original 𝑧(𝑥, 𝑡) = [𝑧1(𝑥, 𝑡) 𝑧2(𝑥, 𝑡)]𝑇 and estimated signals �̂�(𝑥, 𝑡) =[�̂�1(𝑥, 𝑡) �̂�2(𝑥, 𝑡)]𝑇. 
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Figure 39. Estimation error 

 

Figure 40. Original and estimated values of 𝑧(𝑥, 𝑡) = [𝑧1(𝑥, 𝑡) 𝑧2(𝑥, 𝑡)]𝑇  
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Observer II 

Considering the estimated delay, obtained from Observer I, the predicted states of 

the system are derived via the second observer. To design the second observer, the 

parameters  𝑎 > 0, 𝑏 > 0  are chosen as: 

 𝑎 = 1 , 𝑏 = 2 

These values are selected such that the LMI in (153) is satisfied and matrix Φ is 

negative definite. Solving the LMI the following positive definite matrixes are obtained.  𝐿2 = [ 0.2 0.150.25 0.2 ] 
𝑃1 = [ 25.25 −19.66−19.66 15.30 ] 
𝑃2 = [ 25.98 −19.75−19.75 15.25 ] 

𝑃3 = [3.78 4.804.80 6.2525] 
𝑆 = [42.5256 −32.811−32.811 25.3183] 

𝑅 = [4.0867 55 6.3] 
𝐸 = [ 21.45 −16.55−16.55 12.77 ] 

Therefore, the states of the system at time 𝑡 can be predicted as it is shown in Fig. 

41. Both states are initialized with incorrect values to test the convergence properties of the 

observer.  The solid blue lines are the real states of the system before being transmitted 

through the network communication and the red dashed lines represent the predicted states 
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via the proposed algorithm. As it can be demonstrated from the results, after 10 seconds, 

the predicted values converge to actual values of the states with a bounded error. The 

estimation error for both states are given in Fig. 42.    

 

Figure 41. Predicted states of the system at time 𝑡. 

 

Figure 42. Prediction errors of Observer II 
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CHAPTER SEVEN 

 RESILIENT STRATEGY TOWARD FALSE DATA INJECTION ATTACK  

The contribution and novelty of this chapter is three fold. First,  we  develop a 

continuous  model  of  connected  vehicles equipped with CACC algorithm using the PDE 

approximation inspired by the extensive literature on traffic dynamics [7], [13]; The  PDE  

model simplifies  the  analysis  regarding  to  system behavior and attack detection. 

Furthermore, stability analysis regarding to delay and perturbation proportion is further easy 

for PDE modeling comparing to ODE model of connected vehicles.  The results of this 

chapter are obtained by analyzing the PDE; they are then validated by simulation of a 

dynamic equations of a platoon of 15 vehicles. 

Second, we model an intelligent false data injection attack in the DSRC with fake 

vehicle identities. The  fake (ghost) vehicles in the  platoon  disrupt  the  smooth  vehicle  

density by  corrupting  desire  the  inter-vehicle  distances. The ghost vehicles following the 

same dynamics of CACC strategy. Hence, the false data injected attack studied in  this  

chpater, is not possible to detect with current attack detection methods developed based on 

sensor faults detection methodologies. 

 Third, we propose a novel diagnosis scheme using active control concept to detect 

false data injection attack in the vehicle platooning system. The proposed diagnosis 

algorithm consist of  a  series  of  PDE  observers  to  provide  information of  the  location  

of  the  injected  ghost  vehicles  in  the  platoon. The most significant advantage of using a 

PDE based analysis is that the PDE reveals perturbations, better than the discrete equations 

do. The proposed scheme is capable of (1) detecting the occurrence of false data injection; 
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and (2) determining the position of fake data injected into the platoon as fake (ghost) 

vehicles. It is worth mentioning that we don’t apply the centralized controller to connected 

vehicle.  Indeed,  each individual  vehicle  has  its  own  decentralized  CACC  strategy with  

works  as  its  ODE  version.  However, we develop just one centralized observer into the 

leader vehicle to identify the false data injection attack.  

7.1. PDE Modeling of the Platoon (Combine with attack) 

The notation in this section is a little different from the rest of the thesis. Therefore, 

we redefine parameters of the platoon as follows.  

Consider a homogeneous platoon of connected vehicles equipped with CACC 

strategy. The vehicles follow their leader in a single lane (see Fig.43). Each vehicle in the 

platoon is equipped with on-board sensors to measure the relative distance and velocity with 

respect to its preceding. In addition, each vehicle receives the acceleration information of 

the preceding vehicle through Dedicated Short Range Communication (DSRC) network 

[30]. 
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Figure 43 : A platoon of CACC. 

Remark 16: In this study, the leader vehicle follows a constant velocity profile with 

a perturbation for diagnosis purposes. Hence, the velocity profiles of the vehicles in the 

platoon are not constant.  

Dynamics of vehicle 𝑖 in the platoon is given by [105]: 

1 , \{1}i ii

m

ii

V VD
i S

UV

    
    
    (163) 

Where  𝑆𝑚 = {𝑖 ∈ 𝑁|1 ≤ 𝑖 ≤ 𝑚}  is the set of all vehicles in the platoon of length of 𝑚, 𝐷𝑖 = 𝑞𝑖−1 − 𝑞𝑖 + 𝐿𝑖 + 𝑑𝑠 is the distance between vehicle 𝑖 and 𝑖 − 1, 𝑞𝑖 and 𝑞𝑖−1 are the 

rear bumper position of vehicles 𝑖 and 𝑖 − 1. The length of vehicle 𝑖 is presented by 𝐿𝑖, 𝑑𝑠 

is the minimum safety distance between two vehicles, 𝑉𝑖 denotes the velocity of vehicle 𝑖. 
Moreover, 𝑈𝑖 is the desired acceleration and acts as the vehicle control input [30]. 

The control strategy regarding to the inter-vehicle spacing obtains as follows 𝐷𝑟,𝑖(𝑡) = ℎ𝑉𝑖(𝑡), 𝑖 ∈ 𝑆𝑚\{1} (164) 

 where 𝐷𝑟,𝑖(𝑡) is the desire relative distance between vehicles 𝑖 and 𝑖 − 1 and ℎ is the time 

headway. Without losing the generality, to simplify the analysis, we consider 𝑑𝑠 = 0  and 𝐿𝑖 = 0. The main objective of platooning is to regulate the 𝐷𝑖 to 𝐷𝑟,𝑖 , i.e.  𝐸𝑖(𝑡) = 𝐷𝑖(𝑡) − 𝐷𝑟,𝑖(𝑡) → 0   as     𝑡 → ∞ (165) 

Substituting (164) and 𝐷𝑖 = 𝑞𝑖−1 − 𝑞𝑖 in (165), the error is re-written as: 

       1i i i iE t q t q t hV t  
 (166) 
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The vehicle control input of each vehicle in the platoon (𝑈𝑖) except the leader one 

depends on the preceding vehicle control input (𝑈𝑖−1). Hence, this architecture employ a 

decentralized control scheme. Next, we consider the following dynamic controller to 

achieve the zero regulation error: 

1

1 1 1
( )

i i P i D i i
U U K E K E U

h h h
    

  (167) 

where 𝑈𝑖−1 and 𝑉𝑖−1 are the desired acceleration and velocity of the preceding vehicle 

received through DSRC network. The parameters 𝐾𝑃, 𝐾𝐷>0 are controller gains designed 

such that (i) the inter-vehicle distance is maintained to 𝐷𝑟,𝑖 and, (ii) 𝑈𝑖 changes smoothly 

and remains bounded.  

Remark 17: Referring to (167), the control signal of vehicle 𝑖 (𝑈𝑖) which is obtained 

from CACC algorithm, depends on (1) states of vehicle i (𝐷𝑖, 𝑉𝑖, and 𝑈𝑖), and (2) the 

transmitted information from the preceding vehicle (𝑈𝑖−1). 

Next, we make the following assumptions: 

Assumption 16: We consider a homogeneous platoon of vehicles. Therefore, all 

vehicles in the platoon are identical and have the same parameters e.g. mass, inertia, rolling 

resistance coefficient.  

Assumption 17: Each vehicle in the platoon measures relative distance with respect 

to preceding vehicle 𝐷𝑖. 
Remark 18: Vehicle 𝑖 measures the relative velocity via radar and hence can compute the 

absolute velocity 𝑉𝑖−1 of vehicle 𝑖 − 1. Vehicle 𝑖 also receives acceleration 𝑈𝑖−1 
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information of vehicle 𝑖 − 1 via DSRC network. Both these measurements are subjected 

to measurement noises and uncertainties.   

The leader vehicle in the platoon follows a fixed constant velocity trajectory. Hence, 

the desired velocity and relative distance between vehicles are 𝑉𝑑 and 𝐷𝑠,𝑟 = ℎ𝑉𝑑 = ∆   
respectively. By imposing constant velocity trajectories, the position of each vehicle in the 

platoon is obtained as 𝑞1(𝑡) = 𝑉𝑑𝑡 and 𝑞𝑚(𝑡) = 𝑉𝑑𝑡 − (𝑚 − 1)𝛿. Therefore, each vehicle 

trys to regulate its relative distance from its preceding vehicle to ∆ using CACC strategy. 

Next, we develop a new coordinate as "Normalized Coordinate" to facilitate the 

analysis [103],  

( )

( )

i d
i

i d
i

i d i
i

q t V t L
y

L

V t V
v

L

U U U
u

L L

 






 

  

where  𝐿 = 𝑚 × ∆ denotes the platoon length. Fig. 44(b) presents the schematic of the 

platoon in the new coordinates. In the normal coordinate we get, 𝑦𝑖(𝑡) ∈ [0,1], 𝑦1(𝑡) ≡ 1, 

and 𝑦𝑚(𝑡) ≡ 0, where 𝑦1(𝑡) and 𝑦𝑚(𝑡) refer to leader's and last vehicle's positions 

respectively. Here, we have implicitly assumed that the deviations of the vehicle positions 

and velocities from their desired values are small.  

The dynamics of the vehicle i in the normalized coordinate are given by 

i iy u
  (168) 

i iy v
  (169) 



 113 

 

Figure 44: Platoon with vehicles moving in a single lane (a) A platoon with leader and 
follower vehicles. (b) Same platoon in 𝑦 coordinates. 

where 𝑢𝑖 = 𝑈𝑖𝐿 . The desired spacing and velocities are   

, 0, 0d d
d d

V V
v u

L L
 
   

  (170) 

and the desired position of the vehicle 𝑖 is 

, ( ) 1d iy t i  
  (171) 

The position and velocity errors for the ith vehicle in the normalized coordinate are 

given by 

,( ) ( ) ( )i i d iy t y t y t 
  (172) 

( ) ( ) ( )i i d iv t v t v v t     (173) 

( ) ( ) ( )i i d iu t u t u u t    (174)  
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Also, regarding to (167), it is useful to introduce the front relative position errors for the 

ith vehicle:  

 

1
1

( ) ( ) ( )
( ) i i i

i i i

E t q t q t
e t y y

L L




 
    

  (175) 

1
1

( )
( ) i i i

i i i

E t V V
e t v v

L L





   

  (176) 

For  =  1, . . . , 𝑚 . The quantities 𝑒𝑖(𝑡) and �̇�𝑖(𝑡) denote the relative position and relative 

velocity errors between the ith and its predecessor 𝑖 − 1 vehicle. 

Therefore, (167) in the normal coordinate will be as  

1

1
( ) p d

i i i i i

k k
u u u e e

h h h
   

  (177) 

The relative errors, including the velocity error, are computed by on-board devices 

such as GPS, radars, and speed sensors. Consistent with the decentralized linear control 

architecture, the dynamics of control signal 𝑢𝑖 of the vehicle 𝑖 is assumed to depend on 1) 

its acceleration 𝑢𝑖, 2) its preceding acceleration, 𝑢𝑖−1 which is received through DSRC 

network, 3) relative velocity, 2) the relative position errors between itself and its preceding 

vehicle.  

PDE Model of Platoon 

 

In this section, we develop a continuous PDE approximation of the discrete platoon 

dynamics modelled in section II. Note that the discrete platoon dynamics refers to the model 

of platoon explained with ODE set of equations (168)-(177). This model is discrete with 

respect to space and is continuous with respect to time. The PDE is derived with respect to 
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a scaled spatial coordinate explained in section II with lower case states 𝑦𝑖(𝑡), 𝑣𝑖(𝑡), and 𝑢𝑖(𝑡). Hence, to make the spatially discrete ODE based model to a continuous model, we 

define a new position parameter 𝑥 ∈ [0,1]. In effect, the two symbols 𝑥 and 𝑦 correspond 

to the same coordinate representation but, are used here to distinguish the continuous and 

discrete formulations [103].   

The first step to develop the PDE model is to define the continuous approximation. 

Referring to normalized coordinate, every car is nominally assumed to lie within an interval 

of length ∆ (see Fig. 44(b)). For the purpose of a continuous approximation, we expand each 

vehicle over its interval to have a constant mean density (vehicles per unit length) as (178) 

for 𝑚 vehicles in the platoon. 

0

1
m


 

  (178) 

Furthermore, we assume the following approximation for the velocity in each vehicle's 

interval  
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   (179) 

This approximation grantees that velocity profile in the PDE approximation changes 

smoothly in the length of platoon (𝑥).  

Next, we define the density of the platoon, 𝜌(𝑥, 𝑡), represents the quantity regarding 

to vehicles per unit of length. Local density of, 𝜌(𝑥, 𝑡), at spatial coordinate 𝑥 ∈  [0,1] and 
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time 𝑡 ∈  [0,∞) relates to the velocity 𝑣(𝑥, 𝑡) using the continuity equation of the 

macroscopic continuous models of the traffic flow as follows [107]-[108] 

( )
0

v

t x

  
 

    (180) 

As it can be interpreted from (180), the perturbation in the density causes by the 

dynamics of the individual vehicles in the platoon. Local density 𝜌(𝑥, 𝑡) increases 

(decreases) as the cars move closer (apart). In order to analyze small perturbations about the 

mean values (equilibrium point of the system), we define the perturbed quantities �̅�, �̅� as 

0 0( , ) ( , ), ( , ) ( , ),x t x t v x t v v x t        (181) 

Therefore, for small perturbations around mean values we can linearized (181) to  

0
0 0 0 0( )v v v v

t t t

       
    

     (182) 

recalling (169), we have the mean velocity equals to zero, 𝑣0 = 𝑣𝑑 = 0 and we know 𝜌0 is 

constant. Thus, we can re-write (182) as  

0 00
v v

t x t x

     
    

      (183) 

  This equation is consistent with the physical intuition whereby a positive gradient in 

velocity (due to say the predecessor speeding up or the follower slowing down) will cause 

the local density to decrease. In order to study density perturbations, one thus needs to 

specify the velocity which arises due to the linearized momentum balance:  

  

( , )
( , ) ( , )

v x t
u x t u x t

t


 

   (184) 
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  where 𝑢(𝑥, 𝑡) is the control signal developed by CACC strategy and equals to acceleration 

of the vehicle. To develop the continuous approximation of the acceleration, 𝑢(𝑥, 𝑡), we 

consider two terms of (172) and approximate each term separately in the rest of this section.  

First term in (172) as  

1 1 ( , )[ ]
i

i i i i
x y

u u u u
u x t
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   (185) 

second term is 

1 1

1
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   (186) 
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  (188) 

by the Mean Value Theorem [103]-[104], where 𝑥+ ∈ [𝑦𝑖, 𝑦𝑖−1] . Therefore, we can 

approximate (188) with 

0

1
( , ) ( , )ie x t x t 


 

  (189) 

Thus, referring to (177), we will construct a PDE approximation of discrete dynamics in 

terms of these continuous approximations as  

0 0 0

1
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p d
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   (190) 
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where, 𝑘𝑝 and 𝑘𝑑 are used to denote continuous approximations of discrete gains 𝐾𝑃 and 𝐾𝐷 respectively. Then, we arrive at the partial differential equation (PDE) as a model of 

the discrete platoon dynamics by 

0 0 0

1
( , ) ( ( , )) ( , ) ( , )

p d
k k

u x t u x t x t x t
t h x h h

   
  

 
  

    (191)  

applying (182) into the last term of (191), we get    
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using the following notation  
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    (193) 

The state space representation for PDE model of a platoon of vehicles equipped with 

CACC strategy is given as  

       , ,tv x t u x t
  (194) 

   0( , ) ( , ) t xx t v x t     (195) 

  
2

0 0 0

1
( , ) ( , ) ( , ) ( , )

p d
t x x

k k
u x t u x t x t v x t

h h h


  
  

  (196) 

  In this section, we assume that the attacker has knowledge about dynamics of vehicles 

into the platoon. Therefore, to implement a non-trivial attack, the attacker designs the fake 

vehicle dynamics similar the dynamics other real vehicles in the platoon. Indeed, this fake 
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vehicle does not provide wrong sensor/actuator information and can not be detected with 

aforementioned methodologies. Injecting fake vehicles into the platoon, directly impacts 

the density perturbation in the string. Hence, we can express the effect of fake vehicles as 

false data injection attack by  

( , ) ( , ) ( , ) a a ax t x t x t      (197) 

where, ∆𝜌(𝑥𝑎, 𝑡𝑎) presents the effect of fake vehicles injection at position 𝑥 = 𝑥𝑎 and time 𝑡 = 𝑡𝑎 in the platoon. In this attack scenario, apart from detecting the attack occurrence, 

isolating the injection point of the attack is crucial and requires more analysis. Furthermore, 

the injection point of the attack determines which vehicles in the platoon are the fake 

(ghost) vehicles. In this chapter, to detect the exact position of the false data injection 

attack, we take advantages of (i) cascading nature of the platoon which makes delay in 

responding to any perturbation in the driving profile. (ii) PDE modeling of the whole 

platoon to develop a centralize health monitoring option for platoon. 

Therefore, as an overview for the proposed scheme in this chapter to detect the false data 

injection attack, the following guideline is provided: 

Remark 19: False data injection attack as fake vehicles does not occur in the leader and 

last vehicle of the platoon. Hence, the first and last vehicles in the platoon are real vehicles.  

7.2. Diagnostics Approach  

In this section, we develop a novel diagnosis scheme based on PDE model of the platoon 

to detect and isolate the false data injection attack. The isolation of false data injection 

attack in a platoon of connected vehicles equals to identifying the position of the fake 
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(ghost) vehicle in the string. The proposed diagnosis algorithm works based on the 

following guideline: 

Step-1: Model the attack as injected fake vehicles in the platoon changing the density 

parameter in the platoon PDE model;   

Step-2: Design PDE-based observer to estimate the states of the system in no attack 

scenario;  

Step-3: Derive two residuals using the estimates and measured values of velocity and 

acceleration of the vehicles in the platoon; 

Step-4: Analyse residuals behavior in both no attack and under attack scenario to develop 

unique signature for each case; 

We design the state estimation scheme to estimate all states of the PDE model consisting 

of �̅�(𝑥, 𝑡), 𝑣(𝑥, 𝑡), 𝑢(𝑥, 𝑡) using available information. The observer is designed and 

implemented in the leader vehicle to monitor whole platoon performance using just one 

observer. We assume information regarding to velocity and acceleration of all vehicles in 

the platoon is available in the leader vehicle.  

Assumption 18: All vehicles in the platoon share their acceleration and velocity 

information through the DSRC network with the leader vehicle since the DSRC is a broad 

casting shared network.  

Remark 20: Available information through the DSRC network are subjected to network 

uncertainties and measurement noise.  



 121 

Estimation Scheme  

Considering assumption 18, in the observer design we have access 𝑣(𝑥, 𝑡) and 𝑢(𝑥, 𝑡) for 

whole platoon for ∀ 𝑡 > 0. The following structure is chosen for the PDE observer which 

is implemented into the leader vehicle.  

11 12
ˆ ˆ( , ) ( , ) ( ( , )) ( ( , ))tv x t u x t L v x t L u x t     (198) 

0 2
ˆ ˆ( , ) ( , ) ( ( , ))t xx t v x t L u x t   

  (199) 

32
0 0 0

1 ˆˆ ˆ ˆ( , ) ( , ) ( , ) ( , ) ( ( , ))
p d

t x x

k k
u x t u x t x t v x t L u x t

h h h


  
   

  (200) 

with the following boundary conditions derived from leader vehicle  

ˆ ˆ(1, ) (1, ), (1, ) (1, )v t v t u t u t    (201) 

where, 𝑣(𝑥, 𝑡), �̂̅�(𝑥, 𝑡),, and �̂�(𝑥, 𝑡) are estimates of 𝑣(𝑥, 𝑡), �̅�(𝑥, 𝑡), and 𝑢(𝑥, 𝑡) 

respectively. 𝐿11, 𝐿12  𝐿2 and 𝐿3 are observer gains to be determined.  

Remark 21: Considering each vehicle in the platoon as a point. We have point 

measurement based on ODE model of the platoon. However, we used PDE approximation 

in section II to develop a continuous mode. Similar approximations and assumptions are 

applied for the observer design.    

Furthermore, estimation error parameters including �̃�(𝑥, 𝑡), �̃̅�(𝑥, 𝑡) and �̃�(𝑥, 𝑡) are defined 

as  

ˆ( , ) ( , ) ( , ),

ˆ( , ) ( , ) ( , ),

ˆ( , ) ( , ) ( , )

v x t v x t v x t

x t x t x t

u x t u x t u x t

  

 

 
    (202) 

Subtracting (194)-(196) from (198)-(200),the error dynamics of the observer are given by 
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11 12( , ) ( , ) (  ( , )) ( ( , ))tv x t u x t L v x t L u x t     (203) 

0 2( , ) ( , ) ( ( , ))t xx t v x t L u x t      (204) 

32
0 0 0

1
( , ) ( , ) ( , ) ( , ) ( ( , ))

p d
t x x

k k
u x t u x t x t v x t L u x t

h h h


  
   

  (205) 

with boundary condition of  

(1, ) 0, (1, ) 0v t u t    (206) 

Theorem 1: Consider system modeled by (194)-(196) and the observer designed as (198)-

(200). There exist observer gains 𝐿11, 𝐿12  𝐿2 and 𝐿3 such that the error dynamics (203)-

(205), converges to bounded area in finite time, in the presence of no faults and cyber-

attacks.   

 

Proof: we provide the proof for this theorem in two stages using Lyapunov analysis 

method. First, we start with analysing (203) by choosing (207) as the Lyapunov function 

candidate [96]. 

1
2 2

1 0
( ) ( , ) ( , )V t v x t v x t dx  ‖ ‖

 (207)  

As it can be inferred from (207), for ∀ 𝑥 > 0 and ∀ 𝑡 > 0, 𝑉1(𝑡) > 0 when �̃�(𝑥, 𝑡) ≠ 0 . 

Taking the time derivative of 𝑉1(𝑡) along the state trajectories, we get  

1

1 0
( ) ( , ) ( , )tV t v x t v x t dx    (208) 

1

1 11 120
( ) ( , ) ( , ) ( , ) ( , )( )V t v x t u x t L v x t L u x t dx     (209) 

choosing 𝐿12 =  1 and 𝐿11 > 0, (209) converts to  
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1
2

1 11 10
( ) ( , ) ( )V t v x t dx L V t      (210) 

Considering any positive initial value of 𝑉1(𝑡 = 0) =  𝑉1(0) > 0 we can write  

11

1 1( ) (0) L t
V t V e

   (211) 

Hence,  𝑉1(𝑡) → 0 as 𝑡 → ∞ asymptotically with the weight of 𝐿11. Consequently, �̃�(𝑥, 𝑡) → 0 as 𝑡 → ∞. Next, we analyze the error dynamics (204)-(205) using the 

following Lyapunov function candidate 

1 1
2 21

2 0 0

1
( ) ( , ) ( , )

2 2

b
V t x t dx u x t dx  

  (212) 

where 𝑏1 > 0. Differentiating the Lyapunov function candidate along the solution of (203)-

(205) we obtain 

1 1

2 10 0
( ) ( , ) ( , ) ( , ) ( , )t tV t x t x t dx b u x t u x t dx      (213) 

Substituting �̃̅�𝑡(𝑥, 𝑡) and �̃�𝑡(𝑥, 𝑡) by (204) and (205) respectively, we have 
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  (214) 

     For simplicity, we drop (𝑥, 𝑡) term from the functions 
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  (215) 
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Choosing 𝐿11 large enough which assures a fast convergence of �̃�(𝑥, 𝑡) → 0, we can 

conclude that 𝑣(𝑥, 𝑡) → 𝑣(𝑥, 𝑡) and 𝑣𝑥(𝑥, 𝑡) → 𝑣𝑥(𝑥, 𝑡). Hence, we can neglect terms 

related to 𝑣𝑥 in (215) and simplify it to 

1 1 1
21

2 2 1 1 320 0 0
0 0

( ) ( )p

x

k b
V t u L b dx uu dx b L u dx

h


 
      

  (216) 

Selecting the observer gain, 𝐿2 as   

1

2 2
0

pb k
L

h
 

  (217) 

The fisrt term in the right hand side of (216) equals to zero. Therefore, the derivative of 𝑉2 

obtains as  

1 1
21

2 1 30 0
0

( ) x

b
V t uu dx b L u dx

h
  

  (218) 

Now integrating the first term of the right hand side of (218) we have    

1
2 1 2 2 2

00

1 1 1
( , ) | (1, ) | | (0, ) | | (0, ) |

2 2 2
] ( )xuu dx u x t u t u t u t    

  (219) 

Next, considering (219) and applying the definition of norm on the second term of right 

hand side of (218), we get 

1
2 21

2 1 3 0
0

( ) | (0, ) |
2

b
V t u t b L u dx

h
   

  (220) 

2 21
2 1 3

0

( ) | (0, ) | ( ) 0
2

b
V t u t b L u t

h
   ‖ ‖

  (221) 

Choosing 𝐿3 > 0 and 𝑏1 > 0, �̇�2(𝑡) ≤ 0 ∀𝑡 ≥ 0 which describe the decaying behavior 

of 𝑉2(𝑡). Hence, if  we restrict the initial conditions so that 𝑉2(𝑡 = 0) = 𝑉2(0) is bounded, 
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the Lyapunov function 𝑉2(𝑡) ≤ 𝑉2(0) remains bounded for all 𝑡 ≥ 0 . Therefore, we obtain 

the uniformly boundedness of ‖�̃�‖2and ‖�̃̅�‖2 are bounded [98]. Further, to prove the 

regulation of the �̇�2(𝑡) which equals to  𝑉2(𝑡) → 0 as 𝑡 → ∞ we define function  𝑀(𝑡) as  

1
2

1 3 0
( )M t b L u dx     (222) 

Therefore, from (220) and (222) we can conclude  

2 ( ) ( )V t M t   (223) 

Differentiating (222) with respect to time, we get 

1

2 1 3 0
( ) ( ) tV t M t b L uu dx      (224) 

Substituting �̃�𝑡  from (215), and using fact that �̃�(𝑥, 𝑡) → 0 and �̃�𝑥(𝑥, 𝑡) → 0, (222) , we get  

1 1 11 3 2 21 3
1 320 0 0

0 0

( )
p

x

b L Kb L
M t uu dx u dx b L u dx

h h


 
     

  (225)  

1 321 3
1 32

0 0

( ) | (0, ) | (( )pb L Kb L
M t u t u b L u

h h


 
   ‖ ‖ ‖ ‖ ‖ ‖

  (226) 

Since we have measurement on 𝑢(0, 𝑡) we can select �̂�(0, 𝑡) close to actual value with 

error of measurement noise. Therefore, |�̃�(0, 𝑡)| is bounded. Also, we know ‖�̃�‖2and ‖�̃̅�‖2 are uniformly bounded. Therefore, referring to (226) we can conclude �̇�(𝑡) is 

bounded and equivalently proves the boundedness of �̈�2(𝑡) as 

2 ( ) ( )V t M t     (227) 

Furthermore, the boundedness of �̈�2(𝑡) concludes that �̇�2(𝑡) is uniformly continuous. 

Hence, applying Barbalat lemma [92]on �̇�2(𝑡) along with the fact that 𝑉2(𝑡) is bounded, 
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we obtain �̇�2(𝑡) → 0 as 𝑡 → ∞ . At this point, we proved the stability of the estimation 

error dynamics which converges to zero as 𝑡 → ∞. 
 

7.3. Attack Diagnostics 

The main idea behind attack diagnosis in this chapter is using the perturbation in velocity 

profile to poke the inherent effects of the attack which makes the detection easier. Indeed, 

the ghost vehicles develop disturbances (changes) in the local density of the platoon. The 

leader vehicle perform a small perturbation on the constant velocity profile to detect the 

attack and isolate the injected point of the attack in the platoon. Next, we explain in detail 

how the attack is diagnosed using the PDE model and the aforementioned idea.    

Applying the selected observer gains into the estimation error dynamics explained in(203)-

(205), we get  

11( , ) ( ( , ))tv x t L v x t    (228) 

1

0 2
0

( , ) ( , ) (  ( , ))
p

t x

b k
x t v x t u x t

h
 


  

  (229) 
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1
( , ) ( , ) ( , ) ( , ) ( ( , ))

p d
t x x

k k
u x t u x t x t v x t L u x t

h h h


  
   

  (230) 

   

with boundary condition of  

(1, ) 0, (1, ) 0v t u t    (231) 
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Since, velocity and acceleration of vehicles in the platoon are the two available 

measurements of the PDE system, we define two following residuals for attack detection 

strategy  

1

2

ˆ( , ) ( , ) ( , ) ( , )

ˆ( , ) ( , ) ( , ) ( , )

r x t v x t v x t v x t

r x t u x t u x t u x t

  
     (232) 

We have analysed the stability of estimation errors dynamics in section V. Under no false 

data injection attack, we proved that the estimation error dynamics converge to zero as 𝑡 →∞. Equivalently, with no attack in the platoon, both residuals 𝑟1(𝑥, 𝑡) and 𝑟2(𝑥, 𝑡) converge 

to zero. This signature of two residuals is considered as no attack signature.  

Next, we analyse the behavior of the residuals in the occurrence of false data injection 

attack. In case the attack formulated in (197), �̃�(𝑥, 𝑡) will converge to zero with same 

Lypupanov analyse. However, dynamics of the acceleration perturbation in (230) changes 

to   

32 2
0 0 0 0

1
( , ) ( , ) ( , ) ( , ) ( ( , )) ( , )

p pd
t x x a a

k kk
u x t u x t x t v x t L u x t x t
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  (233) 

So, the derivation of Lyupanov function𝑉2(𝑡)  will have additional term in (221) as the 

effect of 𝛥𝜌(𝑥𝑎, 𝑡𝑎) in acceleration perturbation dynamics 

2 21
2 1 3

0

( ) | (0, ) | ( ) ( , )
2

a a

b
V t u t b L u t u x t

h
    ‖ ‖ ‖ ‖

  (234) 

Therefore, under false data injection attack scenario, the second Lyapunov function 𝑉2(𝑡) 

for analysing convergence of �̃�(𝑥, 𝑡) and �̃̅�(𝑥, 𝑡) will converge to a bounded region. 

Equivalently, �̃�(𝑥, 𝑡) and consequently, residual 𝑟2(𝑥, 𝑡) converges to a bounded area. 
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Finally, we can conclude that, in the presence of the false data injection attack, first 

residual, 𝑟1(𝑥, 𝑡), will not change; while, the second residual, 𝑟2(𝑥, 𝑡), will converge to a 

bounded non-zero value. This signature of the residuals is considered as false data injection 

attack signature.   

One of the possible ways to deal with attack detection using residual values is to use 

nonzero threshold set based on no attack behavior of the system. Hence, in the next step, 

we select constant threshold values for the obtained residuals in no-attack situation using 

the probability distribution method. In this method, first we need to collect residual data, 𝑟𝑖(𝑥, 𝑡), 𝑖 ∈ {1,2} under no attack scenario of platoon operation. Next, using the 

probability distribution characteristics such as mean and standard deviation, we set a 

constant threshold for each residual. The constant thresholds 𝛾𝑖, 𝑖 ∈ {1,2} as selected 

such that the probability of false alarms calculated with are acceptable. where,  𝛾𝑖 is the 

selected constant threshold on residual 𝑟𝑖.     
 

0 0( ) ( ) ,
i

i
FAiP p x dx p x dx





 


  

  (235) 

where, 𝑃𝐹𝐴𝑖  i is the probability of attack false alarm in , 𝛾𝑖 is the selected threshold for false 

data injection attack and 𝑝0(𝑥) is the 𝑟𝑖(𝑥, 𝑡) probability distribution under no attack in the 

platoon. The goal here is to select 𝛾𝑖which will yield an acceptable 𝑃𝐹𝐴𝑖. 
Finally, we can conclude the residual analysis in both no-attack and under attack scenarios 

with the following remark. 
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Remark 22: The residuals signature is evaluated to determine if false data injection attack 

occurs into the connected vehicle platoon. In case of no attack in the system, the signature 

of residuals is |𝑟1(𝑥, 𝑡)| < 𝛾1,  and |𝑟2(𝑥, 𝑡)| < 𝛾2; when the residual signature shows |𝑟1(𝑥, 𝑡)| < 𝛾1 and |𝑟2(𝑥, 𝑡)| > 𝛾2 it determines a false data injection attack is detected in 

the system.  

 

 

 

7.4. Results and Discussion  

In this section, we evaluate the effectiveness of the proposed algorithm using the simulation 

studies. We consider a platoon of fifteen (𝑚 = 15) identical vehicles equipped with CACC 

strategy. Most of the simulation parameter of the platoon are taken similar to existing 

literature [30],[64]. The controller gains are constant for all vehicles, i.e., 𝑘𝑝(𝑥)  =  𝐾𝑃  = 0.7 and 𝑘𝑑(𝑥)  =  𝐾𝐷  =  2.5 and the headway is selected as ℎ =  0.2 𝑠. The desired inter-

vehicle distance is considered as ∆= ℎ𝑉𝑑 and desired velocity is  𝑉𝑑  =  20 𝑚/𝑠. The initial 

velocity of all vehicles was chosen as the desired velocity and the initial position of the 

vehicle was determined as 𝑞𝑖(𝑡) = 𝑉𝑑𝑡 + (𝑖 − 1)∆. As a result, the initial relative position 

error and velocity error of every vehicle was zero except for the first vehicle. The first 

vehicle has a velocity perturbation of 𝑣(1, 𝑡) = 𝑣0(𝑡) = 0.24𝑠𝑖𝑛(𝑡) which cause an 

acceleration perturbation as 𝑢(1, 𝑡) = 𝑢0(𝑡) = 0.24𝑐𝑜𝑠(𝑡) with respect to the desired 

velocity 𝑉𝑑  =  20 𝑚/𝑠 and desired acceleration 𝑈𝑑  =  0 𝑚/𝑠2.  
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Since the controller gains 𝐾𝑃 and 𝐾𝐷 are constant, the controller gains in the continuous 

PDE model are the same. Based upon the Lyapunov analysis discussed in section V, the 

observers gain are selected as 𝐿11 = 700, 𝐿12 = 1, 𝐿2 = − 2𝑘𝑝ℎ𝜌02 and 𝐿3 = 50. As it is 

mentioned in assumption 18, the leader vehicle receives information of velocity and 

acceleration of each vehicle in the platoon. To analysis a realistic scenario, we consider 

zero mean Gaussian noises as measurement noise for all available velocity and acceleration 

measurements. Velocity measurement noises have standard deviation of 𝜎𝑣 = 2𝑐 𝑚 𝑠 ⁄ and 

acceleration measurement noises have standard deviation of 𝜎𝑢 = 3𝑐 𝑚 𝑠2⁄  [109]. To test 

the convergence properties, observers in the proposed scheme are initialized with incorrect 

values except for the leader vehicle. Since, the PDE observers are designed and 

implemented in the leader vehicle, the observers have access to the exact measured data of 

velocity and acceleration of the leader vehicle as it is formulated in (201).    

Next we illustrate the effectiveness of the proposed approach under the following cases. 

Case 1: The scenario that the platoon operates in normal condition with no false data 

injection attack; and Case 2: the case study in which false data injection attack occurred 

into the system by injecting fake vehicles using fake identity. For each case, the simulation 

is run for 70 seconds and the obtained results are further discussed in more details. 

Case 1: No Fault Scenario 

 In this case we consider an ideal communication network in the platoon with no false data 

injection attack. The velocity perturbation in the whole platoon is demonstrated in Fig. 44. 

Referring to PDE formulation (194)-(196), the leader vehicle is placed at 𝑥 = 1 while the 

last vehicle in the platoon is represented at 𝑥 = 0. Fig.45 depicts the minimum velocity 
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perturbation in the leader vehicle at 𝑥 = 1. However, as it is expected, the perturbation is 

propagated through the length of platoon as we have the largest perturbation in the last 

vehicle on the string. The velocity perturbation in the leader vehicle is 𝑣(1, 𝑡) = 0.24 𝑠𝑖𝑛(𝑡) with maximum amplitude of 0.24 𝑚/𝑠. This value is almost tripled in last 

vehicle in the platoon with maximum of  0.64 𝑚/𝑠.  

 An overshoot in the transient behavior of the vehicles in the platoon is noticeable in the 

velocity perturbation simulation results. Note that, each vehicle in the platoon receives 

information of the preceding vehicle as inputs. Therefore, the velocity of each vehicle is 

an output to the receiving information and has transient phase which will propagate through 

the platoon. The initial overshoot which is more detectable in the last vehicle of the platoon 

(at 𝑥 = 0) is because of step response to receiving perturbation.   

 

Figure 45: Velocity perturbation in the platoon 
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Figure 46: Estimated velocity perturbation in the platoon 

 
Fig. 46 shows the estimate value of velocity perturbation for whole platoon which is 

obtained with the observers designed in section V. To verify the convergence properties of 

the proposed scheme, observers are initialized with incorrect values of velocity 

perturbation, acceleration perturbation and density perturbation. The estimation error of 

the velocity perturbation is given in Fig. 47. As it can be inferred, the estimate value 

converges to actual value of velocity perturbation. The estimation error converges to zero 

asymptotically with the rate of 𝐿11 = 700 with measurement noise.  
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Figure 47: Estimation error for velocity perturbation in the platoon 

 

Fig. 48 represents the actual acceleration perturbation in vehicles in our case study platoon. 

As it can be demonstrated from this plot, the acceleration perturbation also propagates 

through the platoon from the leader to the last follower in the string. The acceleration 

perturbation of the leader vehicle is 𝑢(1, 𝑡)  =  0.24 𝑐𝑜𝑠(𝑡) with maximum amplitude of  0.24 𝑚/𝑠2, while the maximum acceleration perturbation in the vehicle in the platoon 

reaches to 0.64 𝑚/𝑠2. Similar to the velocity perturbation, the transient response of the 

acceleration perturbation settles into the steady state within less than 5 seconds.  
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Figure 48: Actual acceleration perturbation in the platoon 

 

The estimate value of acceleration perturbation in the platoon is give by Fig. 49. Except 

for the leader vehicle, the initial acceleration perturbation values for all vehicles in the 

platoon is chosen incorrectly to test the convergence properties of observers. Fig. 50 

presents the error between actual measured acceleration permutation and the estimate 

values in the whole platoon. As it is shown in the plot, the estimation error converges to a 

bounded area in finite time.  
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Figure 49: Estimated acceleration perturbation in the platoon 

 

Figure 50: Estimation error for acceleration perturbation in the platoon 

 
Density perturbation in the platoon, 𝜌 (𝑥, 𝑡) is represented in Fig. 51 as function of position 

(vehicle in the platoon) and time. The leader vehicle has a density perturbation value of 



 136 

𝜌 (1, 𝑡) =  −3.6 𝑐𝑜𝑠(𝑡). As it is expected the perturbation is propagated into the platoon 

and the last vehicle in the platoon has a maximum density perturbation of 10.3. Since the 

perturbation is a function of velocity, the initial transient response reaches to steady state 

in less than 5 seconds. 

 

The estimate value of density perturbation for whole platoon is depicted in Fig. 52 and the 

estimation error is given by Fig. 53. As it can be inferred from the plot, the estimated 

density perturbation converges to its actual value in finite time. The error of the estimation 

remains less than 0.5 which verifies convergence properties proved in Section V using 

Lyapunov method. The value of �̃�(1, 𝑡) represents the estimation error of density 

perturbation in leader vehicle. Since the observer is designed in the leader vehicle, both 

estimate value and actual value of density perturbation in position of leader vehicle, 𝑥 = 1 

are same. Hence, �̃�(1, 𝑡) = 0, however, for the rest of the platoon, due to the existence of 

measurement noise in velocity and acceleration, and incorrect chosen initial values of 𝑣(𝑥, 0), �̂�(𝑥, 0), and �̂�(𝑥, 0).    
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Figure 51: Actual density perturbation in the platoon 

 

Figure 52: Estimated density perturbation in the platoon 
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Figure 53: Estimation error for density perturbation in the platoon 

Next, we define two constant thresholds for the obtained residuals, 𝑟1(𝑥, 𝑡) = �̃�(𝑥, 𝑡) and 𝑟2(𝑥, 𝑡) = �̃�(𝑥, 𝑡)using the concept explained in section V. Since only second residual 𝑟2(𝑥, 𝑡) is critical to determine the false data injection attack, we mainly focus on this 

residual. Analysing the obtained data for �̃�(𝑥, 𝑡) in this section under no attack , we select |𝛾2(𝑥, 𝑡)| =  0.03 to determine the boundary for threshold as shown in Fig. 54. Therefore, 

if the residual 𝑟2(𝑥, 𝑡) exceed the threshold |𝛾2(𝑥, 𝑡)| we interpret the event as false data 

injection attack occurrence.  
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Figure 54: Residual probabilty desnity for thereshold setting  

 

Case 2: Fault Data Injection Scenario 

 

In this scenario, we inject the fake vehicles as false data injection attack into the platoon. 

We consider two fake vehicles to be injected in the middle of the platoon between vehicle 

number 7 and 8. These fake vehicles add additional density into the platoon in the injected 

point. Hence, the estimated density perturbation will not match with the actual density 

perturbation in the disrupted point in the platoon. The proposed algorithm is capable of 

detecting the density disruption as well as identifying the position of the attack in the 

platoon system. Fig. 55 depicts the first residual, 𝑟1(𝑥, 𝑡) equivalent to estimation error for 

velocity perturbation, �̃�(𝑥, 𝑡) under false data injection attack scenario. As it is discussed 

in Subsection B of Section V, we destined the observers such that the first residual does 

not show the effect of the attack. However, the second residual, 𝑟2(𝑥, 𝑡) corresponding to 
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estimation error for acceleration perturbation has non-zero value when attack occurs into 

the system. Fig. 56 represent estimation error of acceleration perturbation for the whole 

platoon. As it can be inferred, the estimation error converges to a has non-zero bounded 

value at 𝑥 =  0.5 corresponding to 7th vehicle of the platoon representing of attack 

occurrence. Since the attack remains in the system for whole time of the simulation, the 

non-zero value of the estimation error remains for all time of the simulation  𝑡 ∈  [0,80]. 
To illustrate the attack detection using the pre-defined threshold, Fig. 46 shows the residual 𝑟2(𝑥, 𝑡) with the constant threshold, 𝛾2(𝑥, 𝑡)  = 0.03. The pre-defined threshold 𝛾2(𝑥, 𝑡) is 

depicted via pink surfaces at 𝑟2(𝑥, 𝑡) = 0.03 and 𝑟2(𝑥, 𝑡) = −0.03. It can be inferred from 

the Fig.57, in the occurrence of the false data injection attack, the residual 𝑟2(𝑥, 𝑡) surpasses 

the set threshold declaring that the attack is happening in the system. 

 

Figure 55: Estimation error for velocity perturbation under false data attack injection 
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Figure 56: Estimation error for acceleration perturbation under false data attack 
injection 

 

 

Figure 57: Estimation error for acceleration perturbation as residual 𝑟2(𝑥, 𝑡) under 
false data attack injection 
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CHAPTER EIGHT 

DECISION MAKING   

To combine the aformationed strategies in an integrated control strategy, a hybrid format 

controller is required to determine which types of cyber-attacks is happening in the system 

and what is the coresponiding strategy to minimize the effect of that specific attack. To 

achive this objective, we design a descion maker using optimum control algorithm to 

choose the best control signal among the avialbable choices. We formulate the optimization 

problem with a MPC problem in which the cost function penalize the agresive driving 

profile as well as selecting safest relative distance to avoid collision.   

 

 

 

 

 

 

 

Figure 58: Hybrid system scheme 

8.1. Problem Formulation  

 
In this section, we refere to the two strategeis proposed in chapter five and chapter seven 

for packet dorpping and denial of service attack respectively. We develop a scenario 

including both packet dropping phenomena and DoS attack to illustrate the effectiveness 
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of the decision making algorithm in selecting right strategy. Indeed, in each sample time, 

the decsion making block receives three choices of control signal as 

1- Actual Control Signal: This is the actual control singal obtained from the CACC 

algorithm while actual information received through the DSRC network. The 

information received through DSRC network is subjected to packet dropping and DoS 

attack. In fact, the Actual Control signal is the control signal without applying any 

resilient strategy. We refer to this control signal as 𝑢𝑎𝑐𝑡𝑢𝑎𝑙 
2- Packet Dropout Control Signal: This control singal is the output of the modified CACC 

while the strategy of the packet dropping phenomena is applied into the system. We 

refer to this control signal as 𝑢𝑃𝑎𝑐𝑘𝑒𝑡_𝐴𝑝𝑝𝑙𝑖𝑒𝑑 

3- Denial of Service Control Signal: This control singal is the output of the modified 

CACC while the strategy of the denial of srvice attack is applied into the system. We 

refer to this control signal as 𝑢𝐷𝑜𝑆_𝐴𝑝𝑝𝑙𝑖𝑒𝑑 

Intuitively, we expect that, the packet dorpping srategy acts better than DoS attack 

strategy when there is packet dropping phenomena in the communicaiton network. In 

contrast, we expect that the strategy of the DoS attack has a better perfoamnce comparint to 

the packet dropping strategy when there is actually a DoS attack in the DSRC network.  

We formulate the MPC problem as  min𝑢𝑖∈ 𝑈 𝐽 =  ∑ 𝜔1𝑑𝑖2 + 𝜔2𝑢𝑖2𝑖=1,…,𝑁  (236) 

where, 𝑈 = {𝑢𝑎𝑐𝑡𝑢𝑎𝑙 , 𝑢𝑃𝑎𝑐𝑘𝑒𝑡_𝐴𝑝𝑝𝑙𝑖𝑒𝑑, 𝑢𝐷𝑜𝑆_𝐴𝑝𝑝𝑙𝑖𝑒𝑑  } 
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8.2. Simulation results 

For the simulation scenario, we consider a US06 driving cycle as the velocity profile for 

the leader vehicle. Similar to the rest of the simulation scenarios in this research we 

consider a platoon of vehicles equipped with CACC strategy. To illustrate the effectiveness 

of the proposed algorithm we discuss the performance of Vehicle 3 in the platoon as an 

example.  

The simulation run for 600 seconds, the first 50 seconds the communication network works 

ideally with no packet dropping or delay. At t=50 for 250 seconds we inject the DoS attack 

with an effect of = 5 𝑠 . After the DoS attack, we consider the network works ideally again 

for another 100 seconds. At time t= 400 s, we inject packet dropping failure into the DSRC 

network with 𝜆 = 0.3 (the probability of losing data) which remains till the end of the 

simulation time. Fig. 59 shows the relative distance of Vehicle 3 with respect to its 

predecessor vehicle (𝑑3) under different strategies with the explained attack in the 

communication network. The ideal behavior of the Vehicle 3 when there is no attack or 

packet dropping in DSRC is depicted with blue curve as a criteria for comparison. The 

actual relative distance  𝑑3 is shown with solid black curve. The actual signal represents 

the actual behavior of the Vehicle 3 under DoS attack and packet dropping while there is 

no strategy applied in the controller. As we can see in more visualized plot in Fig. 60, in 5 

points of the plot, the relative distance is less than zero representing accident with the 

preceding car. Next, we apply only the packet dropping strategy on the controller and the 

result is shown with dashed green curve. Similarly, we only apply the DoS attack strategy 

and the result of the Vehicle 3 relative distance is shown via dashed red line. As it can be 
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inferred from Fig. 59, the packet dropping algorithm help the Vehicle 3 to behave very 

close to its ideal performance in part of the simulation when packet dropping occurs in the 

DSRC network. However, the packet dropping strategy fails to help the Vehicle 3 when 

DoS attack is happening the communication network. In contrast, DoS attack strategy acts 

very well in the time slot that actually DoS attack is injected in the DSRC network while, 

it is not resilient toward packet dropping phenomena. The acceleration data is also provided 

in Fig. 61, illustrating similar argument results.  

 

 

Figure 59: Relative distance of the Vehicle 3 under ideal DSRC network (blue), DSRC 
under attack while packet dropping strategy applied (dashed green), DSRC under attack 
and no strategy applied (black) and DSRC under attack while DoS attack strategy applied 
(dashed red). 
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Figure 60: Visulaized relative distance of the Vehicle 3 under ideal DSRC and under 
attack. 

 

Figure 61: Acceleration the Vehicle 3 (control signal) under ideal DSRC and under 
attack while packet dropping strategy applied (dashed green), DSRC under attack and no 
strategy applied (black) and DSRC under attack while DoS attack strategy applied 
(dashed red). 
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The provided results for this scenario, validates the necessity of essential decision 

making algorithm for choosing write strategy corresponding to the existing attack/network 

failure in the CPS. To achieve this objective along with maintaining the smooth driving 

profile, we developed the MPC strategy as (236) which provides the following results 

 

Figure 62: Behavior of the Vehicle 3 under ideal DSRC network (blue), and DSRC 
under attack scenario with resilient control strategies applied via optimum decision 
making algorithm (red). 

 
As it can be inferred from Fig. 62, the optimum decision making algorithm chooses 

suitable decision to have the keep the performance of the platoon close to the normal. 

Furthermore, the decision guarantees the safe relative distance as well as smooth driving 
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behavior which is similar to deriving profile when the DSRC has ideal communication. The 

selected control action in each sample time is shown in Fig. 63. 

 

Figure 63: Selected control action during US06 driving cycle via decision making 
block. 

 
As it can be inferred from Fig. 63, in the first part of the driving cycle, when the 

DoS attack occurs in the DSRC network, the decision making block mainly chooses DoS 

strategy specially for critical points where Collison could happen such as 𝑡 =  110𝑠 or 𝑡 = 118 𝑠, where we have higher acceleration or deceleration in the driving profile. However, 

after 𝑡 =  400 𝑠 when packet dropping is happening in the DSRC, the decision making 

chooses mainly packet dropping strategy to modify control strategy of the platoon.  
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CHAPTER NINE 

SUMMARY AND FUTURE WORKS 

9.1. Dissertation Summary 

This dissertation is concerned with security of cyber physical systems with particular 

focus on connected vehicles. Despite being widely applicable in various industries and 

infrastructures, cyber physical system suffer from issues regarding to safety, security and 

reliability.  To improve the performance of the CPS, these issues should be addressed which 

requires good knowledge on attack modeling, cyber-attack detection and attack resilient 

strategies. Along with cyber-attacks, CPS also requires physical health monitoring with 

regard to physical faults as well as network failures. Motivated by this scenario, this 

dissertation proposed a set of hybrid strategies to make cyber physical systems resilient 

toward cyber-attacks as well as physical faults and network failures. These strategies are 

based on control/systems theory tools and physical models of the CPS that would be 

beneficial for maintaining the performance and functionality of the CPS in the presence of 

malfunction and cyber-attacks.  

In Chapter 2, a brief introduction has been given on working principle of connected 

vehicles and modeling of the connected vehicles equipped with Cooperative Adaptive 

Cruise Control (CACC). Next, in Chapter 3 we have a state- of- art- literature review on 

cyber-attacks modeling and security in cyber physical systems in occurrence of common 

cyber-attacks. The chapter also includes a brief review over diagnostics and observer design 

tools.  
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In Chapter 4, a sensor/actuator fault diagnosis problem is explored for a connected 

vehicle system under CACC. The diagnostic scheme has two sliding mode observers to 

detect, isolate and estimate different sensor faults in the individual vehicles; the CACC 

controller uses this estimated fault information to reconstruct the control signal. Therefore, 

inclusion of the diagnostic scheme essentially supplies the controller with more accurate 

information which in turn improves the overall safety of the connected vehicles. Simulation 

studies are presented which confirm the effectiveness of the diagnostic scheme. 

In Chapter 5, the diagnostic scheme has two components: 1) A sample hold strategy 

and 2) A Kalman filter-based estimation scheme to reconstruct the data under packet drop 

outs; the filter provides an improved estimate of the data received via communication 

network, which is in turn used by the CACC controller to construct the control signal. 

In Chapter 6, we proposed three algorithms to estimate the effect of denial of service 

attack as time delay. The first algorithm considers the statistic time delay as the effect of 

DoS attack, while, the latter two algorithms model DoS attack as the saturated attack with 

constant unknown delay. In first section of proposed research, an observer-based algorithm 

is presented for state estimation for vehicle platooning. The proposed algorithm consists of 

three main components including a Luenberger observer operates for ideal case of no attack 

in the system and a model-based observer and delay estimator for under-attack situation. 

This scheme is capable to detect DoS attack in DSRC communication network as well as 

estimating states of preceding vehicle for each car. Therefore, the modified CACC using 

estimated states can avoid potential dangers and present better performance. As future work, 

the scheme should be validated with experimental data. 



151 

In the second algorithm, we propose a real-time scheme for diagnosis of Denial of 

Service (DoS) cyber-attack in connected vehicles. Under DoS, the attacker keeps the 

communication network busy by sending fake requests and hence the network is unable to 

respond to legitimate requests from the real users. Specifically, the proposed scheme can 

potentially (i) detect the occurrence of DoS, and (ii) estimate its effect on the connected 

vehicle system. We model the effect of the attack by a time delay in the information 

processing via communication network. The main goal of the proposed scheme is to track 

this delay in information processing. The proposed scheme consists of a set of observers 

designed via sliding mode theory and adaptive observer theory. Simulation case studies are 

provided to verify the effectiveness of the proposed scheme.  Furthermore, the robustness 

of the scheme is verified (i) under several forms of parametric uncertainties, and (iii) several 

measurement noise scenarios. 

In the third algorithm, we consider a more general problem with delay (as the effect 

of DoS attack) in cyber physical systems. Hence, an observer-based algorithm is presented 

to estimate the current states of a distributed cyber physical system while, only delayed 

measurements are available. The existing delay in the system measurements is a constant 

unknown value.  The proposed scheme consists of two separate components: (1) a PDE 

model- based adaptive observer to estimate the unknown constant delay in the system and 

(2) a Luenburger observer to predict the states of the system based on an estimated delay

obtained from the first observer. This scheme is capable of detecting and estimating 

unknown constant delay in cyber physical systems and estimate the correct states of the 

system despite delay. Hence, it is a valuable method for precise health monitoring 
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applications in CPS and for modifying the controller of the system to compensate the effects 

of the delay. As for future works, the scheme can be used to modify the control strategy of 

the system to compensate the impact of the delay in cyber physical and networked control 

systems. 

In Chapter 7, we considered a platoon of vehicles equipped with CACC strategy. 

The vehicles moving in a single straight line following their leader in a constant velocity 

and specific inter-vehicle distance. A continuous model using PDE approximation is 

developed to describe the dynamics of the platoon. Further, we modeled the false data 

injection attack in the platoon with injected ghost vehicles disturbing the local density 

perturbation characteristics of the platoon. To detect and isolate the false data injection 

attack into the platoon, we develop an observer based diagnostics algorithm. The proposed 

diagnostics scheme is developed based on PDE model and available measurements on 

velocity and acceleration of the vehicles in the platoon. Two residuals are derived from the 

presented scheme using the pre-define constant thresholds. The residuals behaviors are 

studied in both no attack and under attack scenarios and unique signature is developed for 

each scenario. Two case studies are conducted in the simulation results to illustrate the 

effectiveness of the presented algorithm. The results of these two scenarios verify the 

convergence of the PDE observer and demonstrate the capability of the algorithm to detect 

and isolate the injection point of the false data injection attack. 

Finally, in Chapter 8 we presented an MPC based algorithm to select among 

available control strategies based on (1) smooth driving and (2) safe relative distance to 
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compensate the effect of existing network failures/ cyber-attacks in the communication 

network. 

9.2. Future Works 

Experimental validation: None of the presented algorithms are validated with the 

experimental test due to the lack of suitable hardware to create the platoon of vehicle (or 

robots) sharing their information through the commination network. These algorithms 

should be validated by experimental studies. However, to do the same, new experimental 

methods should be developed based on CACC control strategy and DSRC network 

characteristics.  

Observer design for more comprehensive models: In the proposed algorithms and 

observer design, mainly we have assumed linear model of the platoon of connected vehicles. 

Although majority of the presented algorithms are based on control theories which are 

applicable to nonlinear systems e.g. sliding mode observer design, adaptive observer design, 

it would be good extension to apply the proposed tools to nonlinear model of platoon. 

More comprehensive attack modeling: Some of the modeling of the cyber-attacks 

or network failure can be more complicated from what is used in this thesis such as Morkov 

model for packet dropping and DoS model.  

Stochastic decision making strategy: The inherent of the cyber-attacks is not 

deterministic. Therefore, it will be more efficient to provide a stochastic decision making 

scenario to switch among the strategies e.g. game theory based algorithms. 
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