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Abstract

In wireless sensor networks, the existing data aggregation algorithms usually cannot evaluate the extent of data

damage in presence of additive attacks. To resolve such problem, a resilient data aggregation method based on

spatio-temporal correlation for wireless sensor networks is presented in this paper. On the basis of the distributed

data convergence model, the algorithm combines the centroid distance and similarity to measure the attack

degree of each cluster node’s perceived data, and the weighted calculation can improve the convergence precision

of data recovery. In addition, this method can obtain the estimated value of data sample of all clusters according to

the temporal correlation characteristic of the nodes’ perceived data at different time. Using the chi-square fitting,

the extent of the data being tampered in each cluster can be measured effectively. Theoretical analysis and simulation

results show our method can improve the restoration convergence precision as the attack increment is small. Also, it

can enhance the robustness from noise interference.
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1 Introduction

In most applications of wireless sensor networks (WSNs),

data aggregation is critical for reducing the transmission

of redundant data effectively and prolonging the network

lifetime. Due to the impact of node’s deployment and

transmission channel, data aggregation is always facing a

severe challenge on security issues [1]. Especially as some

nodes in WSN being captured, the input values of

aggregation function will be modified involuntarily,

which will increase the output error of the result.

Therefore, the input values should be verified before

aggregating the data being collected by sensor nodes.

However, in traditional methods, once the malicious

attacks being monitored, the perceived data of the

sensor nodes will be discarded directly [2]. That will

cause a great waste of resources and reduce utilization

rate of sensor node’s energy.

At present, the important issue is that the perceptual

data is vulnerable to malicious tampering for data aggre-

gation. Broadly, there are two different categories about

those attacks. One is that the data is modified during

the transmission process, which mostly can be detected

by encryption technology. The other is that the data

will be tampered with before the aggregation, and this

kind of attack cannot be detected or blocked effectively

by encoding [3]. Therefore, the data aggregation algo-

rithms are proposed to solve this problem by validating

the perceived data before entering the aggregate function.

However, once the attack is detected, the traditional

method will discard the data being collected by monitoring

nodes directly [4]. This process mode can lead to a lot of

waste of resources and reduce the utilization of network

energy. In order to solve this problem, a variety of simple

method of restoration and aggregation is proposed by

using the samples that are not attacked [5], such as

truncation method and shear mechanism, which can

improve the energy utilization of the network. But

those methods have some limitations. In this paper, we

focus on spatio-temporal correlation of the perceptual

data in cluster-based WSNs. In particular, we cope with

the centroid distance and similarity to measure the

attack degree of each cluster node’s perceived data and* Correspondence: yl_cun@yeah.net
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present a resilient data aggregation method based on

spatio-temporal correlation (RDAS) for WSNs.

The rest of this paper is organized as follows: In

Section 2, we review the related work. We describe the

network model and assumptions and explain the details

of our method in Section 3. Section 4 presents a thorough

experimental evaluation and compares our solution with

the state-of-the-art. Finally, we conclude this paper in

Section 5.

2 Related works

Wireless sensor nodes are often deployed in a relatively

open environment with self-organized architecture [6].

Owing to lack of physical link or fixed special protection

equipment, a greater deal of security threat often con-

fronts more severely in WSNs than traditional network

[7]. From the perspective of secure routing, a special

monitoring node is set up in WSN network to imple-

ment target monitoring. In order to solve the problem of

high cost and difficulty to achieve, some security data

fusion method is proposed.

Lv et al. [8] proposed a secure routing algorithm for

WSNs based on credibility and gave a hierarchical

routing trust model to eliminate malicious nodes

through establishing secure routing. However, the main

disadvantage is that the data correlation is ignored in

spite of the trusted model being built from multiple

perspectives. Safa et al. [9] is a cluster-based trust-aware

routing protocol, which includes a hierarchical routing

algorithm based on node’s trust value. Each adjacent node

conducts mutual trust value evaluation and then clusters

in a self-organizing way. The intra-cluster nodes send the

data to the trusted cluster head by directional diffusion,

which can effectively guarantee the security of data trans-

mission. Hu et al. [10] proposed a creditability-based data

aggregation (CBDA) model based on trusted data fusion

to ensure the authenticity and reliability of the generated

aggregated data.

Zhang et al. [11] presented data fusion mechanisms

based on immune in WSN, which uses the hierarchical

distributed strategy to reduce the energy consumption of

the network to the maximum extent and improves the

reliability of the data fusion results by employing the

adaptive characteristics of the immune system. However,

the above mechanism cannot solve external malicious

attacks effectively. Liu et al. [12] proposed a high-efficient

and real-time data aggregation algorithm based on data

integrity. The algorithm employs redundant theorems on

sink node to verify the consistency of data to evaluate the

reliability of the result. Also, a homomorphic encryption

mechanism is conducted to provide security for data

forwarding.

To improve the accurate rate of the data fusion results,

Qiu et al. [13] presented a data aggregation in WSNs

based on a deep learning model. By designing the

stacked automatic encoders, the feature extraction

classification model is established for all clusters, and

the feature data is extracted and classified to aggregate

the characteristic information of the same kind. Cui et

al. [14] presented a malicious node detection algorithm

based on secure data fusion in WSNs, which combines

a false data filtering method for different geographic

locations. The node’s location is verified according to

the data sent by the node to identify the malicious

nodes that may exist in different regions according to

the forged data. Du et al. [15] proposed a dynamic data

fusion algorithm based on hierarchical routing queue.

By setting a dynamic queue in the filtering node, the

historical interactive data among the adjacent nodes

can be stored and the redundant data of the network

will be filtered, which can reduce the interference of

redundant data to final fusion results.

Wager [16] first introduced the concept of resilient

data aggregation and presented the specific issues that

need to be resolved. Some simple solutions have put

forward such as cutting method and truncated mechanism.

Based on the random sample consensus paradigm, Buttyan

et al. [17] proposed a resilient data aggregation mechanism

in WSNs. This method checks consistency between model

and sample by random sampling and constantly eliminates

abnormal node data. After some experiments repeatedly,

the remaining data set can be used as input of aggregate

function. However, since the centralized data processing is

conducted, the energy consumption of nodes is much

higher. Especially when the attack does not exist in the

network, still a large amount of data should be removed,

and it result in low convergence precision. Luo et al. [18]

presented a gray relationship degree and probability

density parallel distance-based resilient data aggregation,

which uses a distributed aggregation model to measure

the degree of attack in view of gray correlation and

probability density interval. The convergence precision

has been improved, but its anti-noise performance is

poor. Based on the above research, they proposed a

similarity-based resilient data aggregation for WSNs

[19]. The restoration precision of the method is high,

and the robustness to the noise interference of the

network is stronger. But when the amount of attack

imposed on the perceived data is smaller, the expectation

model cannot be selected accurately, and it results in the

convergence of the reconstruction precision being not

improved efficiently. To aim the problem of privacy

preservation in intermediate nodes, Parmar et al. [20]

proposed a data aggregation method with malleability

resilient concealment to avoid loss of packets under

active or passive attacks. The method can effectively

protect the network from internal and external opponents

and also implement conflicting objectives.
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3 A resilient data aggregation method based on

spatio-temporal correlation

3.1 Network model

By clustering method [21], the whole network can be

divided into several clusters, where each node only

belongs to one cluster and each cluster is assigned to

one cluster head. All the data being collected by member

nodes will be gathered by the cluster head, and then,

the results will be transmitted to the base station by a

multi-hop routing [22]. Considering that the attackers

actually only has limited energy, it can be assumed as

follows:

(1) Incremental attack, that is, the same value is added

to the readings of each captured node.

(2) Constant attacks that modify the readings of the

captured nodes to a certain constant.

(3) The attacker may not choose to capture the nodes

at any position instead of the ones in the range of

convenient operation nearby. Therefore, we can

assume that the distribution of captured nodes

located in the network is relatively concentrated.

3.2 Data similarity

Vuran et al. [23] have explicitly proposed the concept of

data time-spatial correlation in the field of WSNs. Due

to the dense deployment, the data collected by sensor

nodes have spatial correlation. If the sampling interval is

small enough, the sampling data between adjacent intervals

demonstrates time correlation simultaneously.

For simplicity, M represents the total number of nodes

in WSN and r represents the number of clusters. Besides,

Ci denotes the i-th cluster with mi member nodes and xij
indicates the reading of the node j in the cluster Ci, and Si
indicates the set of perceived data by all nodes in the

cluster Ci at a certain time, i.e., {xi1, xi2,⋯, xij,⋯}.

Suppose that if the sensor nodes not be attacked, xij
obeys independent co-distribution and the mathematical

expectation μ and variance δ2 are unknown. k represents

the proportion of the nodes being attacked to all nodes.

By adopting the method of distribution fitting test

[24], a cluster Cq by no attack or the weakest attack can

be selected as the reference by expected model. Then,

the data similarity in Cp and Cq will be measured to

evaluate the degree of attack for cluster Cp. Assume that

the monitoring data in cluster Cq is x
ðqÞ
ij ð j ¼ 1; 2;⋯; nÞ ,

which represents the historical data of i-th member node

of cluster Cq at time j. Considering the discrete degree

of the comparison of two groups, the influence of data

units and measurement scales should be eliminated by

standard deviation as much as possible. Also, the time

variant property of the process should be highlighted.

Hence, we have

μi ¼
1

N

XN

j¼1

x
qð Þ
ij

σ i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

j¼1

x
qð Þ
ij −μij

� �2

vuut

8
>>>>><

>>>>>:

ð1Þ

Further, the coefficient of variation can be obtained as:

Corri ¼
σ i

μi
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N
XN

j¼1

x
qð Þ
ij −μij

� �2

vuut

XN

j¼1

x
qð Þ
ij

ð2Þ

Suppose that the mean values of the data in the cluster

Cp and Cq are X
ðpÞ

and X
ðqÞ

, respectively, the centroid

distance between Cp and Cq can be estimated as

dist cp; cqð Þ ¼ X
pð Þ
−X

qð Þ
���

��� ð3Þ

In addition, the correlation coefficient of clusters Cp

and Cq can be obtained based on the perceived data of

nodes.

rel cp; cqð Þ ¼

XN

j¼1

Corri � x
pð Þ
ij −X

pð Þ
� �

� x
qð Þ
ij −X

qð Þ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Corri �
XN

j¼1

x
pð Þ
ij −X

pð Þ
� �

� x
qð Þ
ij −X

qð Þ
� �

vuut

ð4Þ

Finally, the data similarity between the clusters Cp and

Cq can be given as

ρ ¼ θ � dist p; qð Þ þ 1−θð Þ � rel cp; cqð Þ ð5Þ

where θ is a tune parameter to allocate the weight value

of correlation coefficient function and centroid distance.

Apparently, the data similarity can be used to represent

the degree of similarity between two samples. By formula 5,

it shows that the greater the correlation coefficient of the

two samples, the greater the similarity between the two

samples will be. In addition, if the greater the center of

gravity between the two samples, the smaller the similarity

is. In brief, the centroid distance reflects the difference

between the mean value between Cp and Cq, and the

correlation coefficient represents the degree of the

comparison of monitoring data in clusters Cp and Cq.

When the attack increment is small, the correlation

coefficient can reflect the difference of the data being

distorted and expectations in the reference model. Also,

while there is noise interference in the network, the

disturbance of each node’s perceptual data can also

accurately reflect the change of the correlation coefficient.
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However, as the attack increment is large, the centroid

distance can reflect the similarity between clusters Cp and

Cq more accurately than the correlation coefficient.

3.3 Chi-square fitting degree

When the amount of attack behaviors is small, the

chi-square statistic method can be conducted to evaluate

the measurement of convergence in each cluster. By

dividing the node’s data of cluster Ci into c groups with

equal interval, οj and Tj denote the theoretical and

actual frequency of the measured values for the interval j,

respectively. Then, the chi-square statistics of the cluster i

can be estimated as:

χ2i ¼
Xc

j¼1

ο j−T j

� �2

T j

ð6Þ

Hence, the chi-square fitting degree of cluster i can be

obtained.

F i ¼
1

1þ χ2i
ð7Þ

From the above equation, it can be seen that the effect

of fitting degree is similar to the utility estimation of

information quality. As the assailant increases the increment

of the attack on the captured nodes’ perceived data, the

discrepancy between the cluster and the reference model is

more obvious. In contrast, when the attack increment is

smaller, the parallel distance between the cluster’s mean

value and the probability density of mathematical expect-

ation is almost the same [25]. However, the utility estimation

of information quality should be obtained by means of the

integration of covariance and a priori probability. It will

result in long time for calculation and high energy con-

sumption. Comparatively, the operation of chi-square fitting

is much more oversimplified and the energy consumption

can be reduced.

Further, the weight value corresponding to the fitting

degree Fi of the cluster Ci chi-square can be obtained

according to Lagrange’s extreme value method.

ωi ¼
F2
i

Xr

j¼1

F2
i

ð8Þ

The chi-square value reflects the degree of coincidence

between the actual frequency and the theoretical value.

If it is assumed that the sample obeys the theoretical

distribution, the difference between the actual frequency

and the theoretical value will not be very large and vice

versa. Thus, the smaller the χi, the actual sample is close

to the theoretical value.

3.4 Resilient data aggregation method

When the amount of distort exerted by the attackers on

the captured node’s perceiving data is large, the difference

between the cluster under attack and the normal cluster is

more obvious. Therefore, the expected cluster Cq can be

selected to reflect the degree of attack on the node’s data in

the cluster by using the centroid distance between them.

Considering the case of the aggregated function as the

mean, X denotes the true value of the target variable to be

obtained by the aggregation function and X̂ represents the

estimated value of the target variable. Suppose X̂ i to be

the estimated value of the target variable of data sample in

each cluster, the estimated value of the cluster i can be

given as:

X̂ i ¼
Xmi

i¼1

w j � xij ð9Þ

where mi is the number nodes in cluster Ci and wi is the

weight value of member node j in the cluster i.

The entropy theory has been widely applied in en-

gineering applications for probability inference based

on incomplete samples and deal with uncertainty in

intelligent systems [26]. If the entropy of a variable is

smaller, the greater the amount of information pro-

vided by the variable will be. Considering the effect

of the variable on the final result, a larger weight

should be given. Based on entropy method, the

weight value of the member node j in the cluster i

can be determined.

γ j ¼ −

1

lnmi

Xmi

i¼1

xij−X̂
t−1ð Þ

i

� �
� ln xij−X̂

t−1ð Þ

i

� �

w j ¼ −

1−γ j

Xmi

i¼1

1−γ j

� �

8
>>>>>><

>>>>>>:

ð10Þ

where X̂
ðt−1Þ

i denotes the aggregated result at the previous

interval.

The estimated values of the cluster samples will be

calculated with weight value, then

bX 0 ¼
X

ρi
�ωi

�X̂ i ð11Þ

Next, the final aggregation results can be obtained by

the cluster of the expected model and the value obtained

by above formula.

X̂ ¼ f bX 0
; X̂q

� �
ð12Þ
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4 Simulation results

There are 400 sensor nodes randomly deployed in a

region with 100m× 100m square, and the whole network

will be evenly divided into nine clusters. If there is no at-

tack in WSNs, the data samples of the sensor nodes obey

the distribution N(0, δ2) and significance level α = 0.05. In

the following simulation experiments, the aggregation

function is defined as the mean value and the attack mode

is a constant attack, and 200 Monte Carlo experiments

will be conducted in evaluation process. The attacks

applied to the node are confined to additive attack, and

the specific method is about constant accumulation,

namely, the attackers will modify each of the reading of

the captured nodes to achieve the same constant d.

Figure 1 shows the comparison of performance in

aspect of absolute deviation when attack nodes are

distributed in different numbers of clusters. The horizontal

axis represents the value of the attack node ratio k, and the

longitudinal axis indicates the absolute deviation between

the result and the real value of different value of k. Besides,

δ2 = 4 and constant d is equal to 10. It can be observed

from the experimental results that when the malicious

nodes are restricted to fewer clusters, its influence is

relatively small and the final absolute deviation is lower. In

addition, when the density of the attack node increases,

the absolute deviation is also promoted fairly smoothly. It

indicates that our resilient data aggregation algorithm can

detect the extent of the data being tampered in time and

effectively correct the fusion results.

Next, we compare the cluster weights in the process of

data aggregation. Suppose the number of the clusters

not being attacked is 3 and the value of d is set to 0.5

and a cluster that is not attacked is selected as the

expected object. The weight assigned to other clusters in

RDAS and LARA (linear approaches resilient aggregation)

[27] is shown in Figs. 2 and 3, respectively. In LARA, there

is no obvious difference in terms of the similarity between

the attacked clusters and the expected one, and it shows

LARA cannot determine the degree of attack of each

cluster accurately. Comparatively, the clusters being

attacked can be allocated as low weight value in RDAS.

With the increase of the proportion of attack nodes, it

illustrates more obviously. It can reduce the effects of

the clusters being attacked on the final fusion results.

Figures 4 and 5 show the comparison in aspect of

convergence restoration between RDAS, LARA, and

ADDA (Attack Detectors Data Aggregation) [28]. When

the attack increment is 0.5 and 10, the performance of

RDAS is better than that of ADDA and LARA. In LARA,

the correlation coefficient is defined as the convergence of

weighted value for data aggregation. As can be seen from

the results, when the attack increment is high, the correl-

ation coefficient is not very suitable and the difference of

weight value of each cluster is too large to affect the final

result. With the use of gray relational degree, ADDA also

needs to select the expected cluster. When the node’s data

fluctuation is small, the determination of the desired

model will produce a great deal of error. RDAS makes use

of the perceived data of all nodes so that the attacked

nodes are concentrated in some clusters, and the more

concentrated the attack nodes are, the smaller the conver-

gence error is.

Fig. 1 Absolute error as attacks being occurred in different clusters
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As can be seen from Fig. 4, as d = 0.5, the error range

of data reconstruction is about 0.08~ 0.28 in ADDA and

0.07~ 0.22 in LARA. Comparatively, the absolute error

in RDAS can vary between 0.07 and 0.16. If d = 10, the

absolute error in ADDA maintains between 0.15 and

0.27 as the proportion of attack nodes is small. With the

increase of the number of attack nodes, it fluctuates at

the range of 0.2~ 0.25 sharply. In general, the absolute

error of LARA has the lower level of 0.13~ 0.31 than

that of ADDA. Compared with LARA and ADDA, RDAS

also shows better performance of different proportion

of the attacked nodes in aspect of the absolute error as

d = 10. The reason is that ADDA and LARA utilize the

mean to represent the estimated value of the target

variable of the cluster. However, the estimated value of

target variables of all clusters by RDAS is obtained by

Fig. 2 The weight value of all clusters in LARA

Fig. 3 The weight value of all clusters in RDAS
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using the time correlation of node’s data, which can be

aggregated in each cluster separately.

Figures 6 and 7 show the absolute error as a Gauss

white noise N applied to each node’s perceptual signal,

and the signal-to-noise ratio is 0 and − 5 dB. As the

signal-to-noise ratio is − 5 and 0 dB, RDAS can achieve

better performance in terms of anti-noise than LARA and

ADDA. It should be noted that the anti-noise performance

of RDAS is weakened with the increase of the value k.

That is because there is little difference between the data

of each cluster when the amount of attack is small, and it

is impossible to select the expected cluster correctly. In

general, the chi-square fitting can accurately represent the

weight during the phase of data aggregation, which can

avoid the error caused by the improper selection of

expectation model in LARA and ADDA.

Fig. 4 The absolute error (d = 0.5)

Fig. 5 The absolute error (d = 10)
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5 Conclusions

In this paper, we contributed with a resilient data aggrega-

tion algorithm based on spatio-temporal correlation for

WSNs. On the basis of the distributed data convergence

model, the algorithm combines the centroid distance and

similarity to measure the attack degree of each cluster

node’s perceived data, and the weighted calculation can

improve the convergence precision of data recovery. In

addition, this method can obtain the estimated value of

data sample of all clusters according to the temporal

correlation characteristic of the nodes’ perceived data

at different time. Using the chi-square fitting, the

extent of the data being tampered in each cluster can

be measured effectively. Both analysis and extensive

simulations support the quality and viability of our

proposal.

Fig. 6 Anti-noise performance (SNR = − 5 dB)

Fig. 7 Anti-noise performance (SNR = 0 dB)
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