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A Resistive Mesh Phantom for Assessing the

Performance of EIT Systems
Hervé Gagnon*, Martin Cousineau, Andy Adler, and Alzbeta E. Hartinger, Student Member, IEEE

Abstract—Assessing the performance of electrical impedance
tomography (EIT) systems usually requires a phantom for valida-
tion, calibration or comparison purposes. This paper describes a
resistive mesh phantom to assess the performance of EIT systems
while taking into account cabling stray effects similar to in vivo

conditions. This phantom is built with 340 precision resistors
on a printed circuit board (PCB) representing a 2D circular
homogeneous medium. It also integrates equivalent electrical
models of the Ag/AgCl electrode impedances. The parameters of
the electrode models were fitted from impedance curves measured
with an impedance analyzer. The technique used to build the
phantom is general and applicable to phantoms of arbitrary
shape and conductivity distribution. We describe three perfor-
mance indicators that can be measured with our phantom for
every measurement of an EIT data frame: signal-to-noise ratio,
accuracy, and modeling accuracy. These performance indicators
were evaluated on our EIT system under different frame rates
and applied current intensities. The performance indicators are
dependent on frame rate, operating frequency, applied current
intensity, measurement strategy, and inter-modulation distortion
when performing simultaneous measurements at several frequen-
cies. These parameter values should therefore always be specified
when reporting performance indicators to better appreciate their
significance.

Index Terms—Electrical impedance tomography, biomedical
instrumentation, resistive mesh phantom.

I. INTRODUCTION

ELECTRICAL impedance tomography (EIT) is a biomed-

ical technique for imaging the electrical conductivity dis-

tribution of a body section. An EIT system uses body surface

electrodes to measure voltages produced while applying low

amplitude sinusoidal currents. These voltage measurements are

then converted to conductivity images by solving Maxwell’s

equations using a numerical model combined with an opti-

mization method. EIT can be useful for studying physiological

processes that involve flow or changes in volume of air or

blood whose conductivity is significantly different from that

of other biological tissues. Although EIT images have low

spatial resolution compared to other imaging modalities, they

can be obtained in real time at high frame rates and the
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required instrumentation is small, lightweight, unobtrusive,

and inexpensive. The most promising clinical applications for

EIT are functional imaging of heart, lung, and brain functions

as well as breast cancer screening [1].

Assessing the performance of EIT systems is often required

for validation, calibration, and comparison purposes. EIT

systems suitable for in vivo imaging are complex systems

requiring several closely interacting hardware and software

parts. Modifications made to any part of the system have to be

experimentally validated in order to confirm any expected ben-

efit to the performance of the whole system. Calibration has to

be performed periodically to account for components whose

performance varies over time and to ensure the system is

accurate whenever it is used. Objective comparison of EIT data

from multiple centers requires a standard calibration approach

for the EIT equipment used at each center. In order to fully

appreciate descriptions of EIT hardware performance in the

literature, it would be useful to have clearly defined objective

criteria for comparison purposes. Since no standard procedure

for testing EIT systems has been defined, performance results

are often published using different methodologies or, worse,

without any description of the methodology. Because it is

difficult to objectively assess the performance of EIT systems

in vivo, phantoms are usually preferred.

Two types of phantoms are described in the literature:

physical and mesh phantoms [2]. The former consist of a

liquid or solid conductive medium that can be imaged by an

EIT system using surface electrodes. The conductive medium

usually consists of a conductive gel or a saline solution

inside which are inserted targets whose conductivity contrasts

with that of the medium. Mesh phantoms are composed of

impedance elements interconnected in a particular topology.

Resistors [3]–[5], combinations of capacitors and resistors

[6], [7] as well as active electronic components [7], [8]

have been used as impedance elements. Four topologies have

been described in the literature: the Cardiff phantom [3], the

wheel phantom [6], and two Göttingen phantoms [4], [5].

The Cardiff phantom is composed of 624 resistors which

are assembled as shown in Fig. 1(a). The wheel phantom,

shown in Fig. 1(b), is composed of 32 impedance elements

whose values are unspecified. Fig. 1(c) and (d) show the

two Göttingen phantoms which are respectively composed

of 65 and 19 resistors. While physical phantoms generate

more realistic signals, mesh phantoms provide predictable,

stable, and reproducible signals. Mesh phantoms are therefore

better suited for objectively assessing the performance of EIT

systems in a reproducible manner.

Our objective was to design a phantom with the follow-
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Fig. 1. (a) Cardiff phantom [3] composed of 51 Ω 1© and 100 Ω 2© resistors. (b) Wheel phantom [6] composed of two different unspecified resistor values
identified by white circles. (c) First Göttingen phantom [4] composed of 5 Ω 1©, 60 Ω 2©, 90 Ω 3©, 100 Ω 4©, and 2.2 kΩ 5© resistors. (d) Second Göttingen
phantom [5] composed of 1 Ω 1©, 121 Ω 2©, and 270 Ω 3© resistors. Black circles numbered from 0 to 15 represent the 16 electrode connection sites while
black circles identified with the letter G are associated with ground connection sites.

ing characteristics: 1) approximates a 2D circular continu-

ous homogeneous medium, 2) provides signals with realis-

tic frequency content and amplitude dynamic range, 3) in-

cludes a realistic equivalent electrical model of the electrodes,

4) takes into account stray effects similar to in vivo condi-

tions, 5) provides predictable, stable, and reproducible signals,

6) is compatible with all EIT systems, and 7) is capable of

producing localized conductivity perturbations. None of the

four phantoms described above are able to achieve all these

characteristics. As will be shown in section III, the Cardiff

phantom and the second Göttingen phantom produce signals

whose frequency content and amplitude dynamic range are

unrealistic while the wheel phantom and the first Göttingen

phantom do not contain enough resistors, especially in the

middle, to produce localized conductivity perturbations that

can be used to compare reconstruction algorithms.

This paper presents a method for designing mesh phantoms

of arbitrary shape and conductivity distributions. The method

has been applied to build a phantom composed of 340 pre-

cision resistors on a 192 by 192 mm PCB. The phantom
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Fig. 2. Sample circuit mesh composed of 5 nodes and 7 admittance elements
where Vi represents the voltage measured at the ith node, Ii represents the
outward current at the ith node, and Gij is the admittance value connecting
the ith node to the jth node.

can be used to assess the performance of an EIT system by

measuring three performance indicators: signal-to-noise ratio,

accuracy, and modeling accuracy for every measurement of an

EIT data frame. It can also be used to assess the performance

of EIT image reconstruction algorithms by producing localized

conductivity perturbations. These tests were performed on our

EIT system to show how parameters such as frame rate and

current intensity affect the three performance indicators.

II. METHODS

In order to design phantoms of arbitrary shape and conduc-

tivity distribution, we have developed an algorithm based on

the analogy between the finite element method (FEM) and a

matrix method for solving electrical circuits. The algorithm

will be described in the next three sections. The first section

shows a matrix method to solve electrical circuits, the second

section summarizes the FEM equations, and the third section

shows how the two methods are combined to obtain a mesh

phantom with the desired shape and conductivity distribution.

A. Matrix method to solve electrical circuits

The matrix method for solving electrical circuit will be

illustrated using the sample circuit mesh shown in Fig. 2.

This circuit mesh is composed of 5 nodes and 7 admittance

elements where Vi represents the voltage measured at the ith
node, Ii represents the outward current at the ith node, and

Gij is the admittance value connecting the ith node to the

jth node. By applying Kirchhoff’s current law at each circuit

node, we obtain the following equations:

I1 = G12(V2 − V1) + G13(V3 − V1) (1)

I2 = G12(V1 − V2) + G23(V3 − V2) + G24(V4 − V2) (2)

I3 = G13(V1 − V3) + G23(V2 − V3) + G34(V4 − V3)

+G35(V5 − V3)
(3)

I4 = G24(V2 − V4) + G34(V3 − V4) + G45(V5 − V4) (4)

I5 = G35(V3 − V5) + G45(V4 − V5) (5)

By converting these equations into matrix form, we obtain

Y V = I

Y =













−(G12 + G13) G12

G12 −(G12 + G23 + G24)
G13 G23

0 G24

0 0

G13

G23

−(G13 + G23 + G34 + G35)
G34

G35

0 0
G24 0
G34 G35

−(G24 + G34 + G45) G45

G45 −(G35 + G45)













(6)

and

V =
[

V1 V2 V3 V4 V5

]T
(7)

I =
[

I1 I2 I3 I4 I5

]T
(8)

where A
T represents the transpose of matrix A.

From this simple example, a general method can be inferred

to directly obtain the admittance matrix Y from Fig. 2. Off-

diagonal elements yij and yji are equal to Gij while diagonal

elements yii are equal to minus the sum of all admittance

elements connected to the ith node.

B. FEM formulation

On a continuous conductive medium, such as those typically

used in EIT at low frequencies, Maxwell’s equations can be

simplified to the following equation:

∇ · (σ∇V ) = 0 (9)

where σ represents the electrical conductivity and V represents

the electrical potential. This equation must be solved over the

entire continuous medium Ω. On the boundary Γ, the following

boundary condition applies:

Jn = σ∇V · n (10)

where n represents a unit vector normal to the boundary Γ
and Jn represents the normal current density. Since the two

previous equations cannot be solved analytically for a medium

of arbitrary shape and conductivity distribution, the FEM will

be used. The FEM consists in subdividing the continuous

medium into a mesh of triangular elements inside which the

conductivity is assumed constant and the electric potential

varies linearly. By applying the FEM with linear interpolation

on a triangle, the following elementary system of equations

can be obtained [9]:

YeVe = Ie ⇔





y11 y12 y13

y21 y22 y23

y31 y32 y33









V1

V2

V3



 =





i1
i2
i3



 (11)
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yij =

∮

Ωe

σe(
∂fi

∂x

∂fj

∂x
+

∂fi

∂y

∂fj

∂y
) dΩe (12)

ij =

∮

Γe

fjJn dΓe (13)

[

f1(x, y) f2(x, y) f3(x, y)
]

=

[

x y 1
]





x1 y1 1
x2 y2 1
x3 y3 1





−1

(14)

where (xi, yi) represents the ith triangle vertex coordinates

and Vi represents the electrical potential at the ith triangle

vertex. Ye is called the elementary admittance matrix, Ve, the

elementary potential vector, and Ie, the elementary current

vector. By developing (14) and computing the fi derivatives,

we obtain:

∂f1

∂x
=

(y2 − y3)

∆
,

∂f2

∂x
=

(y3 − y1)

∆
,

∂f3

∂x
=

(y1 − y2)

∆

(15)

∂f1

∂y
=

(x3 − x2)

∆
,

∂f2

∂y
=

(x1 − x3)

∆
,

∂f3

∂y
=

(x2 − x1)

∆
(16)

∆ = x1y2 − x1y3 − x2y1 + x2y3 + x3y1 − x3y2 (17)

By substituting these equations into (12), knowing σe is

constant inside an element and the area of an element is given

by ∆/2, we obtain:

Ye =





−(G12 + G13) G12 G13

G12 −(G12 + G23) G23

G13 G23 −(G13 + G23)





(18)

G12 =
σe

2∆
[(y2 − y3)(y3 − y1) + (x3 − x2)(x1 − x3)] (19)

G13 =
σe

2∆
[(y2 − y3)(y1 − y2) + (x3 − x2)(x2 − x1)] (20)

G23 =
σe

2∆
[(y3 − y1)(y1 − y2) + (x1 − x3)(x2 − x1)] (21)

Elementary matrices Ye, Ve, and Ie computed for every

triangular element must then be respectively assembled into

the global admittance matrix Y , the global potential vector V ,

and the global current vector I . This is performed by assigning

a global node number to each of the n nodes composing

the triangular FEM mesh and adding the contribution of each

elementary matrix to the corresponding global matrix taking

into account the assigned global node number of every triangle

vertex. The global matrix dimensions are therefore (n×n) for

Y and (n × 1) for V and I .

C. Method for building phantoms of arbitrary shape and

conductivity distributions

The method for building phantoms of arbitrary shape and

conductivity distributions is based on the similarities between

the two methods presented in the previous sections. Both

methods provide a Y V = I formulation, the first one for

an electrical circuit mesh and the second one for a continu-

ous conductive medium. When comparing (6) and (18), the

(a) (b)

(c) (d)

Fig. 3. (a) Circular phantom with 16 electrodes. (b) Circular phantom with
32 electrodes. (c) Torso-shaped phantom with 16 electrodes. (d) Phantom
selected for fabrication.

similarities between the admittance matrices obtained by both

methods are obvious.

The method for building phantoms of arbitrary shape and

conductivity distribution can be summarized with the fol-

lowing steps: 1) Define the desired shape and conductivity

distribution for the phantom. 2) Divide the desired shape

into a triangular mesh from which every triangle corresponds

to an element of the FEM model and every triangle side

corresponds to a resistor of the mesh phantom. 3) Compute

the elementary admittance matrix Ye for every triangle of the

mesh. 4) Assemble all elementary admittance matrices into a

global admittance matrix Y . 5) Extract each resistor value

composing the mesh phantom from the global admittance

matrix Y . The resistor value connecting the ith node of the

mesh phantom to the jth node is equal to the inverse of the

(i, j) element of Y .

By selecting the same triangular mesh topology for the

phantom and the FEM model, the designed phantom will

theoretically have the same accuracy as the FEM model. In

practice, however, this accuracy is slightly reduced by the fact

that resistors of standard nominal values with limited tolerance

are used to build the phantom.

D. Phantom designed with the proposed method

The method described in the previous section has been pro-

grammed with the added possibility of automatically generat-

ing Gerber files that can be directly used for PCB manufacture.

To increase realism, we also added an equivalent electrical

model of the electrodes that will be described in the following
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(a)

(b)

Fig. 4. (a) Top and (b) bottom views of the resistor mesh phantom.

section. To prove the generality of the method, Fig. 3 shows

CAD-software screen snapshots of four different phantoms

designed with the proposed method. These phantoms are

circular or torso-shaped and have either 16 or 32 electrodes. In

order to obtain the characteristics described in the introduction,

we have built the phantom shown in Fig. 3(d) representing

a 2D circular homogeneous medium. This phantom includes

340 0.1% precision resistors with a temperature coefficient

of 25 ppm/K, 17 snap-on connectors (including the ground

connection), and 12 switches that can be used to short-circuit
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Fig. 5. Schematic representation of the resistor mesh phantom. White circles
numbered from 1 to 17 represent resistors whose nominal values are given
in Table I. Black circles numbered from 0 to 15 represent the electrode
connection sites.

TABLE I
NOMINAL VALUES FOR THE NUMBERED RESISTORS REPRESENTED IN

FIG. 5

Resistor number Quantity Nominal value (Ω)

1 4 51.1

2 16 59.0

3 4 63.4

4 8 64.9

5 32 71.5

6 32 90.9

7 32 95.3

8 16 97.6

9 64 100

10 32 130

11 8 133

12 16 147

13 8 178

14 4 200

15 16 261

16 32 365

17 16 3160

individual resistors to produce localized conductivity pertur-

bations. Top and bottom views of the phantom PCB are shown

in Fig. 4. A schematic representation of the resistor mesh

topology is shown in Fig. 5 where white circles numbered

from 1 to 17 represent resistors whose nominal values are

given in Table I.
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Network Analyzer

REF OUT A B
Active probes

1 W

s

Fig. 6. Electrode impedance measurement set-up.

49.9 W

100 W

22 nF

Fig. 7. Equivalent electrical model of an Ag/AgCl electrode.

E. Equivalent electrical model of an electrode

We measured the impedance of two Ag/AgCl electrodes

immersed in a saline solution from 10 Hz to 1 MHz using the

set-up illustrated in Fig. 6 and a network/spectrum/impedance

analyzer (4395A, Agilent Technologies). A voltage signal is

applied by the network analyzer to the REF OUT output and

voltage measurements are performed at the A and B inputs

using wideband active probes (41800A, Agilent Technologies).

The network analyzer then displays the complex ratio of the

A and B voltage signals which corresponds for this particular

set-up to Zσ which can be expressed as:

Zσ(jω) = 2Zelectrode(jω) + Zsaline(jω) + 1 Ω, (22)

where ω is the angular frequency, Zelectrode, the Ag/AgCl

electrode impedance, and Zsaline, the impedance of the saline
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Fig. 8. Electrode impedance spectra obtained from experimental data (· · ·)
and from the equivalent electrical model of the electrode whose component
values have been optimized by the Levenberg-Marquardt method (—).

which is unknown since it depends on the geometry of the

saline receptacle. To remove the contribution of the saline

solution (Zsaline) from the measured impedances Zσ , the

measurements were repeated with a saline solution whose

conductivity was doubled (Z2σ(jω)). The conductivity of

the saline solutions was measured with a conductivity meter

(model 1481-40, Cole-Parmer Instrument Company). These

measurements can be expressed as:

Z2σ(jω) = 2Zelectrode(jω) +
1

2
Zsaline(jω) + 1 Ω. (23)

From the two previous equations, we obtain:

Zelectrode(jω) = Z2σ(jω) −
1

2
Zσ(jω) −

1

2
Ω. (24)

To reproduce the complex impedance behavior of the

Ag/AgCl electrodes, we selected an equivalent electrical model

composed of a resistor in series with a parallel combination

of a resistor and a capacitor as shown in Fig. 7 [10]. Values

for the capacitor and the two resistors were obtained by using

the Levenberg-Marquardt [11] method to fit the impedance

of the equivalent electrical model to the experimental data

measured between 6.25 and 400 kHz, which represents six

octaves centered at 50 kHz, a common operating frequency for

EIT systems. Fig. 8 shows the impedance spectra computed

from the experimental measurements using (24) and from the

equivalent electrical model of an electrode using the resistor

and capacitor values obtained from the Levenberg-Marquardt

optimization process. These optimized values were rounded

to the nearest standard resistor and capacitor values which are

specified in Fig. 7. The circuit shown in Fig. 7 was inserted

in series with each of the 17 snap-on connectors to reproduce

the complex impedance behavior of the Ag/AgCl electrodes.

F. Performance indicators

In order to assess the performance of an EIT system, 1000

data frames, each consisting of n measurements, were acquired

on the mesh phantom. The average and variance signals of the

1000 data frames were then computed.

Signal-to-noise ratio (SNR) is computed using the following

formula:

SNRi = 20 log
|E[mi]|

√

Var[mi]
, (25)

where mi represents the ith measurement, E[mi], the average

of mi, and Var[mi], the variance of mi.

Accuracy (A) is computed using the following formula:

Ai =

[

1 −

∣

∣

∣

∣

E[mi] − mT
i

mT
i

∣

∣

∣

∣

]

× 100%, (26)

where mT
i represents the theoretical value for the ith measure-

ment.

Some EIT systems have known hardware imperfections that

can be accounted for by a calibration procedure performed by

the user or a model of hardware imperfections that can be

integrated into the forward problem solver of reconstruction

algorithms [12]. To account for such systems, modeling accu-

racy (MA) is defined by the following formula:

MAi =

[

1 −

∣

∣

∣

∣

fi(m) − fT
i (mT)

fT
i (mT)

∣

∣

∣

∣

]

× 100%, (27)
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Fig. 9. Performance indicators of our EIT system.

where m represents the n-length average measurement vector

whose ith element is equal to E[mi], mT, the n-length

theoretical measurement vector whose ith element is equal to

mT
i , fi(m), the ith measurement corrected by a calibration

protocol, and fT
i (mT), the ith theoretical measurement com-

pensated for any hardware imperfection that can be modeled.

Accuracy is therefore evaluated using raw EIT data provided

by the EIT system while modeling accuracy is evaluated using

data compensated for any known hardware imperfection. For

EIT systems that do not implement a calibration procedure

and have no model of hardware imperfections that can be

integrated into the forward problem solver [12], accuracy and

modeling accuracy are equal.

III. RESULTS

One thousand measurements were acquired on the phantom

with our EIT system [13]. Fig. 9 shows graphically the

performance indicators that were obtained at 4.71 frames

per second with an applied current intensity of 4 mApp at

50 kHz. Table II summarizes the three performance indicators

by specifying mean, minimum, and maximum values. The

system was set up to acquire data using the measurement

sequence illustrated in Fig. 10 which is equivalent to the

Sheffield protocol [1] except that measurements are performed

in a different sequence. Compared to the Sheffield protocol,

this sequence makes it easier to visually pinpoint any flaws

TABLE II
PERFORMANCE INDICATORS OF OUR EIT SYSTEM

SNR (dB) mean 64.03

maximum 75.19

minimum 55.66

Accuracy (%) mean 98.84

maximum 99.99

minimum 58.52

Modeling mean 99.56

Accuracy (%) maximum 100.0

minimum 98.51
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Fig. 10. Measurement sequence used to acquire the EIT data shown in Fig. 9.

in the EIT data because of its regular shape consisting in

13 plateaus of 16 measurements each for a total of 208

measurements. Furthermore, the frequency bandwidth of this

measurement sequence is smaller than that of the Sheffield

protocol. The measurement indexes increase from 1 to 416 in

Fig. 9 since our system was set up to acquire each of the 208

measurements twice.

Close inspection of Fig. 9 shows that the shape of the

SNR curve generally follows the shape of the average EIT

signal. This clearly indicates than some of the noise sources

have an additive contribution to the EIT signal. Some mea-

TABLE III
THEORETICAL ACCURACY EVALUATED ON PHANTOMS BUILT WITH

RESISTORS WHOSE TOLERANCE IS 0.1%, 1%, AND 5%

Tolerance (%) 0.1 1 5

Accuracy (%) mean 99.97 99.69 98.46

maximum 100.0 100.0 100.0

minimum 99.88 98.85 94.25
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surement indexes, however, exhibit lower SNR values than

their neighbors with similar signal amplitude. This corresponds

in most cases to measurements that are performed using

pairs of electrodes whose corresponding front-end electronic

components are located at opposite ends of the EIT system

PCB. By comparing the accuracy curve with the average EIT

signal curve, the reader will notice that the accuracy is much

lower whenever there is a large transition in the average EIT

signal. This problem is related to a low-pass filter which is

part of the demodulation process used in our system. Since

this low-pass filter is part of the design, its impulse response is

well known and has been integrated into the forward problem

solver [12] to compute the modeling accuracy. This is why

the modeling accuracy does not exhibit the large variations

observed in the accuracy curve.

When evaluating accuracy and modeling accuracy with the

proposed phantom, one limitation comes from the fact that the

theoretical value for each measurement is calculated using the

nominal values of the 340 resistors composing the phantom.

In practice, the tolerance of the resistors that were used to

build the phantom is 0.1%. Part of the inaccuracy that is

evaluated with the proposed method will therefore come from

the uncertainty about the actual resistor values that were used

to build the phantom. Therefore, the proposed method for

evaluating the accuracy and modeling accuracy of an EIT

system will, in some cases, underestimate the actual accuracy

of the system due to the 0.1% tolerance of the resistors. In

order to evaluate the contribution of the resistor tolerance to

the inaccuracy of a system, we performed 217 = 131072
Monte Carlo simulations where the resistor values of each

simulated phantom were obtained using the upper and lower

limits of the tolerance for each of the 17 different nominal

resistor values. This assumption is based on the fact that

resistors from the same production lot will generally exhibit an

unknown but similar deviation from their nominal value within

the specified limits of their tolerance. Table III summarizes

the accuracy figures that were obtained for phantoms built

from resistors whose tolerance is 0.1%, 1%, and 5%. Close

inspection reveals that an EIT system whose accuracy has been

evaluated at 99.88% using a phantom built with 0.1% precision

resistors could actually have an accuracy of 100% since the

0.12% difference can theoretically be explained by the 0.1%

tolerance of the resistors.

In order to validate the accuracy of our phantom by an

independent method, we have measured the impedance of

the 16 adjacent pairs of electrodes using a digital multimeter

(34401A, Agilent Technologies). The 16 measured impedances

varied from 409.17 to 409.42 Ω with an average of 409.29 Ω.

The theoretical value of the impedance computed using the

resistor nominal values is 409.29 Ω. The maximum relative

error on the measured impedance is therefore around 0.0318%

which is, as expected, lower than the 0.1% tolerance of the

resistors.

As shown by Gagnon [9] and Robitaille [14], performance

indicators are affected by several parameters. For instance,

by decreasing the operating frequency or the frame rate,

performance indicators improve. They can be further improved

by increasing the applied current intensity. To illustrate this

fact, Fig. 11 shows how the SNR varies as a function of

frame rate for our system while Fig. 12 shows how the

SNR varies as a function of current intensity expressed as

a percentage of the maximal current our system can apply

which is 4 mApp. At 1.84 frames per second, the mean SNR

is 67.13 dB while at 21.85 frames per second the mean SNR

decreases to 54.25 dB. At 100% applied current intensity,

the mean SNR is 64.06 dB and at 10% current intensity

the mean SNR decreases to 45.35 dB. The accuracy and

modeling accuracy were also computed from the same data

set but remained constant at the values specified in Table II

for all current intensities and frame rates. Although this is

true for our EIT system, other EIT systems may behave

otherwise. Measurement strategies also affect performance
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Fig. 13. a) Theoretical signal obtained from the Cardiff phantom. b)
Theoretical signal obtained from the wheel phantom. c) Theoretical signal
obtained from the first Göttingen phantom. d) Theoretical signal obtained
from the proposed phantom. All theoretical signals were obtained using the
measurement sequence described in Fig. 10.

indicators since they modify the amplitude dynamic range and

frequency content of EIT signals. For multi-frequency systems,

inter-modulation between the measurement frequencies may

also adversely affect the performance indicators.

IV. DISCUSSION AND CONCLUSION

Theoretical EIT signals produced by the Cardiff phantom

[3], the wheel phantom [6], the first Göttingen phantom

[4], and our phantom have been computed and are shown

in Fig. 13. Since the resistor values for the wheel phantom

are unspecified, their values were optimized to minimize the

error between the signal it produces and the signal produced

by our phantom. To obtain Fig. 13(b), resistors identified as 1©
in Fig. 1(b) were therefore set to 56 Ω while resistors identified

as 2© were set to 330 Ω. Mainly due to the fact that the

Cardiff phantom approximates a circular shape with square

elements, the signal it produces [see Fig. 13(a)] does not

exhibit the regular shape expected from a continuous circular

conductive medium. The Cardiff phantom is, however, very

good at producing localized conductivity perturbations since

it contains 624 impedance elements [see Fig. 1(a)] that can

be easily shunted. The first Göttingen phantom and the wheel

phantom produce EIT signals with a shape similar to an actual

EIT signal measured on a continuous circular homogeneous

medium. They are however not very good at producing local-

ized conductivity perturbations to test image reconstruction

algorithms due to the fact that they are composed of few

impedance elements especially in the middle [see Fig. 1(b)

and (c)].

The phantom illustrated in Fig. 1(d) was recently proposed

by the Göttingen group [5]. This phantom produces a constant

signal for all measurements of the Sheffield protocol and its

amplitude can be set by changing a single resistor value iden-

tified as 1© in Fig. 1(d). This phantom is great for exploring

the strengths and weaknesses of an EIT system design and

is well adapted to the design of the Göttingen EIT system.

It cannot however be used to assess the performance of all

EIT systems for the following reasons: 1) It does not support

all measurement protocols such as those that use non-adjacent

electrode pairs. 2) It generates a constant signal that does not

reflect the frequency content or the amplitude dynamic range

of a real EIT signal. It thus cannot be used to discriminate EIT

systems that distort the EIT signal amplitude or its frequency

content.

While performing in vivo data acquisitions, cables are

used to connect the EIT system to the electrodes that are

placed on the body. The assembly and layout of the cables

introduce stray effects (mainly capacitive and inductive) which

contribute noise to the EIT measurements. By using snap-on

connectors, the same cables that are used for in vivo recording

can be connected to our phantom as they would on a patient.

By using cables to connect the Göttingen phantom to a DB37

connector and an adapter to connect the cables to the phantom,

the cable assembly and layout is different from the one used

for in vivo recording and, therefore, unrepresentative stray

effects can be expected. Our phantom also incorporates a re-

alistic electrical model of electrode impedances obtained from

in vitro data while the Göttingen phantom has no equivalent.

The set-up of our phantom is therefore more representative

of cable and electrode stray effects that adversely affect EIT

measurements during in vivo recording.

As our phantom is a resistor mesh with seventeen terminal

nodes, one could argue that it could be simplified to use

fewer resistor elements. While this is theoretically correct, the

main purpose of this phantom is to assess the performance of

EIT systems in a realistic predictable scenario. Although the

phantom and its simplified version would produce the same

EIT signals, contributions from error sources (stray effects,

electromagnetic interference) would be different because they

depend mainly on geometric factors. The simplified version

would also lose the ability to produce localized conductivity

perturbations which is very useful to compare reconstruction

algorithms as was done in a previous study [12] using an early

prototype version of the proposed phantom.

Since our phantom is composed entirely of resistors except

for the capacitors that are part of the electrode equivalent

model [see Fig. 7], its use to assess the performance of

multifrequency EIT systems is limited by the fact that the

conductivity distribution of the medium does not vary as a

function of frequency. This is not however a limitation of

the method since the proposed method is also applicable to

complex impedance elements that could be defined as parallel

or serial combinations of resistors, capacitors, and inductors,

although inductive effects are very seldom seen in biological

tissues.

Three performance indicators that can be computed from

measurements made with this phantom have been presented.

These performance indicators are function of the measurement

index. It is therefore mandatory to represent them graphically
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or at least to specify minimum, mean, and maximum values

rather than mentioning an ambiguous scalar value. Many

factors influence the performance indicators of a system:

measurement strategy, operating frequency, frame rate, applied

current intensity, and inter-modulation distortion. Their values

should therefore be specified with all performance indicators

to better appreciate their significance.

The aim of this project was to build a phantom that produces

realistic signals while taking into account stray effects similar

to in vivo conditions. The phantom presented in this paper

approximates a 2D circular continuous homogeneous medium.

The amplitude dynamic range of the signals it produces is

therefore limited by an order of magnitude compared to signals

that would be obtained from a 3D conductive medium or

in vivo. The ability of the current phantom to assess the

performance of EIT systems in the small amplitude portion

of EIT signals is therefore limited. A solution would be to

modify the resistor values of the phantom to approximate a

3D circular homogeneous medium. The signals produced by

the phantom would then have an increased amplitude dynamic

range as expected from a 3D conductive medium. A further

improvement would be to design a 3D torso-shaped phantom

that would produce an even more realistic signal as far as

frequency and amplitude range are concerned.

We are currently working on improving the capability of

our phantom to assess the performance of EIT systems by

adding programmable active components that can simulate

contact impedance variations related to electrode movement

artifacts. This improvement would be useful to test if the input

impedance of the voltage amplifiers and the output impedance

and compliance of the current sources are high enough to cope

with the large contact impedance variations that are expected

to occur during long term in vivo recording.
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technique de Montréal. His current research inter-
ests include electrical impedance tomography, elec-
tronic design, real-time parallel processing, image
reconstruction, optimization algorithms, and finite-

element methods.

Martin Cousineau received the B.Ing. degree
in mechanical engineering, biomedical engineering
concentration, from the École Polytechnique de
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at HEC Montréal, Montréal, QC, Canada.

Andy Adler received the B.A.Sc. (honours) in
engineering physics from University of British
Columbia, Vancouver, Canada, in 1990, and a Ph.D.
in biomedical engineering from École Polytechnique
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