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Elasticity has been linked to the remarkable propulsive efficiency of pulse-jet

animals such as the squid and jellyfish, but the underlying dynamics have not

been quantified nor utilized in any robotic system. This work identifies the

pulse-jet propulsion mode utilized by these animals as a coupled mass-spring-

mass oscillator, enabling the design of a new flexible self-propelled robot. We

use this system to experimentally demonstrate that resonance greatly benefits

pulse-jet swimming speed and efficiency, and the robot’s optimal cost of trans-

port is found to match that of the most efficient biological swimmers in nature,

such as the jellyfish Aurelia aurita. The robot also exhibits a preferred Strouhal

number for efficient swimming, thereby bridging the gap between pulse-jet

propulsion and established findings in efficient fish swimming. Extensions of

the current robotic framework to larger amplitude oscillations could combine

resonance effects with optimal vortex formation to further increase propulsive

performance and potentially outperform biological swimmers altogether.
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Introduction

Resonance exploitation in elastic components is a ubiquitous and powerful idea which can en-

hance performance in domains as diverse as harvesting environmental energy and singing so-

prano (1–3). In terrestrial walking (4), jumping (5) and even terrestrial snake propulsion (6)

exploiting mechanical resonance has been used to significantly increase propulsive efficiency.

For example, passive dynamic walkers (4), non-actuated systems capable of performing bipedal

locomotion by exploiting resonant dynamics, laid the groundwork for under-actuated robotic

walkers an order of magnitude more efficient than their fully controlled predecessors (7).

Much less work has focused on resonance exploitation for biologically-inspired underwater

robots and vehicles, despite evidence that this is used by animals. The use of flexible materials

has been studied extensively in biological flapping foil propulsion, such as fish swimming (8)

and insect flight (9). Here, the efficiency increase has been associated with the synchroniza-

tion of the vortex shedding and the undulating body deformations, both from self-induced vor-

tices (10) and upstream wakes induced by obstacles or other swimmers (11, 12). However, the

majority of engineering studies simplify the complex body mechanics of a swimming fish down

to a single flexible plate, and more complete robotic systems, such as the high frequency swim-

ming robot of (13), exploit flexibility in their fins at most and have not focused on resonance.

Considering a different biological propulsive model may offer more opportunities to exploit

resonance for underwater robotics.

A variety of marine life such as jellyfish, octopuses, salps, shellfish and squids use periodic

or pulse-jetting as a form of locomotion, Figure 1(A). Pulse-jetting entails the cyclic expansion

and contraction of a hollow cavity of the specimen’s body, which in turn drives the ingestion

and expulsion of ambient fluid. Pulse-jetting organisms are known to excel in short-distance,

predatory swimming, in addition to sustained propulsion (14). Fluid dynamics modeling and
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Figure 1: Conceptual framework for resonant squid-like propulsion. (A) A strawberry squid

is one of many animals which utilize pulse-jet swimming; image credit Paul Caiger c© Woods

Hole Oceanographic Institution. (B) Schematic of the simplified pulse-jet swimming mode

used in this work having body deformation period T = 1/f , amplitude A, and instantaneous

swimming speed u which varies around the average speed U . The grey body is the swimmer of

mass MS , which flexibly contracts (from t/T = 0 to 1

2
) and expands (t/T = 1

2
to 1) its body

cavity to force fluid in and out with added mass MaI . The inline acceleration of the body also

accelerates some external flow with added mass MaE . (C) This fundamental mode of motion is

equivalent to a linear mass-spring-mass oscillator. The driving mass MD = MaI , and is always

out of phase with the reaction mass MR = MS +MaE , while the stiffness k is determined by

the body flexibility and geometry.

experiments have shown that the vortex ring and size-change generated by a pulse-jet produce

a propulsive thrust well in excess of a steady jet (15, 16). These findings have spurred the

development of a range of pulse-jet and size-changing robotic vehicles (17–21), even including

a micro-robotic version of a juvenile jellyfish with variable kinematics (22). However, none of

these robots or any other in the literature exploit resonance, relying instead on direct actuation

or explosive one-time jets.

Much the same as resonance exploitation in walking and flapping animals, the nature and

geometric arrangement of muscle fibres in a squid mantle (23) hints that elastic energy may

play a role in their propulsion (24,25). Similarly, the jellyfish Polyorchis penicillatus was found

to swim with a frequency related to the stiffness of its bell (26), suggesting that this enables the
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species to maximize the use of elastic energy storage to power the refilling stage of the cycle and

thus minimize metabolic energy consumption. Experimental studies of a flexible cavity showed

that stiffness did indeed impact the thrust and shape of the resulting vortex rings (27,28). While

these experiments were performed on a fixed platform, numerical simulations of a flexible bell-

shaped boundary driven with simplified jellyfish-like kinematics suggest large amplitudes can

be achieved at resonant frequencies in a vacuum (29) and that this should translate to faster

swimming speeds (30).

Despite the indication that resonance is somehow being exploited in biological pulse-jetting,

no resonant squid-like robots have been developed to date. A key challenge is that none of these

biological or experimental studies identified the fundamental resonant mechanism at play, quan-

tifying the impact of the structural and fluid dynamics on the resonance of active swimming.

Understanding the governing oscillator dynamics has been crucial for the design of resonant

walking and flapping robotics, and a similar understanding is required for pulse-jetting. In this

study we achieve the goal of a highly efficient resonant robotic swimmer inspired by pulse-

jetting animals such as the squid and jellyfish using three major contributions: (i) we identify

the leading mechanical and hydrodynamic parameters of pulse-jet swimming and use them to

formulate a simple analytic dynamical swimming model (ii) we use this model to develop a

flexible jetting robot with simple periodic actuation capable of resonance when constrained and

when freely swimming, and (iii) we show the measured performance of the robot validates

our simple model of pulse-jet resonance and enables the robot to achieve self-propelled speeds

comparable to the most efficient swimmers in nature.

Results

Resonant pulse-jet propulsion Identifying the leading-order dynamic characteristics of a

pulse-jet swimmer is crucial to determine its potential resonant frequency and exploit resonance
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in a pulse-jet robot. Abstracting across species which utilize pulse-jet propulsion, such as the

squid in Fig 1(A), we develop a model swimmer which is roughly a truncated ellipsoid in shape

and uses radial oscillations at a frequency f and amplitude A to pump fluid in and out of an

internal cavity to propel itself at an average speed U , Fig. 1(B). The details of the ingestion and

ejection of fluid vary among animals, but we will consider the simplest case where the fluid is

drawn in and out through the same opening, as with jellyfish. Similarly, animals use different

muscle actuation schedules to pump the fluid, but we will limit our study to simple harmonic

body deformation which efficiently produces thrust proportional to the fluid jet velocity squared

(15, 31). As the jet velocity Uj is proportional to Af , increasing amplitude through resonance

will increase thrust and swimming speed for a given biological or robotic actuation force.

The contraction and expansion of the cavity accelerates the internal fluid radially and ax-

ially. The radial contributions cancel due to symmetry but the axial accelerations accumulate

to produce a large driving force which accelerates the body axially in the opposite direction.

In other words, the internal fluid inertia acts as the driving mass MD of the axial oscillations,

the flexible cavity acts as a spring with stiffness k, and the swimmer’s inertia MR reacts to

the driving motion out of phase. Therefore, the fundamental oscillation mode of a flexible

pulse-jetting swimmer is equivalent to a coupled mass-spring-mass system, sketched Fig. 1(C).

As suggested from Fig. 1 the driving mass equals the added-mass of the internal cavity flow

MaI , and the reaction mass is the sum of the solid swimmer’s mass MS and the external fluid

added-mass MaE .

This linear oscillator model is elaborated in the Materials and Methods section, and the

resulting undamped natural frequencies are

fC =
1

2π

√

k

MD

, fF = fC

√

1 +
MD

MR

> fC

where fC is the natural frequency when the swimmer is constrained from reacting inline, and
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Figure 2: The flexible bio-inspired resonant robot. (A) Linkage schematic of the cavity actua-

tion system (B) Principle elements of the design shown in cross-section. Dimensions given in

mm. (C) The built prototype with the membrane mounted (blue).

fF is the natural frequency during free self-propelled swimming. For a given force, actuating

the system near this frequency will maximize the deflection amplitude A, and therefore thrust

and swimming speed. The peak amplitude of a damped linear oscillator occurs when forced at

frequency f = fn
√

1− ζ2 where fn is the natural frequency and ζ is the damping ratio of the

system, proportional to the relative energy lost per cycle.

Vehicle Design The prototype robot employed in this study consists of an umbrella-like ap-

paratus with eight ribs arranged axisymmetrically and driven into radial expansion by a linear

actuator, Fig. 2. The geometry of the cavity is defined by a membrane stretched over the ribs

and pre-tensioned to prevent localized wrinkling. The piston is linked to a linear tension spring

aligned with the axis of the vehicle which balances the inward force of the stretched membrane.

Together, the spring and the membrane determine the equilibrium position of the cavity and the

elasticity of the structure.

The excitation force is provided by a solenoid actuator mounted along the axis of symmetry
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of the vehicle in a frontal compartment. The actuator cyclically compresses the cavity in the

range of 2.0 to 17.0 Hz thus driving out a jet of fluid. The actuator is powered externally

via a tether and is surrounded by low-density foam to ensure the robot is neutrally buoyant

and that its center of buoyancy is above its center of mass, making the robot naturally stable

when upright in water. This eliminates the need for any control system and focuses the study

on steady propulsion, but extensions to manoeuvring vehicles are straightforward (32). The

complete vehicle has a dry mass of MS = 0.380 kg and overall length of L = 0.266 m. A

qualitative demonstration of the robot freely swimming is show in Movie 1.

The flexible robot was tested in multiple arrangements shown in Fig. 3, allowing the prop-

erties of the dynamic model to be determined experimentally as detailed in the Materials and

Methods section. Free-vibration tests in water using the stationary set-up in Fig. 3(A) measured

the robot’s constrained natural frequency as fC = 5.73 Hz and damping ratio as ζ = 0.15. The

constrained rig was also used to measure the effective stiffness of the cavity as k = 1.60 kN/m.

These measurements determine the cavity flow’s added mass underwater to be MaI = 1.23 kg,

completely overwhelming the inertia of the vibrating ribs and membrane. This is consistent

with analytic estimates of MaI reported in the Materials and Methods section, and emphasizes

the critical role added mass plays in the oscillator dynamics. Finally, the external added-mass

was roughly estimated using the analytic value for a prolate spheroid with the same length and

minor semi-axis dimension of 4 cm giving MaE = 0.15 kg (33), around 40% of the dry mass.

Substitution of these inertia factors into the frequency equation predicts fF ≈ 10 Hz when

freely swimming, though this ignores the influence of the tether on the dynamics.

Robot performance To demonstrate successful resonance exploitation, we quantify the robot’s

free swimming performance using three standard metrics; the swimming speed U , the quasi-
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Figure 3: Experimental test arrangements. (A) The stationary setup used for the effective stiff-

ness measurements, the free oscillation tests and the forced oscillation tests. (B) Free-swimming

setup used for the buoyancy-driven and actuated swimming tests.

propulsive efficiency η, and the mechanical cost of transport COT, defined as

η =
RU

P
, COT =

P

gMSU

where P is the power supplied by the actuator, R is the robot’s fluid drag (resistance) when

traveling at speed U , and g is the acceleration of gravity.

An actuation frequency sweep was performed on the robot when it was constrained from

axial motion underwater as in Fig. 3(A) to determine the powering characteristics. Fig. 4

quantifies the measured deformation amplitude in terms of the Stroke Ratio commonly used

in pulse-jet studies (15), and defined as SR = Ljet/D, where D is the jet aperture diameter

and Ljet = 4Vjet/(πD
2) is a length scale of the ejected fluid volume Vjet. The supplemental

notebook S1 shows SR ∝ A/D with the proportionality constant determined by the cavity ge-

ometry and deformation mode. Fig. 4 shows the stroke ratio peaks when excited just below

the undamped natural frequency as expected. The phase measurements also show the expected

behaviour, but have an uncertainty proportional to the frequency due to the constant frame rate

of the motion capture data.

These measurements are used to fit a dynamical model of the actuated cavity deformation,

8



detailed in the Materials and Methods section. Fig. 4 indicates the model fits the data extremely

well and the modelled damping ratio is ζ = 0.29±0.01, indicating that solenoid actuator’s losses

are somewhat hindering the potential for resonance exploitation. This model allows the power

P delivered by the actuator to the robot to be determined, and is used in the free swimming

tests. Fig. 4 shows the powering has a fairly small uncertainty other than at low frequency due

to the non-linear forcing supplied by the solenoid actuator.

Finally, the drag R(U) was measured using the motion capture set-up of Fig. 3(B). The

vehicle was given a positive net buoyancy by removing one or more ballast weights, released

to float upward, and the terminal velocity U was measured. As the drag and known buoyancy

balance when U is steady, this determines R(U), given in Fig. S6.

The performance of the robot during self propelled swimming was also measured with mo-

tion capture sketched in Fig. 3(B) as detailed in the Materials and Methods section. The self-

propelled swimming results for speed, efficiency and cost of transport are shown in Fig. 5. The

highest speed of 0.98 L/s occurs at 9 Hz. The peak efficiency of 56% and minimum cost of

transport of 0.087 are measured at f = 7.5 Hz, although the entire range from 6-10 Hz have

high efficiency and nearly identical COT. The confidence in the COT ∼ P/U is lowest at low

frequency because the confidence in P is lowest in that region and the swimming speeds U are

very small.

Discussion

A dynamic model for resonant swimming was developed and tested with a flexible biologically-

inspired swimming robot, resulting in a clear increase in performance near its natural frequency.

This observed speed peak at 9 Hz is lower than the 10 Hz natural frequency estimate due to

the expected influence of damping and neglecting the influence of the tether on the robot’s free

swimming dynamics. The tether is also responsible for a portion of the fairly high vehicle
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Figure 4: Actuated frequency sweep results when constraining the robot from axial motion. The

excitation frequency is scaled by the natural frequency and the oscillation amplitude is reported

in terms of the stroke ratio (15). Black dots and bars show the median and 95% confidence

interval (CI) of the measurements (n ≥ 51 cycles), and the blue line and shaded area are the

median and 95% CI of the dynamical model after fitting to the measurements.

drag, Fig. S6, meaning an un-tethered vehicle with the same powering could see further speed

improvements.

The tests performed with this flexible prototype provide a useful comparison to biological

and other robotic swimmers. Table 1 shows measurements done by (15, 34, 36) on squids and

jellyfish. Care has to be taken in comparing across studies as efficiency and cost metrics vary,

and swimming routines of certain organisms may account for a combination of jetting and

paddling (e.g. in jellyfish), but the performance of the swimming prototype comfortably falls

within the range of marine species. In particular, the minimum cost of transport for the robot
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Figure 5: Free-swimming robot performance versus scaled actuation frequency. Points and

bars are the median and 95% CI from the measurements (n ≥ 44 cycles) and dynamical model.

The colored points intersecting the dashed line at COT = 0.09 show constant St behaviour in

Fig. 6.

at resonance COT = 0.087 falls into the 0.03 − 0.09 range reported for the moon jellyfish

Aurelia aurita, which outperform any other swimming animal and any other engineered vehicle

(ground, air, or sea) other than extremely large slow-moving ships on this metric (41).

For the range of f = 6− 10 Hz leading up to the natural frequency estimate fF ≈ 10 Hz,

Fig. 5 shows that the robot achieves a nearly uniform low cost of transport, around COT ≈ 0.09.

A uniform COT is significant because it means the power P and speed U are proportional

for efficient swimming, in stark contrast to the typical behavior P ∝ U3 in fluid propulsion.
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Table 1: Non-dimensional characteristics of marine species compared to the current resonant

propulsion prototype. Symbol SR and Lb stand for stroke ratio and body length.

Unit This study squid 1 jellyfish2 jellyfish3 squid4 fish5
fish6

CFD

fish7

robot

U Lb/s 0.04 - 0.98 0.3 - 2.06 0.7 - 4.0 0.16 - 0.66 - - - -

SR - 0.24 - 0.42 5.5 - 61.8 - - - - - -

fL/U - 8.3 - 72.9 0.6 - 2.5 - 4.5 - 9.3 - - - -

Uj/U - 1.35 - 11.5 1.5 - 4.5 - - - - - -

η -8 0.01 - 0.56 0.38 - 0.44 0.1 - 0.55 - - - 0.39 - 0.46 0.32

COT -9 0.087 - 1.3 - - 0.03 - 0.09 0.5 - 0.65 0.09 - 0.7 - -

1 data for adult squid from (34).
2 data from (35), with U given in bell diameter/s, which is maintained here since the studied species

have a low aspect ratio in the range ∼ 0.5− 2. Although the stroke ratio is not explicitly given, it is

stated that some species display stroke ratios < 4, and others use higher strokes.
3 data for jellyfish from (36).
4 data for squids from (36) based on original measurements from (37).
5 data for fish from (38).
6 estimates of η using a CFD (computational fluid dynamics) simulation of carangiform and anguil-

liform fish swimming from (39).
7 data for robotic fish from (40).
8 this study, (39) and (40) use quasi-propulsive efficiency; (34) use whole cycle hydrodynamic effi-

ciency; (35) use Froude efficiency.
9 this study reports the mechanical COT, whereas the biological studies report metabolic COT. In

addition, we have scaled (36) by g to obtain a non-dimensional metric.

Resonant propulsion is able to avoid this scaling because increasing the frequency near the

natural frequency increases the amplitude A without increasing the required actuation force.

Since the jet velocity Uj is proportional to Af , this is equivalent to stating that increasing f up

to resonance increases jet velocity and thrust faster than linearly, with the result that the P ∼ U

until the resonant peak is crossed.

The vehicle displays a constant Strouhal number St = 2Af/U ≈ 0.15 in this region as

well, Fig. 6, connecting pulse-jet swimming to the extensive literature indicating a Strouhal

number preference in efficient flapping foil propulsion. While counter examples such as the

high-frequency swimming robot of (13) suggest the relationship between St and maximum
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Figure 6: Quasi-propulsive efficiency as a function of Strouhal number St = 2Af/U or jet

velocity Uj scaled by swimming speed U . Median values are shown. The points near the

dashed line at St = 0.15 show uniform cost of transport in Fig. 5.

efficiency is not completely understood, flapping animals with the same ratio of propulsor size

to body size tend to share the same optimal Strouhal number 0.2< St <0.4 (42, 43), and the

current pulse-jet robot has an optimal St as well. As the Strouhal number for the flexible robot

does not go under the optimal value, there is a maximal swimming speed attainable for a given

jet velocity Uj , and the limiting ratio for this vehicle is around U/Uj ≈ 70%.

Table 1 shows that pulse-jet animals such as jellyfish and squid use a wide range of defor-

mation amplitudes (5 < SR < 62) when swimming (34), while the current robot is limited to

SR < 0.5 due to the synthetic membrane. Tensile testing of the mantle tissue of squids during

escape jetting indicates fairly low viscoelastic damping, having an hysteresis between 15-25%

in the elastic energy variation between the expulsion and refill phase (24, 25). This suggests

that viscous damping of the mantle remains low even during large amplitude jetting, meaning

squid tissue could exploit resonance at significantly higher stroke ratios. Instead, the likely

limiting factor in exploiting resonance is the viscous fluid losses due to ingestion and ejection

of large volumes of water. This increased fluid damping means animals using a stroke ratio

much greater than 10 are likely sacrificing the chance to benefit from resonance in favour of
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rocket-like manoeuvring, i.e. large body accelerations driven by large mass ejections.

Greatly reducing the size of the swimmer down to the micrometric range would also enhance

fluid damping by lowering the Reynolds number to Re = UL/ν ∼ 1, where ν ≈ 10−6 m2

s
is

the kinematic viscosity of water. However, pulse-jet swimmers in nature range from less than

a centimeter in size up to tens of meters (44), thus operating from 1 < Re < 108, and MEMS

devices have been designed to exploit resonance even at the micrometric scale (2), giving some

reason to hope that resonant robotic swimmers could also be designed for use across this range.

Finally, previous bio-mechanical studies on pulse-jetting find that additional fluid thrust

is measured when using a stroke ratio around 4 to create an optimal fluid vortex, and many

animals are observed to swim near that range (15). As this is still a modest stroke ratio, these

animals could be benefiting from mechanical resonance in addition to optimal vortex formation.

Increasing the achievable stroke ratio of the resonant robotic systems to match biological levels

in the future should allow it to exploit these jet vortex dynamics, further improving performance.

Even with this limitation, the current flexible prototype achieves unprecedented biological levels

of efficiency and is a powerful demonstrator of the potential to exploit resonance efficiently in

biological swimmers and biologically-inspired robotics.

Materials and Methods

Stationary tests The results reported in Tab. S2 and Fig. 4 are obtained from tests performed

with the vehicle held stationary, Fig. 3(A). A camera is used to film the jet exit plane of the

vehicle to record the position of the rib tips in free and forced oscillations, Fig. S3.

Free vibration tests in air and water are used to measure the natural frequency and damping

in the expansion/contraction mode. The free vibration was excited using a wire to apply a fixed

displacement to the piston to contract the ribs, and then cutting the wire. Four tests in each

fluid were executed, and an example of the traces from two of the tests are shown in Fig. S4.
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A damped harmonic was fit to each measurement signal and used to determine their frequency

and damping. Measurement statistics are reported in Tab. S2.

A similar test configuration is used to measure the stiffness keff of the piston. The piston

displacement under prescribed loading was measured four times; before and after the free vibra-

tion tests, and while loading and unloading the spring. Fig. S5 shows the characteristic is linear

but shows a slight hysteresis. A linear fit of all the data gave keff = 11.35kN/m stiffness.

The actuated frequency sweep uses the same fixed rig shown in Fig. 3(A), but the motion

is achieved by driving the piston with the solenoid actuator. The actuator was prescribed a har-

monic voltage with fixed amplitude and variable frequency and the rib displacement is recorded

as before. An LED added in the camera frame marks the start of the excitation period, allow-

ing the response phase to be determined although the constant frame rate of 24 Hz lowers the

confidence in these phase measurements, Fig. 4. After the initial ramp into the steady oscillator

dynamics was removed, the remaining cycles (n ≥ 51 actuation cycles were obtained for all

cases) where used to determine the coefficients for the forced oscillator model, as discussed

below.

Free-swimming tests The results reported for Fig. 5 are obtained from tests performed with

the vehicle moving freely under water, Fig. 3(B). An underwater motion capture system com-

prised of four cameras arranged around a 3.2m square with a sample rate of 100 Hz was set up

in the middle of an extremely large (130mx6mx3.5m) tank and is used to measure the ascent

velocity. System calibration indicated a 0.15% error in relative position measurement.

The self-propelled tests are performed with the prototype neutrally buoyant and allowing

it to ascend the water column exclusively under the effect of the thrust generated by its own

actuation. The large 3.2m vertical distance allowed the robot to achieve steady swimming for

more than 400 measurement images and n ≥ 44 actuation cycles in every test. The 0.025, 0.5
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and 0.975 quantiles of the steady data were used to determined the median and 95% confidence

interval of the speed U . The robot was reset at the same starting position for each test with a

five minute window between tests to allow the water to come to rest.

The robot drag curve R(U) is determined by measuring the steady terminal velocity of the

prototype as it ascends the water column under a known buoyancy force without actuation.

As in the actuated swimming, at least 400 measurements were made per test and the median

and 95% CI are shown in Fig. S6. These results are used to estimate a drag coefficient Cd =

R/(1
2
ρU2af ) = 1.13 where af is the frontal area. The relatively high Cd values for such a

slender body suggest significant resistance due to towing the tether.

Free-swimming demonstration The qualitative demonstration of the robot’s swimming abil-

ity shown in Movie 1 was not recorded in the test conditions described above. To simplify video

capture, the demo used a much smaller tank with the vehicle close to a viewing window and

weights were added to make the robot negatively buoyant so the robot would descend unas-

sisted.

Free-vibration model Application of Newton’s second law to the undamped unforced mass-

spring-mass oscillator in Fig. 1(C) gives

MRẍR = −k(xR − xD), MDẍD = −k(xD − xR)

where xD, xR are the axial displacements of the driving and reactive masses relative to their

centroid. During free-vibration, both displacements will be harmonic with the same frequency

fF and so the coupled system becomes

[

k − (2πfF )
2MR −k

−k k − (2πfF )
2MD

] [

xR

xD

]

=

[

0
0

]
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As such the determinant of this matrix must be zero and the free-swimming natural frequency

must satisfy (2πfF )
2 = k(MR+MD)/(MRMD). When the vehicle is constrained, xD = 0 and

so the constrained frequency must satisfy (2πfC)
2MR = k.

Next, we assume the driving inertia MD is due to the internal added mass MaI acting at the

center of action of the cavity deformation mode. For small rigid body oscillations of the ribs

around the pivot (see Fig. 2(A,B)) the center of action is two thirds of the length of the cavity

2/3Lc = laI = 80 mm, and using the lever arm from the pivot to the push rod lpivot = 30mm

we arrive at the reported effective stiffness of the robot k = keff l
2

pivot/l
2

aI = 1.6 kN/m.

The free-vibration measurements in water in Tab. S2 and this value of k give the reported

MD = 1.23 kg in water. We can independently estimate MaI by assuming the axial flow speed

v inside the cavity is the primary contribution to the fluid kinetic energy KE . In that case

KE =
1

2
MaIȦ

2 ≈
1

2
ρ

∫

v2dv

where Ȧ is the rate of change of deformation amplitude. As detailed in the python notebook S1,

substituting the robot’s cavity shape and the assumed linear deformation mode determines the

speed v and predicts MaI = 1.2 kg, in good agreement with the free-vibration measurements.

Forced oscillation model The efficiency and cost of transport metric require accurate mod-

elling of the actuated cavity dynamics so the oscillation amplitude and phase and the delivered

mechanical power can be established on the free swimming robot as a function of the actua-

tion frequency. Power consumption measured via a current meter is not equivalent to delivered

power because of the significant dissipation and losses in the tether and solenoid. This issue

is amplified by the low power draw of the robot, decreasing the signal to noise ratio of such a

measurement.

Instead, the self-propelled power used in Fig. 5 is determined by calibrating a simple forced
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oscillator model to the constrained frequency sweep data in Fig. 4

ẍ+ 2ζωnẋ+ ω2

nx =
F (x− x0, V )

Meff

where x is the spring compression, ωn = 2πfC , Meff = MD for the constrained tests, and

F is the actuator force which is a known nonlinear function of the supplied voltage V and

the solenoid’s position relative to it’s rest position x0, Fig. S7. As the voltage is known, the

only free parameters are the rest position and damping, which are tightly constrained by the

measurements to x0 = 5.1± 0.3mm and ζ = 0.29± 0.01. As shown in Fig. 4, the model gives

an excellent fit to the data with extremely small uncertainty in the oscillation amplitude and

phase. There is moderate uncertainty in the cycle-averaged delivered power P = 1

T

∫ T

0
F ẋdt at

low frequency because of the nonlinear forcing supplied by the solenoid, but this doesn’t impact

the confidence near resonance where the response is essentially linear.

As the free swimming linear model is still a single mode oscillator, it is sufficient to adjust

the mass Meff in the forced oscillator model above such that ωn = 2πfF . The powering

system is unchanged when releasing the robot for free swimming, and therefore we use the

same median and confidence bounds on x0 and ζ for free-swimming. The predicted SR and P

are shown in Fig. S8.

Supplementary Materials and Methods

Python notebook S1: Cavity geometry calculations.

Tab S2: Constrained Free Vibration measurements

Fig S3: Constrained test image example.

Fig S4: Free-vibration example results.

Fig S5: Force vs displacement measurements and the linear fit.

Fig S6: Terminal velocity resistance measurements and quadratic fit.
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Fig S7: Actuator force as a function of relative position and voltage.

Fig S8: Forced oscillator model results.
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Supplementary Materials and Methods

Python notebook S1: Cavity geometry calculations. Definition of the cavity geometry and the

derivation and calculation of the internal fluid added mass MaI and the geometry scaling factors

for the stroke ratio and jet velocity.

Table S2: Constrained free-vibration measurements.

mean ωn std ωn mean ζ std ζ

Air 410 rad/s 9.74 rad/s - -

Water 36.0 rad/s 0.450 rad/s 0.148 0.0150

Figure S3: Constrained test image example. These images are used to measure the deflection

amplitude and phase of the prototype arms.
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Figure S4: Free vibration example results. Tests in (a) air and (b) water. Black lines are

measured motion capture data, blue dashed are the fitted exponentially damped functions used

to determine ζ and fn.

Figure S5: Force vs displacement measurements and the linear fit.

Figure S6: Terminal velocity resistance measurements and quadratic fit.
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Figure S7: Actuator force as a function of relative position and voltage.

Figure S8: Forced oscillator model results. The median and 95% confidence interval predictions

of the Stroke Ratio and Power for the constrained (blue) and free swimming (orange) cases.

The dynamic model free parameters, the damping ζ and solenoid rest position x0, have been

calibrated against the constrained frequency sweep data in Fig. 4.
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