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We have created a network that allocates a new computational unit whenever an unusual

pattern is presented to the network. This network forms compact representations, yet learns

easily and rapidly. The network can be used at any time in the learning process and the

learning patterns do not have to be repeated. The units in this network respond to only a

local region of the space of input values.

The network learns by allocating new units and adjusting the parameters of existing units.

If the network performs poorly on a presented pattern, then a new unit is allocated which

corrects the response to the presented pattern. If the network performs well on a presented

pattern, then the network parameters are updated using standard LMS gradient descent.

We have obtained good results with our resource-allocating network (RAN). For predicting

the Mackey Glass chaotic time series, our network learns much faster than do those using back-

propagation and uses a comparable number of synapses.

1 Introduction

(Judd, 1988) has shown that the problem of loading a multilayer perceptron with binary units is NP-

complete. Loading sigmoidal multilayer networks is computationally expensive for large sets of real data,

with unknown bounds on the amount of computation required.

(Baum, 1989) pointed out that the problem of NP-complete loading is associated only with a network

of �xed resources. If a network can allocate new resources, then the problem of loading can be solved in

polynomial time. Therefore, we are interested in creating a network that allocates new computational units

as more patterns are learned.

Traditional pattern recognition algorithms, such as Parzen windows and k-nearest neighbors, allocate a

new unit for every learned example. The number of examples in real problems forces us to use fewer than

one unit for every learning example: we must create and store an abstraction of the data.

The network described here allocates far fewer units than the number of presented examples. The

number of allocated units scales sub-linearly with the number of presented inputs. The network can be used

either for on-line or o�-line learning.

Previous workers have used networks whose transfer function is a Gaussian (Broomhead & Lowe, 1988)

(Moody & Darken, 1988 & 89) (Poggio & Girosi, 1990). The use of Gaussian units were originally inspired by

approximation theory, which describes algorithms that interpolate between irregularly spaced input-output

pairs (Powell, 1987). In fact, Lapedes discussed the hypothesis that multiple layers of sigmoidal units form

Gaussian-like transfer functions in order to perform interpolation (Lapedes, 1987).

Gaussian units are well-suited for use in a resource-allocating network because they only respond to a

local region of the space of input values. When a Gaussian unit is allocated, it explicitly stores information

from an input-output pair instead of merely using that information for gradient descent. The explicit storage

of an input-output pair means that this pair can be used immediately to improve the performance of the

system in a local region of the input space. A unit with a non-local response needs to undergo gradient

descent, because it has a non-zero output for a large fraction of the training data.

Moody and Darken's work (Moody & Darken, 1988 & 89) is the closest to the work speci�ed below.

They use Gaussian units, where the Gaussians have variable height, variable centers, and �xed widths. The

network learns the centers of the Gaussians using the K-means algorithm (Lloyd, 1957) (Stark, et. al, 1962)

(MacQueen, 1967), and learns the heights of the Gaussians using the LMS gradient descent rule (Widrow,
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1960). The width of the Gaussians is determined by the distance to the nearest Gaussian center after the

K-means learning.

Moody has further extended his work by incorporating a hash table lookup (Moody, 1989). The hash

table is a resource-allocating network where the values in the hash table only become non-zero if the entry

in the hash table is activated by the corresponding presence of non-zero input probability.

Our work improves on previous work in several ways:

1. Although it has the same accuracy, our network requires fewer weights than do networks in either

(Moody and Darken, 1989) or in (Moody, 1989).

2. Like the hashing approach in (Moody, 1989), our network automatically adjusts the number of units to

reect the complexity of the function that is being interpolated. Fixed-size networks either use too few

units, in which case the network memorizes poorly, or too many, in which case the network generalizes

poorly.

3. We use units that respond to only a local region of input space, similar to (Moody & Darken, 1988 &

89), but unlike back-propagation. The units respond to only a small region of the space of inputs so

that newly allocated units do not interfere with previously allocated units.

4. The RAN adjusts the centers of the Gaussian units based on the error at the output, like (Poggio &

Girosi, 1990). Networks with centers placed on a high-dimensional grid, such as (Broomhead & Lowe,

1988) and (Moody, 1989), or networks that use unsupervised clustering for center placement, such as

(Moody & Darken, 1988 & 89) generate larger networks than RAN, because they cannot move the

centers to increase the accuracy.

5. Parzen windows and K-nearest neighbors both require a number of stored patterns that grow linearly

with the number of presented patterns. With our method, the number of stored patterns grows sublin-

early, and eventually reaches a maximum.

2 The Algorithm

This section describes a resource-allocating network (RAN), which consists of a network, a strategy for

allocating new units, and a learning rule for re�ning the network.

2.1 The Network The RAN is a two-layer network (Figure 1). The �rst layer consists of units that

respond to only a local region of the space of input values. The second layer aggregates outputs from these

units and creates the function that approximates the input-output mapping over the entire space.

The units on the �rst layer store a particular region in the input space. When the input moves away

from the stored region the response of the unit decreases. A simple function that implements a locally tuned

unit is a Gaussian:
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where q = 2:67 is chosen empirically to make the best �t to a Gaussian.

The input to the synapses of the second layer are the outputs of the units of the �rst layer. The purpose

of each second-layer synapse is to de�ne the contribution of each �rst-layer unit to a particular output ~y of

the network. Each output of the network ~y is the sum of the �rst-layer outputs x

j

, each weighted by the

synaptic strength

~

h

j

plus a constant vector ~, which does not depend on the output of the �rst layer:
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The ~ is the default output of the network when none of the �rst-layer units are active. The

~

h

j

x

j

term can

be thought of as a bump that is added or subtracted to the constant term ~ to yield the desired function.
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Figure 1: The architecture of the network. In parallel, the network computes the distances of the input

vector

~

I to the stored centers ~c

j

. The distance is then exponentiated to yield a weight x

j

. The output ~y is

a weighted sum of the heights

~

h

j

and an o�set ~.

2.2 The Learning Algorithm The network starts with a blank slate: no patterns are yet stored.

As patterns are presented to it, the network chooses to store some of them. At any given point the network

has a current state, which reects the patterns that have been stored previously.

The allocator identi�es a pattern that is not currently well represented by the network and allocates a

new unit that memorizes the pattern. The output of the new unit extends to the second layer. After the

new unit is allocated, the network output is equal to the desired output

~

T . Let the index of this new unit

be n.

The peak of the response of the newly allocated unit is set to the novel input,

~c

n

=

~

I: (2:4)

The linear synapses on the second layer are set to the di�erence between the output of the network and the

novel output,

~

h

n

=

~

T � ~y: (2:5)

The width of the response of the new unit is proportional to the distance from the nearest stored vector to

the novel input vector,

w
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where � is an overlap factor. As � grows larger, the responses of the units overlap more and more.

The RAN uses a two-part novelty condition. An input-output pair (

~

I;

~

T ) is considered novel if the input

is far away from existing centers,

jj

~

I � ~c

nearest

jj > �(t); (2:7)

and if the di�erence between the desired output and the output of the network is large

jj

~

T � ~y(

~

I)jj > �: (2:8)

Typically, � is a desired accuracy of output of the network. Errors larger than � are immediately corrected

by the allocation of a new unit, while errors smaller than � are gradually repaired using gradient descent.

The distance �(t) is the scale of resolution that the network is �tting at the tth input presentation. The
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learning starts with �(t) = �

max

; which is the largest length scale of interest, typically the size of the entire

input space of non-zero probability density. The distance �(t) shrinks until the it reaches �

min

, which is the

smallest length scale of interest. The network will average over features that are smaller than �

min

: We used

a function:

�(t) = max(�
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exp(�t=� ); �

min

); (2:9)

where � is a decay constant.

At �rst, the system creates a coarse representation of the function, then re�nes the representation by

allocating units with smaller and smaller widths. Finally, when the system has learned the entire function

to the desired accuracy and length scale, it stops allocating new units altogether.

The two-part novelty condition is necessary for creating a compact network. If only condition (2.7) is

used, then the network will allocate units instead of using gradient descent to correct small errors. If only

condition (2.8) is used, then �ne-scale units may be allocated in order to represent coarse-scale features,

which is wasteful.

By allocating new units the RAN eventually represents the desired function ever more closely as the

network is trained. Fewer units are needed for a given accuracy if the �rst-layer synapses c

jk

, the second-level

synapses h

ij

, and the thresholds 

i

are adjusted to decrease the error:
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We use the Widrow-Ho� LMS algorithm (Widrow & Ho�, 1960) to decrease the error whenever a new unit

is not allocated:
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In addition, we adjust the centers of the responses of units to decrease the error:
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Equation (2.12) is derived from gradient descent and equation (2.1). Equation (2.12) also has an

intuitive interpretation. Units whose outputs that would cancel the error have their centers pulled towards

the input. Units whose outputs that would increase the error have their centers pushed away from the input.

Empirically, equation (2.12) also works for the polynomial approximation (2.2).

The structure of the algorithm is shown below as pseudo-code, including initialization code:
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3 Results

One application of an interpolating RAN is to predict complex time series. As a test case, a chaotic time

series can be generated with a nonlinear algebraic or di�erential equation. Such a series has some short-range

time coherence, but long-term prediction is very di�cult. The need to predict such a time series arises in

such real-world problems as detecting arrhythmias in heartbeats.

The RAN was tested on a particular chaotic time series created by the Mackey-Glass delay-di�erence

equation:

x(t+ 1) = (1� b)x(t) + a

x(t � � )

1 + x(t� � )

10

; (3:1)

for a = 0:2, b = 0:1, and � = 17.

The network is given no information about the generator of the time series, and is asked to predict the

future of the time series from a few samples of the history of the time series. In our example, we trained the

network to predict the value at time T +�T , from inputs at time T , T � 6, T � 12, and T � 18.

The network was tested using two di�erent learning modes: o�-line learning with a limited amount

of data, and on-line learning with a large amount of data. The Mackey-Glass equation has been learned

o�-line, by other workers, using the back-propagation algorithm (Lapedes & Farber), and radial basis func-

tions (Moody & Darken, 1989). We used RAN to predict the Mackey-Glass equations with the following

parameters: � = 0:02, 400 learning epochs, �

max

= 0:7, � = 0:87 and �

min

= 0:07 reached after 100 epochs.

RAN was simulated using � = 0:02 and � = 0:05. In all cases, �T = 85.

Figures 2 and 3 compares the RAN to the other learning algorithms. Figure 2 shows the normalized

error rate on a test set versus the size of the learning set for various algorithms. The test set is 500 points

of the output of the Mackey-Glass equation at T = 4000. The normalized error is the RMS error divided by

the sqaure root of the variance of the output of the Mackey-Glass equation.
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Figure 2: The normalized RMS error on a test set for various o�-line learning algorithms. Back-

propagation, RAN, and hashing B-splines are all competitive in error rate. (Near the back-propagation

symbol, the symbol for hashing B-splines is omitted for clarity).

When the RAN algorithm is optimized for accuracy (� = 0:02), then it attains accuracy comparable

to hashing B-splines. Figure 3 shows the size of the network versus the size of the learning set. As the

size of the learning set grows, the number of units allocated by RAN grows very slowly. The size of the

network is measured via number of weights or parameters, which is a approximation to the complexity of
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the network. For back-propagation, the size is the number of synapses. For the RBF networks and for RAN,

there are six parameters per unit: four to describe the location of the center, one for the width, and one for

the height of the Gaussian. For hashing B-splines, each unit has two parameters: the hash table index and

its corresponding hash table value.
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Figure 3: The number of weights in the network versus the size of the training set. RAN and back-

propagation are competitive in the compactness of the network. Notice that as the training set size increases,

the size of the RAN stays roughly constant.

Figure 4 shows the e�ciency of the various learning algorithms: the smallest, most accurate algorithms

are towards the lower left. When optimized for size of network (� = 0:05), the RAN has about as many

weights as back-propagation and is just as accurate. The e�ciency of RAN is roughly the same as back-

propagation, but requires much less computation: RAN takes approximately 8 minutes of SUN-4 CPU time

to reach the accuracy listed in �gure 4, while back-propagation took approximately 30{60 minutes of Cray

X-MP time.

The novelty criteria and the center adjustment are both important to the performance of the RAN

algorithm. We tested o�-line learning of Mackey-Glass predictions using three styles of network that share the

same transfer function: a at network whose centers are chosen with the K-means algorithm, a hierarchical

network whose centers are chosen with the K-means algorithm, and a RAN. Each of these networks were

tested with either center adjustment via gradient descent or no center adjustment at all. Table 1 shows the

normalized RMS error on a test set after training o�-line on 500 examples. The non-hierarchical K-means

network was formed with 100 units. The hierarchical K-means network was formed with three sets of centers:

K-means was run separately for 75, 20, and 5 units. In both K-means networks, the widths of the units were

chosen via equation (2.6), with a � = 0:87. Using the same parameters as used above, and with � = 0:05;

the RAN allocated 100 units without center adjustment, and 95 units with center adjustment.

Flat Network Hierarchical Network RAN

no center adjust 0.54 0.31 0.17

center adjust 0.20 0.15 0.066

Table 1: Normalized RMS Error for various sub-strategies of RAN
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Figure 4: The error on a test set versus the size of the network. Back-propagation stores the prediction

function very compactly and accurately, but takes a large amount of computation to form the compact

representation. RAN is as compact and accurate as back-propagation, but uses much less computation to

form its representation.

Table 1 shows that the three sub-strategies of RAN are about equally important. Using hierarchy,

adjusting the centers via gradient descent, and choosing units to allocate based on the novelty conditions all

seem to improve the performance by roughly a factor of 1.5 to 2.

The Mackey-Glass equation has been learned using on-line techniques by hashing B-splines (Moody,

1989). We used on-line RAN using the following parameters: � = 0:05, � = 0:02, �

max

= 0:7, �

min

= 0:07,

� = 0:87, and �

min

reached after 5000 input presentations. Table 2 compares the on-line error versus the

size of network for both RAN and the hashing B-spline (Moody, personal communication). In both cases,

�T = 50. The RAN algorithm has similar accuracy to the hashing B-splines, but the number of units

allocated is between a factor of 2 and 8 smaller.

Method Number of Units Normalized RMS Error

RAN 143 0.054

Hashing B-spline

1 level of hierarchy 284 0.074

Hashing B-spline

2 levels of hierarchy 1166 0.044

Table 2: Comparison between RAN and hashing B-splines

Table 3 shows the e�ectiveness of the � novelty condition for on-line learning. When � is set very low,

the network performs very well, but is very large. Raising � decreases the size of the network without

substantially a�ecting the performance of the network. For � > 0:05, the network becomes very compact,

but the accuracy becomes poor.
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� Number of Units Normalized RMS Error

0 189 0.055

0.01 174 0.050

0.02 143 0.054

0.05 50 0.071

0.10 26 0.102

Table 3: E�ectiveness of � novelty condition

Figure 5 shows the output of the RAN after having learned the Mackey-Glass equation on-line. In

the simulations, the network learns to roughly predict the time series quite rapidly. Notice in �gure 5a

the sudden jumps in the output of the network, which show that a new unit has been allocated. As more

examples are shown, the network allocates more units and re�nes its predictions.
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Figure 5: The output of the RAN as it learns on-line. The thick line is the output from the Mackey-Glass

equation, the thin line is the prediction by the network. On the left, �gure 5a shows the beginning of the

learning. Very quickly, RAN picks up the basic oscillatory behavior of the Mackey-Glass equation. On the

right, �gure 5b shows the end of the on-line learning. At T = 10000, the predictions match the actual output

very well.

4 Conclusions

There are various desirable attributes for a network that learns: it should learn quickly, it should

learn accurately, and it should form a compact representation. Formation of a compact representation is

particularly important for networks that are implemented in hardware, because silicon area is at a premium.

A compact representation is also important for statistical reasons: a network that has too many parameters

can over�t data and generalize poorly.

Many previous network algorithms either learned quickly at the expense of a compact representation,

or formed a compact representation only after laborious computation. The RAN is a network that can �nd

a compact representation with a reasonable amount of computation.
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