
Vis Comput (2015) 31:675–687

DOI 10.1007/s00371-014-0994-6

ORIGINAL ARTICLE

A response time model for abrupt changes in binocular disparity

Tai-Jiang Mu · Jia-Jia Sun · Ralph R. Martin ·

Shi-Min Hu

Published online: 19 June 2014

© Springer-Verlag Berlin Heidelberg 2014

Abstract We propose a novel depth perception model to

determine the time taken by the human visual system (HVS)

to adapt to an abrupt change in stereoscopic disparity, such

as can occur in a scene cut. A series of carefully designed

perceptual experiments on successive disparity contrast were

used to build our model. Factors such as disparity, changes

in disparity, and the spatial frequency of luminance contrast

were taken into account. We further give a computational

method to predict the response time during scene cuts in

stereoscopic cinematography, which has been validated in

user studies. We also consider various applications of our

model.

Keywords Stereoscopy · Perception · Response time ·

Visual comfort

1 Introduction

The goal of the stereoscopic film industry is to add realism

to the screen by mimicking a sense of depth. Unlike in nat-

ural viewing, accommodation is separated from vergence—

it is restricted to the display screen in stereoscopic three-

dimensional (S3D) viewing [21,25]. This conflict [20] can

be characterized by the binocular disparity, the difference

of the object’s retinal locations in left and right eyes [43].

Although a smoothly varying disparity range [33] provid-
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ing stereo video can be achieved by carefully controlling

the camera configuration [18,42], perceived depth jumps are

inevitable and frequently occur between shots or during scene

cuts in 3D film-making [33,38].

A depth jump in S3D movies is much more elaborate than

in the real world for two reasons. First, the field of view in

the real world is very large and the viewer controls where it

is. Therefore he/she can make predictions about what will be

seen next and thereby anticipate a change from far to near

fixation. This is not easy with S3D movies where a scene cut

may be completely unpredictable from the viewer’s stand-

point. Second, the real world maintains consistency between

the stimulus for vergence and the stimulus for accommoda-

tion. So when the viewer changes fixation from a far object to

a near one, vergence and accommodation remain consistent

with one another. However, it is not so with S3D movies.

Vergence and accommodation are cross-coupled [47,48]

in the human visual system (HVS) to maintain a clear single

vision at the fixation. Vergence eye movements are driven by

retinal disparity and accommodation is driven by blur. But

vergence is also driven by accommodation (so-called accom-

modative vergence, AV) and accommodation is also driven

by vergence (so-called vergence accommodation, VA). The

cross-coupling has different temporal properties than the

direct paths for vergence and accommodation control [47,48]

and vergence would be faster when the accommodative stim-

ulus changes in unison with it [9]. In S3D movies, the visual

system has to fight against the cross-coupled responses to

maintain accommodation at the screen and vergence on the

stereo content that may be in front of or behind the screen.

And that effort has been reported to be an important cause of

visual discomfort [20]. Schor and Kotulak [49] have shown

that cross-coupling pathways (AV and VA) are high-pass,

i.e., they do not respond to slow changes in the vergence

and accommodation stimuli. So, there is a strong likelihood
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Before After Tp

Fig. 1 A scene cut ( , The Smurfs 2 © 2013 Sony Pictures Anima-

tion Inc., left and middle), with disparity maps of the left view inset, and

corresponding per-pixel response time map (right); brighter red indi-

cates longer response time. We propose a novel response time model,

based on perceptual experiments, to predict the time taken to adapt to

the new binocular disparity during a scene cut

of visual fatigue when abrupt disparity changes occur fre-

quently [15].

When adapting to a step change in disparity, the HVS takes

time to accomplish stereo fusion starting from the previous

incorrect vergence response [45,52], which in turn affects the

3D viewing experience [33]. However, little work has been

conducted to investigate how the HVS responds to an abrupt

change in binocular disparity.

In this paper, we explore the temporal performance of the

HVS when an abrupt change in binocular disparity occurs.

Binocular disparity is used to simulate the conflict between

vergence and accommodation in S3D viewing. Human per-

ception results have been increasingly important for com-

puter graphics, such as computing, processing, and display-

ing [11,12,14,23,44,45]. We measure the time the HVS takes

to fuse the new disparity, and hence obtain a clear vision of

the new scene, through a series of successive contrast [21,

Chapters 21.1] perceptual experiments. We take into account

disparity, both crossed and uncrossed, as well as the disparity

change, in both forward and backward directions. The influ-

ence of luminance contrast spatial frequency on the response

time is also considered in our experiments, as it has pre-

viously been shown to have an impact on disparity sensi-

tivity and discrimination [12,19,29]. We have statistically

analyzed the data obtained and fitted a bilinear model which

quantifies response time. Our results help to understand how

the HVS adapts between different scene conditions, espe-

cially with respect to binocular disparity, and we provide a

computational model to predict response time during a real

scene cut (see Fig. 1). This model can be used to optimize

the response time during a scene cut in S3D movies and used

as a guideline when shooting or planning 3D film, or when

arranging scene changes in post-production.

Contributions In summary, our work makes the following

contributions:

(i) This is the first work to conduct systematic perceptual

experiments on the temporal aspects of how the HVS

adapts to abrupt changes in binocular disparities.

(ii) We show that the response time taken by the HVS to

clearly fuse the new binocular disparity is significantly

influenced by the change in disparity, no matter whether

it is forward or backward, as well as the level of the new

crossed or uncrossed disparity; it is also modulated by

the spatial frequency of luminance contrast.

(iii) Following statistical analysis, we have built a bilinear

model for response time, which takes into account the

above factors as well as the new disparity and the change

of disparity.

(iv) We provide a computational model to evaluate the

expected response time during a scene cut and suggest

several applications that could directly benefit from our

model.

Limitations Though our experimental results and model

reveal some temporal aspects of how the HVS responds

to new S3D scenes, the mechanisms underlying how the

HVS deals with S3D information are far from being eluci-

dated. Further neurophysiological evidence is needed to pro-

vide understanding of the mechanisms underpinning how the

HVS responds to disparity contrast [21, Chapters 21]. Addi-

tionally, we have only considered some of the parameters

which could be relevant, and others could also have a sig-

nificant impact, such as color contrast, luminance contrast,

etc. Finally, our current model is an empirical one based on

observations, and more sophisticated models based on an

understanding of the brain would be preferable.

2 Related work

Various principles [33,38] have been proposed to reduce

viewing discomfort in S3D cinematography [27]. Besides

excessive disparity, discontinuous change in disparity is also

a key contributor to visual fatigue when viewing S3D [15].

Repeated depth jumps force viewers to adjust vergence

between shots frequently, which can inhibit the sense of
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stereoscopic immersion [33], even when all depths lie in the

zone of comfort [4,50].

There exists works on how disparity affects time to fusion.

Akeley et al. [1] and Hoffman et al. [20] showed that the dif-

ferences between vergence and focal distances affect the abil-

ity to fuse stereo stimuli—the stimulus can be fused quickly

if the two distances change together, while more time is

required if not.

Neri et al. [40] revealed that absolute and relative dispar-

ities are processed stereoscopically in different areas of the

human visual cortex. Liu et al. [33] noticed that crossed and

uncrossed depth jumps are not equal in effects, and the former

are more problematic for some viewers in terms of the resting

states of vergence and accommodation [50]. Yang et al. [54]

conducted an identification task to discern differences and

changes in object depths. Participants were asked to deter-

mine which of four circles was closest under various dis-

parity conditions. Results showed that depth differences and

motion in depth are more accurately and quickly discerned

with a smaller baseline of crossed disparity for background

objects and larger separations between objects.

A change in disparity results in convergence or divergence

movements of the eye. Rashbass et al. [46] showed that eyes

respond to an abruptly imposed disparity with an eye move-

ment speed roughly proportional to the amount of abruptly

imposed disparity. Erkelens et al. [16] found eye vergence

tracking to be more accurate and less noisy when changes

in object disparity are combined with changes in object size,

compared to changing either alone, even though responses

to size-change and disparity-change are independent. Later,

vergence shifts between real objects, which provided all nec-

essary natural cues for depth perception, were determined to

be fast and accurate [17].

Most previous works on binocular disparity change either

focus on disparity sensitivity or disparity discrimination

threshold [11,12], or the eye movements induced by dis-

parity change. Our work differs in that it provides a series

of comprehensive and systematic perceptual experiments to

study a more fundamental aspect of the HVS: how quickly

the HVS adapts to changes in binocular disparity.

3 Methodology

We now present in detail our perceptual experiments used to

measure the observers’ response time to fuse a new disparity,

after an abrupt change to an attentively perceived scene.

Parameters The first key factor to take into account is clearly

the disparity d, as we wish to determine the response time

the HVS takes to fuse the new disparity. Another factor of

interest is the spatial frequency f of luminance contrast. The

impact of luminance contrast spatial frequency on disparity

discrimination has already been explored [19,29], and it has

been exploited to develop a disparity discrimination thresh-

old model [12], as well as a visual comfort metric for stereo-

scopic motion [14]. Though adaptation to luminance contrast

is a well known phenomenon in human vision (dark adapta-

tion and light adaptation), the influence of the frequency of

luminance contrast on human vision, especially stereo adap-

tation, remains to be investigated.

As our experiments are dependent on changing quanti-

ties (see Sect. 3.1), two further derived parameters were also

considered: the change in disparity �d and the change in

frequency δ f . We measured d in terms of angular disparity

(in degrees [14, Figure 2]) and f (measured in cpd) was the

number of repeated luminance contrast patterns per viewing

angle (in degrees).

Stimuli All stimuli were frontal-parallel disparity sinusoidal

corrugations with luminance noise of various frequencies.

Left and right views of the stereo stimulus were generated

using image warping for the luminance pattern [12]. The

mean disparity of the corrugation was set to d and the ampli-

tude for all stimuli was fixed at 0.1◦. We sampled the two

explicit dimensions of our parameter space as follows:

– d = {−1.6◦,−0.8◦, 0◦, 0.8◦, 1.6◦};

– f = {1cpd, 4cpd, 16cpd}.

Taking all combinations produced a total of 15 different

stimuli. Additionally, we produced four different corruga-

tion orientations o = {0◦, 45◦, 90◦, 135◦} for each stimulus

(see Sect. 3.1). The corrugation’s spatial frequency was set

to 0.3cpd, which is within the peak sensitivity range of the

HVS [11]. We set the maximum disparity as large as pos-

sible, from −1.6◦, a crossed disparity corresponding to a

position approximately 82 mm in front of the screen, to 1.6◦,

an uncrossed disparity indicating a position approximately

125 mm behind the screen. Stimuli exceeding this interval

are difficult to fuse for some observers. Due to the angular

disparity, it is convenient to extend to different viewing con-

figurations, such as scenes in cinema or virtual reality. We set

the sample step to be 0.8◦, to restrict the number of stimuli, as

well as being large enough to be well discerned between dif-

ferent disparities. The luminance contrast spatial frequency

was sampled following Du et al. [14]. Example stimuli are

shown in Fig. 2.

3.1 Procedure

We used a 23 inch interleaved AOC 3D display with a reso-

lution of 1,920×1,080 pixels, viewed with passive polarized

glasses. All subjects were seated 48 cm in front of the screen,

with chins fixed so that the subjects’ eyes looked at the center

of the screen. We assumed a standard interpupillary distance
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Fig. 2 Sampled stimuli, shown

as red-cyan anaglyphs, with

different combinations of

corrugation mean disparity,

corrugation orientation and

spatial frequency of luminance

contrast. From left to right:

(0.8◦, 135◦, 16 cpd),

(0.0◦, 0◦, 4 cpd),

(−0.8◦, 90◦, 1 cpd)
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Fig. 3 A timeline for a typical trial considering disparity (ordinate).

The subject presses a key when the corrugation’s orientation is clearly

noticed for the induction stimulus and test stimulus at t0 and t3, respec-

tively, followed by a period of stereoscopic immersion until t2 and t4,

respectively. The stimulus is abruptly changed to the test stimulus at t2.

The interval between t2 and t3 is the response time

of 65 mm. 15 subjects participated in our experiments (2

female, 13 male), all visually normal or corrected-to-normal,

and having no difficulty in stereoscopic fusion. All partici-

pants were non-experts in stereoscopic research and were

between 20 and 30 years of age, recruited from the campus.

Since the scenes before and after a cut are inher-

ently successive in time, our experiments were conducted

using a successive contrast approach [21, Chapters 21.1],

unlike the disparity discrimination threshold experiments of

Didyk et al. [11,12] which applied a simultaneous contrast

approach [21, Chapters 21.1]. Specifically, for a successive

contrast experiment, a first stimulus, the induction stimulus,

is presented to the subject for a while, and then changed to

the second stimulus, the test stimulus, with a different value

of the feature being tested; the two stimuli are presented at

the same time in a simultaneous contrast experiment.

The 15 stereo stimuli cases resulted in 210 trials, as we

considered disparity changes in both directions i.e. both for-

ward and backward jumps. Each trial used a pair of stimuli

(induction, test). The timeline of a typical trial is illustrated

in Fig. 3; the induction stimulus and test stimulus were pre-

sented sequentially. During the presentation of each stimulus,

subjects were told to concentrate on fusing the corrugation’s

orientation, and to press a key as soon as they could clearly

see the corrugation’s orientation. After the key press at t0, the

induction stimulus, with orientation randomly picked from

{45◦, 135◦}, was kept for 1.5 s plus a random additional time

of up to 1 s to avoid predictive responses, until t1. During

this time subjects were told to continuously stare at the stim-

ulus without loss of concentration. This was followed by

an abrupt change at t2 to the test stimulus, randomly selected

from {0◦, 90◦}, lasting another 1.5 s until t4 after the key press

at t3. The program recorded the interval between the abrupt

change at t2 and the key press at t3, as the response time.

To encourage participants to participate diligently, warn-

ings were given when an advanced key press (i.e. a second

key press ahead of the abrupt change) or a late key press (i.e.

a second key press after too long, saying 2 s) occurred, and

such data were rejected as outliers. To avoid any learning

effect as the experiment proceeded, a number of irrelevant

white-to-black trials were randomly inserted. The subjects

were asked to keep their fingers on the key to avoid unnec-

essary physical movement and to press the key with a steady

speed during the whole experiment. To avoid adaptation to

repeated disparity changes [15,52], the pairs of (induction,

test) stimuli were randomly arranged for each subject. A sin-

gle trial lasted between 3.5 and 5.5 s. Subjects took a 1.5 s

break between consecutive trials during which a gray image

was shown to relax the eye muscles and a longer, 120 s break

was taken every 21 trials. It took a single subject 50–60 min

to complete a whole batch of tests.

Prior to the actual trials, subjects were presented with

the stereo stimuli and ten randomly picked trials to famil-

iarize themselves with the experiment. From the measured

response time, we also subtracted the keyboard response time

and general human reaction time, measured using a red-to-

green reaction test for each subject prior to the experiment.

4 Data analysis

We now present the statistical analysis of the collected data,

discuss how the factors considered influence the measured

response time, and present our model of time taken by the

HVS to adapt to different stereoscopic content.
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Fig. 4 Estimated marginal

mean response time for five

levels of target disparity (a),

three levels of target luminance

contrast spatial frequency (b)

and nine levels of change of

disparity (c). Error bars indicate

the standard errors of the means:

non-overlapping error bars

indicate a significant difference

under different conditions
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The entire set of trials contained 210 × 15 = 3,150 records

of response time, 35 of which were rejected as outliers (see

Sect. 3.1). Each trial gives a parameter sample point s j =

(di , fi ; dt , ft ), where the subscript i and t indicate the initial

content (induction stimulus) and target content (test stimu-

lus), respectively. The response time T j for each sample point

s j was averaged across all 15 participants, yielding 210 aver-

ages. To verify that the 210 average response times {T j |
210
j=1}

were a suitable basis for further data manipulation, we per-

formed a one-way analysis of variance (one-way ANOVA)

on this data. It yielded an F value F(209, 2,940) = 2.19,

which is larger than the F test critical value (Fcrit = 1.17)

for p = .05. This means inter point (intra participant) vari-

ances are larger than intra points (inter participant) variances,

and so it is meaningful to use average response times.

To explore the impact of the level of depth jump on the

response time T , �d = dt − di and dt were substituted for

di . Similarly, δ f = ft/ fi and ft were substituted for fi .

Motivated by the work of Didyk et al. [11], the luminance

contrast spatial frequency was manipulated in the logarithmic

domain.

4.1 Results

Multi-variant ANOVA was used to evaluate the main effects

of all factors considered in our experiments, as well as inter-

action effects, based on the 210 average response times.

Main effect

di and fi ANOVA for the initial disparity di and spa-

tial frequency fi of luminance contrast yields an F value

F(4, 205) = 1.41 with p = .230 and F(2, 207) = .26 with

p = .774, respectively. This means neither the disparity nor

the luminance contrast spatial frequency in the initial content

significantly influences the response time T .

dt and ft The response time taken to fuse the target scene,

on the other hand, is significantly influenced by the magni-

tude of target disparity dt (F(4, 205) = 13.39, p < .001)

and the level of target spatial frequency ft of luminance con-

trast (F(2, 207) = 3.47, p = .033). Figure 4a gives the

estimated marginal mean response time taken to clearly fuse

the test stimuli for 5 different dt . Figure 4b illustrates the esti-

mated marginal mean response time to clearly fuse the test

stimuli for 3 levels of ft . Generally speaking, the response

time significantly increases with increasing magnitude of tar-

get disparity dt , whether crossed or uncrossed (see Fig. 4a).

The mean response times (± standard error) for target fre-

quencies 1cpd, 4cpd and 16cpd were 581 ± 14, 567 ± 14,

and 619 ± 14 ms, respectively, with a minimum obtained

around 4cpd (see Fig. 4b). This minimum agrees with pre-

vious findings on disparity discrimination thresholds [12]

and effects of stereoscopic motion on visual comfort [14];

a shorter response time results in a more discriminatory and

comfortable viewing experience. A further observation is that

the mean response times for different ft do not differ as much

as for different dt , as shown by the overlapping error bars in

Fig. 4b.

�d and δ f A change in disparity �d also significantly

influences the response time (F(8, 201) = 72.98, p <

.001). The change of luminance contrast spatial frequency

δ f , however, does not significantly affect the response time

(F(4, 205) = 1.90, p = .111). Figure 4c indicates the mean

response time for different magnitudes of �d, regardless of

dt , ft , and δ f . They clearly show that the response time

increases with increasing magnitude of delta disparity, no

matter whether depth jumps are crossed or uncrossed. There

is also a significant response time difference for different

crossed or uncrossed �d (as shown by non-overlapping error

bars in Fig. 4c).

Interaction effect

As the response time is not significantly influenced by di , fi ,

or δ f , we only considered the pair-wise interaction impacts

of �d, dt , and ft on the response time.

�d and dt There is a strong interaction between �d and dt

that influences the response time (F(24, 185) = 35.78, p <

.001). The mean response times for different levels of tar-

get disparity with different delta disparities are presented in

Fig. 5. Given a target disparity, whether crossed or uncrossed,

the response time taken to clearly fuse images increases

with magnitude of disparity change �d for both crossed and

uncrossed depth jumps, which is consistent with the findings
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Fig. 5 Mean response time for clearly fusing the test stimuli for dif-

fering levels of target disparities and different delta disparities

Fig. 6 Mean response time for clearly fusing the test stimuli for tested

levels of delta disparities and target luminance contrast spatial frequen-

cies

for the main effect of �d. Moreover, the response time is

greater for larger magnitudes of �d and dt . There is still a

significant difference in response time with different delta

disparities for all target disparities but −0.8◦.

�d and ft The interaction between �d and ft also signif-

icantly affects the response time (F(26, 183) = 29.16, p <

.001). Figure 6 illustrates the interaction effect of delta dis-

parity and target luminance spatial frequency on the response

time. The response time is significantly larger for a target

luminance contrast spatial frequency of 16cpd than for 4cpd,

for all uncrossed delta disparities. However, the same is not

true for all crossed delta disparities. Furthermore, no signif-

icant difference is found for luminance contrast spatial fre-

quencies of 1cpd and 4cpd for either uncrossed or crossed

depth jumps.

dt and ft The combination of dt and ft also has a signifi-

cant influence on the response time (F(14, 195) = 4.52, p <

.001). Figure 7 shows the interaction effect of target disparity

and target luminance spatial frequency. The mean response

time for target luminance contrast spatial frequency 4cpd is

smaller than for either 1cpd or 16cpd, for both uncrossed

and crossed target disparities, in line with the main effect of

target luminance contrast spatial frequency. However, no sig-

Fig. 7 Mean response time for clearly fusing the test stimuli for tested

levels of target disparities and target luminance contrast spatial frequen-

cies

nificant difference between different frequencies was found

for a given target disparity, except for 1.6◦ (the response time

for 16cpd is significantly larger than for both 4cpd and 1cpd

at 1.6◦).

4.2 Observations and discussions

These ANOVA analysis results allow us to make some basic

observations about the time taken by the HVS to clearly per-

ceive the target depth after an abrupt change in stereoscopic

disparity.

– The response time is mainly affected by the change in

disparity and increases with magnitude of the disparity

change, both for forward and backward depth jumps. On

the other hand, a change in luminance contrast spatial

frequency has no significant influence on the response

time.

– The target disparity and target luminance contrast spa-

tial frequency, as well as their interaction, significantly

influence the response time; the initial content has less

significant effect on perception of the target depth.

The response time increases with increasing magnitude

of target crossed or uncrossed disparity, with a mini-

mum reached at about 4cpd for target frequencies in

[1cpd, 16cpd].

– The response time is longer for greater target dispar-

ities and greater disparity changes, both crossed and

uncrossed.

– Compared to target disparity and change in disparity, both

the main and interaction effects of luminance contrast

spatial frequency are much smaller in terms of response

time.

We now further consider the effect of the luminance con-

trast spatial frequency on the response time. As for frequency,

though a minimal response time occurs at 4cpd for the whole

data (see Fig. 4b) or given a target disparity (see Fig. 7),
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the differences between different frequencies are not signif-

icant as reported in Figs. 4b, 6 and 7: note the overlapping

error bars. One possible explanation is that the time taken to

process luminance information and disparity information is

independent [36] and thus additive, while luminance infor-

mation is processed much faster than disparity information,

because processing disparity, especially disparity changes,

involves an eye vergence movement [16,36]. Additionally,

Fig. 4b shows that the difference between the maximal and

the minimal mean response times across different frequen-

cies is about 52 ms and is about 2× the standard error of the

mean (14 ms), indicating that the time taken to process lumi-

nance information is easily influenced by random factors in

the experiment.

4.3 Bilinear fitting

We now make a model of response time T : how long the

HVS takes to clearly fuse the new stereoscopic content after

a scene change, under different conditions, based on the data

presented in Sect. 4.1 and observations in Sect. 4.2.

Previous perceptual experiments on disparity discrimina-

tion threshold [11,12] or visual comfort metric for stereo-

scopic motion [14] fitted functions for all the factors consid-

ered, using quadratic polynomials for all pair-wise combi-

nations of factors as well as univariate terms, without con-

sidering the significance of each factor or their interactions

(frequencies were represented in log-space). We also use a

polynomial model for the function, but select terms to use

based on the results in Sect. 4.1 and observations in Sect. 4.2.

First, we incorporate into the response time function

T (dt , ft ,�d) all terms previously found to be significant,

i.e., dt , ft , �d, dt�d, �d lg( ft ), dt lg( ft ). Furthermore,

terms related to ft are excluded from the current model, as

the time taken to process luminance information is much less

than for the other two factors. Additionally, evidence showed

that eye movement speed was roughly proportional to the

amount of abruptly imposed disparity [46], and the response

time is approximately proportional to target disparity and/or

disparity changes, whether crossed or uncrossed, as shown

in Figs. 4a, c, 5, 6 and 7. We thus use a bilinear model for T

with respect to dt and �d:

T = T (dt , ft ,�d) ≈ T (dt ,�d)

= p1dt + p2�d + p3dt · �d + p4, (1)

where the coefficient vector P = [p1, p2, p3, p4] is to be

determined by fitting. Remember that our function measures

the response time taken to fuse the target disparity dt after

a disparity change of �d, and it is not equivalent to a dif-

ferentiation of some response time function T (dt ) on the

target disparity dt , which indicates the increased response

time given an increasing in dt .

Fig. 8 The fitted response time function T . A warmer color indicates

a longer response time. Dashed lines indicate parameter limits in our

experiments

Furthermore, to explore how differently crossed and

uncrossed disparity [14] affect the response time, as well

as directions of depth jumps, we extend Eq. 1 to allow

(p+
1 , p+

2 ) and (p−
1 , p−

2 ) for dt ≥ 0,�d ≥ 0 and dt <

0,�d < 0, respectively. Similarly, p3 is extended to

(p++
3 , p+−

3 , p−+
3 , p−−

3 ) for different sign combinations of

dt and �d. The final coefficient vector P = [p+
1 , p+

2 , p−
1 ,

p−
2 , p++

3 , p+−
3 , p−+

3 , p−−
3 , p4] is obtained by optimizing

arg min
P∈R9

210∑

j=1

(
T (s j ) − T j

T j

)2.

The resulting coefficient vector is P = [.0294, .0849,

−.0254, −.1165, .0203, −.0261, .0707, −.0112, .4186].

Multivariate regression analysis gives an R2 measure of

goodness of fit R2 = .960. The fitted function is visualized

in Fig. 8.

This fitted function is consistent with the ANOVA results

from Sect. 4.1. Other important quantitative conclusions can

also be directly inferred from the function:

– The direction of a depth jump affects the response time.

Response time changes more strongly after a crossed

(�d < 0) depth jump than it does after an uncrossed

(�d ≥ 0) depth jump (|p−
2 | = .117, |p+

2 | = .0849):

jumping from near to far is easier than the opposite.

– The sign of the target depth also affects the response

time. The HVS behaves differently for crossed disparity

(|p−
1 | = .0254) and uncrossed disparity (|p+

1 | = .0294),

as noted in earlier works on visual discomfort [14,50].

– The combination of dt and �d influences the response

time; moreover, this effect differs for different sign com-

binations of these quantities (p++
3 = .020, p+−

3 =

−.026, p−+
3 = .070, p−−

3 = −.011). In general, the

response time is shorter when jumping to a crossed dis-
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Fig. 9 Two scene cuts (disparity map inset, top row: Animal United

© 2010 Constantin Film, Germany; bottom row: The Smurfs 2 ©

2013 Sony Pictures Animation Inc.), with the corresponding per-pixel

response time map. Brighter red indicates a longer response time. From

left to right the scene ( ) before the cut, the scene ( ) after the

cut, and the pixel-wise response time map

parity than to an uncrossed one, as p3dt · �d is negative

when dt < 0; see Figs. 4a and 7.

4.4 Real scene changes

So far, we have presented experiments and a model for

response time given disparity changes in artificial stimuli.

We now consider a practical computational approach to esti-

mating the response time for changes in real stereoscopic

content. In particular, we first consider a response time map

for each pixel in the new scene, and then how to combine

this information to determine the overall response time to a

scene cut.

Given two scenes (I l
i , I r

i ) and (I l
t , I r

t ) with left and right

views, we first compute the disparity maps Di , Dt for the

left view of each scene. For real-world scenes, pixel disparity

maps may be estimated using the method of Smith et al. [51],

and then converted to angular disparities.

Directly using the response time function presented in

Sect. 4.3 allows us to determine a pixel-wise response time

map for the target scene after a sudden scene change, indi-

cating the time for a target position to be clearly fused after

a scene change. Before the scene change, the viewer will

typically focus on the most salient region of the image con-

tent [6]. We use a saliency map to characterize the corre-

sponding effect on response time, as the most salient region

will dominate the overall response: we expect the HVS to be

most concerned with fusing the important content. We thus

compute a region contrast-based saliency map (Si (·), St (·))

for the left view using the method of Cheng et al. [6], giving

saliency values for each region. A region in the initial scene

contributes to a target pixel by averaging all its contained

pixels. Finally, we compute the response time for each pixel

in the target scene at location x ∈ R
2 as:

Tp(x) =
∑

�∈I l
i

Si (�) ·
1

|�|

∑

y∈�

T (Dt (x), Dt (x) − Di ( y)),

(2)

where � represents a region in the initial scene.

Two observations may be made which allow this quantity

to be quickly estimated. Firstly, in the initial scene, an aver-

age disparity can be used to represent a region’s disparity

based on the observation that disparities within a region vary

little in general. Secondly, target disparities can be carefully

quantized to allow use of a response time look-up table, as

the same disparity leads to the same response time according

to Eq. 2.

The pixel-wise response time is then spatially pooled to

evaluate the global response time during a scene cut. As

perceived depth at a point in the scene is influenced by

its surroundings and scene arrangement [3,21], we incor-

porate contributions from all regions in the target scene

into the final response time, instead of just using the area

with longest response time [14,55]. Regions are weighted

by their saliency values and the response time for a region

is simply averaged across all contained pixels. Specifi-

cally, we estimate the overall response time for a scene cut

as:

Tg =
∑

�∈I l
t

St (�) ·
1

|�|

∑

x∈�

Tp(x), (3)

where � represents a region in the target scene. Sec-

tion 5 presents tests performed to assess the validity of this

approach.

Figures 1 and 9 show three scene cuts from two real 3D

movies and the corresponding per-pixel response time maps;

regions with different response times can be clearly seen. We

show another example video clip, containing two consecutive

scene cuts, in Fig. 10. Such maps could help producers to

identify the potential problem regions which would result in

a long response time if they were the main areas of interest.

Alternatively, they could be used to help ensure that viewers’

attention is drawn to regions requiring a short response time,

by making them more salient.
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Fig. 10 An example of video

clip (Animal United ©2010

Constantin Film, Germany) with

two consecutive scene cuts.

From top to bottom input

frames, disparity maps, and

per-pixel results (brighter red

indicates a longer response

time) of scent cuts

Fig. 11 Left view of controlled

scene cuts used to validate our

computational model. a Initial

scene (red); b target scenes

(cyan) with different luminance

contrast spatial frequencies

(low, medium, high); c target

scenes (green) with salient

object having different levels of

disparity. The background

disparity is 1.6◦ for all scenes.

The target scenes are referred to

as A, B, C, D in turn

5 Validation

In this section, we present a series of user studies used to val-

idate our response time formula from Sect. 4.4, taking into

account our assumptions on luminance contrast spatial fre-

quency, and region saliency. These compared the response

time predicted by our formula with subjects’ actual response

times to scene cuts. The relationship between viewing expe-

rience and response time during a scene cut was also inves-

tigated.

Model evaluation The first user study was performed in

the same way as the one in Sect. 3.1: subjects were asked to

press a key as soon as they had clearly accomplished stereo

fusion. The initial scene (see Fig. 11a) was changed to scenes

with different luminance contrast spatial frequencies (see

Fig. 11b), and scenes with salient regions having different

levels of disparity (see Fig. 11c). We further validated our

computational model using real scene cuts which exhibited

various depth jumps and target disparity ranges. Besides the

three cuts, SmurfsA, AU and SmurfsB, shown in Figs. 1 and 9;

another such scene cut, Croods, is presented in Fig. 12.

Ten subjects participated in this user study. Results are

given in Fig. 13. For the controlled scenes, the response

time differed significantly when the user focused on different

salient regions, while no significant difference was found for

different luminance contrast spatial frequencies, just as pre-

dicted by our model. Although the measured time is smaller

than the one predicted by our formula, there is a significant

correlation between them: Spearman’s rank correlation coef-

ficient is ρS = .857 (p = .007 < .05) and Pearson’s linear

correlation coefficient is ρP = .993 (p < .01).

Generally, the actual response time for both controlled

and real scene cuts is smaller than the one predicted by our

model. We believe this is mainly due to the availability of

depth cues and it should be investigated further. Our model

is merely based on the cue of binocular disparity (using ran-

dom dot stereograms) to provide depth perception, while the

scene cuts tested here provide other monocular cues, such

as size, shade, perspective, occlusion etc., all of which can

help to establish a more natural sense of stereopsis and facil-

itate a faster response [17]. Given the high linear correla-

tion between the measured data and the predicted values,
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Fig. 12 A further real scene cut

( , The Croods ©2013

DreamWorks Animation Inc.)

used to validate our

computational model

Fig. 13 Results of model validation. B, C and D show the response

time for different luminance contrast spatial frequencies; A and C show

the response time for salient objects having different disparities; the last

four show response times for real scenes

we may apply a linear correction to the function in Eq. 3 to

obtain a final model for response time, T = .963Tg − .219

(R2 = .987).

Viewing experience We conducted a further user study to

explore the relationship between viewing experience and the

response time to a scene cut. Previous studies have shown

that repeated or frequent depth jumps lead to deteriorating

visual function [15] and interrupt the feeling of stereoscopic

immersion [33].

We conducted trials with two consecutive controlled scene

cuts (i.e. three consecutive scenes). The exposure duration to

both the first and third scenes was 2 s, while for the sec-

ond scene it was either 0.5× or 1.5× the response time for

the first scene cut. We tested both forward jumps (the fore-

ground object first changed from −1.4◦ to 1.4◦, then to 0.0◦)

and backward jumps (the foreground object first changed

from 1.4◦ to −1.4◦, then to 0.0◦). In each test, subjects were

presented with both longer and shorter durations (in random

order, with a one-minute break between trials), during which

they were asked to attempt to fuse foreground objects in the

second scene and indicate whether they had succeeded or

not. After the test, subjects were asked to indicate which trial

led to a better 3D viewing experience.

The same ten subjects from the previous user study took

part in this experiment. All subjects reported that they could

fuse the second scene in the longer trials and also had a better

3D viewing experience for the longer trials, for both forward

and backward jumps. All subjects except one indicated that

the second scene occurred too soon to fuse in the shorter trials,

for both forward and backward jumps. The results confirm

that response times during a stereo scene cut affect viewing

experience.

6 Applications

In this section, we consider some applications that can benefit

from our experiments and computational model derived in

Sect. 4.4.

Optimizing for stereoscopic scene cuts Our computational

model can be directly used to optimize the response time

taken to fuse the new scene during a stereoscopic scene cut.

The new response time can be calculated after linear or non-

linear disparity mapping [28] for the initial scene and/or the

new one. Viewers can even locally adjust the disparities in the

regions of interest in an interactive manner until the proper

response time is achieved.

Visual comfort assessment Many visual comfort met-

rics [7,8,24,26,55] have been proposed to evaluate long

stereo videos. All have processed cuts and between-cuts in

the same way. Recently, Du et al. [14] presented a visual com-

fort metric for stereoscopic motion for short videos (usually

a single shot).

To evaluate the overall level of visual comfort for a long

stereo video, the cuts and parts between cuts should be treated

separately, as the HVS behaves differently in each circum-

stance. Our response time model can be incorporated into the

visual comfort metric by first cutting the video into different

scenes, and predicting the response time using our metric

for scene cuts. By then comparing the time for which each

scene lasts with the corresponding time needed to switch

to the scene would indicate the comfort level related to the

scene cut. Combining this approach with the metric from [14]

metric for different scenes, an overall visual comfort score

can be determined for a long stereoscopic video. This addi-

tional information is especially useful for videos with fre-

quent scene switches, where target scenes appear fleetingly.

3D shooting 3D film shooting is still a tricky professional

task which relies on experienced film-makers, although vari-

ous principles have been suggested to guide shooting [33,38].

Methods have been introduced to plan a camera configura-
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tion to achieve smooth depth jumps [18,42]. Our metric, on

the other hand, can be exploited to quantitatively control the

amount of depth jump which is perceptually acceptable.

The response time predicted by Eq. 3 is actually a thresh-

old time for the target scene to be clearly fused, as revealed

in the second validation: the target scene can be well fused

if it lasts longer than this time, but fusing will not happen

if it less than this time. Given the duration of the target

scene, either the disparity change or the target disparity can

be directly computed using our metric if the other quantity is

constrained. This could help to guide the director in planning

the layout of the scene to be filmed.

Stereoscopic video editing When applied to stereoscopic

video, many stereoscopic editing tools, such as 2D-to-3D

video conversion [32,56], disparity mapping [28,31], retar-

geting [2,5,10,30,37], warping [13,41], completion [39],

scene arrangements [34,35,53], etc., could also benefit from

our model by constraining the response time for scene cuts

after editing. These methods usually rely on optimizing an

energy function describing the operation, and our response

time metric for scene cuts could be incorporated into the opti-

mization process to ensure a sufficiently short response time

after editing.

7 Conclusions

We have presented a novel model to describe the time taken

by the HVS to clearly perceive a target scene following an

abrupt depth change in S3D viewing. A bilinear response

time model, involving the two most significant factors: the

target disparity and the change of disparity, is a good fit to

data collected from perceptual experiments. It was derived

following a careful statistical analysis of the significance

of both a single factor and interacting factors, taking into

account initial and target disparity, and luminance contrast

spatial frequency. Furthermore, a method has been given to

estimate overall expected response time during a scene cut

in stereoscopic videos. This has been validated in a further

user study.

In future, other potentially important factors, such as lumi-

nance contrast and color contrast should also be considered

and statistically analyzed in a similar way. It is clear that more

sophisticated models could be proposed given the complex-

ity of the HVS. Currently, we simply weight different scene

regions by their saliency values, but a more sophisticated

scheme is likely to provide an improvement, given that per-

ceived depth is influenced by disparity gradient [3]. Overall,

in combination with previous work on stereoscopic percep-

tion, such as disparity discrimination thresholds [11,12], and

visual comfort with stereoscopic motion [14], we believe that

our response time model can be used to help inform a bet-

ter viewing experience for S3D content and applied to some

interesting 3D versions of applications of visual media [22].
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