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An algorithm to compute a fixed point of an upper semicontinuous point to set mapping
using a simplicial subdivision is introduced. The new element of the algorithm is that for a
given grid it does not start with a subsimplex but with one (arbitrary) point only: the algorithm
will terminate always with a subsimplex. This subsimplex yields an approximation of a fixed
point and provides the starting point for a finer grid. Some numerical results suggest that this
algorithm converges more rapidly than the known algorithms. Moreover, it is very simple to
implement the algorithm on the computer.
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1. Introduction

Many algorithms based on simplicial subdivisions have been introduced tor
computing a fixed point of an upper semicontinuous point to set mapping on the
unit simplex, cf. Scarf [11, 12], Eaves [2, 3], Merrill (8], Kuhn and MacKinnon
(5], and Shapley [13].

Scarf’s algorithm is characterised by a particular regular subdivision which 1s
kept fixed throughout the algorithm and by a start in a corner of the unit simplex.
In Eaves’ algorithm the grid size of the subdivision is automatically increased 1n
the course of the algorithm with a factor of incrementation of two. The
Sandwich method of Merrill and Kuhn and MacKinnon operates with a parti-
cular regular subdivision but it can start anywhere, so we may apply the
algorithm succesively for a sequence of grids with increasing size using the
approximate solution for a certain grid in the sequence in the next grid. A survey
of these algorithms is given by Luthi [7] and Todd [14].

In this paper we introduce an algorithm which has the same advantages as the
Sandwich method of Merrill and Kuhn and MacKinnon, but it does not use a sel
of artificial labelled points. Furthermore, it differs from all the algorithms
mentioned above by the fact that it does not start in a certain grid with a ful
dimensional subsimplex but with one point only. It terminates with a ful
dimensional subsimplex providing the starting point for a new application of the
algorithm for a finer grid. Successive grid refinemeants will produce a sequence of
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approximate fixed points which converge to a fixed point of the mapping.
Analogous to the Sandwich method the factor of incrementation may be of any
size and even different at each state.

In Section 2 some preliminaries are given. Section 3 gives the description of
the method for integer labelling for continuous functions on the unit simplex. In
Section 4 it is proved that a completely labelled full dimensional subsimplex is
always found. We will discuss the application of the algorithm on the unit
simplex for vector labelling in Section 5. Numerical results are given in Section 6
and conclusions are drawn in Section 7.

2. Preliminaries

[et S"={xER"
unit simplex.

Define S"(m) as the set of points of S" induced by the regular grid of size m,
l.e. the elements of S"(m) are the points x such that x = (y,/m, ..., v,/m), where
y; 1s a non-negative integer and >,/-, v, = m. For ease of notation we delete in the
following the denominator m.

Define the n X n matrix Q by

x; =0 for all i and >,/-, x; = 1} be the (n — 1)-dimensional

it Azl 0O O
Q = 0 I
= 0
L O 0 Ll

I'he ith column of Q will be denoted by q(i). Let T be a subset of I, =
{1,2,...,n} with |T|=t,y" some permutation of T, and {v',i=10, ... t) a set of
points of S"(m), such that v’ = vj"+q(yj-) for j=1,...,t. The convex hull of
the points v° ...,v" is called a t-dimensional face and is denoted by
r(v’, ..., v"). A sub simplex is an (n — 1)-dimensional face. Observe that every
‘-dimensional face (t =<n —2) has a unique representation (v°,y"), whereas a
subsimplex has n representations.

Let f be a continuous function from S" to S". From Brouwer’s theorem [1] we
know there exists a fixed point x*, i.e. f(x*) = x*. To compute x*, the points of
5" receive a label induced by the function f. In the case of integer labelling the

labels are determined by the following rule:
[(x)=1 1f i 1s the lowest index with x; >0 and

fi(x)—x; < fi(x) — x; for all k € I,.
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Note that this labelling rule is proper.

A face will be called completely labelled if all its vertices have a different
label. A completely labelled subsimplex is a good approximation of a fixed point
of the function f.

Using vector labelling a point x of S” receives a label [ defined by

(X)) =f(x)=xFe

where e =(1,....1). A t-dimensional face 7(w’, w',....w") (t<n—-1) will be
called completely labelled if the linear system

[ n=t=1
2} Ad(w') + EI pie () = e
[ = =

where e(i) 1s the ith column of the n Xn identity matrix and where
(my, ..., m—r—1) 1S a permutation of the elements not in T, has a nonnegative
solution A¥, i =0,...,t,and uf*, j=1,...,n —t — 1.

3. Description of the algorithm

We give only the description for integer labelling. Some remarks about vector
labelling are made 1n Section 5.

For a given gridsize m the algorithm starts in an arbitrary point v° of S"(m) by
computing its label [(v"). Note that 7(v") is a completely labelled zero dimen-
sional face. From this face on the algorithm will generate a path of faces, which
terminates with a completely labelled subsimplex. To describe the procedure we
assume the algorithm generates a subset T of I, with |T|=t, t<n—-1, a
permutation y', a point w’ of S"(m) and a non-negative n-dimensional vector R,
such that R; =0, j&€ T, w’=0"+>", Riq(j) and 7(w’, w', ..., w'™") where w' =
w ™'+ q(y;) for j=1,...,t—1, is a completely labelled (t — 1)-dimensional face
with (W) E T, for j=0,...,t — 1. Note that this assumption is satisfied for

=g T ="}, 5 = lp"), R={0,..,0).

The completely labelled (t —1)-dimensional face 1s now extended to a t-
dimensional face by adding the vertex w'=w'"+g(y,). The label [(w") is
computed. Then either [(w') is an element of T or it is not. In the latter case we
have a t-dimensional completely labelled face for which the above mentioned
assumption is satisfied for T, = T U{l(w")}, y"' = (y", I(w")), whereas w’ and R
do not change.

If [(w')€E T, then I(w')=1(w’) for some j €{0, 1....,t — 1}. Then we adapt the
vector w', the permutation y' and the vector R according to Table 1, i.e. w’ is
replaced by a new vertex, say w.
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Table 1
s 1s the index of the vector which must be replaced

w' becomes v' becomes | R becomes
5 =0 W'+ q(y)) (Vasicee s is ¥) R +e(y))
l=s=<t-—1 H‘n (Tli----'y.i—lnﬂ}’nﬂ-.'}'_n ‘}':;+2-.----.'Yr) R
=il w’ —q () (Vi Yigisss s Hizh) R —e(y)

If [(w)eE T, [(w) must be equal to [(w') for some i# J. As long as R remains
nonegative and labels in T are found, the algorithm continues by making a
replacement step and computing the label of the new vertex. Doing so, the
algorithm generates a path of adjacent t-dimensional faces having ¢ different
labels. This implies that we are operating in an n-dimensional space with n — ¢
independent linear restrictions.' In other words the algorithm operates actually
with subsimplices in a t-dimensional subspace. In the next section we will prove
that this implies that after a finite number of replacement steps either the
algorithm finds a label k not in T or R; becomes negative for certain j in T. In
the first case the above mentioned assumption is satisfied for T, = T Uik},
}fT'=(j7T,k), w’=w" and R=R, if ?T.. w’ and R are generated 1n the last
replacement step. Then the algorithm continues with the new vertex w'''=
W'+ q(k) by computing its label. The second case can only happen after adapting
ertain w’, R and ¥7 when s = . Hence. R; becomes negative for j = ¥,. Instead
of removing now the last vertex W', this point is deleted, R; is set equal to zero,
I" becomes T\({v,}, y' becomes (y,,..., % ;) and the algorithm goes on by
‘eplacing the vector with label v,, the label which is deleted.

Consequently, starting with a (¢t — 1)-dimensional completely labelled face. the
ilgorithm either finds a f-dimensional completely labelled face or continues after
1+ finite number of replacement steps with a (t — 1)-dimensional face with t — 1
different labels. To approximate a fixed point we start the algorithm in an
arbitrary point v° with w’=0° T ={I(v"}, ¥yT =1(»°) and R = (0, ... . 0). In the
1ext section it 1s proved that the algorithm always terminates with a completely
abelled subsimplex. To illustrate the algorithm a path of adjacent faces is drawn
tor n =3 and m =9 in Fig. 1.

The algorithm starts in v"= (3,5, 1). The points (2,6,1) and (1.7. 1) are the
vertices of the first completely labelled one dimensional face. Then the algorithm
continues with 7((2,6,1), (1,7, 1), (1,6,2)). In 7((3:4; 2); (3,3, 3), (2, 4, 3)) point
2,4, 3) has to be deleted and (3, 4, 2) must be replaced, i.e. the algorithm goes on
with one dimensional faces. The points (3,2.4) and (3. 1. 5) are again the vertices

'To prove this, assume without loss of generality that n is not in T. Then there is a partition T, ..., T,
of T, such that s € T, implies either s + | € T, or s + 1 € T. Let s; = max{s | s € T}}, then for each new
vector x used in the algorithm X et x; +x,.., = ¢; fori = 1, ..., [, where ¢; is constant. Furthermore x; is

constant for j& (Ji-i (T U {s; + 1}), which are n —(t +1) constants. Thus together there are | + n —
1 +1)=n—t independent restrictions on the components of x.
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Fig. 1. n =3, m=9,1"=(3,5,1).

of a completely labelled one dimensional face. Finally, (5,1, 3), (4,2,3) and
(4, 1, 4) are the vertices of a completely labelled subsimplex.

The above described method makes it possible to approximate a fixed point
using successively grids S"(k,), S"(ky), ... with an increasing sequence of grid
sizes, without a triangulation of S" X [1, «] (Eaves [3]) or artificial labelling [8, 5].
The completely labelled subsimplex of S"(k;) found by the algorithm may be
used as prior information in the next grid S"(k;41).

4. Geometrical interpretations and theoretical termination

Before we prove that the algorithm finds always a completely labelled sub-
simplex, we give some geometrical clarifications. Starting in a point v° of S"(m)
let us define a subregion A(T) for any subset T of I, by

AT)={xe S"(m) ‘ x = i Zr kiq(j), for non-negative integers k;, j € T}
=
Note that A(@) = {v"}. A gridpoint of S"(m) will be called a proper point of A(T)
if it is an element of the subregion A(T) such that k; >0, for all j € T.
The construction of the algorithm is such that if it generates certain T, y', w
and R, then R; =0, i€ T, and the point w° is equal to v+ >, Riq(j). Hence.
w® ... w' are all elements of A(T). Note that w' is always a proper element of

A(T). Also, when w* is proper for some s,0<s =<t —1, w' is proper forall i = s

{)
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These features are illustrated for n = 3 in Fig. 2. If in the course of the algorithm
the subsimplex E is generated, then T ={1,2}, y" = (2, 1), whereas R, and R, are
positive, 1.e. the vertices of E are all proper elements of A(l,2). Moreover.
either two vertices of E have the same label, viz. an element of T. while the
third vertex has a label equal to the other element of T, or all the three vertices
have a different label. In the latter case the vertex with label 3 must be the last
generated vertex and the algorithm terminates.

[f the subsimplex F is generated, then T ={1,3}, y" =(3,1), and R; is
positive, whereas R, is equal to zero (of course R> = 0). When vertex a, the only
proper point of the face, should be removed, R, becomes negative. This implies
that the vertex a has to be deleted and that the vertex b (which must have label
1) must be removed. The algorithm goes on with a one-dimensional face with
vertices ¢ and d, i.e. the algorithm continues with T = {3}, y" = (3), w’= ¢ and
R; positive, implying that both ¢ and d are proper elements of A(3). In general a
component of R becomes negative if and only if w' is the only proper point of
A(T) and has to be removed, for the replacement step would imply in this case a
change from a t-dimensional face with vertices in A(T) to a t-dimensional face
with vertices in an ‘“‘adjacent” region A(T U {k}\{j}) for some jE T and k€ T
This 1s avoided by deleting the only proper point w'. The algorithm is continued
with a (f — 1)-dimensional face with vertices in A(T)\.{j}) by removing the vertex
with label j, whereas T is set equal to T\ {j}.

Now we prove the algorithm always finds a completely labelled subsimplex.
First it 1s shown that the replacement step between two t-dimensional faces is
always feasible. Clearly, if a vertex has to be removed, the replacement step will
produce a new feasible vertex except in the case that the remaining vertices are
all points on the same side of the unit simplex. So, let for some s, w* be the only

Jarinay
/A\m
08

Fig. 2. n=3 m=7, v "=3.1:3)
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vertex not on the jth side of S", for some j, and let w’, ..., w*™", w*™' .. w' be
the remaining vertices all having the jth component equal to zero. If the starting
point v' is not on the jth side, j must be an element of T, 1.e. at least one of the
vertices of the face must have label j. Since we have a proper labelling, w" 1s the
only vertex with label j, i.e. w* cannot be removed. If, however, v” is on the jth
side of the unit simplex, either one of the vertices has label j, which is identical
to the case mentioned just above, or j 1s not an element of 7. Then s = ¢t and the
v.th component of R becomes negative, since w' is the only proper vertex In
A(T). Consequently, the vertex w' is deleted and the algorithm continues as
described above with a (t —1)-dimensional face having vertices only 1n
A(T)N{v,}). All this together proves that all replacement steps are feasible.
Moreover, it is clear that the replacement step between two equal dimensional
faces 1s unique (see [12, p.43])).

Next we prove that the start of the algorithm is unique. As shown above, the
algorithm starts actually with a one-dimensional face with vertices v’ and
v!=04+ql®Y, T={0"}, y" =1(»?) and R =(0,...,0). Note that v’ is a
proper point of A(T) but v’ is not. If [(v') # [(v"), there is a unique extension to
a two dimensional face which we will prove below. If not by removing v' the
component of R on place [(v°) becomes negative, indicating that v' has to be
deleted and v° must be removed. Since v’ is a zero-dimensional face this is
impossible. Therefore v’ must be removed and the start of the algorithm is
unique. It remains to prove that the algorithm provides a unique feasible change
from a t-dimensional (completely labelled) face to a (¢t + 1)-dimensional face
(1<t=<n-2) or to a (t—1)-dimensional 2<t=<n—1). In the first case, let
w?, ..., w' be a completely labelled t-dimensional face and j the label just found.
This implies R; =0. The face is extended with the vertex v'"' ="'+ q(j).
Without loss of generality we assume that this point has a label equal to [(w?),
for some s, 1 =s =<t. Now we have actually the choice between removing w’ or
w'*!. But replacing w'*' means that R; becomes negative, implying that w'"" has
to be deleted. Hence, by replacing w'"' the algorithm returns, which is not
admissible. So, w* has to be removed and the change from a t to a (f+1)-
dimensional face is unique. Using same arguments the reverse 1s also true.

All this together demonstrates that the algorithm generates a unique feasible
path of faces such that cycling can not occur. Since the number of faces is finite,
the algorithm must then terminate with a completely labelled subsimplex
(Lemke’s argument), as was to be proved.

An interpretation with artificial labelled points can be given, which was

independently found by Todd [15]. In this interpretation S" X [0, 1] 1s trian-

gulated. When 7(w’, ..., w') is a face of A(T), we create a subsimplex of the
triangulation by adjoining to 7 X {0} the vertices é(m)), ..., é(m,—,) of S" X {1},
where é(j) = (e(j), 1) and where (m,, ..., m,—) 1s a permutation of the elements

not in T. The point é(j) receives the label j, while a point of S" X {0} receives a
proper label induced by f. Now, starting with the unique completely labelled
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tacet é(1),...,é(n) of S" = {1} and the vertex (v 0), the algorithm generates a
unique path of adjacent subsimplices such that the common facets are com-
pletely labelled, and it terminates with a completely labelled facet in S” x {0}.
The intersection of the path of subsimplices with S" x {0} is the sequence of
faces obtained by the algorithm described above.

5. Vector labelling

In this section we discuss the application of the method for vector labelling. In
case of an upper semicontinuous point to set mapping @, [(x)=f(x)—x + e,
where f(x) 1s some element of @®(x). The algorithm starts again with one
gridpoint only, say v", together with the system of linear equations Iy = e. By
pivoting, one of the unit vectors is replaced by [(v"). When e(j) is eliminated. the
algorithm goes on from the one dimensional face 7(v°, v°+ q(j)), T = {j}, v" =
and R =(0,...,0), with alternating pivoting and replacement steps. The al-
gorithm has found a completely labelled t-dimensional face w°. .. .. w', as soon
as e(i), tor some i T, is eliminated by a pivot step. Then the point w' + g(i) is
added to the previous face 7(w", ..., w'). If in a replacement step R, becomes
negative for some j, then the last vertex w' of the face is deleted, a pivot step 1S
made with the unit vector e(j), and the algorithm continues as before. i.e. either
a replacement step is made with the vertex w’, if [(w*) is eliminated by e(j), or
t(w®, ..., w'") is extended with the vertex w' '+ e(i), if e(i) is eliminated by
e(]).

By the same arguments as in the previous section the algorithm terminates
with a completely labelled subsimplex.

6. Results

TI'he algorithm was applied to three examples in which equilibrium price
vectors 1n a Walras model are to be computed. The data of these problems are
given by Scarf [11] and were also used by Wilmuth [16] and Kuhn and
MacKinnon [5].

In Tables 2—-4 the cumulative number of iterations for the sequence of regular
grids S"(n), S"(n Xf), S"(n xf*),... are given, where f is some factor of
incrementation. Let 7(w’, ..., w"™") be the completely labelled subsimplex found
by the algorithm in S"(n X f'), i = 1,2, .... Then the starting poin in $"(n X f'*")
was chosen to be v’ = (X1, w/™™)/f. In the first stage the barycenter was
always chosen.

For the three examples we applied the algorithm with some modifications.
Instead of Q we used —Q. For integer labelling the boundary of the simplex was
artificial labelled, viz. for all x on the boundary, [(x) =i, if i is the lowest index
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Table 2

Scarf’s problem 1; n = 5. The cumulative number of iterations for
integer (Z,) as well as for vector labelling (Z,). The factor of
incrementation is f and the grid size is n X f' if i =

f 2 3 4 5
] Z| Z: Z| Z: Z[ Z: ZI ZI
2 23 25 33 37 30 37 43 35
4 39 38 55 57 55 59 86 53
6 62 51 81 79 82 77 112 79
8 77 68 100 104 116 05 159 102
9 90 79 112 16 132 104 176 111
11 105 100 133 141 151 124
14 134 134 156 170
18 166 176
22 198 216
Table 3
Scarf’s problem 2; n = 8
f 2 5 8
i Z, Z- Z, Z> Z) Z) Z> Z>
2 50 47 58 56 103 95 91 145
4 72 96 108 100 216 158 128 201
6 115 141 155 126 289 193 174 257
8 183 163 206 180 435 247 223
9 204 175 222 196 479 278
1] 249 199 290 231
14 298 251
18 392 310
Table 4
Scarf’s problem 3; n =10
f 2 6 8 10
i Z, Z, Z, Z, Z, Z> Z Z- Z>
3 66 79 112 121 120 97 104 154 173
5 95 121 206 166 219 159 203 212 257
6 119 146 245 185 279 192 241 249
7 150 164 288 210 368 214 272
9 199 213 371 277 499 2172
11 247 259 439 337
14 313 335
18 428 419
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Table 5

Comparison between the new method and the Sandwich
method

— = — — — — = —

dimension of the problem
5 8 10 5 8 10

Z, 133 290 439 T, 301 769 1257
Z> 141 231 337 T, 161 461 733

—_— — ——

Z, 1s the number of iterations for the new method with
integer labelling.
Z, 1s the same with vector labelling.

T, 1s the total number of iterations for the Sandwich method
(integer labelling).

T, i1s the number of genuine iterations for the Sandwich
method.

The final gridsize of the new method is n x 3"
The final gridsize of the Sandwich method is 4n x 3'"

with x; =0 and X moam > 0. Moreover, an interior point x of S" receives the
label i 1f g;(x)/w; = gi(x)/wy for all k, where w; is the total supply of good j and
gj(x) 1s 1ts total demand, j =1, 2, ..., n. This labelling rule is analoguous to rule 3
of MacKinnon [9]. Using vector labelling a point x on the boundary receives the
label e(i) if i 1s the lowest index with x; =0 and X ;meam >0, whereas an
interior point x receives the label g(x). We define a t-dimensional face to be
completely labelled if i oAg(w’)+ X7 we(7;) = w has some non-negative
solution AF, i =0,...,¢, and pu*, j=1,...,n—t—1. In [11] it is proved that a
completely labelled subsimplex yields a good approximation of a fixed point.

In Table 5 we compare our results with those of Kuhn and MacKinnon [6].

7. Conclusions

In his paper [9] MacKinnon shows that for the Sandwich method the number
or 1iterations depends highly on the factor of incrementation. He concludes that
for integer labelling the factor of incrementation has to be rather low, e.g.
between two and five. Using our method for integer labelling, we found that the
best factor of incrementation is four, three and two for respectively the
examples 1, 2 and 3, which agrees with the conclusions of MacKinnon. The
situation is very different for vector labelling. Then the best factors we found
were respectively five, five and eight. By making the choice of the new gridsize
dependent on the difference of the last two approximations, computational
experiences show that the factor of incrementation could be increased very fast.
T'his 1s caused by the differentiability of the functions, which agrees with
conclusions of MacKinnon (private communication). Observe that in the homo-
topy method the factor of incrementation must be *always equal to two.
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However, recently Saigal [10] developed a method, which allows a higher factor
of incrementation if the function satisfies some strong conditions. Comparing
our results with these of Wilmuth [16], our method takes for integer as well as
for vector labelling significantly fewer iterations to reach a given level of

gridrefinement than the Sandwich method and the homotopy method.
Moreover, the results for vectorlabelling can be improved by taking x* =

S", A¥w' as the new starting point. Furthermore, in case 3 problems (see [9])
the new algorithm can be expected to work better when extrapolative restarts

are used.
Finally, it should be mentioned that it is very simple to implement the

algorithm on the computer. In a subsequent paper [6] we reported about the
generalization of the algorithm for point to set mappings in R".
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