
A RESTful SWRL Rule Editor

Carsten Keßler

Institute for Geoinformatics, University of Münster, Germany
carsten.kessler@uni-muenster.de

Abstract. The sparse application of the Semantic Web Rule Language
is partly caused by a lack of intuitive rule editors. This applies both from
a human user’s, as well as from a software interoperability perspective, as
creating and modifying rules is currently hard in distributed Web appli-
cations. We introduce a Representational State Transfer-based approach
that enables online rule editing to overcome these problems.

1 Introduction and Motivation

Rule-based reasoning still plays a minor role on the Semantic Web, despite the
gain in expressivity1 offered by the Semantic Web Rule Language (SWRL) [2].
While rules provide powerful solutions for problems that cannot be solved with
standard Description Logic-based reasoning [3], the verbose syntax and a lack
of intuitive user interfaces for rule editing hamper their application. Moreover,
proprietary application programming interfaces complicate the integration into
standards-based systems. We propose a wrapper for rule engines based on the
Representational State Transfer (REST) approach [4] to overcome these prob-
lems. REST offers standardized, straight-forward access to resources without un-
necessary overhead. Masking the complexity of rule editing as a RESTful service
makes rule-based reasoning available for a wide range of services. At the same
time, rule functionality is made more accessible for human users, as developers
can reduce the editing options to the subset of SWRL’s expressivity required for
a specific application. Changes to single atoms can be completed without con-
fronting users with the (potentially lengthy) complete rule, and adapted results
can be directly returned in the server response. Besides the mapping approach
from REST URIs to rules, we discuss the architecture of this RESTful wrap-
per. Moreover, we demonstrate its application in a mobile tool for personalized
information retrieval that uses rules to represent user preferences.

2 Mapping REST to SWRL

Rule editing comprises creating, updating and deleting, in addition to simple
access to the rules. These activities apply both for complete rules as well as for
single atoms in the rules’ bodies or heads. REST makes use of the HTTP request

1 For OWL 2, the additional expressivity is partly covered in the RL profile [1].

methods GET, POST, DELETE and PUT to represent these activities. Resources are
represented by descriptive URIs and can be queried and modified using these
methods. Table 1 shows the required URIs for a complete rule editor.

Table 1. URIs for rule editing. The last five URIs also apply for head atoms.

Resource URI HTTP Method Description

/rules GET Lists all rule IDs
/rules POST Creates empty rule, returns ID
/rules/{id} GET Returns the rule with this ID
/rules/{id} DELETE Deletes the specified rule
/rules/{id}/body GET Lists IDs of all atoms in this rule’s body
/rules/{id}/body POST Adds new atom to body, returns ID
/rules/{id}/body/{id} GET Returns a specific atom
/rules/{id}/body/{id} PUT Overwrites a specific atom
/rules/{id}/body/{id} DELETE Deletes a specific atom

Figure 1 gives an overview of the wrapper architecture. It creates a transpar-
ent access point for the KnowledgeBaseManager, providing access to the ontol-
ogy repositories building the application knowledge base, and the RuleEngine.
In case of the prototype implementation, Protégé Core has been used for knowl-
edge base management, and Jess for rule execution2. The rule engine maintains
the connection to the ontology and exposes its concepts and relations to the
wrapper, which maps them to their respective URIs. Clients can modify rules
via these URIs (see Table 1). When existing rules are modified, the (application-
dependent) server response contains the knowledge inferred after rule execution.
The rule engine also checks rules for validity before execution; if errors occur due
to faulty client input, these must be passed on to the wrapper and forwarded to
the client with the respective HTTP status codes.

Client
machine
(e.g., Web browser)

Ontology
Repository

1..* 1 1 1..*

Application Server

<<component>>
RuleEngine

<<component>>
KnowledgeBaseManager

Protégé Core

Jess rule engine

REST Wrapping

Re
so

ur
ce

 M
ap

pi
ng

Fig. 1. Deployment diagram for the RESTful wrapper; adapted from [5].

2 See http://protege.stanford.edu and http://jessrules.com.

http://protege.stanford.edu
http://jessrules.com

3 Prototype: The Surf Spot Finder

The RESTful approach for SWRL rule editing described in Section 2 has been
tested in the Surf Spot Finder [6], a mobile Web application for personalized
recommendations for surf spots at California’s central coast. The Web interface
(see Figure 2) allows users to set their preferences for different aspects, each of
which is mapped to one atom in the rule representing the user’s profile. Upon
rule execution, all surf spots instances in the knowledge base that match the user
preferences are reclassified as appropriate for this user. In order to maintain the
link of a user to her specific rule, the user’s ID is stored in a cookie on the client
side. On the server side, a new resource is created for every user, based on her
ID (see Table 2). This maintains the stateless nature of REST, as no session
data are stored, yet it allows users to preserve their setting between uses.

Fig. 2. Screen shots of the prototype user interface [5].

Table 2. Resources offered by the Surf Spot Finder prototype. The three oper-
ations for bottom are also available for all other aspects of the user profiles.

Resource URI Method Description

/users GET Returns a list of all users’ rules
/users POST Creates new user, returns ID
/users/{id} GET Returns a user’s SWRL rule
/users/{id} DELETE Deletes the specified user profile
/users/{id}/spots GET Returns matching spots
/users/{id}/bottom GET Returns the user’s preferred bottom type
/users/{id}/bottom PUT Updates user’s preferred bottom type, returns spots
/users/{id}/bottom DELETE Deletes user’s preferred bottom type, returns spots

Imagine the following rule represents user 42’s preferences: SurfSpot(?spot)
∧ hasBottom(?spot, ‘rock’) → Match(?spot). A PUT request to http://

somedomain.com/users/42/bottom with sand as contents overwrites the cor-
responding atom, changing the rule to SurfSpot(?spot) ∧ hasBottom(?spot,

‘sand’)→ Match(?spot). Execution of the rule reclassifies all matching SurfSpot
instances as a Match, which are then returned to the client by the wrapper. Com-
munication with the server component is asynchronous, allowing the application
to update the map without reloading the whole application. When the user
changes one of the parameters in her profile, this change is sent to the server
and the updated set of matching spots is returned and shown on the map.

4 Conclusions and Future Work

We have proposed a RESTful Web service that enables online editing of SWRL
rules. The general approach has been introduced and demonstrated in the Surf
Spot Finder application that uses SWRL-based user profiles. The next steps in
this research are the implementation of a complete mapping for rule editing as
outlined in Section 2. Two aspects of this implementation are especially challeng-
ing. First, the automatic mapping of any built-ins, especially custom built-ins
[7]. Second, an integrity checking for rule modifications that wraps potential
error messages with the appropriate HTTP status codes.

Acknowledgments

This work has been funded by the German Research Foundation’s SimCat project
(DFG Ra1062/2-1 and Ja1709/2-2), see http://sim-dl.sourceforge.net.

References

1. W3C: OWL 2 Web Ontology Language – Profiles. W3C Recommendation, 27
October 2009: http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/ (2009)

2. W3C: SWRL: A Semantic Web Rule Language Combining OWL and RuleML.
W3C Member Submission, 21 May 2004: http://w3.org/Submission/2004/SUBM-
SWRL-20040521/ (2004)

3. Horrocks, I.: OWL rules, OK? In: W3C Workshop on Rule Languages for Interop-
erability. (2005)

4. Fielding, R.: Architectural Styles and the Design of Network-based Software Archi-
tectures. PhD thesis, University of California, Irvine, USA (2000)

5. Keßler, C.: Context-aware Semantics-based Information Retrieval. PhD thesis,
Institute for Geoinformatics, University of Münster, Germany (May 2010)

6. Keßler, C., Raubal, M., Wosniok, C.: Semantic Rules for Context-Aware Geograph-
ical Information Retrieval. In Barnaghi, P., ed.: 4th European Conference on Smart
Sensing and Context, EuroSSC 2009. Springer Lecture Notes in Computer Science
5741 (2009) 77–92

7. O’Connor, M., Das, A.: A Mechanism to Define and Execute SWRL Built-ins
in Protégé-OWL. In: 9th Int. Protégé Conference, July 23–26, 2006, Stanford,
California. (2006)

http://somedomain.com/users/42/bottom
http://somedomain.com/users/42/bottom
http://sim-dl.sourceforge.net
http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/
http://w3.org/Submission/2004/SUBM-SWRL-20040521/
http://w3.org/Submission/2004/SUBM-SWRL-20040521/

	Carsten Keßler

