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A RESULT CONCERNING ADDITIVE FUNCTIONS
IN HERMITIAN BANACH "-ALGEBRAS

AND AN APPLICATION

J. VUKMAN

ABSTRACT. Let A be a complex hermitian Banach *-algebra with an identity

element e. Suppose there exists an additive function /: A —> A such that

f(a) = —a*af(a~1) holds for all normal invertible elements a £ A. We prove

that in this case / is of the form f(a) = f(ie)k, where a = h + ik. Using this

result we generalize S. Kurepa's extension of Jordan-Neumann characterization

of pre-Hilbert space.

This research has been inspired by the work of S. Kurepa [2, 3] and P. Vrbová

[6]. All algebras and vector spaces in this paper will be over the complex field.

Algebras are assumed to have an identity element, which will be denoted by e. An

algebra A is called a *-algebra if there exists an involution (conjugate-linear anti-

isomorphism of period two) a h-> o* on A. An element h G A is said to be hermitian

if h* = h, and u G A is said to be unitary if u*u = uu* — e. An element a G A

will be called normal if a*a — aa*. It is easy to see that each element a G A has

a unique decomposition a = h + ik with hermitian h and k. An element a G A is

normal if and only if h and k commute.

A "-algebra which is also a Banach algebra is called a Banach '-algebra. A

Banach "-algebra is called hermitian if each hermitian element has real spectrum.

Let A be a hermitian Banach '-algebra and let h G A be a hermitian element. It is

convenient to write h > 0 (h > 0) if the spectrum of h is positive (nonnegative). The

notation h> k (h> k) means h — k>0(h-k>0). The most important hermitian

Banach "-algebras are ^"-algebras (i.e. Banach "-algebras in which ||a*a|| = ||a||2

is fulfilled for all a). For basic facts concerning hermitian Banach "-algebras, we

refer the reader to V. Pták's paper [5].

Let X and A be a vector space and an algebra, respectively. Suppose that X is

a left iî-module. A left ¿1-module X will be called unitary if ex = x holds for all

x G X, and will be called irreducible if for each pair x, y G X, x ^ 0, there exists

aG A such that ox = y.

First we shall consider the following result.

THEOREM 1. Let A be a hermitian Banach *-algebra. Suppose there exists an

additive function f:A—*A such that f(a) — —a*af(a~1) holds for all normal

invertible elements a G A. In this case f(a) = f(ie)k is fulfilled for all a = h + ik.

REMARK. If A is the complex number field, then the theorem above reduces to

a result due to P. Vrbová [6].
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368 J. VUKMAN

For the proof of Theorem 1 we need the lemma below. We omit the proof since

it is an easy consequence of Ford's square root lemma [1 or 5, (1.5)].

LEMMA 2. Let A be a hermitian Banach *-algebra. For each h > 0 there

corresponds u > 0, such that u2 = h. Moreover, u commutes with each element

which commutes with h.

Proof of Theorem i. Let us first prove that

(1) f(h) = 0

holds for all h G A, 0 < h < e. Since in this case e — h2 > 0, there exists, by

Lemma 2, a hermitian element k, such that k commutes with h, and e — h2 = k2,

whence it follows that u = h + ik is a unitary element. Therefore, according to the

requirements of the theorem, we have

f(h) + f(ik) = f(u) = -u'ufiu-1) = -f(h - ik) = -f(h) + f(ik),

whence it follows f(h) = 0. Let us prove that

(2) f(te) = 0

for each real number t. If 0 < t < 1, then (2) follows from (1). It is easy to see

that /(e) = 0. Therefore (2) holds for all t G [0,1]. If t > 1, we have 0 < i_1 < 1,

whence /(te) = —t2f(t~1e) = 0, which proves that (2) holds for all nonnegative

real numbers and therefore also for all real numbers. Let us prove that

(3) f(h) = 0

for all hermitian h G A. Therefore, let h be an arbitrary hermitian element, and let

us choose a real number t such that te + h> e. Then 0 < (ie-f-Zi)-1 < e. According

to (1) we have f(te + h) = -(te + h)2f((te + h)-1) = 0. Hence/(/i) = f(-te) and,

according to (2), f(h) — 0. Now we intend to prove that

(4) f(ih) = hf(ie)

holds for all h G A, 0 < h < e. From 0 < h < e it follows that h - h2 > 0. By
Lemma 2 there exists a hermitian element k, such that k commutes with h, and

that h — h2 = k2. The element a = k + ih is normal, since h and k commute. Since

a can be expressed in the form a = h(h~1k + ie), it is obvious that a is invertible

(recall that A is by assumption hermitian). Therefore using the requirements of

the theorem and (3) we obtain

f(ih) = f(k) + f(ih) = f(a) = -a*af(a~1) = -a*o/((a*o)-1a")

= -(h2 + k2)f((h2 + k2)~l(k - ih)) = -hf(h~x(k - ih))

= -hf(h~lk) + hf(ie) = hf(ie).

Let us prove that

(5) f(ite) = tf(ie)

holds for each real number t. If 0 < t < 1, then (5) follows from (4). If t > 1, then

0 < i-1 < 1, and we have

f(ite) = -^/((t'ie)-1) = -t2f(-it~le) = t2t-xf(ie) = tf(ie),
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which proves that (5) holds for all nonnegative real numbers and therefore also for

all real numbers. We shall prove that

(6) f(ih) = hf(ie)

is fulfilled for each hermitian element h G A. Therefore, let h be an arbitrary

hermitian element, and let us choose a real number t such that te + h > e. Then

0 < (te + h)-1 < e. According to (4) we have

f(i(te + h)) = -(te + h)2f((i(te + /i))"1)

= (te + h)2(te + h)~lf(ie) = (re + h)f(ie).

Using the additivity of the function / and (5), we obtain f(ih) = hf(ie). From (3),

(6) and the fact that each a G A can be expressed in the form a — h + ik, where

h and k are hermitian, it follows f(a) — kf(ie), which completes the proof of the

theorem.

Let X and A be a complex vector space and a complex "-algebra, respectively.

Suppose that X is a left ¿î-module. A mapping B(-,-):X x X —* A is called an

¿î-bilinéar form if

1° B(aiXi+a2x2,y) = aiB(xi,y) + a2B(x2,y), xx,x2,yGX, ai,a2GA,

2° B(x,aiyi + a2y2) = B(x,yi)a\ + B(x,y2)a^, x,yi,y2 G X, ai,a2GA.

A mapping Q: X —> A is called an ^-quadratic form if

3° Q(x + y) + Q(x -y) = 2Q(x) + 2Q(y), x,y G X,
4° Q(ax) = aQ(x)a*, x G X, a G A.

Let us consider two examples of ¿í-bilinear forms.

EXAMPLE 1. Let A be a "-algebra and £ C A a left ideal. Considering L as

a left ¿?-module, one can introduce an ¿?-bilinear form B(-, ■) as follows B(x,y) =

xy*, x,yG L

EXAMPLE 2. Let X be a Hubert space and let us denote by L(X) the algebra

of all bounded linear operators of X into itself. Let the involution on L(X) be the

adjoint operation. X can be considered as a unitary irreducible left ¿(X)-module

(multiplication by A G L(X) is operator action on X). A simple calculation shows

that the mapping B(-, •): X x X —► L(X) defined by the relation B(x, y)z = (z, y)x,

where (•, •) denotes the inner product in X, is an ¿î-bilinear form.

It is easy to see that each ¿?-bilinear form gives rise to the ^-quadratic form by

the relation Q(x) = B(x,x). It seems natural to ask whether the converse is also

true. More precisely, we consider the following

PROBLEM. Let X and A be a vector space and a "-algebra, respectively. Suppose

that X is a left .^-module, and that there exists an ¿{-quadratic form Q:X —► A.

Does there exist an ^-bilinear form B(-, -):X x X —> A such that Q(x) = B(x,x)

holds for all x G X?
It follows from a result of S. Kurepa [3] that the answer to the question above

is affirmative if A is the complex number field. His result can be formulated as

follows.

THEOREM 3 (S. KUREPA [3]). Let X be a vector space over the complex field

C. Suppose there exists a mapping Q:X^>C such that Q(x + y) + Q(x - y) =

2Q(x) + 2Q(y), Q(Xx) = |A|2<2(x) holds for all pairs x,y G X and all X G C. Under
these conditions the mapping B(-,-):X x X —> C defined by

B(x,y) = i(Q(x +y) - Q(x - y)) + %-(Q(x + iy) - Q(x - iy))
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is additive in both arguments, and B(Xx,y) = XB(x,y),B(x,Xy) = XB(x,y) hold

for all pairs x, y G X and all XgC. For each x G X the relation Q(x) — B(x, x) is

fulfilled.

REMARKS. The theorem above can be considered as an extension of the well-

known result due to P. Jordan and J. von Neumann which characterizes pre-Hilbert

space among all normed spaces. It should be mentioned that P. Vrbová [6] has

obtained a simple proof of S. Kurepa's theorem. Using Theorem 1 and an approach

from [6] we prove the result below which can be considered as a generalization of

Theorem 3.

THEOREM 4. Let X be a vector space and A a commutative hermitian Banach

*-algebra. LetX be a unitary A-module, and suppose that there exists an A-quadratic

form Q: X —> A. In this case the mapping B(-, •): X x X —► A defined by

B(x,y) = -(Q(x + y)- Q(x - y)) + -(Q(x + iy) - Q(x - iy))

is an A-bilinear form. For all x G X the relation Q(x) — B(x,x) holds.

PROOF. Let us first prove that the function S(-,-) defined by the relation

S(x,y) = Q(x + y) — Q(x — y) is additive in both variables. This part of the

proof goes through as in the proof of Theorem 3 (see [3] and also [4] for some

generalizations), but we shall write it down for the sake of completeness. It is easy

to see that Q(0) = 0 and Q(—x) = Q(x), x G X. For arbitrary elements x,y,uG X

we have

S(x + y, 2u) = Q(x + y + 2u) -Q(x + y- 2u)

= Q((x + u) + (y + «)) + Q((x + u)-(y + u))

- Q((x -u) + (y- u)) - Q((x -u)-(y- u)).

Using the relation Q(x + y) + Q(x - y) — 2Q(x) + 2Q(y) we obtain

S(x + y, 2u) = 2Q(x + u) + 2Q(y + u)- (2Q(x - u) + 2Q(y - u))

= 2S(x,u) + 2S(y,u).

Hence

(7) S(x + y,2u) = 2S(x,u)+2S(y,u).

Putting y = 0, x = z we obtain S(z, 2u) = 2S(z, u). Substituting z by x + y and

using (7) we finally obtain

2S(x + y, u) = S(x + y, 2u) = 2S(x, u) + 2S(y, u)

which proves that the function S(-, ■) is additive in the first variable. Since S(x, y) =

S(y, x) for all pairs x,y G X (this follows from the relation Q(—x) = Q(x)) it follows

that the function S(-, ■) is additive also in the second variable. From the fact that

S(-, ■) is additive in both variables, it follows that the same is true for the function

B(-, ■) defined by the relation B(x,y) = \S(x,y) + \S(x,iy). Therefore, since it is

easy to see that Q(x) = B(x, x) holds for all x G X, it remains to prove that

(8) B(ax, y) = aB(x, y),    B(x, ay) = a*B(x, y)
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is fulfilled for all pairs x, y G X and alla G A. Now we are going to use the condition

Q(ax) = a*aQ(x). First of all it follows from the condition above that

(9) S(ax,y) = a*aS(x,a~1y)

holds for all pairs x,y G X and all invertible a G A. Let us prove that B(-,-)

satisfies the relations

(10) B(ix,y) = iB(x,y),

(11) B(x,iy) =-iB(x,y)

Indeed,

AB(ix, y) = S(ix, y) + iS(ix, iy) = S(x, -iy) + iS(x, y)

= i(S(x, y) - iS(x, -iy)) = i(S(x, y) + iS(x, iy)) = AiB(x, y)

which proves (10). Furthermore,

AB(x, iy) = S(x, iy) + iS(x, -y) = S(x, iy) - iS(x, y)

= -i(S(x,y) +iS(x,iy)) = -AiB(x,y).

Now we intend to prove that for the function f: A —* A, defined by the relation

(12) f(a) = B(ax,y)-B(x,ay),

where x and y are fixed vectors, the requirements of Theorem 1 are fulfilled. Since

the additivity of the function above follows from the fact that B(-, ■) is additive in

both variables, it remains to show that f(a) = — o*o/(a_1) holds for all invertible

a G A. We have

Af(a) = S(ax, y) + iS(ax, iy) — (S(x, ay) + iS(x, iay))

— S(ax, y) + iS(ax, iy) — (S(ay, x) + iS(iay, x)).

Using (9) we obtain

Af(a) = a*a(S(x, a~xy) + iS(x, ia_1y)) — a*a(S(y, a_1x) + iS(iy, o_1x))

= 4a*a(ß(x, a-1!/) - B(a~1x, y)) = -4a*a/(a_1).

According to Theorem 1 we have f(h + ik) = f(ie)k for all hermitian h and k.

In particular, f(h) — 0 which implies

(13) B(hx,y)=B{x,hy)

for all hermitian h G A and all pairs x, y G X. If we put a = ih, h hermitian, we

obtain

B(ihx,y) - B(x,ihy) = f(ih) = hf(ie) = h(B(ix,y) — B(x,iy)).

Using (10), (11) and (13) we obtain

(14) B(hx,y) = hB(x,y).

Therefore according to (10), (11), (13) and (14) it follows that (8) holds. The proof

of the theorem is complete.

REMARK. It would be interesting to know whether Theorem 4 holds also in the

noncommutative case.

We conclude with the following purely algebraic result.
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THEOREM 5. • Let X be a vector space and A a commutative * -algebra. Let X be

a unitary irreducible A-module, and suppose that there exists an A-quadratic form

Q:X^>A. In this case the mapping B(-, •): X x X —► A defined by

B(x,y) = -(Q(x + y)- Q(x - y)) + %-{Q{x + iy) - Q(x - iy))

is an A-bilinear form. For all x G X the relation Q(x) = B(x, x) holds.

PROOF. It remains to prove that

(15) S(hx, y) = hS(x, y),    S(x, hy) = hS(x, y),

where S(x,y) stands for Q(x + y) - Q(x - y), holds for all pairs x,y G X and

each hermitian h G A, since the rest of the proof goes through as in the proof of

Theorem 4. Therefore, let x,y G X, h G A, h* = h be arbitrary, and let us prove

(15). We may assume that x ^ 0, since there is nothing to prove if x = y = 0. By

the requirements of the theorem there exists a G A such that y = ax. We have

S(hx, y) = S(hx, ax) = Q((h + a)x) - Q((h - a)x)

= (h + a)*(h + a)Q(x) - (h - a)*(h - a)Q(x)

= h((e + a)*(e + a) - (e - a)*(e - a))Q(x)

= h(Q((e + a)x) - Q((e - a)x)) = hS(x, y).

Similarly, we obtain that the relation S(x, hy) = hS(x, y) holds. The proof of the

theorem is complete.
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