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A RESULT CONCERNING ADDITIVE FUNCTIONS
IN HERMITIAN BANACH *-ALGEBRAS
AND AN APPLICATION

J. VUKMAN

ABSTRACT. Let A be a complex hermitian Banach *-algebra with an identity
element e. Suppose there exists an additive function f: A — A such that
f(a) = —a*af(a=?) holds for all normal invertible elements a € A. We prove
that in this case f is of the form f(a) = f(ie)k, where a = h + tk. Using this
result we generalize S. Kurepa’s extension of Jordan-Neumann characterization
of pre-Hilbert space.

This research has been inspired by the work of S. Kurepa [2, 3] and P. Vrbova
[6]. All algebras and vector spaces in this paper will be over the complex field.
Algebras are assumed to have an identity element, which will be denoted by e. An
algebra A is called a *-algebra if there exists an involution (conjugate-linear anti-
isomorphism of period two) a — a* on A. An element h € £ is said to be hermitian
if h* = h, and u € A is said to be unitary if u*u = uu* = e. An element a € 4
will be called normal if a*a = aa*. It is easy to see that each element a € A has
a unique decomposition a = h + 1k with hermitian h and k. An element a € £ is
normal if and only if A and k¥ commute.

A *-algebra which is also a Banach algebra is called a Banach *-algebra. A
Banach *-algebra is called hermitian if each hermitian element has real spectrum.
Let A be a hermitian Banach *-algebra and let h € A be a hermitian element. It is
convenient to write h > 0 (h > 0) if the spectrum of h is positive (nonnegative). The
notation h > k (h > k) means h—k > 0 (h—k > 0). The most important hermitian
Banach *-algebras are B*-algebras (i.e. Banach *-algebras in which [la*a| = |a||?
is fulfilled for all a). For basic facts concerning hermitian Banach *-algebras, we
refer the reader to V. Pték’s paper [5].

Let X and A be a vector space and an algebra, respectively. Suppose that X is
a left A-module. A left A-module X will be called unitary if ez = z holds for all
z € X, and will be called irreducible if for each pair r,y € X, z # 0, there exists
a € A such that az = y.

First we shall consider the following result.

THEOREM 1. Let A be a hermitian Banach *-algebra. Suppose there exists an
additive function f:A — A such that f(a) = —a*af(a™!) holds for all normal
invertible elements a € A. In this case f(a) = f(ie)k is fulfilled for all a = h + k.

REMARK. If 4 is the complex number field, then the theorem above reduces to
a result due to P. Vrbova [6].
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368 J. VUKMAN

For the proof of Theorem 1 we need the lemma below. We omit the proof since
it is an easy consequence of Ford’s square root lemma [1 or 5, (1.5)].

LEMMA 2. Let A be a hermitian Banach *-algebra. For each h > 0 there
corresponds u > 0, such that u?> = h. Moreover, u commutes with each element
which commutes with h.

PROOF OF THEOREM 1. Let us first prove that

(1) f(R)=0

holds for all h € A4, 0 < h < e. Since in this case e — h? > 0, there exists, by
Lemma 2, a hermitian element k, such that k commutes with h, and e — h? = k2,
whence it follows that u = h + 1k is a unitary element. Therefore, according to the
requirements of the theorem, we have

f(h) + f(ik) = f(u) = —w*uf(u™") = — f(h — ik) = — f(h) + f(ik),
whence it follows f(h) = 0. Let us prove that

(2) flte) =0

for each real number ¢. If 0 < ¢t < 1, then (2) follows from (1). It is easy to see
that f(e) = 0. Therefore (2) holds for all t € [0,1]. If t > 1, we have 0 < t~! < 1,
whence f(te) = —t2f(t~le) = 0, which proves that (2) holds for all nonnegative
real numbers and therefore also for all real numbers. Let us prove that

(3) f(h)=0

for all hermitian h € A. Therefore, let h be an arbitrary hermitian element, and let
us choose a real number ¢ such that te+h > e. Then 0 < (te+h)~! < e. According
to (1) we have f(te+h) = —(te+ h)2f((te+h)~!) = 0. Hence f(h) = f(—te) and,
according to (2), f(h) = 0. Now we intend to prove that

(4) f(th) = hf(ie)

holds for all h € 4, 0 < h < e. From 0 < h < e it follows that h — h?2 > 0. By
Lemma 2 there exists a hermitian element k, such that k& commutes with h, and
that h — h? = k2. The element a = k + ¢h is normal, since h and k commute. Since
a can be expressed in the form a = h(h™1k + ie), it is obvious that a is invertible
(recall that A is by assumption hermitian). Therefore using the requirements of
the theorem and (3) we obtain

f(sh) = f(k) + f(ih) = f(a) = —a*af(a™") = —a*af((a*a)"'a")
= —(h* + k) f((h* + k*)"" (k — ih)) = —hf (™" (k — ih))
= —hf(h™'k) + hf(ie) = hf(ze).
Let us prove that
(5) f(ite) = tf(ie)

holds for each real number ¢t. If 0 <t < 1, then (5) follows from (4). If t > 1, then
0 <t~! < 1, and we have

fite) = —£2f((ite) 1) = —t*f (it~ 'e) = t% 71 f(ie) = tf(ie),
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which proves that (5) holds for all nonnegative real numbers and therefore also for
all real numbers. We shall prove that

(6) f(ih) = hf(ie)
is fulfilled for each hermitian element h € A. Therefore, let h be an arbitrary
hermitian element, and let us choose a real number t such that te + h > e. Then
0 < (te+ h)~! < e. According to (4) we have

f(i(te+R)) = —(te + h)? f((i(te + h))™1)

= (te + h)*(te + h) "' f(ie) = (te + h) f(ie).

Using the additivity of the function f and (5), we obtain f(¢h) = hf(ie). From (3),
(6) and the fact that each a € A can be expressed in the form a = h + ¢k, where
h and k are hermitian, it follows f(a) = kf(ie), which completes the proof of the
theorem.

Let X and A be a complex vector space and a complex *-algebra, respectively.
Suppose that X is a left A-module. A mapping B(-,-): X x X — A4 is called an
A-bilinéar form if

1° B(a1z1 + a2%2,y) = a1 B(z1,y) + a2 B(z2,y), 1,72,y € X, a1,a2 € 4,

2° B(z,a1y1 + a2y2) = B(z,y1)a} + B(z,y2)a3, z,y1,y2 € X, a1,a2 € 4.

A mapping Q: X — A is called an A-quadratic form if

3° Qz +y) + Qz —y) =2Q(z) + 2Q(y), =,y € X,

4° Q(az) = aQ(z)a*, z€ X, a € A.

Let us consider two examples of A-bilinear forms.

EXAMPLE 1. Let A be a *-algebra and £ C A a left ideal. Considering L as
a left A-module, one can introduce an A-bilinear form B(-,-) as follows B(z,y) =
zy*, z,y € L.

EXAMPLE 2. Let X be a Hilbert space and let us denote by L(X) the algebra
of all bounded linear operators of X into itself. Let the involution on L(X) be the
adjoint operation. X can be considered as a unitary irreducible left L(X)-module
(multiplication by A € L(X) is operator action on X). A simple calculation shows
that the mapping B(-,-): X x X — L(X) defined by the relation B(z,y)z = (z,y)z,
where (-,-) denotes the inner product in X, is an A-bilinear form.

It is easy to see that each A-bilinear form gives rise to the A-quadratic form by
the relation Q(z) = B(z,z). It seems natural to ask whether the converse is also
true. More precisely, we consider the following

PROBLEM. Let X and A be a vector space and a *-algebra, respectively. Suppose
that X is a left A-module, and that there exists an A-quadratic form Q: X — A.
Does there exist an A-bilinear form B(-,-): X x X — A4 such that Q(z) = B(z, z)
holds for all z € X7

It follows from a result of S. Kurepa (3] that the answer to the question above
is affirmative if A is the complex number field. His result can be formulated as
follows.

THEOREM 3 (S. KUREPA [3]). Let X be a vector space over the complez field
C. Suppose there exists a mapping Q: X — C such that Q(z +y) + Q(z — y) =
2Q(2)+2Q(y), Q(Az) = |A\|?Q(z) holds for all pairs z,y € X and all X € C. Under
these conditions the mapping B(-,-): X x X — C defined by

B(z.y) = (@ +v) ~ Q1)) + ;(Qz + i) ~ Qz — iv))
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is additive in both arguments, and B()\z,y) = AB(z,y), B(z,\y) = AB(z,y) hold
for all pairs x,y € X and all A € C. For each x € X the relation Q(z) = B(z,z) s
fulfilled.

REMARKS. The theorem above can be considered as an extension of the well-
known result due to P. Jordan and J. von Neumann which characterizes pre-Hilbert
space among all normed spaces. It should be mentioned that P. Vrbovd [6] has
obtained a simple proof of S. Kurepa’s theorem. Using Theorem 1 and an approach
from [6] we prove the result below which can be considered as a generalization of
Theorem 3.

THEOREM 4. Let X be a vector space and A a commutative hermitian Banach
*-algebra. Let X be a unitary A-module, and suppose that there exists an A-quadratic
form Q: X — A. In this case the mapping B(-,-): X x X — A defined by

By = (@6 +y) - Q- y) + (@ + i) - Qz — i)
s an A-bilinear form. For all z € X the relation Q(z) = B(x,z) holds.

PROOF. Let us first prove that the function S(:,-) defined by the relation
S(z,y) = Q(zr + y) — Q(z — y) is additive in both variables. This part of the
proof goes through as in the proof of Theorem 3 (see [3] and also [4] for some
generalizations), but we shall write it down for the sake of completeness. It is easy
to see that Q(0) = 0 and Q(—z) = Q(z), z € X. For arbitrary elements z,y,u € X
we have

S(z+y,2u) =Q(z+y+2u) — Q(z+y — 2u)
=Q(z+u)+(y+4)+Q(z+u) - (y+u)
-Qz—u)+(y-v)-Qz—u)— (y—u)).
Using the relation Q(z + y) + Q(z — y) = 2Q(z) + 2Q(y) we obtain

S(z+y,2u) =2Q(z+u) + 2Q(y + u) — (2Q(z — u) + 2Q(y — u))
= 25(z,u) + 2S(y, u).
Hence
(7) S(z+y,2u) =25 (z,u) + 2S(y, u).

Putting y = 0, = = z we obtain S(z,2u) = 25(z,u). Substituting z by z + y and
using (7) we finally obtain

25(z +y,u) = S(z +y,2u) = 25(z,u) + 25(y,u)

which proves that the function S(-, ) is additive in the first variable. Since S(z,y) =
S(y, z) for all pairs z,y € X (this follows from the relation Q(—z) = Q(z)) it follows
that the function S(-,-) is additive also in the second variable. From the fact that
S(-,-) is additive in both variables, it follows that the same is true for the function
B(-,-) defined by the relation B(z,y) = 1S(z,y) + £S(z,y). Therefore, since it is
easy to see that Q(z) = B(z, ) holds for all z € X, it remains to prove that

(8) B(ax, y) = G’B(zvy)’ B(CB, ay) = a*B(z, y)
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is fulfilled for all pairs z,y € X and all @ € A. Now we are going to use the condition
Q(az) = a*aQ(z). First of all it follows from the condition above that

9) S(az,y) = a*aS(z,a"'y)

holds for all pairs r,y € X and all invertible a € A. Let us prove that B(-,-)
satisfies the relations

(10) B(z:c,y) = iB(a:,y),
(11) B(z,1y) = —1B(z,y)
Indeed,

4B(iz,y) = S(iz,y) + 1S(iz,1y) = S(z, —1y) + 1S(z,y)
=1(S(z,y) —1S(z, —1y)) = 1(S(z,y) +1S(z,1y)) = 4¢B(z,y)
which proves (10). Furthermore,
4B(z,1y) = S(z,1y) +1S(z, —y) = S(z,1y) —1S(z,y)
= —1(S(z,y) +iS(z,1y)) = —4¢B(=z,y).
Now we intend to prove that for the function f: A — A, defined by the relation
(12) f(a) = B(az,y) - B(z,ay),

where z and y are fixed vectors, the requirements of Theorem 1 are fulfilled. Since
the additivity of the function above follows from the fact that B(-,-) is additive in

both variables, it remains to show that f(a) = —a*af(a™!) holds for all invertible
a € A. We have

4f(a) = S(az,y) + iS(az,vy) — (S(z,ay) +1S(z,ay))
= S(az,y) +1S(az,iy) — (S(ay, z) + 1S(iay, z)).
Using (9) we obtain
4f(a) = a*a(S(z,a " ty) +iS(z,ia"1y)) — a*a(S(y,a ') + 1S (iy,a " 'z))
= 4a*a(B(z,a"'y) — B(a™z,y)) = —4a*af(a™!).

According to Theorem 1 we have f(h + 1k) = f(¢e)k for all hermitian h and k.
In particular, f(h) = 0 which implies

(13) B(hz,y) = B(z, hy)
for all hermitian h € A and all pairs z,y € X. If we put a = th, h hermitian, we
obtain

B(ihz,y) - B(z,thy) = f(th) = hf(ie) = h(B(iz,y) — B(z,1y)).
Using (10), (11) and (13) we obtain
(14) B(hz,y) = hB(z,y).

Therefore according to (10), (11), (13) and (14) it follows that (8) holds. The proof
of the theorem is complete.

REMARK. It would be interesting to know whether Theorem 4 holds also in the
noncommutative case.

We conclude with the following purely algebraic result.
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THEOREM 5. Let X be a vector space and A a commutative *-algebra. Let X be
a unitary irreducible A-module, and suppose that there exists an A-quadratic form
Q: X — A. In this case the mapping B(-,-): X X X — A defined by

Blz,y) = 1(Q+9) ~ Qz — ) + +(Qa +4) - Qz — i)
s an A-bilinear form. For all x € X the relation Q(z) = B(z,z) holds.
PROOF. It remains to prove that
(15) S(hz,y) = hS(z,y), S(z,hy) = hS(z,y),

where S(z,y) stands for Q(z + y) — Q(z — y), holds for all pairs z,y € X and
each hermitian h € A4, since the rest of the proof goes through as in the proof of
Theorem 4. Therefore, let z,y € X, h € A,h* = h be arbitrary, and let us prove
(15). We may assume that z # 0, since there is nothing to prove if =y = 0. By
the requirements of the theorem there exists a € A such that y = az. We have

S(hz,y) = S(hz,az) = Q((h + a)z) — Q((h — a)z)
= (h+a)"(h+a)Q(z) — (h—a)*(h — a)Q(z)
= h((e+a)*(e+a) — (¢ a)*(e — a))Q(z)
= h(Q((e + a)z) — Q((e — a)z)) = hS(z,y).

Similarly, we obtain that the relation S(z, hy) = hS(z,y) holds. The proof of the
theorem is complete.
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