
Queueing Syst (2014) 77:1–31
DOI 10.1007/s11134-013-9372-8

A retrial system with two input streams and two orbit
queues

Konstantin Avrachenkov · Philippe Nain ·
Uri Yechiali

Received: 20 June 2012 / Revised: 26 June 2013 / Published online: 1 August 2013
© Springer Science+Business Media New York 2013

Abstract Two independent Poisson streams of jobs flow into a single-server service
system having a limited common buffer that can hold at most one job. If a type-i job
(i = 1, 2) finds the server busy, it is blocked and routed to a separate type-i retrial
(orbit) queue that attempts to re-dispatch its jobs at its specific Poisson rate. This
creates a system with three dependent queues. Such a queueing system serves as a
model for two competing job streams in a carrier sensing multiple access system. We
study the queueing system using multi-dimensional probability generating functions,
and derive its necessary and sufficient stability conditions while solving a Riemann–
Hilbert boundary value problem. Various performance measures are calculated and
numerical results are presented. In particular, numerical results demonstrate that the
proposed multiple access system with two types of jobs and constant retrial rates
provides incentives for the users to respect their contracts.

Keywords Retrial queues · Constant retrial rate · Riemann–Hilbert boundary value
problem · Carrier sensing multiple access system

Mathematics Subject Classification (2000) 60K25 · 30E25 · 35Q15

K. Avrachenkov (B) · P. Nain
Inria Sophia Antipolis, Sophia Antipolis Cedex, France
e-mail: K.Avrachenkov@sophia.inria.fr

P. Nain
e-mail: Philippe.Nain@inria.fr

U. Yechiali
Tel Aviv University, Tel Aviv, Israel
e-mail: uriy@post.tau.ac.il

123

2 Queueing Syst (2014) 77:1–31

1 Introduction

We investigate a single-server system with two independent exogenous Poisson
streams flowing into a common buffer that can hold at most one job. If a type-i
job finds the server busy, it is routed to a separate retrial (orbit) queue from which jobs
are re-transmitted at an exponential rate. The rates of retransmissions may be different
from the rates of the original input streams.

Such a queueing system serves as a model for two competing job streams in a
carrier sensing multiple access system, where the jobs, after a failed attempt to network
access, wait in an orbit queue [32,33]. An example of carrier sensing multiple access
system is a local area computer network (LAN) with bus architecture. The two types
of customers can be interpreted as customers with different priority requirements.
The constant retrial rate helps to stabilize and control the multiple access system [9].
Jobs with higher retrial rate can be viewed as higher priority jobs. The setting with
two levels of priority can be applied to train or vehicular onboard networks, where
high priority jobs correspond to critical system control signals and low priority jobs
correspond to onboard passenger Internet access traffic.

Queues with blocking and with retrials have been studied extensively in the literature
(e.g., [1–8,13–15,19,20,35] and references therein). The important features of the
retrial system under consideration are two-class setting and constant retrial rate. While
there have been studies of multi-class retrial systems and systems with constant retrial
rate, to the best of our knowledge, performance evaluation of the two-class retrial
system with a constant retrial rate is carried out in the present paper for the first time.
Specifically, the retrial queueing systems with a constant retrial rate and a single type
of jobs were considered in [4–7,14,15,20]. A two-class retrial system with a single-
server, no waiting room, batch arrivals and classical retrial scheme (when each orbit
job retries individually after a random time exponentially distributed with a fixed
parameter) was introduced and analyzed by Kulkarni [26]. Then, Falin [18] extended
the analysis of the model in [26] to the multi-class setting with arbitrary number of
classes. We note that in both [18,26] the authors have only derived expressions for the
first two moments. In [25] Grishechkin has established equivalence between the multi-
class batch arrival retrial queues with classical retrial policy and branching processes
with immigration. However, no closed-form Laplace transforms of the waiting times
have been provided.

In [30] a non-preemptive priority mechanism was added to the model of [18,26].
In [28] Langaris and Dimitriou have considered a multi-class retrial system where
retrial classes are associated with different phases of service. In both [28,30] only the
mean number of jobs in each retrial class was calculated. In our model we consider
only the single-server case with no waiting room for primary customers. If one needs
to study the case of several servers and/or waiting room for primary customers, we
feel that a feasible approach would be to use the matrix-analytic and quasi-Toeplitz
Markov chain methods as this has been done for single-class retrial systems in [17,29].
Of course, that approach would not provide explicit analytic formulae but will likely
result in efficient numerical algorithms.

We formulate our retrial system as a three-dimensional Markovian queueing
network, derive its necessary and sufficient stability conditions and calculate the

123

Queueing Syst (2014) 77:1–31 3

Probability Generating Function (PGF) of the joint orbits and main buffer occupa-
tion. Recently, these stability conditions have been shown by simulations to hold for a
more general system with generally distributed service times [8]. Our general approach
for calculating the PGF of the joint buffer occupation is to reduce the problem to a
Riemann–Hilbert boundary value problem. To the best of our knowledge, this is the first
application of the Riemann–Hilbert boundary value technique to the analysis of retrial
queueing systems. For a single-class retrial queue Artalejo and Gomez-Corral in [2]
obtained the limiting distribution of the system state via the solution of a Fredholm inte-
gral equation. The technique of reducing the solution of certain two-dimensional func-
tional equations for generating functions to the solution of a boundary value problem
(typically Rieman–Hilbert or Dirichlet problem)—whose solution is known in closed-
form—is due to Fayolle and Iasnogorodski [21]. For a short primer on Riemann–
Hilbert boundary value technique specialized to our problem and related work see
Sect. 4.1.

Let us outline the structure of the paper. After the Introduction in Sect. 2 we present
the model and derive balance equations and generating functions. Necessary stability
conditions are obtained in Sect. 3. Using the technique developed by Fayolle and
Iasnogoroski [21], in Sect. 4 we show that these generating functions are obtained,
in closed-form, via the solution of a Riemann–Hilbert boundary value problem. In
order for the paper to be self-contained, we have added a special Sect. 4.1 describing
the main steps of the Riemann–Hilbert boundary value technique. In particular, this
technique allows us to show that the necessary stability conditions found in Sect. 3 are
also sufficient. Performance measures are calculated in Sect. 5, and numerical results
are presented in Sect. 6. Our numerical results demonstrate that the proposed multiple
access system with two types of jobs and constant retrial rates provides incentives for
the users to respect the contracts.

2 Model, balance equations, and generating functions

Two independent Poisson streams of jobs, S1 and S2, flow into a single-server service
system. The service system can hold at most one job. The arrival rate of stream Si is
λi , i = 1, 2, with λ := λ1+λ2. The required service time of each job is independent of
its type and is exponentially distributed with mean 1/μ. If an arriving type-i job finds
the (main) server busy, it is routed to a dedicated retrial (orbit) queue that operates
as an ·/M/1/∞ queue. That is, blocked jobs of type i form a type-i single-server
orbit queue that attempts to retransmit jobs (if any) to the main service system at a
Poisson rate of μi , i = 1, 2. Let L(t) denote the number of jobs in the main queue. L(t)
assumes the values of 0 or 1. Let Qi (t) be the number of jobs in orbit queue i, i = 1, 2.
The transition-rate diagram of the system is depicted in Fig. 1. The Markov process
{(Q1(t), Q2(t), L(t)) : t ∈ [0,∞)} is irreducible on the state-space {0, 1, . . .} ×
{0, 1, . . .} × {0, 1}.

Consider the system in steady-state, where we define by (Q1, Q2, L) the stationary
version of the Markov chain {(Q1(t), Q2(t), L(t)) : t ∈ [0,∞)}. Later on we establish
necessary and sufficient stability conditions. Define the set of stationary probabilities
{Pmn(k)} as follows:

123

4 Queueing Syst (2014) 77:1–31

Fig. 1 Transition-rate diagram. The numbers 0 or 1 appearing next to each node indicate whether L = 0
or L = 1, respectively

Pmn(k)= lim
t→∞ P(Q1(t)=m, Q2(t)=n, L(t) = k) = P(Q1 = m, Q2 = n, L = k),

for m, n = 0, 1, . . . and k = 0, 1, when these limits exist. Define the marginal proba-
bilities

Pm•(k) =
∞∑

n=0

Pmn(k) = P(Q1 = m, L = k), m = 0, 1, 2, . . . k = 0, 1,

and

P•n(k) =
∞∑

m=0

Pmn(k) = P(Q2 = n, L = k), n = 0, 1, 2, . . . k = 0, 1.

123

Queueing Syst (2014) 77:1–31 5

Let us write the balance equations. If Q2 = 0, we have

(a) for Q1 = 0 and k = 0,

λP00(0) = μP00(1), (1)

(b) for Q1 = m ≥ 1 and k = 0,

(λ + μ1)Pm0(0) = μPm0(1), (2)

(c) for Q1 = 0 and k = 1,

(λ + μ)P00(1) = λP00(0) + μ1 P10(0) + μ2 P01(0), (3)

(d) for Q1 = m ≥ 1 and k = 1,

(λ + μ)Pm0(1) = λPm0(0) + μ1 Pm+1,0(0) + μ2 Pm1(0) + λ1 Pm−1,0(1). (4)

If Q2 = n, n ≥ 1, we have

(e) for Q1 = 0 and k = 0,

(λ + μ2)P0n(0) = μP0n(1), (5)

(f) for Q1 = m ≥ 1 and k = 0,

(λ + μ1 + μ2)Pmn(0) = μPmn(1), (6)

(g) for Q1 = 0 and k = 1,

(λ + μ)P0n(1) = λP0n(0) + μ1 P1n(0) + μ2 Po,n+1(0) + λ2 P0,n−1(1), (7)

(h) for Q1 = m ≥ 1 and k = 1,

(λ + μ)Pmn(1) = λPmn(0) + μ1 Pm+1,n(0) + μ2 Pm,n+1(0)

+λ1 Pm−1,n(1) + λ2 Pm,n−1(1). (8)

The PGF of the stationary version of the Markov process {(Q1(t), Q2(t), L(t)) :
t ∈ [0,∞)} is given by

H(x, y, z) =
∞∑

m=0

∞∑

n=0

1∑

k=0

Pmn(k)xm ynzk . (9)

Let us also define the following (partial) PGFs

G(k)
n (x) =

∞∑

m=0

Pmn(k)xm, k = 0, 1, n = 0, 1, . . .

123

6 Queueing Syst (2014) 77:1–31

and

H (k)(x, y) =
∞∑

n=0

∞∑

m=0

Pmn(k)xm yn =
∞∑

n=0

G(k)
n (x)yn, k = 0, 1. (10)

Note that

H(x, y, z) = H (0)(x, y) + zH (1)(x, y), |x | ≤ 1, |y| ≤ 1. (11)

Then, for n = 0 and k = 0, multiplying each equation from (1) and (2) by xm ,
respectively, and summing over m results in

λ

∞∑

m=0

Pm0(0)xm + μ1

∞∑

m=1

Pm0(0)xm = μ

∞∑

m=0

Pm0(1)xm,

or

(λ + μ1)G
(0)
0 (x) − μ1 P00(0) = μG(1)

0 (x). (12)

Similarly, for n = 0 and k = 1, using Eqs. (3) and (4) leads to

(λ + μ)G(1)
0 = λG(0)

0 + μ1

∞∑

m=0

Pm+1,0(0)xm + μ2G(0)
1 (x) + λ1

∞∑

m=1

Pm−1,0(1)xm .

That is,

(λ + μ)G(1)
0 (x) = λG(0)

0 (x) + μ1

x

(
G(0)

0 (x) − P00(0)
)

+ μ2G(0)
1 (x) + λ1xG(1)

0 (x).

Multiplying by x and arranging terms, we obtain

− (λx+μ1)G
(0)
0 (x)+(λ1(1 − x)+λ2 + μ)xG(1)

0 (x) − μ2xG(0)
1 (x)=−μ1 P00(0).

(13)

Using Eqs. (5) and (6) for n ≥ 1 and k = 0 results in

(λ + μ2)G
(0)
n (x) + μ1

(
G(0)

n (x) − P0n(0)
)

= μG(1)
n (x),

or

(λ + μ1 + μ2)G
(0)
n (x) − μG(1)

n (x) = μ1 P0n(0). (14)

123

Queueing Syst (2014) 77:1–31 7

Similarly, for n ≥ 1 and k = 1, Eqs. (7) and (8) lead to

(λ + μ)G(1)
n (x) = λG(0)

n (x) + μ1

x

(
G(0)

n (x) − P0n(0)
)

+ μ2G(0)
n+1(x)

+λ1xG(1)
n (x) + λ2G(1)

n−1(x),

or

−(λx + μ1)G
(0)
n (x) + (λ1(1 − x) + λ2 + μ)xG(1)

n (x) − μ2xG(0)
n+1(x)

−λ2xG(1)
n−1(x) = −μ1 P0n(0). (15)

Using Eqs. (12) and (14), multiplying respectively by yn and summing over n, we
obtain

(λ + μ1)H (0)(x, y) + μ2

(
H (0)(x, y) − G(0)

0 (x)
)

− μH (1)(x, y) = μ1 H (0)(0, y).

(16)

Similarly, using Eqs. (13) and (15), we obtain

−(λx + μ1)H (0)(x, y) + (λ1(1 − x) + λ2 + μ)x H (1)(x, y)

−μ2x

y

(
H (0)(x, y) − G(0)

0 (x)
)

− λ2xy H (1)(x, y) = −μ1 H (0)(0, y). (17)

Noting that G(0)
0 (x) = H (0)(x, 0) and denoting α := λ + μ1 + μ2, we can rewrite

Eqs. (16) and (17) as

αH (0)(x, y) − μH (1)(x, y) = μ2 H (0)(x, 0) + μ1 H (0)(0, y), (18)

(λxy + μ1 y + μ2x)H (0)(x, y) − (λ1(1 − x) + λ2(1 − y) + μ)xy H (1)(x, y)

= μ2x H (0)(x, 0) + μ1 y H (0)(0, y), (19)

or, equivalently, in a matrix form

C(x, y)H(x, y) = g(x, y), (20)

where

C(x, y) =
[

α −μ

λxy + μ1 y + μ2x −(λ1(1 − x) + λ2(1 − y) + μ)xy

]
,

H(x, y) =
[

H (0)(x, y)

H (1)(x, y)

]
,

g(x, y) =
[

μ2 H (0)(x, 0) + μ1 H (0)(0, y)

μ2x H (0)(x, 0) + μ1 y H (0)(0, y)

]
.

123

8 Queueing Syst (2014) 77:1–31

Now, if we calculate H (0)(x, 0) and H (0)(0, y), the two-dimensional PGF H(x, y) is
immediately obtained from Eq. (20). This calculation will be performed in Sect. 4.

3 Necessary stability conditions

We first establish necessary conditions, which will also turn out to be sufficient. The
proposition below already shows that λ/μ ≤ 1 and (λ/μ)(1+λi/μi) ≤ 1 for i = 1, 2
are necessary conditions for the existence of a steady-state.

Proposition 1

H (1)(1, 1) = P(L = 1) = λ

μ
(21)

and

H (0)(0, 1) = P(Q1 = 0, L = 0) = 1 − λ

μ

(
1 + λ1

μ1

)
(22)

H (0)(1, 0) = P(Q2 = 0, L = 0) = 1 − λ

μ

(
1 + λ2

μ2

)
. (23)

Note that the condition (i) λ/μ ≤ 1 is a consequence of conditions (ii) (λ/μ)(1 +
λi/μi) ≤ 1 for i = 1, 2, so that in the following we will not consider condition (i) but
only conditions (ii).

Proof For each m = 0, 1, 2, . . . we consider a vertical “cut” (see Fig. 1) between the
column representing the states {Q1 = m, L = 1} and the column representing the
states {Q1 = m + 1, L = 0}. According to the local balance equation approach [12],
we can write the balance of rates between the states from the left of the cut and the
states from the right of the cut. Namely, we have

λ1 Pm•(1) = μ1 Pm+1•(0), m = 0, 1, 2, (24)

Summing (24) over all m results in

λ1 H (1)(1, 1) = μ1(1 − H (1)(1, 1) − P0•(0)). (25)

Clearly, P(L = k) = ∑∞
m=0 Pm•(k) = H (k)(1, 1), k = 0, 1.

From (25) we readily get

1 − P0•(0) = λ1 + μ1

μ1
H (1)(1, 1). (26)

Since P0•(0) = H (0)(0, 1), we can write (26) as

1 − H (0)(0, 1) = λ1 + μ1

μ1
H (1)(1, 1), (27)

123

Queueing Syst (2014) 77:1–31 9

and, by symmetry,

1 − H (0)(1, 0) = λ2 + μ2

μ2
H (1)(1, 1). (28)

Substituting (27) and (28) in Eq. (18), with x = y = 1, yields

H (1)(1, 1) = P(L = 1) = λ

μ
.

Now, from (27) and (28), respectively, we obtain

H (0)(0, 1) = P(Q1 = 0, L = 0) = 1 − λ

μ

(
λ1 + μ1

μ1

)
(29)

and

H (0)(1, 0) = P(Q2 = 0, L = 0) = 1 − λ

μ

(
λ2 + μ2

μ2

)
, (30)

which completes the proof. ��
The next result shows that the system cannot be stable if either (λ/μ)(1+λ1/μ1) =

1 or (λ/μ)(1 + λ2/μ2) = 1.

Proposition 2 If either (λ/μ)(1 + λ1/μ1) = 1 or (λ/μ)(1 + λ2/μ2) = 1 then
Pm,n(0) = Pm,n(1) = 0 for all m, n = 0, 1, . . . or, equivalently, both queues Q1 and
Q2 are unbounded with probability one.

Proof Assume, for instance, that (λ/μ)(1 + λ2/μ2) = 1 so that H (0)(1, 0) = 0 from
(23). Since H (0)(1, 0) = ∑

m≥0 Pm,0(0) (see (10)), the condition H (0)(1, 0) = 0
implies that

Pm,0(0) = 0 for m = 0, 1, . . . , (31)

so that from (1) to (2)

Pm,0(1) = 0 for m = 0, 1, (32)

We now use an induction argument to prove that

Pm,n(0) = 0 for m, n = 0, 1, (33)

We have already shown in (31) that (33) is true for n = 0. Assume that (33) is true for
n = 0, 1, . . . , k and let us show that it is still true for n = k + 1.

From (6) and the induction hypothesis we get that Pm,k(0) = Pm,k(1) = 0 for
m = 1, 2, The latter equality implies, using (8), that Pm,k+1(0) = 0. This shows

123

10 Queueing Syst (2014) 77:1–31

that (33) holds for m = 0, 1, . . . and n = k +1, and completes the induction argument,
proving that (33) is true.

We have therefore proved that Pm,n(0) = 0 for all m, n = 0, 1, Let us prove
that Pm,n(1) = 0 for all m, n = 0, 1, The latter is true for m, n = 1, 2, . . . thanks
to (6). It is also true for n = 0, m = 0, 1, . . . from (32). It remains to investigate the
case where m = 0 and n = 0, 1, By (5) and (33) we get that P0,n(1) = 0 for
n = 1, 2, . . ., whereas we have already noticed that P0,0(1) = 0.

In summary, Pm,n(0) = Pm,n(1) = 0 for all m, n = 0, 1, . . ., so that

P(Q1 = m, Q2 = n) = Pm,n(0) + Pm,n(1)

for all m, n = 0, 1, . . ., which completes the proof. ��
We conclude from Propositions (1) and (2) that conditions

(
λ

μ

) (
1 + λ1

μ1

)
< 1 and

(
λ

μ

) (
1 + λ2

μ2

)
< 1 (34)

are necessary for the system to be stable.
We will show in Sect. 4 that under conditions (34) the matrix equation (20) has

a unique solution H(x, y) = (H (0)(x, y), H (1)(x, y)) which is analytic for |x | <

1, |y| < 1 and continuous for |x | ≤ 1, |y| ≤ 1. As a result, conditions (34) will turn
out to be the necessary and sufficient conditions for the system stability.

Before ending this section, let us give an intuitive explanation of the stability con-
ditions. In a stable system, λ/μ is the fraction of time the server in the main queue
is busy. Thus, this is also the proportion of jobs sent to the orbit queues. Therefore,
the maximal rates at which jobs flow into orbit queue 1 and into orbit queue 2 are
(λ1 + μ1)λ/μ and (λ2 + μ2)λ/μ, respectively. Each of these rates must be smaller
than the corresponding maximal service rate, μ1 or μ2, respectively.

4 Derivation of H(0)(x, 0) and H(1)(0, y)

Throughout we assume that the necessary stability conditions found in (34) hold. Our
analysis below will formally show that these conditions are also sufficient for the
stability of the system.
Some additional notation: Ca = {z ∈ C : |z| = a} (a > 0) denotes the circle
centered in 0 of radius a and C+

a = {z ∈ C : |z| < a} denotes the interior of Ca , with
C denoting the complex plane.

Let λ̂i := αλi , μ̂i := μμi for i = 1, 2 and λ̂ := λ̂1 + λ̂2, so that λ̂ = αλ.

Convention: Lemma 1 in the Appendix says that either αλ1 < μμ1 or αλ2 < μμ2
should hold under the enforced necessary conditions (34) for stability. Without loss
of generality, we will assume throughout the paper that αλ1 < μμ1 or, equivalently,
that

λ̂1 < μ̂1. (35)

123

Queueing Syst (2014) 77:1–31 11

From Eqs. (18)–(19) we readily derive the two-dimensional functional equation

R(x, y)H (0)(x, y) = A(x, y)H (0)(x, 0) + B(x, y)H (0)(0, y), |x | ≤ 1, |y| ≤ 1,

(36)

with

R(x, y) := λ̂1(1 − x)xy + λ̂2(1 − y)xy − μ̂1(1 − x)y − μ̂2(1 − y)x (37)

A(x, y) := ((1 − y)(λ2 y − μ) + λ1(1 − x)y)μ2x (38)

B(x, y) := ((1 − x)(λ1x − μ) + λ2(1 − y)x)μ1 y. (39)

For further use note that

R(x, y) = α

μ2
A(x, y) + λμ(1 − y)x + μμ1(x − y) (40)

R(x, y) = α

μ1
B(x, y) + λμ(1 − x)y + μμ2(y − x). (41)

The so-called kernel R(x, y) of the functional equation (36) is the same as the
kernel in [21, Eq. (1.3)] upon replacing λi and μi in [21] by λ̂i and μ̂i , respectively,
for i = 1, 2. All results in [21] which we will use to solve (36) are collected in
Proposition 3 below. Note, however, that the r.h.s. of (36) is different from the r.h.s of
Eq. (1.3) in [21], thereby ruling out a direct application of the results in [21] to solve
(36).

Once H (0)(x, y) is known for all |x | ≤ 1 and |y| ≤ 1 then H (1)(x, y) can be
found from (18). In the following we will therefore only focus on the calculation of
H (0)(x, y) or, equivalently from (36), on the calculation of H (0)(x, 0) and H (0)(0, y)

for all |x | ≤ 1 and |y| ≤ 1.

4.1 Overview of the approach used to solve the functional equation (36)

To help the reader navigating this technical section, we sketch the method that we will
use to solve (36). It is due to Fayolle and Ianogorodski [21].

It starts with the observation that the r.h.s. of (36) vanishes whenever R(x, y) = 0
provided that H (0)(x, y) is finite. More precisely, the equation R(x, y) = 0 has one
root y = h(x) which is analytic in the whole complex plane C cut along two real-line
segments [y1, y2] and [y3, y4] such that 0 < y1 < y2 < 1 < y3 < y4 (see Proposition
3). Hence,

A(x, h(x))H (0)(x, 0) + B(x, h(x))H (0)(0, h(x)) = 0 (42)

as long as H (0)(x, h(x)) is finite. It will turn out that when x describes the circle
C√

μ̂1/λ̂1
, h(x) describes the real-line segment [y1, y2]. Dividing (42) by B(x, h(x))

for x ∈ C√
μ̂1/λ̂1

(we will prove that this division is allowed) and multiplying both

sides of the resulting equation by the complex number i , yields

123

12 Queueing Syst (2014) 77:1–31

i
A(x, h(x))

B(x, h(x)
H (0)(x, 0) = −i H (0)(0, h(x)), ∀x ∈ C√

μ̂1/λ̂1
. (43)

Since the r.h.s. of (43) is an imaginary complex number whenever x ∈ C√
μ̂1/λ̂1

,

taking the real part in both sides of (43) gives

�
(

i
A(x, h(x))

B(x, h(x))
H (0)(x, 0)

)
= 0, ∀x ∈ C√

μ̂1/λ̂1
. (44)

Define U (x) = A(x, h(x))/(B(x, h(x))(x − x0)
r) and H̃(x) = H(x, 0)(x − x0)

r

where constants x0 > 1 and r ∈ {0, 1} explicitly depend on the model parameters [see
(63) and (64)]. In this notation, (44) becomes

�
(

iU (x)H̃(x)
)

= 0, ∀x ∈ C√
μ̂1/λ̂1

. (45)

We will show that U (x) does not vanish on the circle C√
μ̂1/λ̂1

and that the unknown

function H̃(x) is analytic inside the circle C√
μ̂1/λ̂1

and is continuous on the circle

(by definition of H̃(x) this property is true when μ̂1/λ̂1 ≤ 1 and it will have to be
established for μ̂1/λ̂1 > 1). As a result, the problem of finding H̃(x) (or equivalently
H (0)(x, 0)) is reduced to what is known as a Riemann–Hilbert boundary value prob-
lem, namely, finding an analytic function inside the circle C√

μ̂1/λ̂1
, and satisfying on

C√
μ̂1/λ̂1

a boundary condition of the form (45) (see [24, Chap. 2], [31, pp. 99-107]).

This problem has χ +1 linearly independent solutions, where χ is the so-called index
of the problem, defined as the variation of the argument of the function U (z) when
z describes the circle C√

μ̂1/λ̂1
in the positive direction [see (68)]. If χ = 0, which

will turn out to be the case for our problem under the necessary stability conditions

(34), then H (0)(x, 0) is uniquely and explicitly defined for all |x | ≤
√

μ̂1/λ̂1. From

the latter result we will easily derive H (0)(x, 0) for all |x | ≤ 1 when μ̂1/λ̂1 < 1. The
explicit form taken by H (0)(x, 0) is given in (69)–(71) (see also [21]).

Once H (0)(x, 0) is known for all |x | ≤ 1, we will easily identify H (0)(0, y) for
|y| ≤ 1 [see (72)].

This technique of reducing the solution of certain two-dimensional functional equa-
tions (Eq. (36) in our case) to the solution of a boundary value problem (typically
Rieman-Hilbert or Dirichlet problem)—whose solution is known in closed-form—
is due to Fayolle and Iasnogorodski [21]. In [21] (see also [22] that generalizes the
work in [21]) the unknown function is the generating function of a two-dimensional
stationary Markov chain describing the joint queue-length in a two-queue system.
Cohen and Boxma [16] extended the work in [21,22] to two-dimensional stationary
Markov chains taking real values, typically representing the joint waiting time or the
joint unfinished work in a variety of two-queue systems. Other related papers include
[10,11,23,32] (non-exhaustive list).

123

Queueing Syst (2014) 77:1–31 13

4.2 Zeros of R(x, y) and their properties

For y fixed, R(x, y) vanishes at

x(y) = −b(y) ± √
c(y)

2λ̂1 y
, (46)

where

b(y) := λ̂2 y2 − (μ̂1 + μ̂2 + λ̂)y + μ̂2, (47)

c(y) := b−(y)b+(y), (48)

with

b−(y) := b(y) − 2y
√

λ̂1μ̂1, b+(y) := b(y) + 2y
√

λ̂1μ̂1. (49)

We have

b−(y) = λ̂2(y − y1)(y − y4), b+(y) = λ̂2(y − y2)(y − y3), (50)

with

y1 =
ξ1 −

√
ξ2

1 − 4λ̂2μ̂2

2λ̂2
, y2 =

ξ2 −
√

ξ2
2 − 4λ̂2μ̂2

2λ̂2
, (51)

y3 =
ξ2 +

√
ξ2

2 − 4λ̂2μ̂2

2λ̂2
, y4 =

ξ1 +
√

ξ2
1 − 4λ̂2μ̂2

2λ̂2
, (52)

ξ1 = μ̂1 + μ̂2 + λ̂ + 2
√

λ̂1μ̂1, ξ2 = μ̂1 + μ̂2 + λ̂ − 2
√

λ̂1μ̂1. (53)

y1, . . . , y4 are the branch points of x(y) (since c(yi) = 0 for i = 1, . . . , 4). It is easily
seen that (Hint: y2 < 1 and y3 > 1, both from Convention (35))

0 < y1 < y2 < 1 < y3 < y4. (54)

Remark 1 The algebraic function x(y) has two algebraic branches, denoted by k(y)

and kσ (y), related via the relation k(y)kσ (y) = μ̂1/λ̂1. When y ∈ (y1, y2) ∪
(y3, y4), k(y) and kσ (y) are complex conjugate numbers (since c(y) < 0 for those val-
ues of y), with k(yi) = kσ (yi) for i = 1, . . . , 4. In particular, |k(y)| = √

k(y)kσ (y) =√
μ̂1/λ̂1 for y ∈ [y1, y2] ∪ [y3, y4], thereby showing that for y ∈ [y1, y2] (resp.

y ∈ [y3, y4])k(y) and kσ (y) lie on the circle centered in 0 with radius
√

μ̂1/λ̂1.

123

14 Queueing Syst (2014) 77:1–31

When x is fixed similar results hold. We will denote by

y(x) = −e(x) ± √
d(x)

2λ̂2x
(55)

the algebraic function solution of R(x, y) = 0 for x fixed, where e(x) := λ̂1x2 −
(μ̂1 + μ̂2 + λ̂)x + μ̂1 and d(x) := e−(x)e+(x), with

e−(x) := e(x) − 2x
√

λ̂2μ̂2, e+(x) := e(x) + 2x
√

λ̂2μ̂2.

We denote by xi , i = 1, . . . , 4 the four branch points of y(x), namely, the zeros of
d(x); they are obtained by interchanging indices 1 and 2 in (51)–(53).

We have

e−(x) = λ̂1(x − x1)(x − x4), e+(x) = λ̂1(x − x2)(x − x3), (56)

where

0 < x1 < x2 ≤ 1 < x3 < x4, (57)

with x2 = 1 iff λ̂2 = μ̂2.
The following results, found in [21, Lemmas 2.2, 2.3, 3.1], hold and will extensively

be used in the next subsection:

Proposition 3 For y fixed, the equation R(x, y) = 0 has one root x(y) = k(y) which
is analytic in the whole complex plane C cut along the real-line segments [y1, y2] and
[y3, y4]. Moreover1

(a1) |k(y)| ≤ 1 if |y| = 1. More precisely, |k(y)| < 1 if |y| = 1 with y = 1, and
k(1) = min(1, μ̂1/λ̂1) = 1 under Convention (35).

(b1) |k(y)| ≤
√

μ̂1

λ̂1
for all y ∈ C;

(c1) when y sweeps twice [y1, y2], k(y) describes a circle centered in 0 with radius√
μ̂1

λ̂1
, so that |k(y)| =

√
μ̂1

λ̂1
for y ∈ [y1, y2].

Similarly, for x fixed, the equation R(x, y) = 0 has one root y(x) = h(x) which is
analytic in C − [x1, x2] − [x3, x4], and

(a2) |h(x)| < 1 if |x | = 1, x = 1, and h(1) = min(1, μ̂2/λ̂2) ≤ 1.

(b2) |h(x)| ≤
√

μ̂2

λ̂2
for all x ∈ C;

(c2) |h(x))| =
√

μ̂2

λ̂2
if x ∈ [x1, x2]

Moreover,

(d1) h(k(y)) = y for y ∈ [y1, y2] and k(h(x)) = x for x ∈ [x1, x2].

1 Apply Rouché’s theorem to R(x, y) to get (a1), and the “maximum modulus principal” to the analytic
function k(y) in C − [y1, y2] − [y3, y4] to get (b1). (c1) follows from Remark 1.

123

Queueing Syst (2014) 77:1–31 15

(d2) h

(√
μ̂1/λ̂1

)
= y2 and h

(
−

√
μ̂1/λ̂1

)
= y1.

(d3) k

(√
μ̂2/λ̂2

)
= x2 and k

(
−

√
μ̂2/λ̂2

)
= x1.

Last

(e) |h(x)| ≤ 1 for 1 ≤ |x | ≤
√

μ̂1

λ̂1
(recall that λ̂1 < μ̂1).

4.3 A boundary value problem and its solution

In reference to the program set in Sect. 4.1, we are now in a position to set a boundary
value problem that is satisfied by the unknown function H (0)(x, 0).

We know that R(k(y), y) = 0 by definition of k(y). On the other hand, H (0)(x, y)

is well-defined for all (x, y) = (k(y), y) with |y| = 1, since (i) H (0)(x, y) is well-
defined for |x | ≤ 1, |y| ≤ 1, (ii) k(y) is continuous for |y| = 1 (from Proposition 3 we
know that k(y) is analytic in C − [y1, y2] and we know that 0 < y1 < y2 < 1 so that
k(y) is continuous for |y| = 1), (iii) |k(y)| ≤ 1 for |y| = 1 (cf. Proposition 3-(a1)).
Therefore, the l.h.s. of (36) must vanish for all pairs (k(y), y) such that |y| = 1, which
yields

A(k(y), y)H (0)(k(y), 0) = −B(k(y), y)H (0)(0, y), ∀|y| = 1. (58)

The r.h.s. of (58) is analytic for |y| ≤ 1 with y ∈ [y1, y2] and continuous for |y| ≤ 1,
so that the r.h.s. of (58) can be analytically continued up to the interval [y1, y2].

This gives

A(k(y), y)H (0)(k(y), 0) = −B(k(y), y)H (0)(0, y), ∀y ∈ [y1, y2]. (59)

It is shown in Lemma 2 that B(k(y), y) = 0 for y ∈ [y1, y2]. We may therefore divide
both sides of (59) by B(k(y), y) to get

A(k(y), y)

B(k(y), y)
H (0)(k(y), 0) = −H (0)(0, y), ∀y ∈ [y1, y2]. (60)

Take y ∈ [y1, y2] and let k(y) = x . We know by Proposition 3-(c1) that x ∈ C√
μ̂1/λ̂1

;

furthermore, we know by Proposition 3-(d1) that h(k(y)) = y so that y = h(x). We
may therefore rewrite (60) as

A(x, h(x))

B(x, h(x))
H (0)(x, 0) = −H (0)(0, h(x)), ∀x ∈ C√

μ̂1/λ̂1
. (61)

By multiplying both sides of (61) by the imaginary complex number i and by noting
that H (0)(0, h(x)) is a real number when x ∈ C√

μ̂1/λ̂1
since h(x) ∈ [y1, y2], we get

�
(

i
A(x, h(x))

B(x, h(x))
H (0)(x, 0)

)
= 0, ∀x ∈ C√

μ̂1
λ̂1

. (62)

123

16 Queueing Syst (2014) 77:1–31

Equation (62) would define a Riemann–Hilbert boundary value problem for the func-
tion H (0)(x, 0) if the following two conditions were satisfied (see Sect. 4.1): (a)

H (0)(x, 0) is analytic for |x | <

√
μ̂1/λ̂1 (observe that this function is initially only

analytic for |x | < 1) and (b) A(x, h(x))/B(x, h(x)) does not vanish on the circle
C√

μ̂1/λ̂1
.

Let us see if one can prove that conditions (a) and (b) above hold.

It is shown in Lemma 3 that h(x) is analytic for 1 < |x | <

√
μ̂1/λ̂1 and continuous

for 1 ≤ |x | ≤
√

μ̂1/λ̂1; furthermore |h(x)| ≤ 1 for 1 ≤ |x | ≤
√

μ̂1/λ̂1 by Proposition

3-(e). These two properties together imply that H (0)(0, h(x)) is analytic for 1 < |x | <√
μ̂1/λ̂1 and continuous for 1 ≤ |x | ≤

√
μ̂1/λ̂1, which allows us to conclude from (61)

and from the principle of analytic continuation that A(x, h(x))H (0)(x, 0)/B(x, h(x)),
the l.h.s. of (61), inherits these two properties.

Define v(x) := A(x, h(x))H (0)(x, 0)/B(x, h(x)). We have just shown that v(x) is

analytic for 1 < |x | <

√
μ̂1/λ̂1 and continuous for 1 ≤ |x | ≤

√
μ̂1/λ̂1. If A(x, h(x))

did not vanish for 1 ≤ |x | ≤
√

μ̂1/λ̂1 then we could conclude that property (b) above
is satisfied. But we have shown in Lemma 4 that, depending on the model parameters
(see below), A(x, h(x)) has at most one zero x = x0 in the region Dx := {x ∈ C :
1 ≤ |x | ≤

√
μ̂1/λ̂1}.

In order to state a more precise result, define the constants x0 and r ∈ {0, 1} as
follows

x0 =
−(λ + μ1 − μ)λμ1 +

√
((λ + μ1 − μ)λμ1)2 + 4λλ1(λ + μ1)μμ2

1

2λλ1(λ + μ1)
, (63)

r =
{

1, if x0 ≤
√

μ̂1/λ̂1 and (λ+μ1)x0
λx0+μ1

≤
√

μ̂2/λ̂2,

0, otherwise.
(64)

If r = 1 then A(x, h(x)) has a unique zero in Dx given by x = x0, with multiplicity
one, whereas if r = 0 then A(x, h(x)) does not vanish in Dx (see Lemma 4). Introduce

U (x) := A(x, h(x))

B(x, h(x))(x − x0)r
and H̃(x) := H (0)(x, 0)(x − x0)

r . (65)

By construction

A(x, h(x))

B(x, h(x))
H (0)(x, 0) = U (x)H̃(x) (66)

so that, from (62),

�
(

i U (x)H̃(x)
)

= 0, ∀x ∈ C√
μ̂1/λ̂1

. (67)

123

Queueing Syst (2014) 77:1–31 17

Furthermore, still by construction, U (x) does not vanish on the circle C√
μ̂1/λ̂1

and

we have shown that H̃(x) is analytic inside the circle C√
μ̂1/λ̂1

. In other words, H̃(x)

satisfies a Riemann–Hilbert problem with the boundary condition (67), whose solution
is given below.

Define

χ := − 1

π
[arg U (x)]x∈C√

μ̂1/λ̂1
(68)

the so-called index of the Riemann–Hilbert problem, where [arg α(z)]z∈C denotes the
variation of the argument of the function α(z) when z moves on a closed curved C in
the positive direction, provided that α(z) = 0 for z ∈ C).

The Riemann–Hilbert problem has χ + 1 independent solutions [31, p. 104]. It is
shown in Lemma 5 that, as expected, χ = 0 under conditions (34), thereby showing
that the solution of the Riemann–Hilbert problem (67) is unique under conditions (34).

With χ = 0 the solution of the Riemann–Hilbert problem is (we have retuned to
the sought function H (0)(x, 0), which is the function of interest to us)

H (0)(x, 0)= D(x − x0)
−r exp

(
1

2π i

∫

|z|=
√

μ̂1/λ̂1

log(J (z))

z − x
dz

)
, ∀ |x |<

√
μ̂1/λ̂1,

(69)

where D is a constant (to be determined) and (with z the complex conjugate of z ∈ C)

J (z) = − iU (z)

iU (z)
.

We are left with calculating the constant D in (69). Setting x = 1 in (69) gives

D = (1 − x0)
r
(

1 − λ

μ

(
1 + λ2

μ2

))
exp

(
− 1

2π i

∫

|z|=
√

μ̂1/λ̂1

log(J (z))

z − 1
dz

)
(70)

by using the value of H (0)(1, 0) found in (23). We may therefore rewrite (69) as

H (0)(x, 0) =
(

1 − x0

x − x0

)r (
1 − λ

μ

(
1 + λ2

μ2

))

× exp

(
1

2π i

∫

|z|=
√

μ̂1/λ̂1

log(J (z))(x − 1)

(z − x)(z − 1)
dz

)
(71)

for all |x | <

√
μ̂1/λ̂1. The expression (71) allows us to show that the necessary

stability conditions (34) are also sufficient.

Proposition 4 The Markovian retrial queueing system with two classes of jobs and
constant retrial rates is positive recurrent if and only if the conditions (34) are satisfied.

123

18 Queueing Syst (2014) 77:1–31

Proof The “only if” part has been proven in Sect. 3. Since by Lemma 5 χ = 0 under
conditions (34), there exists a unique normalized invariant measure. In addition, the
Markov process {(Q1(t), Q2(t), L(t)) : t ∈ [0,∞)} is irreducible and non-explosive
(all transition rates are bounded). Thus, using Theorem 3.18 from [27], we conclude
that the Markov process is positive recurrent. ��

We also need to calculate the other boundary function H (0)(0, y) for |y| ≤ 1. For
|y| = 1, H (0)(0, y) is given in (58). For |y| < 1, H (0)(0, y) is obtained from (58) and
Cauchy’s formula, which gives

H (0)(0, y) = 1

2π i

∫

|t |=1

V (t)

t − y
dt, |y| < 1, (72)

where

V (t) := − A(k(t), t)

B(k(t), t)
H (0)(k(t), 0), |t | = 1, (73)

does not vanish for all |t | = 1, as shown in Lemma 6.
Introducing (71) and (72) into (20) uniquely determines the functions H (0)(x, y)

and H (1)(x, y) for all |x | ≤ 1, |y| ≤ 1.

5 Performance measures

Later on in this section we shall need the derivatives d
dx H (0)(x, 0)|x=1 and

d
dy H (0)(0, y)|y=1.

Differentiating (71) w.r.t x gives

d

dx
H (0)(x, 0) =

(
1 − x0

x − x0

)r (
1 − λ

μ

(
1 + λ2

μ2

))

× exp

(
1

2π i

∫

|z|=
√

μ̂1/λ̂1

log(J (z))(x − 1)

(z − x)(z − 1)
dz

)

×
(−r

x − x0
+ 1

2π i

∫

|z|=
√

μ̂1/λ̂1

log(J (z)

(z − x)2 dz

)

= H0(x, 0)

(−r

x − x0
+ 1

2π i

∫

|z|=
√

μ̂1/λ̂1

log(J (z)

(z − x)2 dz

)
. (74)

Letting x = 1 in (74) and using (23) yields

d

dx
H (0)(x, 0)|x=1 =

(
1− λ

μ

(
1+ λ2

μ2

))(
r

x0 − 1
+ 1

2π i

∫

|z|=
√

μ̂1/λ̂1

log(J (z)

(z − 1)2 dz

)
.

(75)

123

Queueing Syst (2014) 77:1–31 19

The derivative d
dy H (0)(0, y)|y=1 is obtained from (58). By Lemma 6, we have

d

dy
H (0)(0, y)|y=1 = − lim

y→1

A(k(y), y)

B(k(y), y)

d

dx
H (0)(x, 0)|x=1 k′(1)

− lim
y→1

d

dy

A(k(y), y)

B(k(y), y)
H (0)(1, 0), (76)

where d
dx H (0)(x, 0)|x=1 and H (0)(1, 0) are given in (75) and (23), respectively. The

limits in the above expression can be calculated by L’Hôpital’s rule. Lengthy but easy
algebra gives

lim
y→1

A(k(y), y)

B(k(y), y)
= (λ2 − μ + λ1k′(1))μ2

(λ2 + (λ1 − μ)k′(1))μ1

and

lim
y→1

d

dy

A(k(y), y)

B(k(y), y)
=

− (−λ2+(−λ1 + μ)k′(1)+(λ2 − μ)k′(1)2 + λ1k′(1)3 + (μ − λ1 − λ2)k′′(1))μμ2

(λ2 + (λ1 − μ)k′(1))μ1
,

where

k′(1) = λ̂2 − μ̂2

μ̂1 − λ̂1
,

and

k′′(1) = 2
(μ̂1 + μ̂2 − 2(λ̂1 + λ̂2))μ̂1μ̂2 + λ̂2

1μ̂2 + λ̂2
2μ̂1

(μ̂1 − λ̂1)3
.

We are now in a position to calculate some important performance measures.
By setting x = 0 in Eq. (71), we immediately obtain the probability of empty

system

P(Q1 = 0, Q2 = 0, L = 0) =
(

x0 − 1

x0

)r (
1 − λ

μ

(
1 + λ2

μ2

))

× exp

(
1

2π i

∫

|z|=
√

μ̂1/λ̂1

log(J (z))

z(1 − z)
dz

)
(77)

Next, we calculate the expected orbit queue lengths. For the first queue, we have

E[Q1] =
∞∑

m=1

m

(∞∑

n=0

Pmn(0) +
∞∑

n=0

Pmn(1)

)

= d

dx
H (0)(x, 1)|x=1 + d

dx
H (1)(x, 1)|x=1. (78)

123

20 Queueing Syst (2014) 77:1–31

Thus, we need to calculate d
dx H (0)(x, 1)|x=1 and d

dx H (1)(x, 1)|x=1. From (36) we
have

H (0)(x, y) = A(x, y)

R(x, y)
H (0)(x, 0) + B(x, y)

R(x, y)
H (0)(0, y). (79)

Using (37)–(39) and setting y = 1 in (79), yields

H (0)(x, 1) = λ1μ2x

αλ1x − μμ1
H (0)(x, 0) + (λ1x − μ)μ1

αλ1x − μμ1
H (0)(0, 1).

Next, by differentiating the above relation with respect to x we get

d

dx
H (0)(x, 1) = − λ1μ2μμ1

(αλ1x − μμ1)2 H (0)(x, 0) + λ1μ2x

αλ1x − μμ1

d

dx
H (0)(x, 0)

+λ1μ1μ(α − μ1)

(αλ1x − μμ1)2 H (0)(0, 1).

Setting x = 1 in the above, yields

d

dx
H (0)(x, 1)|x=1 = λ1μ1μ

(μμ1 − αλ1)2

(
(α − μ1)H (0)(0, 1) − μ2 H (0)(1, 0)

)

− λ1μ2

μμ1 − αλ1

d

dx
H (0)(x, 0)|x=1, (80)

where H (0)(0, 1), H (0)(1, 0) and dH (0)(x, 0)/dx |x=1 are given in (22), (23) and (75),
respectively.

It remains to find dH (1)(x, 1)/dx |x=1. Differentiating (18) with respect to x and
setting x = y = 1 gives

d

dx
H (1)(x, 1)|x=1 = α

μ

d

dx
H (0)(x, 1)|x=1 − μ2

μ

d

dx
H (0)(x, 0)|x=1

= αλ1μ1

(μμ1 − αλ1)2

(
(α − μ1)H (0)(0, 1) − μ2 H (0)(1, 0)

)

− μ1μ2

μμ1 − αλ1

d

dx
H (0)(x, 0)|x=1, (81)

by using (80).
By combining (78), (80) and (81) we finally obtain

E[Q1] = (α + μ)λ1μ1

(μμ1 − αλ1)2

(
(α − μ1)H (0)(0, 1) − μ2 H (0)(1, 0)

)

−μ2(λ1 + μ1)

μμ1 − αλ1

d

dx
H (0)(x, 0)|x=1, (82)

123

Queueing Syst (2014) 77:1–31 21

where H (0)(0, 1), H (0)(1, 0) and dH (0)(x, 0)/dx |x=1 are given in (22), (23) and (75),
respectively.

Similarly, the expected queue length for the second orbit is given by

E[Q2] = d

dy
H (0)(1, y)|y=1 + d

dy
H (1)(1, y)|y=1

= (α + μ)λ2μ2

(μμ2 − αλ2)2

(
(α − μ2)H (0)(1, 0) − μ1 H (0)(0, 1)

)

−μ1(λ2 + μ2)

μμ2 − αλ2

d

dy
H (0)(0, y)|y=1, (83)

where dH (0)(0, y)/dy|y=1 is given in (76).
Finally, we recall that [see (21)]

E[L] = P(L = 1) = λ

μ
.

6 Numerical examples

To gain more insights into the performance of the system, let us consider numerical
examples. First, we set μ1 = μ2 = 2, μ = 4, λ1 = 0.1 and vary λ2 in the interval
[0.2; 1.9]. In Fig. 2 we plot the probability of an empty system P(Q1 = 0, Q2 =
0, L = 0) calculated by (77) as a function of λ2. We also plot H (0)(1, 0), see formula
(23), which corresponds, if λ1 is small, to the probability of empty system with one
type of jobs and a single orbit queue. Now if we change the value of λ1 from 0.1 to
1.0, we observe that the value of P(Q1 = 0, Q2 = 0, L = 0) deviates significantly
from H (0)(1, 0).

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ2

P(Q
1
=0,Q

2
=0,L=0), λ

1
=0.1

P(Q
2
=0,L=0), λ

1
=0.1

P(Q
1
=0,Q

2
=0,L=0), λ

1
=1.0

P(Q
2
=0,L=0), λ

1
=1.0

Fig. 2 Probability of an empty system (μ = 4, μ1 = μ2 = 2)

123

22 Queueing Syst (2014) 77:1–31

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

λ2

E[Q], Single orbit model

E[Q
2
], λ

1
=0.01

E[Q
2
], λ

1
=0.1

E[Q
2
], λ

1
=1.0

Fig. 3 The expected orbit queue size, E[Q2] (μ = 4, μ1 = μ2 = 2)

Let us explain how we evaluate the contour integrals like the one in formula (77).
We evaluate such integrals by numerical integration as in [34] using the trapezium

method. Specifically, we first change the variable z =
√

μ̂1/λ̂1 exp(iϕ), ϕ ∈ [0, 2π),

changing the differential as dz =
√

μ̂1/λ̂1i exp(iϕ)dϕ. Then, we have divided the
interval [0, 2π) into K equal parts and apply the trapezium numerical integration
method evaluating the integrand at the points ϕk = 2πk/K with k = 0, 1, . . . , K −1.
We have chosen K = 30000. This should guarantee a good accuracy, since a good
accuracy has been reported for similar integrals in [34] for K = 250.

Keeping μ1 = μ2 = 2, μ = 4, in Fig. 3 we plot the expected queue length of the
second orbit E[Q2] calculated by (83) as a function of λ2 for λ1 = 0.01; 0.1; 1.0.
We also plot the expected queue length of the orbit queue for the single orbit retrial
system [5], which is given by

E[Q] = λ2
2(λ2 + μ + μ2)

μ(μμ2 − λ2
2 − λ2μ2)

.

Again, as expected, when λ1 goes to zero, E[Q2] approaches the expected queue
length of the orbit queue in the single orbit retrial system.

Next, we investigate how the retrial rates affect the system performance. Let us fix
λ1 = λ2 = 1.2, μ = 4, μ1 = 2 and we vary μ2 in the interval [2.0; 2.15]. With such
parameter setting, the system is not too far from the stability boundary. We plot in
Fig. 4 the expected lengths of the orbit queues, E[Q1] and E[Q2], as functions of μ2.
We can see that if the jobs of type 2 retry at a bit faster rate than the jobs of type 1,
they can gain significantly in terms of the waiting time. Specifically, an increase of

123

Queueing Syst (2014) 77:1–31 23

2 2.05 2.1 2.15
8

9

10

11

12

13

14

15

16

17

18

μ2

E[Q
1
]

E[Q
2
]

Fig. 4 The expected queue lengths of the orbit queues as functions of μ2 (λ1 = λ2 = 1.2, μ = 4, μ1 = 2)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

5

10

15

20

25

30

35

λ
2

E[Q
1
]

E[Q
2
]

Fig. 5 The expected queue lengths of the orbit queues as functions of λ2 (λ1 = 1, μ1 = μ2 = 2, μ = 4)

less than 10 % of the retrial rate of jobs of type 2 helps them to reduce the expected
orbit queue length by 50 %. Clearly, if there is no cost for retrials, it is beneficial for
the jobs to increase their retrial rate. However, there are good reasons to keep the
control of the retrial rates in the hand of the system administrator and not to set them
too high. As was just mentioned, the first reason is the possible cost for retrials. The
second reason is the creation of incentives to respect the contract. To illustrate this
point, we fix λ1 = 1, μ1 = μ2 = 2, μ = 4, and vary λ2 in the interval [0.2; 1.34].
In Fig. 5, we plot the expected queue lengths of the orbit queues. We see that if the
jobs of type 2 increase their input rate beyond their fair share, they will be severely

123

24 Queueing Syst (2014) 77:1–31

penalized in terms of the expected delay, whereas the increase of the input rate of jobs
of type 2 does not inflict any significant damage to the jobs of type 1.

Acknowledgments We thank anonymous reviewers for their comments which helped us to significantly
improve the presentation of the results. We would also like to thank Efrat Perel for helping us in drawing
the figure of the transition-rate diagram.

Appendix

Lemma 1 Conditions (34) imply that either αλ1 < μμ1 or αλ2 < μμ2.

Proof Assume that αλ1 ≥ μμ1 and αλ2 ≥ μμ2
Multiplying the first inequality in (34) by μμ1 and using the definition of λ and α

gives

(λ1 + λ2)(λ1 + μ1) < μμ1 ≤ αλ1 = (λ1 + λ2 + μ1 + μ2)λ1

which is true if and only if (a) λ2μ1 < λ1μ2.
Multiplying now the second inequality in (34) by μμ2 gives

(λ1 + λ2)(λ2 + μ2) < μμ2 ≤ αλ2 = (λ1 + λ2 + μ1 + μ2)λ2

which is true if and only if (b) λ1μ2 < λ2μ1.
Since inequalities (a) and (b) cannot be true simultaneously we conclude that either

αλ1 < μμ1 or αλ2 < μμ2, which concludes the proof. ��
Lemma 2 Under conditions (34), (i) A(k(y), y) = 0 and (ii) B(k(y), y) = 0 for
y ∈ [y1, y2].

Equivalently, (iii) A(x, h(x)) = 0 and (iv) B(x, h(x)) = 0 for x ∈ C√
μ̂1/λ̂1

.

Proof From (39) and (41) we see that R(x, y) and B(x, y) vanish simultaneously if
and only if

(1 − x)(λ1x − μ) + λ2(1 − y)x = 0

λ(1 − x)y + μ2(y − x) = 0.

The second equation gives x = (λ + μ2)y/((λy + μ2)). Plugging this value of x into
the first equation yields (Hint: use λ = λ1 + λ2)

P1(y) := (1 − y)Q1(y) = 0

with Q1(y) := λλ2(λ + μ2)y2 + (λ + μ2 − μ)λμ2 y − μμ2
2 = 0.

From limy→±∞ Q1(y) = +∞ and Q1(0) = −μμ2
2 we conclude that the polyno-

mial Q1(y) has two real roots, y− < 0 < y+ and that Q1(y) < 0 for 0 ≤ y < y+.
Since

Q1(1) =
(

λ + μ2

μμ2

)(
λ

μ

(
1 + λ2

μ2

)
− 1

)
< 0, (84)

123

Queueing Syst (2014) 77:1–31 25

where the latter inequality holds under conditions (34), we conclude that Q1(y) < 0
for y ∈ [0, 1], which in turn implies that P1(y) < 0 for y ∈ [0, 1). The latter completes
the proof of (ii) since [y1, y2] ⊂ [0, 1) [see (54)].

The proof of (i) is the same as the proof of (ii) up to interchanging incides 1 and 2.
Eqns (iii) and (iv) both follow from the fact that k([y1, y2]) = C√

μ̂1/λ̂1
(cf. Propo-

sition 3-(11)) and the relation h(k(y)) = y for y ∈ [y1, y2] (cf. Proposition 3-(d1)).
��

Lemma 3 Under Convention (35), h(x) is analytic for 1 < |x | <

√
μ̂1/λ̂1 and

continuous for 1 ≤ |x | ≤
√

μ̂1/λ̂1.

Proof We already know by Proposition 3 that h(x) is analytic for x ∈ C − [x1, x2] −
[x3, x4]where x2 ≤ 1 < x3. It is therefore enough to show that

√
μ̂1/λ̂1 < x3 or, equiv-

alently from (56) that e+
(√

μ̂1/λ̂1

)
< 0. Easy algebra shows that e+

(√
μ̂1/λ̂1

)
=

−
√

μ̂1/λ̂1

((√
λ̂1 − √

μ̂1

)2

+
(√

λ̂2 + √
μ̂2

)2
)

< 0, which concludes the proof.

��
Lemma 4 Assume that conditions (34) hold. Define

x0 :=
−(λ + μ1 − μ)λμ1 +

√
((λ + μ1 − μ)λμ1)2 + 4λλ1(λ + μ1)μμ2

1

2λλ1(λ + μ1)
> 1

If x0 ≤
√

μ̂1/λ̂1 and if (λ+μ1)x0/(λx0 +μ1) ≤
√

μ̂2/λ̂2 then A(x, h(x)) has exactly

one zero x = x0 in the region Dx :=
{

x ∈ C : 1 < |x | ≤
√

μ̂1/λ̂1

}
and this zero has

multiplicity one. Otherwise A(x, h(x)) has no zero in Dx .

Proof From (38) and (40) we see that R(x, y) and A(x, y) vanish simultaneously if
and only if

(1 − y)(λ2 y − μ) + λ1(1 − x)y = 0 (85)

λ(1 − y)x + μ1(x − y) = 0. (86)

Eq. (86) gives

y = (λ + μ1)x

λx + μ1
. (87)

Plugging this value of y into (85) yields

1 − x

(λx + μ1)2 Q2(x) = 0

with Q2(x) := λλ1(λ + μ1)x2 + (λ + μ1 − μ)λμ1x − μμ2
1.

123

26 Queueing Syst (2014) 77:1–31

Therefore, A(x, h(x)) will vanish in the region Dx if and only if the polynomial
Q2(x) vanishes in Dx . From limx→±∞ Q2(x) = +∞, Q2(0) = μμ2

1 < 0 and

Q2(1) = μμ1(λ + μ1)

(
λ

μ
+ λλ1

μμ1
− 1

)
< 0 (88)

we conclude that Q2(x) has always two real zeros with opposite sign.
Let us first focus on the negative zero of Q2(x), denoted by x−. Let us show

that x− cannot belong to the region Dx or, equivalently, that x− cannot satisfies the

inequalities −
√

μ̂1/λ̂1 ≤ x− < −1. Assume that −
√

μ̂1/λ̂1 ≤ x− < −1 and that
A(x−, h(x−)) = 0. By (40) the latter equality implies (Hint: R(x−, h(x−)) = 0 by
definition of h(x))

λμ(1 − h(x−))x− + μμ1(x− − h(x−)) = 0. (89)

Since −1 ≤ h(x−) ≤ 1 from Proposition 3-(e), we observe that (1 − h(x−))x− ≤ 0
and (x− − h(x−)) < 0 so that the l.h.s. of (89) cannot be equal to zero. Therefore,
A(x), h(x)) does not vanish at x = x−.

We now focus on the positive zero of Q2(x), denoted by x0. Note that x0 > 1

from (88). If x0 >

√
μ̂1/λ̂1 then clearly A(x, h(x)) has no zero in (1,

√
μ̂1/λ̂1]. If

1 < x0 ≤
√

μ̂1/λ̂1 then A(x, h(x)) as a unique zero in (1,

√
μ̂1/λ̂1], given by x = x0,

provided that [see (87)] h(x0) = (λ + μ1)x0/(λx0 + μ1) ≤
√

μ̂2/λ̂2 since we know

from Proposition 3-(b2) that the branch h(x) is such that |h(x)| ≤
√

μ̂2/λ̂2 for all

x ∈ C; if (λ + μ1)x0/(λx0 + μ1) >

√
μ̂2/λ̂2 then A(x, h(x)) does not vanish in

(1,

√
μ̂1/λ̂1].

We are left with proving that when A(x, h(x)) vanishes at x = x0 then this zero
has multiplicity one. From now on we assume that A(x0, h(x0)) = 0.

From the definition of h(x) and (40) we get

0 = R(x, h(x)) = α

μ2
A(x, h(x)) + μ[λ(1 − h(x))x + μ1(x − h(x))].

Differentiating this equation w.r.t. x gives

0 = α

μ2

d A(x, h(x))

dx
+ μ[−λh′(x)x + λ(1 − h(x)) + μ1(1 − h′(x))]. (90)

Assume that d A(x, h(x))/dx = 0 at point x = x0, namely, assume that A(x, h(x))

has a zero of multiplicity at least two at x = x0. From (90) this implies

−λh′(x0)x0 + λ(1 − h(x0)) + μ1(1 − h′(x0) = 0

123

Queueing Syst (2014) 77:1–31 27

that is

h′(x0) = μ1
λ + μ1

(λx0 + μ1)2 (91)

with h(x0) = (λ + μ1)x0/(λx0 + μ1) [see (87)].
On the other hand, letting (x, y) = (x, h(x)) in (38) yields

A(x, h(x)) = ((1 − h(x))(λ2h(x) − μ) + λ1(1 − x)h(x))μ2x . (92)

Differentiating A(x, h(x) wrt x in (92) and letting x = x0 gives

dA(x, h(x))

dx
|x=x0 = [−h′(x0)(λh(x0) − μ) + λ2(1 − h(x0))h

′(x0)

−λ1h(x0) + λ1(1 − x0)h
′(x0)]μ2x0

+μ2

x0
A(x0, h(x0))

= [h′(x0)(−2λ2h(x0) + λ2 + μ + λ1(1 − x0)) − λ1h(x0)]μ2x0

+μ2

x0
A(x0, h(x0))

= [h′(x0)(−2λ2h(x0) + λ2 + μ + λ1(1 − x0)) − λ1h(x0)]μ2x0

since A(x0, h(x0)) = 0. Therefore, d A(x, h(x))/dx = 0 at point x = x0 iff (note that
x0 = 0)

h′(x0)(−2λ2h(x0) + λ2 + μ + λ1(1 − x0)) − λ1h(x0) = 0.

Since −2λ2h(x0) + λ2 + μ + λ1(1 − x0) < 0 because x0 > 1, we get

h′(x0) = λ1h(x0)

−2λ2h(x0) + λ2 + μ + λ1(1 − x0)

with [see (87)] h(x0) = (λ + μ1)x0/(λx0 + μ1), so that h′(x0) < 0. However,
h′(x0) > 0 in (91). This yields a contradiction, thereby implying that d A(x, h(x))/dx
does not vanish at point x = x0 when A(x, h(x)) does or, equivalently, that x0 is a
zero of multiplicity one. ��
Lemma 5 Under conditions (34) and Convention (35) the index χ of the Riemann–
Hilbert problem (the index is defined in (68)) is equal to zero.

Proof Recall the definition of U (x) in (65). First, by studying U (

√
μ̂1/λ̂1eiθ) for

θ ∈ [0, 2π) it is easily seen that U (x) describes a closed (and simple) contour when x
describes the circle C√

μ̂1/λ̂1
; moreover, for x ∈ C√

μ̂1/λ̂1
, U (x) takes only real values

when x ∈ {−
√

μ̂1/λ̂1,

√
μ̂1/λ̂1}.

123

28 Queueing Syst (2014) 77:1–31

As a result, we will show that χ = 0 if we show that

U

(
−

√
μ̂1/λ̂1

)
× U

(√
μ̂1/λ̂1

)
> 0, (93)

since (93) will imply that the contour defined by {U (x) : |x | =
√

μ̂1/λ̂1} does not
contain the point x = 0 in its interior, so that by definition of the index, χ = 0.

We have from (40)–(41) (Hint: R(x, h(x)) = 0 by definition of h(x)))

A(x, h(x)) = −μμ2

α
(λ(1 − h(x))x + μ1(x − h(x)) (94)

B(x, h(x)) = −μμ1

α
(λ(1 − x)h(x) + μ2(h(x) − x)). (95)

Define x− := −
√

μ̂1/λ̂1 and x+ :=
√

μ̂1/λ̂1.
By Convention (35) we know that x− < −1 and x+ > 1. Also note that h(x−) =

y1 < 1 and h(x+) = y2 < 1 from Proposition 3-(d2) and (54). With this, it it is easily
seen from (94)–(95) that

A(x−, h(x−)) > 0 and A(x+, h(x+)) < 0

and

B(x−, h(x−)) < 0 and B(x+, h(x+)) > 0

so that

A(x−, h(x−))/B(x−, h(x−)) < 0 and (A(x+, h(x+))/B(x+, h(x+)) < 0.

and, therefore,

A(x−, h(x−))/B(x−, h(x−)) A(x+, h(x+))/B(x+, h(x+)) > 0. (96)

The above shows that (93) is true if r = 0 in the definition of U (x) since in this case
U (x) = A(x, h(x))/B(x, h(x)).

Assume that r = 1 in the definition of U (x) with x0 < x+ and (λ + μ1)x0/(λx0 +
μ1) ≤

√
μ̂2/λ̂2. Since (x − x0) < 0 for x = x− and (x − x0) > 0 for x = x+ we

conclude from (96) that U (x−) > 0 and U (x+) > 0, thereby showing that (93) is also
true in this case.

It remains to investigate the case when r = 1 with x0 = x+ and (λ+μ1)x0/(λx0 +
μ1) ≤

√
μ̂2/λ̂2. Clearly, U (x−) > 0 since, from (96), A(x−, h(x−))/B(x−, h(x−)) <

0 and (x− − x0) < 0 because x− < −1.
Let us focus on the sign of U (x+). We know that the mapping x → U (x) is

continuous for |x | ≤ x+ and that U (x+) = 0 when x+ = x0. Since we have shown

123

Queueing Syst (2014) 77:1–31 29

that U (x+) > 0 when x0 < x+ and (λ+μ1)x0/(λx0 +μ1) ≤
√

μ̂2/λ̂2, we deduce, by
continuity, that necessarily U (x+) > 0 when x+ = x0 and (λ + μ1)x0/(λx0 + μ1) ≤√

μ̂2/λ̂2, which concludes the proof. ��

Lemma 6 Under condition (34) and Convention (35), B(k(y), y) = 0 for |y| = 1,

y = 1. Also, B(k(y), y) has a zero at y = 1, with multiplicity one.

Proof Fix |y| = 1, y = 1. We know from Proposition 3-(a1) that |k(y)| < 1.
From (41) and the fact that R(k(y), y) = 0 by definition of k(y), we see that

B(k(y), y) = 0 is equivalent to

0 = λ(1 − k(y))y + μ2(y − k(y)) = (λ(1 − k(y)) + μ2)y − μ2k(y)

that is,

λ(1 − k(y) + μ2)y = μ2k(y).

Taking the absolute value in both sides of the above equation yields

|λ(1 − k(y) + μ2)| = |λ(1 − k(y) + μ2)y| = |μ2k(y)| < μ2. (97)

But |λ(1 − k(y)) + μ2)| > μ2 which contradicts (97). Hence, B(k(y), y) = 0 for
|y| = 1, y = 1.

Since k(1) = 1, we see that B(k(1), 1) = B(1, 1) = 0 from the definition of
B(x, y). Let us show that the multiplicity of this zero is one. This amounts to showing
that dB(k(y), y)/dy does not vanish at y = 1.

Differentiating B(k(y), y) w.r.t. y in (41) (Hint: R(k(y), y) = 0) and setting y = 1,
gives

dB(k(y), y)

dy
|y=1 = μμ1

α
((λ + μ2)k

′(1) − μ2). (98)

Let us calculate k′(1), the derivative of k(y) at y = 1. To this end, let us use (37) to
differentiate R(k(y), y) (which is equal to zero) w.r.t. y, which gives

0 = dR(k(y), y)

dy
|y=1 = (μμ1 − αλ1)k

′(1) + μμ2 − αλ2 (99)

so that k′(1) = (αλ2−μμ2)/(μμ1−αλ1) (note that μμ1−αλ1 = 0 from Convention
(35), which shows that k′(1) is well defined). Plugging this value of k′(1) into (98)
gives

123

30 Queueing Syst (2014) 77:1–31

dB(k(y), y)

dy
|y=1 = μμ1

α(μμ1 − αλ1)
((αλ2 − μμ2)(λ + μ2) − μ2(μμ1 − αλ1))

= μμ1

α(μμ1 − αλ1)
α(λλ2 + λμ2 − μμ2)

= μμ1

μμ1 − αλ1
μμ2

(
λλ2

μμ2
+ λ

μ
− 1

)
< 0

under the conditions in (34) (to establish the 2nd equality we have used the definitions
of α and λ). This proves that dB(k(y), y)/dy|y=1 = 0 and completes the proof. ��

References

1. Artalejo, J.R.: Accessible bibliography on retrial queues. Math. Comput. Model. 30, 223–233 (1999)
2. Artalejo, J.R., Gómez-Corral, A.: On a single server queue with negative arrivals and request repeated.

J. Appl. Probab. 36, 907–918 (1999)
3. Artalejo, J.R., Gómez-Corral, A.: Retrial Queueing Systems: A Computational Approach. Springer,

Berlin (2008)
4. Artalejo, J.R., Gómez-Corral, A., Neuts, M.F.: Analysis of multiserver queues with constant retrial

rate. Eur. J. Oper. Res. 135, 569–581 (2001)
5. Avrachenkov, K., Yechiali, U.: Retrial networks with finite buffers and their application to internet data

traffic. Probab. Eng. Inf. Sci. 22, 519–536 (2008)
6. Avrachenkov, K., Morozov, E.: Stability analysis of GI/G/c/K retrial queue with constant retrial rate.

Inria Research, Report no. 7335 (2010)
7. Avrachenkov, K., Yechiali, U.: On tandem blocking queues with a common retrial queue. Comput.

Oper. Res. 37, 1174–1180 (2010)
8. Avrachenkov, K., Morozov, E., Nekrasova, R., Steyaert, B.: On the stability and simulation of a retrial

system with constant retrial rate. In: Proceedings of the 9th International Workshop on Retrial Queues,
June 2012

9. Bertsekas, D., Gallager, R.: Data Networks, 2nd ed. Prentice-Hall, Upper Saddle River (1992)
10. Blanc, J.P.C.: Asymptotic analysis of a queueing system with a two-dimensional state space. J. Appl.

Probab. 21, 870–886 (1984)
11. Blanc, J.P.C., Iasnogorodski, R., Nain, P.: Analysis of the M/GI/1 →./M/1 queueing model. Queueing

Syst. 3, 129–156 (1988)
12. Bocharov, P.P., D’Apice, C., Pechinkin, A.V., Salerno, S.: Queueing Theory. Modern Probability and

Statistics Series. VSP, Utrecht (2004)
13. Brandon, J., Yechiali, U.: A tandem Jackson network with feedback to the first node. Queueing Syst.

9, 337–352 (1991)
14. Choi, B.D., Park, K.K., Pearce, C.E.M.: An M/M/1 retrial queue with control policy and general retrial

times. Queueing Syst. 14, 275–292 (1993)
15. Choi, B.D., Rhee, K.H., Park, K.K.: The M/G/1 retrial queue with retrial rate control policy. Probab.

Eng. Inf. Sci. 7, 29–46 (1993)
16. Cohen, J.W., Boxma, O.J.: Boundary Value Problems in Queueing System Analysis. North Holland,

Amsterdam (1983)
17. Dudin, A., Klimenok, V.: A retrial BMAP/SM/1 system with linear repeated requests. Queueing Syst.

34, 47–66 (2000)
18. Falin, G.I.: On a multiclass batch arrival retrial queue. Adv. Appl. Probab. 20, 483–487 (1988)
19. Falin, G.I., Tempelton, J.G.C.: Retrial Queues. CRS Press, Boca Raton (1997)
20. Fayolle, G.: A simple telephone exchange with delayed feedback. In: Boxma, O.J., Cohen, J.W., Tijms,

H.C. (eds.) Teletraffic Analysis and Computer Performance Evaluation. Elsevier, North-Holland (1986)
21. Fayolle, G., Iasnogorodski, R.: Two coupled processors: the reduction to a Riemann–Hilbert problem.

Z. Wahrscheinlichkeitstheorie verw. Gebiete. 47, 325–351 (1979)
22. Fayolle, G., King, P.J.B., Mitrani, I.: The solution of certain two-dimensional Markov models. Adv.

Appl. Probab. 14, 295–308 (1982)

123

Queueing Syst (2014) 77:1–31 31

23. Fayolle, G., Iasnogorodski, R., Mitrani, I.: The distribution of sojourn times in a queueing network with
overtaking: reduction to a boundary problem. In: Agrawala, A.K., Tripathi, S.K. (eds.) Proceedings of
Performance, pp. 477–486. College Park, MD, 25–27 May 1983

24. Ghakov, F.D.: Boundary Value Problems. Pergamon Press, Oxford (1961)
25. Grishechkin, S.A.: Multiclass batch arrival retrial queues analyzed as branching processes with immi-

gration. Queueing Syst. 11, 395–418 (1992)
26. Kulkarni, V.G.: Expected waiting times in a multiclass batch arrival retrial queue. J. Appl. Probab. 23,

144–154 (1986)
27. Kulkarni, V.G.: Modeling and Analysis of Stochastic Systems. Chapman & Hall, London (1995)
28. Langaris, C., Dimitriou, I.: A queueing system with n-phases of service and (n − 1)-types of retrial

customers. Eur. J. Oper. Res. 205, 638–649 (2010)
29. Li, Q.-L., Ying, Y., Zhao, Y.Q.: A BMAP/G/1 retrial queue with a server subject to breakdowns and

repairs. Ann. Oper. Res. 141, 233–270 (2006)
30. Moutzoukis, E., Langaris, C.: Non-preemptive priorities and vacations in a multiclass retrial queueing

system. Stoch. Models 12(3), 455–472 (1996)
31. Mushkelishvili, N.I.: Singular Integral Equations. Noordhoff, Groningen (1953)
32. Nain, P.: Analysis of a two-node Aloha network with infinite capacity buffers. In: Hasegawa, T., Takagi,

H., Takahashi, Y. (eds.) Proc. Int. Seminar on Computer Networking and Performance Evaluation.
Tokyo, Japan, 18–20 Sep 1985

33. Szpankowski, W.: Stability conditions for some multiqueue distributed systems: buffered random
access systems. Adv. Appl. Probab. 26, 498–515 (1994)

34. van Leeuwaarden, J.S.H., Resing, J.A.C.: A tandem queue with coupled processors: computational
issues. Queueing Syst. 50, 29–52 (2005)

35. Yechiali, U.: Sequencing an N-stage process with feedback. Probab. Eng. Inf. Sci. 2, 263–265 (1988)

123

	A retrial system with two input streams and two orbit queues
	Abstract
	1 Introduction
	2 Model, balance equations, and generating functions
	3 Necessary stability conditions
	4 Derivation of H(0)(x,0) and H(1)(0,y)
	4.1 Overview of the approach used to solve the functional equation (36)
	4.2 Zeros of R(x,y) and their properties
	4.3 A boundary value problem and its solution

	5 Performance measures
	6 Numerical examples
	Acknowledgments
	Appendix
	References

