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Studies on the neuroprotective effects of anesthetics were carried out more

than half a century ago. Subsequently, many cell and animal experiments

attempted to verify the findings. However, in clinical trials, the neuroprotective

effects of anesthetics were not observed. These contradictory results suggest

a mismatch between basic research and clinical trials. The Stroke Therapy

Academic Industry Roundtable X (STAIR) proposed that the emergence of

endovascular thrombectomy (EVT) would provide a proper platform to verify the

neuroprotective effects of anesthetics because the haemodynamics of patients

undergoing EVT is very close to the ischaemia–reperfusion model in basic

research. With the widespread use of EVT, it is necessary for us to re-examine

the neuroprotective effects of anesthetics to guide the use of anesthetics during

EVT because the choice of anesthesia is still based on team experience without

definite guidelines. In this paper, we describe the research status of anesthesia in

EVT and summarize the neuroprotective mechanisms of some anesthetics. Then,

we focus on the contradictory results between clinical trials and basic research

and discuss the causes. Finally, we provide an outlook on the neuroprotective

effects of anesthetics in the era of endovascular therapy.
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Introduction

Stroke is the leading cause of disability and death worldwide. It can be classified
into haemorrhagic stroke and ischaemic stroke, the latter of which is characterized
by the sudden loss of blood flow to an area of the brain due to thrombosis or
thromboembolism (Campbell et al., 2019). A nationwide community-based study showed
that the incidence of acute ischaemic stroke (AIS) in all incident stroke cases was
as high as 70%, and the high incidence and disability rates of AIS have seriously
increased the socioeconomic and healthcare burdens (Gorelick, 2019; Wu S. et al., 2019).

Frontiers in Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1140275
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1140275&domain=pdf&date_stamp=2023-03-28
https://doi.org/10.3389/fnins.2023.1140275
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1140275/full
https://orcid.org/0000-0003-3347-2947
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1140275 March 22, 2023 Time: 14:51 # 2

Zhang et al. 10.3389/fnins.2023.1140275

Nevertheless, only limited options for treatment are available at
present.

Intravenous recombinant tissue plasminogen activator (IV-
rtPA) was the only pharmacologic treatment approved by the
United States Food and Drug Administration (FDA) until
endovascular thrombectomy (EVT) emerged. IV-rtPA has played
an integral role in treating AIS in recent decades. However, the
multiple contraindications and narrow therapeutic window restrict
the application of IV-rtPA (Patel et al., 2020). In addition, rtPA has
a low recanalization rate (13–50%) in patients suffering from large
vessel occlusion (LVO) because of the unresponsiveness of large
thrombi to the enzyme (Saqqur et al., 2007).

Advances in interventional neuroradiology promoted the
development of EVT. The publication of five clinical trials of EVT
in 2015 with positive findings launched a new era in AIS treatment.
EVT is beneficial to most patients with AIS caused by the occlusion
of the proximal anterior circulation (Goyal et al., 2016). Compared
with IV-rtPA, EVT has a broader application time window and
can be used in patients with contraindications to thrombolysis or
intracranial LVO.

Inevitably, EVT must be performed under anesthesia. Thus,
anesthetics are more widely available to patients with AIS than
ever before. The choice of anesthesia, however, is still based on
team experience without definite guidelines. Recently, the option
of general anesthesia (GA) and conscious sedation (CS) during
EVT was discussed in many multicentre randomized controlled
trials (RCTs) (Schonenberger et al., 2016; Simonsen et al., 2018;
Goldhoorn et al., 2020; Maurice et al., 2022), which indicated
that anesthetics may affect the outcomes of patients with EVT.
Moreover, a retrospective study preliminarily showed that propofol
anesthesia was related to improved functional independence
compared with inhalational GA [odds ratio (OR) = 2.65; 95%
confidence interval (CI), 1.14–6.22; p < 0.05] (Diprose et al., 2021).
These effects may be attributed to the haemodynamic effects of
anesthetic drugs or the neuroprotective properties of anesthetics
(Simonsen et al., 2022). Whether anesthetics have neuroprotective
effects will directly affect the selection of anesthesia for EVT
treatment. However, different results on the neuroprotective effects
of anesthetics have been shown in clinical trials and basic research.

In this paper, we describe the research status of anesthesia
in EVT in Part 1 and summarize the mechanisms related to the
neuroprotective effects of commonly used anesthetics in Part 2.
Then, we focus on the contradictory results between clinical trials
and basic research and discuss the causes of the heterogeneity in
Part 3. Finally, we provide a brief outlook on the neuroprotective
effects of anesthetics in the era of endovascular therapy.

Anesthetics may affect the
outcomes of EVT

With advances in stroke treatment, highly effective
thrombectomy devices are being used more widely for patients
with LVO (Wasselius et al., 2022). As a result, anesthetic drugs are
more widely available to stroke patients than ever before. However,
it remains unclear which type of anesthesia and what kind of
anesthetic drug used in EVT are better for reducing postoperative
complications and improving the prognosis.

General anesthesia or conscious
sedation

Thus far, the best anesthetic strategy during EVT is still a matter
of debate. GA and CS are the two main anesthetic methods used
in EVT. While allowing for immobility and airway control, GA
can delay endovascular treatments and may be associated with
hemodynamic instability. On the other hand, CS is faster and allows
for neurologic assessment during a procedure, but thrombectomy
can be less safe due to patient movement. As for which type of
an anesthesia is better for the prognosis of patients, the views are
constantly changing with the deepening of research. More than
10 years ago, a non-randomized retrospective study performed in
12 stroke centers in the United States demonstrated that GA was
related to poorer neurological outcomes after 3 months (OR = 2.33;
95% CI, 1.63–3.44; P < 0.0001) (Abou-Chebl et al., 2010). In
the same year, another study compared the safety and clinical
outcomes between GA with intubation and CS in a non-intubated
state (NIS). This study reported that a NIS was associated with
lower infarct volume (OR = 0.25, P = 0.004) and better clinical
outcomes (OR = 3.06, P = 0.042) (Jumaa et al., 2010). Although
the same conclusion was drawn in the subsequent meta-analysis,
the authors noted that patients receiving GA had higher average
National Institute of Health Stroke Scale (NIHSS) scores in the 6
studies included (Brinjikji et al., 2015). This finding means that
non-randomized retrospective studies have some methodological
limitations (Talke et al., 2014; van den Berg et al., 2015). The
stroke severity at baseline in the GA group and the CS group was
inevitably imbalanced because the anesthetic protocol was decided
by teams rather than by randomization (Albers et al., 2017). As a
result, the severity of stroke in the GA group would be more severe
than that in the CS group due to selection bias, which may have
prevented drawing correct conclusions (Brinjikji et al., 2015; van
den Berg et al., 2015).

Recently, a series of large-scale multicentre RCT studies on
this topic have been carried out (Goyal et al., 2016), and different
conclusions from previous retrospective studies have been drawn.
The authors found that the functional outcomes of patients
undergoing EVT after 3 months were similar in patients receiving
GA and those receiving CS (relative risk, 0.91; 95% CI, 0.69–
1.19), and even better recanalization was observed in the GA
group (Goyal et al., 2016). In a meta-analysis including 3 RCTs
[SIESTA (Schonenberger et al., 2016), ANSTROKE (Lowhagen
et al., 2017), and GOLIATH (Simonsen et al., 2018)] and 368
patients with AIS in the anterior circulation, the application of
GA during EVT was significantly associated with less disability on
the 90th day (OR = 1.58; 95% CI, 1.09–2.29; P = 0.02) than the
application of procedural sedation (Schonenberger et al., 2019).
This may be because GA provides a more comfortable environment
for the surgeon during EVT that will be safer and easier with a
motionless patient (Chen et al., 2009). Recently, Simonsen et al.
(2022) performed a mediator analysis to explore whether the
better outcome in patients receiving GA was mediated by better
recanalization and a higher reperfusion rate. Their meta-analysis
also included 3 RCTs and 368 patients [SIESTA (Schonenberger
et al., 2016), ANSTROKE (Lowhagen et al., 2017), and GOLIATH
(Simonsen et al., 2018)]. The mediator analysis demonstrated that
the indirect effect (i.e., better reperfusion) on outcome was small
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[risk difference (RD) = 0.03], and the direct effect of GA itself
on outcome was much more significant (RD = 0.12). Moreover,
they observed that even for non-reperfused patients, GA resulted
in a better outcome than CS (Simonsen et al., 2022). This finding
suggested the direct effects of GA, such as neuroprotection, as
the source of a better outcome. An RCT in patients undergoing
EVT where GA is induced by different anesthetic drugs could be
valuable.

Before a definite conclusion is drawn, either GA or CS seems
reasonable because GA and CS have their own advantages in
EVT (summarized in Table 1). The American Heart Association
and American Stroke Association guidelines advised selecting
an anesthesia technique during EVT according to clinical
characteristics, patient risk factors, and the technical performance
of the procedure rather than a fixed anesthesia technique
(Xie et al., 2016).

Different influences on haemodynamics

Improving collateral blood flow is a potential approach
to protect the penumbra before recanalization (ENOS Trial
Investigators, 2015; Savitz et al., 2019). Anesthetic agents can
directly affect vessels and endogenous regulatory mechanisms
(Nowak et al., 1984). Blood pressure reduction during EVT
could impair collateral perfusion (Froehler et al., 2012). At
present, there are no studies that have directly evaluated the
haemodynamic effects of different anesthetic drugs on patients
undergoing EVT. However, we can make some inferences from
past research. Therefore, here, we summarize the findings of some
past studies focusing on the effects of anesthetic drugs on cerebral
haemodynamics.

(1) It has been debated for many years whether ketamine can
be used as an anesthetic for neurologically compromised patients
(Gregers et al., 2020). Early studies in the 1970s and 1980s reported
that ketamine increased intracranial pressure (ICP), leading to a
reduction in cerebral blood flow (CBF) and oxygen supply (Evans
et al., 1971; List et al., 1972; Wyte et al., 1972; Nelson et al.,
1980). However, subsequent studies found that when combined
with propofol, ketamine (1.5, 3, and 5 mg.kg−1) could decrease
ICP in patients with traumatic brain injury (Albanese et al., 1997).
Subanaesthetic doses of ketamine increased regional cerebral blood
flow (rCBF) in the frontal cortex (25.4% increase from baseline,
P < 0.001) but did not change the regional metabolic rate of oxygen
(rCMRO2) (Langsjo et al., 2003). A recent meta-analysis including
11 studies with a total of 334 patients showed that there was no

TABLE 1 Comparison of the advantages of general anesthesia and
conscious sedation in EVT.

General anesthesia Conscious sedation

Improve procedural conditions
(Maurice et al., 2022)

Less haemodynamic instability (Davis
et al., 2012)

Facilitate airway management A shorter delay from arrival at the
neurointerventional suite to groin

puncture (Schonenberger et al., 2016)

Less pain, anxiety, and agitation and
low aspiration risk (Emiru et al., 2014)

Fewer ventilation-associated
complications (Takahashi et al., 2014)

evidence indicating that the application of ketamine worsened the
cerebral condition (Gregers et al., 2020). It is currently thought
that ketamine administration does not result in increased ICP
when used as a part of a typical modern anesthesia protocol,
and ketamine can be used safely in neurologically impaired
patients (Himmelseher and Durieux, 2005; Slupe and Kirsch, 2018).
However, no relevant studies have evaluated the safety of ketamine
in EVT.

(2) Hypotension is a common side effect of propofol. As a
result, the application of propofol in EVT necessitates higher
requirements for blood pressure control since a drop of more
than 40% in mean arterial blood pressure during EVT in GA
is an independent risk factor for poor neurological outcomes
(Lowhagen et al., 2015). Blood pressure is one of the determinants
of CBF. In a study where positron emission tomography (PET)
was used to quantify the effect of propofol on CBF and rCMRO2,
propofol reduced rCBF and rCMRO2 to approximately 60% of the
baseline at a concentration producing a bispectral index value of
40 (Slupe and Kirsch, 2018). Another similar study also showed
a roughly equal reduction in rCMRO2 and rCBF (Himmelseher
and Durieux, 2005), indicating that propofol could preserve the
regional ratio between rCBF and rCMRO2. Thus, propofol has
become an anesthetic in neurosurgical procedures (Gregers et al.,
2020), but the haemodynamics of propofol in EVT should be
further studied because haemodynamics do not change equally
across the whole brain during EVT. Previous study findings may
not apply to EVT.

(3) Volatile anesthetics such as sevoflurane and isoflurane have
an intrinsic cerebral vasodilatory effect (Matta et al., 1999) that
is related to the activation of adenosine triphosphate-sensitive
K+ channels (Iida et al., 1998). Unlike propofol, sevoflurane
and isoflurane at 1 minimum alveolar concentration (MAC) can
increase CBF but decrease CMRO2 (Oshima et al., 2003), and
this property may contribute partly to preventing postoperative
ischaemic stroke. A retrospective cohort study that included
314,932 patients undergoing GA showed that volatile anesthesia
was related to lower odds of postoperative ischaemic stroke
compared with total intravenous anesthesia by propofol (Raub
et al., 2021). However, in regard to application in EVT, the lesion
and CBF autoregulation caused by volatile anesthetics should be
considered. Autoregulation is a vasodilator reflex that maintains
CBF within the physiological range under normal circumstances
and helps build collateral blood supply around the ischaemic
core after stroke (Hoffmann et al., 2016). It was reported that
volatile anesthetics can impair autoregulation in rats and dogs
(Archer et al., 2017; Esposito et al., 2020) and have similar
effects in humans (Strebel et al., 1995; Goettel et al., 2016). It is
necessary to carry out further research on the effects of volatile
anesthetics.

Neuroprotection in EVT

During AIS, a sudden decrease in blood flow to the brain
area supplied by the blocked artery occurs, which is not uniform
across the whole ischaemic area. The ischaemic core is the area in
which < 20% of basal blood flow remains, and the penumbra is
defined as the area where approximately 40% of the basal blood
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flow is maintained by collateral circulation (Zhao et al., 1997). The
concept of neuroprotection involves preventing extraneuronal cell
death by protecting the salvageable penumbral region around the
ischaemic core after an ischaemic insult (Ginsberg, 2008). Although
decades of failures have been experienced in clinical trials on
neuroprotection, and none of the neuroprotective drugs have been
approved for treatment, numerous studies are still ongoing.

Endovascular thrombectomy within 24 h of symptom onset
could benefit patients with LVO (Berkhemer et al., 2015; Bracard
et al., 2016; Nogueira et al., 2018). However, nearly 50% of
patients may still undergo “futile recanalization” (Xu et al., 2020),
which means that the recanalization of the occluded vessel fails
to improve the neurological outcome (Nie et al., 2018). The
no-reflow phenomenon after EVT may be one of the causes
of futile recanalization. This phenomenon is defined as severe
tissue hypoperfusion despite timely recanalization of an occluded
artery, which may be due to abnormalities at the level of the
microvasculature. Microvascular obstruction from endothelial cell
swelling, pericyte contraction, luminal clogging with leukocytes
and microthrombi can impede the reperfusion after EVT because
EVT only clears blockages in large arteries (Nie et al., 2023).
In clinical studies, the incidence of the no-reflow phenomenon
after EVT has ranged from 25 to 38% (Ng et al., 2018; Rubiera
et al., 2020; Ter Schiphorst et al., 2021). Another important cause
of futile recanalization is cerebral ischaemia–reperfusion injury
(Stoll and Nieswandt, 2019). During reperfusion, reactive oxygen
species (ROS) are produced by the xanthine (XO) system, the
NADPH oxidase (NOX) system, and the mitochondrial enzymatic
system (Granger and Kvietys, 2015), leading to direct cellular
damage and indirect damage, such as inflammation. Moreover,
ROS can result in apoptosis and necrosis through lipid peroxidation
and DNA/RNA damage (Mizuma et al., 2018). A more detailed
mechanism is shown in Figure 1. Experimental studies showed
that transient middle cerebral artery occlusion (3-hour occlusion
and 3-hour reperfusion) in rats caused a larger infarct volume and
blood–brain barrier disruption than permanent middle cerebral
artery occlusion (6 h) (Yang and Betz, 1994). In clinical research,
a similar ischaemia–reperfusion injury was indirectly observed
in magnetic resonance imaging through a hyperintense acute
reperfusion marker (Warach and Latour, 2004), suggesting that
ischaemia–reperfusion injury also exists in humans. Therefore,
neuroprotective drugs are particularly needed in EVT.

According to the Stroke Therapy Academic Industry
Roundtable X (STAIR), in the current era of EVT, neuroprotective
agents need to work synergistically with endovascular therapy
to reduce ischaemia–reperfusion injury rather than work as
monotherapies (Savitz et al., 2019). Perhaps the treatment of stroke
is similar to precision surgery, which requires much cooperation.
Neuroprotection in the new era should be verified on the basis
of endovascular therapy. Therefore, many neuroprotective drugs
that failed in clinical trials are currently being revisited (Yang
et al., 2019). However, before that, anesthetics should be examined
first in EVT, since anesthetics will be confounding factors in the
validation of other drugs. For example, the neuroprotective effects
of a tested drug might be masked if anesthetics also act on the same
pathway.

The neuroprotective properties of
some anesthetic drugs in basic
research

Over the decades, accumulating evidence has displayed the
neuroprotective effects of anesthetic drugs involving multiple
mechanisms and pathways. Here, we have selected several
anesthetic drugs commonly used in clinical practice that have the
neuroprotective potential for a brief discussion. We focus more
on differences in the properties of different anesthetics and some
studies with contradictory findings that may explain why these
medicines “lose” their neuroprotective effects when used clinically.

Ketamine

Ketamine is a phenyl cyclohexylamine derivative that
consists of two optical enantiomers, (S)- and (R)- ketamine.
The anesthetic properties of ketamine are mainly attributed
to the direct inhibition of the N-methyl-D-aspartate receptors
(NMDARs). Other lower-affinity pharmacological targets of
ketamine include γ-aminobutyric acid (GABA) receptors,
dopamine receptors, serotonin opioid receptors, cholinergic
receptors, hyperpolarization-activated cyclic nucleotide-gated
channels, and so on (Paoletti et al., 2013). The mechanisms
of brain injury after stroke include excessive activation of
NMDARs, an imbalance in intracellular and extracellular calcium
concentrations, neuroinflammation, NO production, ROS
production, apoptosis, and so on (Campbell et al., 2019). Blocking
one of these mechanisms alone has only a limited effect. Studies
on ketamine have found that its neuroprotective mechanism also
involves multiple pathways and mechanisms.

N-methyl-D-aspartate receptors (NMDARs), ionotropic
glutamatergic receptors, are permeable to calcium ions (Ca2+).
These channels are blocked by magnesium at resting membrane
potentials. However, when they are depolarized, the magnesium
will be removed, and NMDAR conduction will be substantially
higher (Nowak et al., 1984). In pathological conditions such as
stroke, NMDAR overstimulation causes a series of Ca2+-dependent
cascades of events (shown in Figure 2), which ultimately lead to
neuronal demise. This process is excitotoxicity (Granzotto et al.,
2022). Ketamine is a non-competitive inhibitor of NMDARs, and
it can act on NMDARs in two ways. One is to block the open
channel directly; the other is to act on the binding site outside the
channel and indirectly affect NMDARs through an allosteric effect,
reducing the number and frequency of NMDAR openings (Orser
et al., 1997). In addition to the effects on NMDARs, ketamine
has also been reported to affect glutamate release. A recent study
showed that ketamine could reduce neuronal glutamate release by
stimulating presynaptic adenosine A1 receptors (Lazarevic et al.,
2021). However, other studies have demonstrated that ketamine
application increases synaptic glutamate release (Abdallah et al.,
2018; Lisek et al., 2017). This may be the result of differences in
experimental design as well as in measurement methods.

Spreading depolarization (SD) is a kind of pathological wave
that contributes to secondary lesions after stroke. The cumulative
effect of many SDs is the same as a single persistent depolarization,
leading to cell death and delayed lesions (Hartings et al., 2017).
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FIGURE 1

Pathological changes after endovascular thrombectomy (EVT).

It has been proven that ketamine can suppress SD in acute
brain injury (Carlson et al., 2018). In a retrospective international
multicentre analysis, the administration of ketamine was associated
with a reduction in spreading depolarizations (OR = 0.38; 95%
CI, 0.18–0.79; p = 0.01) (Hertle et al., 2012). Moreover, Reinhart
and Shuttleworth (2018) found that applying a lower concentration
of ketamine (30 µM, brain slice) does not completely prevent SD
but prevents its damaging consequences and retains the potential
protective effect of SD. This finding is consistent with the study
by Shu et al. (2012) in which they found that low-dose ketamine
(25 mg.kg−1, intraperitoneal injection in rats) has a smaller
infarct volume than high-dose ketamine (50 or 100 mg.kg−1,
intraperitoneal injection in rats) in the treatment of stroke.
However, there are also studies drawing contradictory conclusions.
Some studies have shown that higher doses (60 and 90 mg.kg−1,
intraperitoneal injection in rats) of ketamine improve neurological
outcomes, but low doses do not (Reeker et al., 2000; Proescholdt
et al., 2001). This difference may be associated with the different
properties of R-ketamine and S-ketamine. Studies on S-ketamine
tended to use high doses (Reeker et al., 2000; Proescholdt et al.,
2001), whereas R-ketamine showed neuroprotective effects at low
doses (Xiong et al., 2020). In an ongoing study in our laboratory,
S-ketamine also initially showed a dose-dependent effect. The
specific mechanism is being further studied.

Neuroinflammation and apoptosis are not only the result of
the loss of ion homeostasis caused by NMDAR overactivation
but also the cause of neuronal cell death. Ketamine has been
proven to inhibit neuroinflammation (Tanaka et al., 2013; Liu

et al., 2016; Wang et al., 2021) and apoptosis (Engelhard et al.,
2003; Shu et al., 2012; Qi et al., 2020). Inflammatory factors and
apoptosis-related molecules are dynamically changed in stroke
patients. They not only change with time but also change drastically
after recanalization in EVT. The timing and method of ketamine
administration can significantly impact the outcome. In mice,
applying ketamine by intraperitoneal injection immediately after
ischaemia onset could not remarkably induce a significant change
in infarct volume. However, injection immediately after the onset
of ischaemia–reperfusion significantly reduced infarct volume
(Xiao et al., 2012). Similarly, a preclinical study has shown that
ketamine dramatically reduced infarct volume when combined
with IV-rtPA. However, ketamine alone could not achieve this
effect (Gakuba et al., 2011), which might be related to the
upregulation of NMDARs after ischaemia–reperfusion (Sutcu et al.,
2005). Many studies have confirmed that NMDARs are related
to ischaemia–reperfusion injury, and antagonizing NMDARs can
reduce ischaemia–reperfusion injury (Kaur et al., 2016; Xie et al.,
2016; Singh et al., 2017). Using ketamine in combination with
IV-rtPA may be a promising way to extend the time window of
IV-rtPA. However, routine treatment with rtPA does not require
the use of ketamine. In regard to EVT, anesthetic drugs are
routinely used. If relevant studies could confirm that ketamine
can reduce ischaemia–reperfusion injury and prolong the time
window of EVT application, it will change the current situation
where anesthesia during EVT is based on the experience and
habits of anesthesiologists and lead to a better prognosis for
patients.
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FIGURE 2

Overview of the mechanisms of injury after stroke and the targets of anesthetics. KET, ketamine; Pro, propofol; Sevo, sevoflurane; Iso, isoflurane.

Propofol

Propofol is a widely used intravenous agent. Experimental
studies have shown that propofol might protect the brain from
ischaemic stroke (Bayona et al., 2004; Ulbrich et al., 2016; Wang
et al., 2016). When propofol is used as an anesthetic drug for
the induction and maintenance of anesthesia, it mainly acts by
activating γ-aminobutyric acid (GABAA) receptors (Walsh, 2018).
However, the function of GABAA receptors in neuroprotection is
complicated.

γ-aminobutyric acid (GABA) signaling has two forms. Tonic
GABA signaling is a form of extrasynaptic GABA receptor-
mediated inhibition. Reducing excessive GABA-mediated tonic
inhibition promoted the recovery of motor function after stroke
(Clarkson et al., 2010), indicating that excessive tonic inhibition is
detrimental to the recovery of function. One of the interpretations
was that the cortical hypometabolism caused by excessive astrocytic
GABA would prevent functional recovery (Nam et al., 2020). At
clinically relevant concentrations, propofol can affect extrasynaptic
GABA receptors, although the effect is small (Wakita et al., 2013).
Thus, propofol mainly affects the GABA receptors at the synapse
rather than the extrasynaptic GABA receptors, which mediate a
classic form of inhibition called phasic GABAergic inhibition. In
the acute phase of stroke, enhancing phasic GABAergic inhibition
can reduce excitotoxic neuron death (Lyden and Hedges, 1992;
Green et al., 2000). Similarly, motor function can be improved
when a GABA-positive allosteric modulator is used to enhance
phasic GABAergic signaling during the repair phase (Hiu et al.,

2016). However, due to the lack of direct evidence, further research
on whether propofol exerts neuroprotective effects by enhancing
phasic GABAergic signaling is needed.

Many studies have demonstrated the anti-apoptosis and anti-
inflammation characteristics of propofol (Kotani et al., 2008; Fan
et al., 2015; Peng et al., 2020; Qi et al., 2020). In addition to
these classic effects, propofol has several other properties. It has
a similar chemical structure to antioxidant substances such as
vitamin E. It was reported that propofol could scavenge ROS,
inhibit the generation of free radicals, and reduce lipid peroxidation
to protect the brain from oxidative injury (Cheng et al., 2002;
Kobayashi et al., 2008). Moreover, cell ferroptosis is one of the cell
death processes correlated with overwhelming lipid peroxidation
and cellular ROS. Recently, it was revealed that propofol may
help attenuate ferroptosis in HT-22 cells treated with a ferroptosis
activator (Erastin) (Xuan et al., 2022), providing a new therapeutic
method to treat cerebral ischaemia. However, when used in cancer
therapy, propofol appeared to enhance ferroptosis (Zhao and Chen,
2021; Zhao et al., 2022). Further study of the two opposing effects
of propofol on ferroptosis is needed. Parthanatos is another form
of programmed cell death induced by ROS. Zhong et al. (2018)
found that propofol could inhibit parthanatos by impeding calcium
release from the endoplasmic reticulum, ROS overproduction, and
mitochondrial swelling.

As mentioned earlier, the excitotoxicity caused by glutamate
and NMDARs has an essential impact on cerebral ischaemic injury.
Propofol could inhibit NMDARs in some studies (Wu et al.,
2018; Zhou et al., 2018), but the doses of propofol they used
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in their experiments exceeded clinically relevant concentrations.
Another study on the effects of propofol on NMDAR-mediated
calcium increase in neurons revealed that the overall effects of
propofol were minor when the propofol concentration was at
clinically relevant concentrations (Grasshoff and Gillessen, 2005).
Therefore, the neuroprotective effect of propofol may be partly
through the inhibition of NMDARs, but that is not the primary
mechanism. Moreover, propofol may prevent excitotoxicity in
other ways. Numerous studies have demonstrated that propofol
can reduce glutamate concentrations during cerebral ischaemia
by decreasing glutamate release (Ratnakumari and Hemmings,
1997; Lingamaneni et al., 2001) and increasing glutamate uptake

(Cai et al., 2011; Gong et al., 2016). However, the glutamate
concentration may not necessarily play a decisive role in the
neuroprotective effect of propofol. Yano et al. (2000) found that
propofol and Intralipid (a vehicle for propofol) could similarly
reduce glutamate increase in CA1. In contrast, propofol, but not
Intralipid, alleviated delayed CA1 neuron death when administered
intracerebroventricularly in a transient global forebrain ischaemic
model (Yano et al., 2000).

Hypothermia has been demonstrated to be an
effective way to alleviate the damage caused by stroke
(Gonzalez-Ibarra et al., 2011). When the ischaemic cascade is
activated, therapeutic hypothermia can alleviate central nervous

TABLE 2 Clinical studies on the neuroprotective effects of propofol, ketamine, sevoflurane and isoflurane.

References Research
type

Comparison of drug
treatment

Experimental subjects Outcomes

Bhutta et al., 2012 RCT (n = 24) Ketamine (2 mg.kg−1) vs. placebo
(saline)

Infants undergoing
cardiopulmonary surgery

No evidence for neuroprotection or
neurotoxicity.

Loo et al., 2012 RCT (n = 46) Ketamine (0.5 mg.kg−1) or placebo
(saline)

Patients undergoing
electroconvulsive therapy

Slight improvement in the first week of
treatment.

Nagels et al., 2004 RCT (n = 106) S (+)-ketamine (2.5 mg.kg−1) vs.
remifentanil

Patients undergoing open-heart
surgery

No greater neuroprotective effects than
with remifentanil.

Hudetz et al., 2009 RCT (n = 26) Ketamine (0.5 mg.kg−1) vs. placebo
(saline)

Patients undergoing open-heart
surgery

Ketamine attenuated POCD 1 week
after cardiac surgery.

Guo et al., 2019 RCT (n = 60) Propofol (1.2 µg.ml−1 , TCI, plasma
target concentration) vs. 0.5–2%
sevoflurane

Patients undergoing aneurysm
clipping

Propofol may protect the brain from
oxidative stress injury up to 7 days.

Tanguy et al., 2012 RCT (n = 59) Propofol (depending on the
procedure requirements) vs.
midazolam (depending on the
procedure requirements)

Patients with severe traumatic
brain injury

Results did not support a difference
between propofol and midazolam for
sedation in traumatic brain injury.

Kanbak et al., 2004 RCT (n = 20) Isoflurane (1 to 1.5% until CPB and
0.5 to 1% during CPB) vs. propofol
(6 mg.kg −1 .h−1 until CPB and
3 mg.kg−1 .h−1 during CPB)

Patients undergoing coronary
artery bypass grafting

Propofol appeared to offer no advantage
over isoflurane for cerebral protection
during cardiopulmonary bypass.

Schoen et al., 2011 RCT (n = 128) Propofol (3–5 mg.kg−1 .h−1) vs.
sevoflurane (0.6-1MAC)

Patients undergoing on-pump
cardiac surgery

Sevoflurane-based anesthesia was
associated with better short-term
postoperative cognitive performance
than propofol.

Mahajan et al., 2014 RCT (n = 66) Propofol (attain a burst suppression
ratio of 75± 5% in bispectral index
monitoring) vs. placebo (saline)

Patients undergoing temporary
clipping during intracranial
aneurysm surgery

Propofol did not offer any
neuroprotective effects on improving
postoperative cognition.

Roach et al., 1999 RCT (n = 225) Propofol (computer-assisted
continuous infusion titrated to
achieve EEG burst suppression) and
sufentanil (5 µg.kg−1) vs. sufentanil
(5 µg.kg−1)

Patients undergoing cardiac
valve replacement

Propofol did not significantly reduce the
incidence or severity of neurologic or
neuropsychologic dysfunction.

Wu B. et al., 2019 RCT (n = 80) Propofol (depending on the
procedure requirements) vs.
dexmedetomidine (depending on the
procedure requirements)

Patients undergoing
endovascular therapy

This study did not show any difference
between propofol and
dexmedetomidine in good outcomes or
in-hospital mortality.

Yoon et al., 2020 RCT (n = 152) Sevoflurane vs. no intervention Patients with moyamoya disease
undergoing revascularization
surgery

Sevoflurane postconditioning did not
reduce the incidence of SCH after
revascularization surgery in patients
with moyamoya disease.

Dabrowski et al.,
2012

Observational study
(n = 128)

Sevoflurane vs. isoflurane vs. control Patients undergoing coronary
artery bypass graft surgery

Isoflurane and sevoflurane reduced
brain injury markers such as plasma
matrix metalloproteinase-9 and glial
fibrillary acidic protein.

POCD, postoperative cognitive dysfunction; CPB, cardiopulmonary bypass.
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system hyperexcitability by reducing extracellular levels of
excitatory neurotransmitters such as dopamine and glutamate.
Hypothermia also protects the brain from ischaemic injury by
reducing cerebral blood flow, oxygen and glucose consumption,
and metabolic rate. The decrease in cerebral metabolic demands
results in slower enzyme activity, allowing Adenosine triphosphate
(ATP) stores to be preserved (Otto, 2015). When used in GA,
propofol can induce heat redistribution from the core to the
periphery by impairing thermoregulatory vasoconstriction and
preventing shivering (Noguchi et al., 2002). However, it is difficult
to quantify the extent to which the decrease in body temperature
caused by propofol plays a role in its neuroprotective effect. This
is because in basic experiments, we often use holding devices
to ensure that the body temperature of the animals is constant
and to prevent the neuroprotective effects of hypothermia from
interfering with the experiment. In the context of temperature
control, there are still basic research studies that confirm the
neuroprotective effect of propofol (Fan et al., 2022).

The neuroprotective effect of propofol involves multiple
mechanisms, but whether propofol can improve the long-term
prognosis of stroke is uncertain. A study found that using propofol
to treat cerebral ischaemia can significantly enhance the infarct
volume and motor function on the third day after treatment.
However, there was no difference in infarct volume on the 21st
day in the propofol group compared with the control group
(Bayona et al., 2004). In addition, in a preclinical trial of propofol
combined with IV-rtPA, propofol failed to reduce infarct size
after thrombolysis (Gakuba et al., 2011). Some clinical studies did
not support the neuroprotective effect of propofol (as shown in
Table 1). The reasons for this difference will be discussed in detail
in the second part.

Sevoflurane and isoflurane

Sevoflurane and isoflurane are both commonly used volatile
anesthetics for the induction and maintenance of GA. The targets
of these inhaled anesthetics include but are not limited to
GABARs, NMDARs, and TWIK-related K+ channels (TREK-1)
(Orser et al., 2019). As mentioned before, NMDARs play a vital
role in excitotoxicity. Although volatile anesthetics can protect
against excitotoxicity partly by inhibiting NMDARs, the efficiency
of volatile anesthetics is less than selective NMDAR antagonism
(Kudo et al., 2001). Thus, the neuroprotective effect of volatile
anesthetics partly contributes to NMDAR inhibition, but this is not
the main mechanism.

Some existing studies have indicated that sevoflurane and
isoflurane can reduce ischaemia and ischaemia–reperfusion injury
by affecting inflammatory and apoptotic processes (Bedirli et al.,
2012; Hwang et al., 2017; Zhang and Zhang, 2018; Yang et al.,
2022). A recent review of the neuroprotective mechanisms of
sevoflurane and isoflurane specifically summarized how they affect
classic inflammatory and apoptotic pathways (Neag et al., 2020).
However, not all reports about inhaled anesthetics are positive
(Zhang et al., 2016; Wu et al., 2020). Orset et al. (2007) developed
a mouse model of thromboembolic stroke that is closer to
the physiological situation than traditional stroke models. Then,
Gakuba et al. (2011) used this model to assess the different effects

of the combination of anesthetics and IV-rtPA on the infarct
volume. Unexpectedly, isoflurane and propofol failed to enhance
the benefits brought by rtPA-induced thrombolysis (Gakuba et al.,
2011). Moreover, sevoflurane applied in different models can even
have the opposite effect. When used in rats that were subjected
to brain hypoxia-ischaemia, sevoflurane could protect the brain
by inhibiting apoptosis (Ren et al., 2014). However, sevoflurane
showed neurotoxicity and tended to exacerbate apoptosis when rat
pups were exposed to it for as long as 4 h (Shan et al., 2018).

Therefore, it seems that simply evaluating whether a drug is
neuroprotective is unscientific. The protective effect is based on a
specific environment, and the application of the same medication
to different subjects at different doses can even produce opposite
effects. For example, the effects of anesthetic drugs on NMDARs,
GABARs, or some other receptors may be detrimental in some
patients but may reduce excitotoxicity in patients experiencing
cerebral ischaemia. The narrow concept of neuroprotection is based
on the condition of ischaemia, and it is a process that reduces
brain injury after the onset of stroke (Ginsberg, 2008). Therefore,
our clinical research on the neuroprotective effects of anesthetics
should be precisely linked to stroke. However, many clinical studies
in the past have used other diseases and surgeries to study the
neuroprotective effects of anesthetics (summarized in Table 2). Past
studies may not accurately evaluate the neuroprotective effect of
anesthetic drugs.

The considerable gap between
clinical trials and basic research

Patients undergoing endovascular therapy need GA or CS to
undergo the procedure. However, there are few guidelines to help
in the selection of anesthetic drugs. Although the findings from
many basic research studies support the neuroprotective effects of
anesthetics (Sanders et al., 2005), the results are ambiguous when
evaluating anesthetic neuroprotective effects in clinical trials. Here,
two authors independently searched PubMed and Medline for
randomized controlled trials published between 1 January 1995 and
1 September 2021, using the permutation and combination of the
keyword terms “neuroprotective,” “neuroprotection,” “ischaemia,”
“ketamine,” “propofol,” “sevoflurane,” and “isoflurane”; excluded
the studies that were not relevant to the theme of this paper after
discussion; and finally summarized the results in Table 2. We
can see in Table 2 that the conclusions of these clinical trials are
not unified, and some are even contradictory. Here, we discuss
why there is a considerable gap between clinical trials and basic
research.

Defects in basic research

According to the STAIR criteria (Fisher et al., 2009), a
large number of studies on neuroprotection seem to exhibit low
methodological quality. Here, we summarize some common defects
in research on the neuroprotective effects of anesthetics.

(1) Some basic research focuses more on infarct volume (Shu
et al., 2012; Xiong et al., 2020) than on subsequent outcome several
months later, which is commonly evaluated through the modified
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Rankin Scale (mRS) in clinical trials (Saver et al., 2021). The latest
STAIR trial advised that the main endpoints should include not
only infarct volume but also behavioral outcomes, gray versus white
matter protection, and the potential negative effects of the agent
tested (Savitz et al., 2019).

(2) Another problem is the incompatibility between the doses
of medicine used in basic research and those used in clinical
practice. Due to receptor affinity, some drugs that show significant
neuroprotective effects at concentrations higher than clinically
applied often fail to improve patient prognosis after entering
clinical studies (Muir, 2006; Morgan et al., 2012), and their clinical
application value is limited.

(3) Basic research studies pay more attention to whether an
anesthetic drug has a neuroprotective effect, so they tend to
determine the timing when the phenomenon is most obvious
through preliminary experiments and then proceed from there
(Zhou et al., 2013; Yang et al., 2018). However, clinical practice
has more demand for the time window of drug application since
patients suffering from stroke have a variable duration of ischaemia.
If the time window of a drug is very narrow or the time of
administration and the method of administration is unrealistic
(Saver et al., 2021), its clinical significance is still limited even if a
positive result is obtained.

(4) Transient middle cerebral occlusion (tMCAO) is the
most widely used model of stroke and has advantages in the
study of reperfusion injury. With the continuous development of
endovascular therapy, it is increasingly important to research how
to reduce ischaemia/reperfusion injury and promote prognosis.
However, there is still a large number of patients without
vessel recanalization (Yoshimura et al., 2014), which is closer
to permanent middle cerebral occlusion (pMCAO). When we
evaluate the neuroprotective effects of drugs, pMCAO should also
be taken into consideration (McBride and Zhang, 2017).

(5) Sex and age have long been neglected factors. A meta-
analysis including 80 publications compared the neuroprotective
effects of anesthetics in animals of different sexes and aged animals.
It showed neuroprotective effects in female and aged animals
(Archer et al., 2017). Although it was based on a post hoc analysis
and a small number of studies, this meta-analysis raised a thought-
provoking question: Are normal male animals appropriate animals
in which to simulate human stroke?

(6) Clinical trials mostly test neuroprotectants in active,
awake patients. In five large clinical trials of neuroprotectants
involving 9,560 patients, only 664 had suffered night-time strokes
(Esposito et al., 2020). However, rodent tests are always performed
during the day, when they are inactive. The opposite circadian
rhythm of rodents to that of humans impacts the effectiveness of
neuroprotectants, which may be one reason for translational failure
(Esposito et al., 2020; Boltze et al., 2021). Some moderate-quality
studies have shown that anesthetic drugs affect circadian rhythms
(Orts-Sebastian et al., 2019; Imai et al., 2020; Wang et al., 2020).
Therefore, the influence of circadian rhythm must be considered
for translational studies on anesthetic neuroprotection.

The transient effects of anesthetic drugs

Common anesthetic drugs such as propofol, ketamine,
and volatile anesthetics all have a short half-life in humans

(Freiermuth et al., 2016; Peltoniemi et al., 2016; Sahinovic et al.,
2018), which is an advantage in fast recovery after anesthesia.
However, in regard to neuroprotection, the transient effects
of anesthetic drugs may become a disadvantage because some
injurious factors can last for a long time. For example, the elevation
of excitatory amino acid (EAA) concentrations in MCAO lasts
only 1–2 h (Takagi et al., 1993; Baker et al., 1995); however,
in humans with AIS, glutamine increase may persist for 24 h
or longer (Bullock et al., 1995; Davalos et al., 1997). Moreover,
microglial cells, a type of immune cell in the brain, peak in
activity 2–3 days after injury (Barthels and Das, 2020), and they
can release variable inflammatory factors that lead to secondary
injury around the ischaemic core (Yenari et al., 2010). As a result,
the injurious factors are still in effect after the neuroprotective
effects of anesthetics have passed. In addition, the compensatory
function of patients is established within several months after
suffering a stroke. This may be the reason why the neuroprotective
effect of anesthetic drugs is not significant when we evaluate the
recovery of neurological function of patients after several months
in clinical studies. In the future, we may be able to introduce some
therapies suitable for long-term use to restrict damage-causing
factors. Electroacupuncture may be an option. Electroacupuncture,
an extension of traditional acupuncture, is used as a complementary
treatment with minimal side effects (Wei et al., 2016). Studies
have shown that electroacupuncture can attenuate inflammation
after ischaemic stroke by inhibiting the activation of microglia
(Liu et al., 2020), improving cerebral blood flow, and alleviating
neurological deficits (Zheng et al., 2016). As anesthetic drugs are
not suitable for prolonged use after EVT, electroacupuncture can
be used as an adjunctive technique to help reduce ischaemia–
reperfusion injury after recanalization and to promote functional
recovery. However, the reporting quality of randomized controlled
trials on electroacupuncture for stroke is generally moderate, and
further improvement is needed (Wei et al., 2016).

Heterogeneity in experimental subjects

In MCAO, a filament is sent into the middle cerebral
artery from the internal or external carotid arteries to mimic
stroke, and it allows reperfusion through the withdrawal of
the filament (Smith et al., 2015). This kind of reperfusion is
different from the pathophysiology of thrombolysis in human
stroke because the blood flow is restored promptly. Compared
with thrombolysis, MCAO more closely simulates the clinical
situation of mechanical thrombectomy (Sommer, 2017). However,
past clinical studies on the neuroprotective effects of anesthetic
agents were based neither on patients undergoing thrombolysis
nor on those undergoing mechanical thrombectomy. As shown in
Table 2, a large part of the past clinical research is based on other
operations or diseases that may cause cerebral ischaemia, such as
heart surgery and intracranial aneurysm surgery. These studies are
not sufficiently convincing to evaluate whether anesthetic drugs
have neuroprotective effects because most of these surgeries cause
only transient ischaemia and postoperative cognitive dysfunction,
which cannot cause large areas of brain tissue necroptosis such as
stroke.

In addition, stroke is a heterogeneous disease with diverse
additive risk factors (Caprio and Sorond, 2019). Although strict
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inclusion and exclusion criteria and grouping can reduce the effect
of patient heterogeneity, the heterogeneity of patients in clinical
studies is still more significant than that in animal models. The
emergence of EVT provides a good translational platform for drugs
that exhibit neuroprotective effects in the MCAO model. Among
patients undergoing EVT, we were able to screen out patients
with similar proximal intracranial artery occlusion by Computed
Tomography (CT) and angiography, in which the heterogeneity of
haemodynamics will be smaller and the haemodynamic changes
will be much closer to those of MCAO.

There are already large multicentre, double-blind, randomized
controlled trials of neuroprotective drugs in EVT patients (Hill
et al., 2020). In the future, more rigorous basic research and
clinical trials based on EVT will more rationally evaluate the
neuroprotective effects of anesthetics. Regardless of the outcome,
this research will provide more conclusive answers to decades-old
questions on the neuroprotective effects of anesthetics.

Conclusion

Anesthetics have great potential in neuroprotection, involving
various mechanisms such as excitotoxicity, SD, inflammation,
apoptosis, and ischaemia–reperfusion injury, but this has not been
clearly observed in previous clinical trials due to the mismatch
between basic research and clinical trials. The emergence of EVT
has brought new hope to the study of the neuroprotective effects
of anesthetics that once had been shelved. EVT might become a
bridge connecting basic and clinical research. Anesthetics have long
been confounding factors in translational stroke research. With
an increasing number of neuroprotective techniques coming into
clinical trials (Baker et al., 1995; Davalos et al., 1997; Sahinovic et al.,
2018), it is necessary to determine the effects of anesthetics during
EVT, and anesthetists also need a definitive study to guide clinical
anesthetic administration.
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