
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANO. 11, NOVEMBER 1991 1147

A Retrospective on the VAX VMM Security Kernel
Paul A. Karger, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMember, IEEE, Mary Ellen Zurko, Douglas W. Bonin, Andrew H. Mason,

and Clifford E. Kahn

Abstract-This paper describes the development of a virtual-
machine monitor (VMM) security kernel for the VAX archi-
tecture. The paper particularly focuses on how the system’s
hardware, microcode, and software are aimed at meeting Al-level
security requirements while maintaining the standard interfaces
and applications of the VMS and ULTRIX-32 operating systems.
The VAX Security Kernel supports multiple concurrent virtual
machines on a single VAX system, providing isolation and con-
trolled sharing of sensitive data. Rigorous engineering standards
were applied during development to comply with the assurance
requirements for verification and configuration management.
The VAX Security Kernel has been developed with a heavy
emphasis on performance and system management tools. The
kernel performs sufficiently well that much of its development
was carried out in virtual machines running on the kernel itself,
rather than in a conventional time-sharing system. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Index Terms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- Computer security, virtual machines, covert
channels, mandatory security, discretionary security, layered de-
sign, security kernels, protection rings.

I. INTRODUCTION

HE VAX Security Kernel project was a research effort T to determine what is required to build a production-
quality security kernel, capable of receiving an A1 rating
from the National Computer Security Center (NCSC). A
production-quality security kernel is very different from the
many research-quality security kernels that have been built
in the past, and this effort has been primarily aimed at
identifying the differences and their cost in development effort
and kernel complexity. While the VAX Security Kernel was a
technical success, underwent a highly successful external field
test, and had many interested potential customers, the Digital
Equipment Corporation chose not to bring it to market.

This paper describes how the VAX Security Kernel met its
five major goals:

Meet all A1 security requirements (described below)
Run on commercial hardware without special modifica-
tions other than microcode changes for virtualization
Provide software compatibility for applications written for
both the VMS and ULTRIX-32 operating systems
Provide an acceptable level of performance
Meet the requirements of a commercial software product.

Manuscript received November 1, 1990; revised July 15, 1991. Recom-

P.A. Karger is with the Open Software Foundation, 11 Cambridge Center,

M. E. Zurko, D. W. Bonin, and C. E. Kahn are with the Digital Equipment

A. H. Mason is with the Digital Equipment Corporation, Spit Brook Road,

IEEE Log Number 9103531.

mended by T. F. Lunt and D. Cooper.

Cambridge, MA 02142.

Corporation, 295 Foster Street, Littleton, MA 01460.

Nashua, NH 03063.

Attempting to meet all of these goals, represented a very
ambitious undertaking, because no system had ever simulta-
neously met the security, performance, and software compati-
bility goals. Indeed, very few systems have ever met just the
security goal, as most so-called secure systems have proven
to be easily penetrable [l].

11. BACKGROUND

This section presents a brief summary of the basics of
computer security as background for the remainder of the
paper. Most secure systems are based on an abstract notion
of subjects and objects. The secure system must mediate
access requests from the subjects, typically users or processes,
to the objects that contain information, typically files, or
memory. This section outlines the concepts of discretionary
and mandatory controls and describes how the NCSC evaluates
allegedly secure systems. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. Discretionary and Mandatory Security Controls

Discretionary access controls are the commonly available
security controls found in most operating systems. They are
called discretionary, because the access rights to an object
may be determined at the discretion of the owner or controller
of the object. Both access-control-list and capability systems
are examples of discretionary access controls. The presence
of Trojan horses in applications software can cause great
difficulties with discretionary controls, because a Trojan horse
could surreptitiously change the access rights on an object or
could make a copy of protected information and give that copy
to some unauthorized user. All forms of discretionary controls
are vulnerable to this type of Trojan-horse attack. A Trojan
horse in an access-control-list system could surreptitiously
change the ACL of an object. A Trojan horse in a capability
system could make a copy of a capability for a protected
object, and then store that capability in some other object to
which a penetrator would have read access. In both cases, the
information is disclosed to an unauthorized recipient.

Lampson [2] has defined the confinement problem as de-
termining whether there exists a series of operations in a
security system that will ultimately leak some information to
some unauthorized individual. Harrison et al. [3] have shown
that there is no solution to the confinement problem for fully
general, discretionary access controls, such as either a general
access-control-list or capability system. Their argument is
based on modeling the state transitions of the access control
lists as the state transitions of a Turing machine. They show
that solving the confinement problem is equivalent to solving
the Turing-machine halting problem.

0098-5589/91$01.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1991 IEEE

1148 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANO. 11, NOVEMBER 1991

The paths over which a Trojan horse leaks information are
called zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcovert channels. Covert channels can be divided into
two major categories: storage channels and timing channels.
Information can be leaked through a storage channel by
changing the values of any of the state variables of the
system. Thus contents of files, names of files, and amount
of disk space used are all examples of potential storage
channels. A Trojan horse can leak information through a
storage channel in a purely asynchronous fashion. There are
no timing dependencies.

By contrast, information can be leaked through a timing
channel by modifying the length of time that system functions
take to complete. For example, a Trojan horse could encode
information into deliberate modifications of the system page-
fault rate. Timing channels all use synchronous communication
and require some form of external clocking.

Mandatory access controls have been developed to deal with
the Trojan horse problems of discretionary access controls. The
distinguishing feature of mandatory access controls is that the
system manager or security officer may constrain the owner
of an object in determining who may have access rights to
that object.

Lipner [4] and Denning [5] have shown that for lattice
security models, unlike for fully general access matrices, it
is possible to solve the confinement problem. All mandatory
controls, to date, have been based on lattice security models.

A lattice security model consists of a set of access classes
that form a partial ordering. Any two access classes may be
less than, greater than, equal to, or not ordered with respect to
one another. Two access classes that are not ordered are called
disjoint. Furthermore, there exists a lowest access class, called
system low, such that system low is less than or equal to all
other access classes, and there exists a highest access class,
called system high, such that all other access classes are less
than or equal to system high.

A very simple lattice might consist of two access classes:
LOW and HIGH. LOW is less than HIGH. LOW is system
low, and HIGH is system high. A slightly more complex ex-
ample might be a list of secrecy levels, such as UNCLASSI-
FIED, CONFIDENTIAL, SECRET, and TOP SECRET. Each
level in the list represents data of increasing secrecy.

There is no requirement for a strict hierarchical relationship
between access classes. The U.S. military services use a set of
access classes that have two parts: a secrecy level and a set of
categories. Categories represent compartments of information
for which an individual must be specially cleared. To gain
access to information in a category, an individual must be
cleared, not only for the secrecy level of the information,
but also for the specific category. For example, if there
were a category NUCLEAR, and some information classified
SECRET-NUCLEAR, then an individual with a TOP SECRET
clearance would not be allowed to see that information, unless
the individual were specifically authorized for the NUCLEAR
category.

Information can belong to more than one category, and
category comparison is done using subsets. Thus in the military
lattice model, for access class A to be less than or equal to
access class B, the secrecy level of A must be less than or

equal to the secrecy level of B, and the category set of A
must be an improper subset of the category set of B. Since
two category sets may be disjoint, the complete set of access
classes has only a partial ordering. There is a lowest access
class, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ UNCLASSIFIED-no categories}, and a highest access
class, {TOP SECRET-all categories}. The access classes made
up of levels and category sets form a lattice.

B. Overview of NCSC Criteria

The NCSC has developed computer security evaluation
criteria [6] to aid DoD agencies in the procurement of se-
cure computer systems. The criteria divide computer security
systems into four major divisions, with classes within those
divisions. Computer vendors submit their operating systems
to the NCSC for design assistance and ultimately formal
evaluation against the criteria. A number of commercially
available systems have been successfully evaluated against the
criteria. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAt least one commercial system has been evaluated
in each of the four major divisions.

Division D: Minimal Protection. This division con-
tains only one class. It i s reserved for those systems that
have been evaluated, but that fail to meet the requirements
for a higher evaluation class.
Division C: Discretionary Protection. Classes in this
division provide for discretionary (need-to-know) protec-
tion:
Class (CI): Discretionary Security Protection: Class (Cl)
systems provide a minimal set of security features to
separate users and their data. Most conventional time-
sharing systems fall into this class.
Class (C2): Controlled Access Protection: Class (C2)
systems require a finer grained control system than class
(Cl) systems. For example, simple owner/group/world
protection schemes would be unacceptable at class (C2).
Class (C2) systems must also provide improved audit
trails and login control procedures.
Division B: Mandatory Protection. Classes in this
division provide an implementation of the mandatory
lattice security model:
Class zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(BI): Labeled Security Protection: Class (Bl) sys-
tems must label all storage objects and enforce the
lattice security model on those objects. However, covert
channels are not addressed in this class.
Class (B2): Structured Protection: Class (B2) systems
must label all system resources (as opposed to only
storage objects), and must show that covert channels
have either been eliminated or bandwidth limited. Also,
a trusted communications path between the user and the
system must provide two-way authentication.
Class (B3): Security Domains: Class (B3) systems are
required to isolate the security functions from the rest of
the operating system, typically into some form of security
kernel. At this class, access control lists are explicitly
required. An informal descriptive top-level specification
(DTLS) of the design is required.
Division A: Verified Protection. Division A systems
are characterized by the use of formal mathematical meth-

U R G E R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAel al.: THE VAX VMM SECURITY KERNEL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1149

Fig. 1. VAX VMM Security Kernel configuration.

ods to assure correctness of design and implementation: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Class (AI): Verijied Design: Class (Al) systems require
the preparation and verification of a mathematically for-
mal top-level specification (FTLS) of the security kernel
design. Informal techniques must be used to show cor-
respondence between the FTLS and the implemented
software.
Beyond Class (AI) : Classes beyond A1 will probably
require formal verification of the code of the security
kernel and some considerations of microcode and hard-
ware correctness. However, constructing systems at this
level of security is still beyond current technology, so
requirements have not yet been stated.

111. KERNEL OVERVIEW

The VAX Security Kernel is a virtual-machine monitor that
runs on the VAX 8530, 8550, 8700, 8800, and 8810 proces-
s0rs.l It creates isolated virtual VAX processors, each of which
can run either the VMS or ULTRIX-32 operating system.
If desired, virtual machines running each of the operating
systems can run simultaneously on the same computer system.2

'The VMM does not run on VAX 8820, 8830, or 8840 processors, due to

*At least one virtual machine must always run the VMS operating system,
microcode and console differences.

to carry out certain system management functions.

The VAX architecture was not virtualizable, and therefore
extensions were made to the architecture and to the processor
microcode to support virtualization.

Fig. 1 shows a typical VAX Security Kernel configuration.
While the VAX Security Kernel is a VMM, it is primarily a
security kernel. Therefore, certain features traditionally seen in
VMM's, such as self-virtualization or debugging of one VM
from another, have been omitted to reduce kernel complexity.

The VAX Security Kernel applies both mandatory and
discretionary access controls to virtual machines. Each vir-
tual machine is assigned an access class, which consists of
a secrecy class and an integrity class, similar to those in
the VMS Security Enhancement Service (VMS SES) [7].
The secrecy and integrity classes are based on the Bell and
LaPadula security [8] and Biba integrity [9] models, respec-
tively. The VAX Security Kernel also supports access control
lists (ACL's) on all objects, similar to those in the VMS
operating system [lo].

The VMM security kernel is not a general-purpose operating
system. The principal subjects and objects are virtual machines
and virtual disks, rather than conventional processes and files.
That is the inherent difference between a VMM and a tradi-
tional operating system. Processes and files are implemented
within the virtual machines by either the VMS or ULTRIX-32
operating systems.

1150 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 11, NOVEMBER 1991

The VAX Security Kernel can support large numbers of
simultaneous users.3 Once a basic system was operational,
all software development of the VAX Security Kernel was
carried out on several virtual machines running on the VMM
on a VAX 8800 system. On a typical day, about 40 software
engineers and managers were logged in running a mixed load
of text editing, compilation, system building, and document
formatting. The system provided adequate interactive response
time and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis sufficiently reliable to support an engineering group
that must meet strict milestones and schedules. As far as we
know, the VAX Security Kernel was the first security kernel
to support its own development team. The Multics Access
Isolation Mechanism [11] was developed on Multics itself, but
Multics with AIM was not a security kernel and only received
a B2 rating.

At the time of the cancellation, the VAX Security Kernel
was about to enter the Formal Evaluation Phase with the NCSC
for an A1 rating. It was formally specified in Ina Jo and formal
proofs were underway on the specifications.

IV. DESIGN APPROACH

This section describes several of the design choices in
the VAX Security Kernel, including details about the virtual
machine approach to security kernels, virtualizing the VAX
architecture, subjects and objects, access classes, our layered
design, and other software engineering issues. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. Virtual Machine Approach

The choice to build the VAX Security Kernel as a VMM
was driven by two goals: to maintain compatibility with
existing software written for the VAX architecture, and to keep
software development and maintenance costs to a minimum.

We began plans to enhance the security of the VAX architec-
ture in mid-1979. Our initial effort was the design of security
enhancements to the VMS operating system, first prototyped
in 1980 and available today in the base VMS operating system
and in the VMS Security Enhancement Service [7].

At the time of the initial prototype of the VMS secu-
rity enhancements zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[121, Digital considered a traditional ker-
nel/emulator security kernel to support VMS applications.
However, it quickly became clear that the software devel-
opment costs of a VMS emulator would be comparable to
the cost of development of the VMS operating system itself.
Worse still, the emulator would have to track all changes made
to the VMS operating system, resulting in ongoing costs that
would be unacceptably high for the limited market for A l -
secure systems. The kernel/emulator system could not replace
the existing VMS operating system, because its performance
would not be as good, and it would likely be export-controlled.
Furthermore, the growing demand for UNIX-based software
would force development of a UNIX emulator at still more
development cost.

To resolve these development cost and compatibility prob-
lems, we chose a VMM security kernel approach. A VMM
security kernel presents the interface of a computer architec-
ture that is comparatively simple and not subject to frequent

Exact numbers depend on the precise hardware configuration.

change. Thus the VAX Security Kernel presents an interface
of the VAX architecture [13] and supports both the VMS and
ULTRIX-32 operating systems with relatively few modifica-
tions.

The idea of a VMM security kernel is not a new one.
Madnick and Donovan [14] first suggested the merits of
VMM’s for security, and Rhode [15] first proposed VMM
security kernels. From 1976 to 1982, System Development
Corporation (now a part of the UNISYS Corporation) built a
kernelized version of IBM’s VM/370 virtual-machine monitor,
called KVM/370 [16]. While the design of the VAX Security
Kernel is very different from KVM/370, we have applied some
of the lessons learned in the KVM/370 project [17]. Section
VI11 compares the VAX Security Kernel with KVM/370.
Gasser [18, sec. 10.71 provides more detail on some of the
trade-offs between a VMM security kernel approach and a
kernel/emulator approach.

B. Virtualizing the VAX

The requirements for virtualizing a computer architecture
were specified by Popek and Goldberg [19]. In essence, they
require that all sensitive instructions and all references to
sensitive data structures trap when executed by unprivileged
code. A sensitive instruction or data structure is one that either
reveals or modifies the privileged state of the processor. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1) Sensitive Instructions: Unfortunately, the VAX architec-
ture does not meet Popek and Goldberg’s requirements. Sev-
eral instructions, including Move Processor Status Longword
(MOVPSL), Probe (PROBEx), and Return from Exception or
Interrupt (REI) are sensitive, but unprivileged. Furthermore,
page table entries (PTE’s) are sensitive data structures that
can be read and written with unprivileged instructions.

As a result, we made a number of extensions to the VAX
architecture to support virtualization. In particular, we added a
VM bit to the processor status longword (PSL) that indicated
whether or not the processor was executing in a virtual
machine. A variety of sensitive instructions were changed to
trap based on the setting of the VM bit, so that the VMM
security kernel could emulate their execution. Space does
not permit a full discussion of the instruction changes. More
complete descriptions can be found in Karger, Mason, and
Leonard’s patent [20] and in Hall and Robinson’s paper [21]
on virtualization of the VAX architecture.

2) Ring Compression: The most significant and security-
relevant change to the VAX architecture was to virtualize
protection rings. In the past, only processors with two protec-
tion states (such as the IBM 360/370 architecture) had been
virtualized. Goldberg [22, sec. 4.31 described the difficulties of
virtualizing machines with protection rings and therefore more
than two protection states. He proposed several techniques for
mapping ring numbers, some in software and one with a hard-
ware ring-relocation register, but he recognized that none of
his techniques were satisfactory. His software techniques broke
down because the physical ring number remained visible, and
his hardware ring-relocation technique broke down because
virtualizing a machine with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN rings always required N + 1
rings.

KARGER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: THE VAX VMM SECURITY KERNEL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1151 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Virtual Machine Real Machine
Access Modes Access Modes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fig. 2. Ring compression.

Since the VMS operating system uses all four of the
protection rings of the VAX architecture, it was essential that
we develop a new technique for virtualization of protection
rings. That technique is called ring compression.

Fig. 2 shows how the protection rings of a virtual VAX
processor are mapped to the rings of a real VAX processor.
Virtual user and supervisor modes map to their real counter-
parts, but virtual executive and kernel modes both map to
real executive mode. The real ring numbers are concealed
from the virtual machine’s operating system (VMOS) by three
extensions to the VAX architecture: the addition of the VM bit
to the PSL, the addition of a VM processor-status longword
register (VMPSL), and the modification of all instructions that
could reveal the real ring number. Those instructions, either
trap to the VMM security kernel for emulation or obtain their
information from the VMPSL, which contains the virtual ring
numbers rather than the real ring number. Additional details
can be found in Karger zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al.’s patent [20] and in Hall and
Robinson’s paper [21].

Ring compression also requires that the security kernel
change the memory protection of pages belonging to virtual
machines so that their kernel-mode pages become accessible
from executive mode. This change of memory protection
could adversely affect security within a given virtual machine,
because the virtual machine’s kernel mode is no longer fully
protected from its executive mode.

For the two operating systems of interest to the VAX
Security Kernel, there is no effective loss of security within
the virtual machines themselves, although there is a loss of
robustness against the potentially bug-laden executive mode
code. Fortunately, the VMS operating system grants all pro-
grams that run in the executive mode the right to change mode
to kernel at will, and uses the kernel/executive mode boundary
only as a reliability mechanism. Furthermore, the ULTRIX-32
operating system does not use the executive mode at all.

Of course, the compression of kernel and executive modes in
the virtual machines in no way compromises the security of the

VMM, as the security kernel runs only in real kernel mode, and
no virtual machine ever is granted access to real kernel mode
pages. If there were some other VAX operating system which
actually used all four rings for security purposes, it would lose
some of its own security, much as IBM operating systems lose
some of their security when run in VM/370. However, no such
operating systems exist for the VAX architecture.

3) I/O Emulation: Traditional virtual-machine monitors,
such as IBM’s VM/370, have virtualized not only the CPU,
but also the I/O hardware. Virtualization of the I/O hardware
allows the VMOS to run essentially unmodified. Virtualization
of the VAX I/O hardware is particularly difficult, because its
1/0 devices are programmed by reading and writing control
and status registers (CSR’s) that are located in a region of
physical memory called I/O space. This type of 1/0 originated
on the PDP-11 series of computers and caused performance
difficulties in the UCLA PDP-11 virtual-machine monitor [23],
because the VMM must somehow simulate every instruction
that manipulates a CSR. Vahey [24] proposed a complex
hardware performance assist, but such a device would add
excessive complexity and development cost to the VAX
Security Kernel.

Instead, the VAX Security Kernel implements a special
1/0 interconnection strategy for virtual machines. The VAX
architecture [13] does not specify how I/O is to be done,
and different VAX processors have implemented very different
I/O interfaces. The VAX Security Kernel I/O interface is a
specialized kernel call mechanism, optimized for performance,
rather than traditional CSR-based I/O. In essence, a virtual ma-
chine stores I/O-related parameters (such as buffer addresses,
etc.) in specified locations in its I/O space, but no I/O takes
place until the virtual machine executes a Move to Privileged
Register (MTPR) instruction to a special kernel call (KCALL)
register. This MTPR traps to security kernel software that then
performs the I/O. Thus the number of traps to kernel software
is dramatically less than would be required for CSR emulation.

This special kernel I/O interface means that special un-
trusted virtual device drivers had to be written for both the
VMS and ULTRIX-32 operating systems, but this effort was
no more than is typically required to support a new VAX
processor, a small number of engineer-years.

Because the virtual VAX processors have an I/O interface
different from that of any existing VAX processors, the VAX
Security Kernel does not fall into any of Goldberg’s traditional
categories of VMM’s. Goldberg [22, pp. 22-26] defines a
Type I VMM as a VMM that runs on a bare machine. He
defines a Type I1 VMM as a VMM that runs under an
existing host operating system. Goldberg [22, sec. 3.31 also
defines a Hybrid Virtual-Machine Monitor as one in which all
supervisory-state instructions are simulated, rather than just the
privileged instructions. The VMM security kernel is essentially
a cross between a self-virtualizing Type I VMM for all non-
1/0 instructions and a Hybrid Virtual-Machine Monitor for
1/0 instructions.

4) Selffirtualization: As we designed the extensions to the
VAX architecture, we ensured that the architecture would
permit self-virtualization. Self-virtualization is the ability of
a virtual-machine monitor to run in one of its own virtual

1152 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON SOITWARE ENGINEERING, VOL. 17. NO. 11. NOVEMBER 1991

machines and recursively create second-level virtual machines.
Self-virtualization is very useful for developing and debugging
the virtual-machine monitor itself, but it is of little value
to actual users. Since self-virtualization would have added
significant complexity to the Trusted Computing Base (TCB),
no software support has been done.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C. Subjects

There are two kinds of subjects in the VAX Security Kernel:
users and virtual machines (VM’s). A user communicates
over the trusted path with a process called a Server. Servers
are trusted processes, but unlike the trusted processes in
other systems such as KSOS-11 [26], servers run only within
the kernel itself. User subjects cannot run user-written code;
servers execute only trusted code that is part of the TCB.

The powers of a Server are determined by:
The user’s minimum and maximum access class
The terminal’s minimum and maximum access class
The user’s discretionary access rights
The user’s privileges
The privileges exercisable from the terminal.

A virtual machine is an untrusted subject that runs a VMOS.
A user interacts with the VMOS in whatever fashion is normal
for that operating system; for example, by logging into that
VMOS and issuing commands. A user may write and run
code inside a VM and even penetrate the VMOS, all without
affecting the security of other virtual machines or the security
kernel itself. At worst, a penetrated virtual machine could
only affect other virtual machines with which it shared disk
volumes.

On login to the security kernel, the VMM establishes a con-
nection between the user’s terminal line and the user’s Server,
called a session. When the user wants to use some virtual
machine, the user issues the CONNECT command to his or
her Server, specifying the name of that VM. If the connection
is authorized, the system suspends the user’s existing session
with the Server and establishes a new session between the
user’s terminal line and the requested virtual machine. Thus
the Servers and the VM’s have distinct identities and distinct
security attributes.

Virtual machines may be run in a single-user mode to
provide maximum individual accountability. Alternately, they
can be run in a multiuser mode. In such a case, individual
accountability might be achieved by running a VMOS with at
least a C2 rating, as suggested by the proposed Trusted VMM
Interpretation [25] of Trusted Information Systems, Inc.

Virtual machines can also be treated as objects, because a
user may request that the TCB provide a connection between

4The software changes needed for self-virtualization primarily consist of
changes to the virtual device drivers and some changes in the emulation of
certain sensitive instructions. Under the proposed Trusted VMM Interpretation
[25] , it might even be possible for a self-virtualized security kernel to
itself remain A1 rated. To achieve that goal, the first-level VMM would
map the second-level VMM’s kernel mode to real executive mode, while
the VM’s running on top of the second-level VMM would have their
supervisor, executive, and kernel modes all mapped to the real supervisor
mode. Of course, as one continues to recursively self-virtualize, one runs out
of protection rings at the fourth-level VMM, and that VMM would no longer
be protected from its virtual machines.

the user’s terminal and some VM. For this operation, the user
is the subject and the VM is the object.

D. Objects

The VAX Security Kernel supports a variety of objects,
including real devices and volumes and security kernel files.

One group of objects comprises the real devices on the
system: disk drives, tape drives, printers, terminal lines, and
single access-class network lines. As these devices can contain
or transmit information, access to them must be controlled
by the TCB. Another object is the primary memory which is
allocated to each VM when it is activated.

Disk and tape volumes are also objects. The contents of
some disk volumes are completely under the control of a
virtual machine. They may contain a file system structure of
just an arbitrary collection of bits, depending on the method
used by the VMOS to access the volume. Such volumes are
called exchangeable volumes, because they may be exchanged
with other computer systems running conventional operating
systems. Other disk volumes contain a VAX Security Kernel
file structure and are called VAX Security Kernel volumes.
These volumes must not be directly accessed by a VMOS or
exchanged with other systems, as an untrusted subject could
subvert the kernel’s file system or read information to which
i t was not entitled. The VAX Security Kernel does not provide
trusted tape volumes; all tape volumes are exchangeable.

VAX Security Kernel volumes contain VAX Security Kernel
files which are organized as a flat file system. VAX Security
Kernel files are used for a variety of purposes in the system and
are considered objects by the TCB. One use for VAX Security
Kernel files is to hold long-term system databases such as the
audit log and authorization file. These files are considered part
of the TCB and, with the exception of the audit log, error log,
and crash dump files, cannot be directly referenced by virtual
machines.

Another use of VAX Security Kernel files is to create
virtual disk volumes, loosely analogous to mini-disks in IBM’s
VMi370 [27, pp. 549-5631, Mini-disks allow a physical disk
to be partitioned, so that one need not dedicate an entire
physical disk to a small virtual machine that only requires a
small amount of disk space. Such virtual disks may contain the
file structure of some VMOS, such as a VMS file structure or
an ULTRIX-32 file structure. However, the VMM deals with
virtual disks only as a whole. The contents of a virtual disk
are all part of a single object as far as the VMM is concerned.

E. Access Classes

The VAX Security Kernel enforces mandatory access con-
trols, as required of all A1 systems. Both secrecy and integrity
models are supported, based on the work of Bell and LaPadula
[8] and of Biba [9], respectively. To implement mandatory
access controls, each kernel subject and kernel object is
assigned a sensitivity label, called an access class.’ An access
class consists of two components: a secrecy class and an
integrity class. These components are each further divided into

’Some objects. such as terminal lines. may be assigned a range of access
classes.

U R G E R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al.: THE VAX VMM SECURITY KERNEL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1153

TABLE I
USER PRIVILEGES

Privilege Powers

CLASSIFY-DEVICE
CLASSIFY-SUBJECT
CLASSIFY-VOLUME
DELETE-AUDIT Delete audit data
DOWNGRADE-SECRECY
DOWNGRADE-SECRECY-NOINSPECT
ENABLE-DEBUGGER Enable untrusted kernel debugger
OPERATE
REGISTER
SET-AUDIT
SET-COVERT-CHANNEL-DEFENSE
SET-FILE
SET-PASSWORD
UPGRADE-INTEGRITY
UPGRADE-INTEGRITY-NOINSPECT

Assign access classes to 1 / 0 devices and privileges to terminals
Assign access classes and privileges to subjects; name levels and categories
Register and assign access classes to volumes

Downgrade secrecy of text after human inspection
Downgrade secrecy of data without inspection

Mount volumes, change printer paper, boot and shutdown system
Register and change non-security attributes of devices, virtual machines, and users
Control audit log and real-time alarms
Enable or disable covert channel defenses
Create, delete, or copy kernel files
Change users’ passwords and password parameters
Upgrade integrity of text after human inspection
Upgrade integrity of data without inspection

TABLE I1
VIRTUAL MACHINE PRIVILEGES

Privilege Powers
~ ~~ ~

OPERATE
SET-ACL

Dismount volumes; activate and deactivate other virtual machines; set login limits
Change any object’s ACL, if access class permits

a level and a category set. A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsecrecy level is a hierarchical
classification. The secrecy category set is the set of nonhier-
archical secrecy categories which represents the sensitivity of
the access class. The integrity level and integrity category set
are defined analogously. For compatibility with VMS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[7],
the kernel supports 256 secrecy levels, 256 integrity levels, 64
secrecy categories, and 64 integrity categories.

Given the complex structure of access classes, two defini-
tions must be carefully constructed:

Definition 1
An access class A is equal to an access class B if and only if:

The secrecy level of A is equal to the secrecy level of B
The secrecy category set of A is equal to the secrecy
category set of B
The integrity level of A is equal to the integrity level of
B, and
The integrity category set of A is equal to the integrity
category set of B.

Definition 2
An access class A dominates an access class B if and only i f

The secrecy level of A is greater than or equal to the

The secrecy category set of A is a superset of the secrecy

The integrity level of A is less than or equal to the

The integrity category set of A is a subset of the integrity

It is important to note that if two access classes are equal,
each also dominates the other. This is because if P is a subset of
Q, then P may contain some or all of the Q’s members, while
if P is a proper subset of Q, P must contain fewer members

secrecy level of B

category set of B

integrity level of B, and

category set of B.

than Q. This terminology for subset relationships is based on
Halmos [28, p. 31. The corresponding relationships apply for
supersets and proper supersets.

The secrecy and integrity models define that a subject may
reference an object depending on the access classes of the
subject and object and on the type of reference. A subject
may read from an object only if the subject’s access class
dominates the access class of the object. A subject may write to
an object only if the object’s access class dominates the access
class of the subject.6 Thus, for example, a virtual machine may
mount for read-write access an exchangeable volume only if
the VM’s access class is equal to that of the volume. However,
the VM may mount for read-only access any exchangeable
volume where the VM’s access class dominates that of the
volume.

F. Privileges

System managers, security managers, and operators gain
their powers by having privileges. The privileges allow great
flexibility in the assignment of powers and responsibilities,
including a measure of two-person control and separation
of duties. Privileges restrict access beyond the protections
provided by mandatory and discretionary access controls.
A privileged user cannot see data that would be otherwise
inaccessible. Only the downgrading privileges allow bypassing
of access controls, and the use of those privileges is audited.

Most privileges can be exercised only through the trusted
path, and are called user privileges (see Table I). Two priv-
ileges can be exercised by virtual machines, and are called
virtual-machine privileges (see Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11).

‘In general, write access is even further restricted; a subject may write
to an object only if the subject’s and object’s access classes are equal. This
disallows blind writes to an object that cannot be read.

1154 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 11, NOVEMBER 1991 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
G. Layered Design

The VAX Security Kernel was implemented following the
strict levels of abstraction approach originally used by Dijkstra
[29] in the THE system. Janson [30] developed the use of
levels of abstraction in ‘security kernel design as a means
of reducing complexity and providing precise and under-
standable specifications. Each layer of the design implements
some abstraction in part by making calls on lower layers. In
no case does a lower layer invoke or depend upon higher
layer abstractions. By making lower layers unaware of higher
abstractions, we reduced the total number of interactions
in the system and thereby reduce the overall complexity.
Furthermore, each layer can be tested in isolation from all
higher layers, allowing debugging to proceed in an orderly
fashion, rather than haphazardly throughout the system. This
type of layering is called out in the requirements for B3 and
A1 systems when the NCSC evaluation criteria [6, p. 381 state
that: “The TCB shall incorporate significant use of layering,
abstraction and data hiding. Significant system engineering
shall be directed toward minimizing the complexity of the
TCB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . . .”

The layered design of the VAX Security Kernel was based
heavily on the Multics kernel design work of Janson [30] and
Reed [31], and to a lesser extent on the Naval Postgraduate
School kernel design [32]. Fig. 3 shows a diagram of the VAX
Security Kernel. The arrows in the diagram indicate how each
layer functionally depends on the abstract machine created by
lower layers.

Each layer adds specific functions with security kernel,
such that at the security perimeter, the secrecy and integrity
models are enforced. The kernel itself is process-structured,
as described in the summary of the various layers. Unlike
many other kernels, all of the trusted processes run within the
security perimeter and are included in the formal specifications
of the system.

1) HIH: The Hardware-Interrupt Handler layer is imme-
diately above the physical VAX hardware and modified mi-
crocode. It contains the interrupt handlers for the various I/O
controllers and certain CPU-specific code.

2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALLS: The Lower-Level Scheduler is based strongly on
Reed’s two-level scheduler design [31]. It creates the ab-
stractions of level one virtual processors (vpl ’s) that are the
basic unit of scheduling for the system. The LLS supports
symmetric multiprocessing by binding and unbinding real
CPU’s to individual vpl’s. As shown in Fig. 4, there are
three kinds of vpl’s: dedicated vpl’s that typically contain
device drivers, bindable vpl’s that can be bound to dedicated
vp2’s by the higher level scheduler, and addressable vpl ’s
that can be bound to bindable vp2’s and thereby to virtual
machines. Vpl’s are intended to be very inexpensive processes
for use within the kernel. Only addressable vpl ’s have full
address spaces; all other vpl’s run out of the global address
space of the kernel. Thus the lower-level scheduler can context
switch in and out of most vpl ’s by merely saving registers
and switching stack pointers. The lower-level scheduler also
implements eventcounts [33] as the basic synchronization
mechanism of the kernel. Eventcounts can be awaited or

I I

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVAX
Hardware I

Fig. 3. VAX Security Kernel layers.

advanced in the normal way, or a processor interrupt can be
tied to an eventcount, such that a VM can be interrupted when
an eventcount has reached a particular value. This processor-
interrupt mechanism provides upward transfers of control that
are otherwise forbidden in the kernel. Processor interrupts are
only delivered when the CPU is executing outside the security
kernel.

3) IOS: The 1/0 services layer implements device drivers
that control the real 1/0 devices. The current version supports
only directly connected terminals and storage devices.

URGER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: THE VAX VMM SECURITY KERNEL 1155

Fig. 4. Level-one and level-two virtual processors. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4) VMP: The VM physical memory layer manages real

physical memory, and assigns it to virtual machines.
5) VMV: The VM virtual memory layer implements the

shadow page tables needed to support virtual memory in
the virtual machines.’ VMV implements a primary-memory-
only strategy, requiring that all the physical memory that a
virtual machine sees be physically resident when that virtual
machine is active. While this technique limits the number
of simultaneously active virtual machines to the number that
can fit into physical memory simultaneously, i t significantly
reduces kernel complexity by eliminating the need for a
demand-paging mechanism in the kernel. It also eliminates
the phenomenon of double paging that is often seen in other
VMM’s, where the demand paging mechanisms of the VMM
and of the VMOS can thrash against one another, leading to
serious performance degradation. In the VMM security kernel,
the virtual machines are allocated a fixed amount of physical
memory and do all their own paging.

6) HLS: The Higher-Level Scheduler is also based on Reed’s
two-level scheduler (311. Unlike Reed’s design, our higher
level scheduler is extremely simple, because i t does not need to
schedule access to primary memory. The HLS does create the
abstraction of level-two virtual processors (vp2’s). There are
two kinds of vp2’s: dedicated vp2’s which are used primarily
by the SSVR layer described below, and hindable vp2’s which
are used for virtual machines. Fig. 4 shows the relationships
between vpl’s and vp2’s.

7) AUD: The auditing layer provides the facilities for
security auditing and security alarms. It is described in detail
in [34].

8) F l lF : The Files-11 Files layer implements a subset of
the ODs-2 file system that is also used in the VMS operating

’Shadow page tables are created by a VMM, because the physical addresses
in page table entries must be relocated. Shadow page tables are described in
detail by Madnick and Donovan [27, sec. 9-51, Shadow page tables are also
where ring compression occurs.

system.* The most significant restrictions on the VAX Security
Kernel implementation of ODs-2 are that all files must be
preallocated and contiguous. This reduces kernel complexity
by eliminating the need for dynamic file extensions. F l lF
implements ODs-2 files only as a flat file system.

9) VOL: The Volumes layer implements VAX Security
Kernel and exchangeable volumes and provides registries of
all subjects and objects. These registries are much simpler
than ODs-2 directories.

10) VTerm: The Virtual Terminals layer implements virtual
terminals for each virtual machine and manages the physical
terminal lines. Each user may have multiple sessions connected
to different virtual machines, and VTerm provides the session
management functions and also implements asynchronous
network lines to allow virtual machines to connect to single-
access-class networks via specially dedicated terminal lines.
The current version of the system has no support for higher-
speed network connections.

11) VPrint: The Virtual Printers layer implements virtual
printers for each virtual machine and multiplexes the real
physical printers among the virtual printers. It provides top
and bottom labeling, as well as trusted banner pages to delimit
listings of different access classes and different VM’s.

12) KI: The Kernel Interface layer implements virtual con-
trollers for the various virtual I/O devices and the security
function controller, which implements such functions as load-
ing virtual disks into virtual drives.

13) WAX: The Virtual VAX layer completes the virtual-
ization process by emulating sensitive instructions, delivering
exceptions and interrupts to the virtual machine, etc. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

14) SSVR: The Secure Server layer implements the trusted
path for security kernel, log users in and out, and provides
security-related administrative functions. There is a dedicated
vp2 for each terminal line to provide a Server process for
each logged in user.

15) VMOS: The VMOS layer is the virtual machine’s
operating system.

16) USERS: The users in Fig. 3 include both the untrusted
applications programs that run on top of the VMOS, and
the human beings who communicate directly with the secure
server via the trusted path.

H. Software Engineering Issues zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A number of interesting software engineering issues arose

during the development of the VAX Security Kernel. While
space does not permit discussing all of them, this section
highlights a few of the most significant.

I) Programming Language Choice: Perhaps the most criti-
cal software engineering issue in the VAX Security Kernel
design was the choice of a programming language. From the
problems that KSOS-11 [26], [36] had with its choice of
compilers, i t was clear that we needed high-quality compilers
to develop our security kernel. While we wanted as strongly
typed a language as possible, it was much more critical that the
compiler correctly compile very large programs, produce high-

‘A brief summary of the Files-11 ODS-2 structure can be found in [35,
appendices].

1156 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA17, NO. 11, NOVEMBER 1991

TABLE I11
EXECUTABLE STATEMENTS PER LAYER

Layer MACRO PASCAL PL/I Total

VVAX
SSVR
KI
VPRINT
VTERM
VOL
F l l F
AUD
HLS
VMV
VMP
10s
LLS
HIH

COMMON
PMM
SVSBOO
VMMBOOT
VMMLIB
Total

3371
0

10
0
0
0
0
0
0

129
0
0

1289
815

244
0

2541
55

3021
11475

1502
6876
3354
1455
1419
2553
2962
543

0
0
0

4725
13

2393

0
0

734
213
503

29245

0
330

0
0
0
0
0
0

430
1069
352

0
3839

174

0
176

0
430

1265
8065

4873
7206
3364
1455
1419
2253
2962
543
430

1198
352

4125
5141
3382

244
176

3275
698

4789
48785

quality VAX object code, and be supported by an organization
that could quickly respond to any problems we might find.

At the time the VAX Security Kernel prototype effort began,
there were only a small number of systems programming
languages available for the VAX architecture: BLISS-32, PL/I,
PASCAL, and C. BLISS-32 was rejected because of its lack
of data typing facilities. PASCAL was rejected because the
V2.0 compiler that generated high-quality code was not yet
available. This left PL/I and C, both of which used the
same good quality code generator. We chose PL/I because
of its slightly better data-typing support, because of its better
support for character string manipulation, and because the first
prototype developers had extensive prior experience in coding
operating systems in PL/I.

We were not happy with the choice of PL/I, because its
data types were not strongly enforced. When the high-quality
V2.0 PASCAL compiler became available, we began writing
new code for the kernel in PASCAL. PASCAL provides much
stronger data-type checking than PL/I, and the VAX calling
standard made interlanguage calls easy to implement.

Higher level language compilers cannot generate optimal
code for all programs. Therefore we found it necessary to
implement those modules that actual measurements had shown
to be performance-critical in the MACRO-32 assembly lan-
guage. Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111 shows how much code was written in each of
the languages for each layer of the kernel.’ The table shows
the number of executable source code statements (excluding
comments, declarations, and white space) and per-layer and
per-language totals.

In retrospect, the use of both PL/I and PASCAL has led to
certain difficulties. Software engineers must be trained in both

’Table I11 includes a number of entries that are not shown in the layer
diagram in Fig. 3. These layers, COMMON, PMM, SVSBOO, VMMBOOT,
and VMMLIB provide certain booting and runtime library support functions.
The normal runtime libraries for the PL/I and PASCAL languages are not
linked into the kernel, because they would have added a large amount of code
that would need to be evaluated and placed under configuration control.

languages, and some kernel bugs have resulted from misun-
derstandings of how to pass parameters from one language to
the other. Future security kernel developers would do well to
choose one systems programming language and stick to it.

2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACoding zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAStrategies: A number of coding strategies proved
very useful in the development of the VAX Security Kernel.
For example, we avoided all use of global pools within the
kernel to minimize the possibility of storage channels. The
maximum size of data structures is determined at system boot
time (based on system-generation parameters), and memory is
allocated for that maximum size during kernel initialization.

Different sections of memory within the kernel are separated
by no-access guard pages to detect run-away array or string
references. Unused memory is set to all ones to increase the
chance of detecting the use of uninitialized variables, because
zeros are less likely to generate exceptions.

The layers of the kernel are coded defensively with sanity
checks to protect each layer from higher layers. If irregularities
are detected, the system crashes to avoid the possibility of
a security compromise. These sanity checks were devised to
aid in the debugging of the kernel and do not themselves
provide security assurance mechanisms. However, many of
the checks remain enabled in the finished kernel to help detect
any remaining bugs.

The actions of a user or a virtual machine cannot crash the
kernel. They can cause error messages, exception conditions
raised in the virtual machine, or in extreme cases, the halting
of an offending subject.

Since the entire TCB runs in kernel mode, there are no
hardware-enforced firewalls between layers. However, the
layering methodology forbids lower layers from calling higher
layers. To help us spot layer violations, we applied both auto-
matic and manual techniques. Using the features of the VAX
DEC/Module Management System (VAX DEC/MMS) and the
VAX DEC/Code Management Systems (VAX DEUCMS), we
were able to isolate all dependencies of a layer on other layers.
By visual inspection, we could immediately spot upward
references. In fact during development, we did detect and fix
several such occurrences.

V. HUMAN INTERFACES

High-security systems have developed a reputation for being
hard to use, primarily due to their limited user interfaces. We
believe that it is essential that a human interface meet the
expectations of today’s commercial computer users. However,
we faced the same obstacles faced by other developers of
high-security systems:

Development resources are limited, and satisfying the A1
criteria takes precedence over all other efforts
The kernel must be small and verifiable. User interface
features such as a sophisticated command parser are large
and often difficult to verify. Consequently, an interface
built entirely on trusted code cannot match the usability
of an interface built on untrusted code.

We overcame these obstacles by creating two separate
command sets: the Secure Server commands, and the SECURE
commands. The Secure Server commands are implemented

KARGER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al .: THE VAX VMM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASECURITY KERNEL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1157 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
$ SECURE DELETE TLS:STATUS.RPT
Press SECURE ATTEHTIOI to complete execution of this command. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
User presses SECURE ATTENTION to establish a trusted path.

Delete VAX Security Kernel file TLS:STATUS.RPT

Confirmation [Yes or No] : Y

VMM: File deleted
Resuming.. .

Fig. 5. Example of a User SECURE command.

entirely in trusted code. The administrative commands, the
SECURE commands, are parsed in the VMS and ULTRIX-32
operating systems. With this approach we reduce the amount of
trusted code and gain the well-developed command interfaces
of these mature commercial operating systems. SECURE
commands are normally only issued by the system manager,
the security manager, the operators, and the auditors, although
ordinary users may need to issue a few of them at times. By
contrast, all users must issue some Secure Server commands
to login and connect to virtual machines.

A. Secure Server Commands

The Secure Server is the user’s direct interface to the kernel.
A user invokes a trusted path to the Secure Server by pressing
the Secure Attention Key. This key operates at all times and
cannot be intercepted by untrusted code. We have chosen the
BREAK key to be the Secure Attention Key.

The Secure Server’s commands control terminal connec-
tions to virtual machines in the same way that a terminal server
controls terminal connections to physical machines, using
commands such as: CONNECT, DISCONNECT, RESUME,
and SHOW SESSIONS. A user can create sessions with several
virtual machines at different access classes and can quickly
switch from one to another.

The interface for the Secure Server commands is built
entirely in trusted code and offers only minimal command-line
editing functions.

B. SECURE Commands

The tools for managing the system are the SECURE com-
mands. The SECURE commands and utilities are implemented
just as are other commands in the VMS and ULTRIX-32
command languages, except that they issue kernel calls to
do their work. The complete set of SECURE commands and
utilities is installed in the VMS operating system. A subset
of the SECURE commands is offered by the ULTRIX-32
operating system.

The SECURE commands, unlike the Secure Server com-
mands, are parsed by the VMS and ULTRIX-32 command
language interpreters. The user can take advantage of such
features as command-line recall and command procedures.

There are two types of SECURE commands: VM SECURE
commands, and User SECURE commands. Both types of
SECURE commands are issued from the VM’s operating-
system command level. VM SECURE commands are executed
in the context of the issuing VM. User SECURE commands are

submitted to the Secure Server for execution. The commands
are distinguished by the type of subject, a user or a virtual
machine, that holds the access class and privileges necessary
to issue the command.

C. Command Confirmation

While both the User and VM SECURE commands are
administrative commands, only the User SECURE commands
must be trusted. For such security-relevant commands, we
require A1 assurance that:

The command was issued by a user and not by a Trojan
horse in a VM
The command received by the Secure Server is exactly
the same command typed by the user, and not a command
that was covertly modified by a Trojan horse
The user who issued the command can be identified in
the audit log.

Our design for the User SECURE commands provides both
trust and individuality accountability, even for commands
issued from an untrusted environment. Upon receipt of a
valid User SECURE command, the VM instructs the user to
press SECURE ATTENTION. This key invokes a trusted path
between the user’s terminal and the Secure Server. A SECURE
ATTENTION signal can be sent to the Secure Server only by
manually pressing the BREAK key. This prevents a Trojan
horse from completing the execution of a User SECURE
command.

To prevent a VM from spoofing the user by passing a
different command from what the user typed, the Secure Server
displays the action which will be taken by the command and
prompts the user to approve or reject the operation. Fig. 5 is
an abbreviated example of a User SECURE command issued
from a VMS virtual machine. Resuming indicates that control
of the terminal will be returned to the virtual machine. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D. SECURE Utilities

Managing the VMM security kernel requires a number of
utilities. Our SECURE utilities are modeled after VMS utilities
and are summarized in Table IV.

E. Reclassifying Information

Users can be permitted to change the access class of the
contents of a VAX Security Kernel file or an exchangeable
volume with the SECURE RECLASSIFY command. This
command copies the contents of a kernel file or volume to an
existing kernel file or volume labeled with a different access

1158 IEEE TRANS

TABLE IV
SECURE UTILITIES

SECURE Utility Purpose

Authorize
RegisteriDevice Registers U0 devices
RegisteriVolume
Sysgen
Crash Dump Analyzer

Registers users and virtual machines, etc.

Registers disk and tape volumes.
Sets limits on system resources.
Provides data for determining the cause of a

system crash.

class. The source and destination objects must lie within the
user’s access-class range. In addition, privileges are required
if the reclassification downgrades the data’s secrecy class or
upgrades its integrity class.

Reclassification normally requires trusted inspection by the
user. Inspection is required to be sure that a Trojan horse
has not inserted additional information that the user did not
intend to reclassify. To make inspection easier, the user can
opt to print the VAX Security Kernel file or display the file
on the terminal, one screen at a time. Once the complete file
is printed or displayed, the user is prompted to approve the
reclassification. To prevent the covert passing of information
from the source file to the target file in the form of invisible
escape sequences, inspected files must contain only printing
characters, spaces, and form feeds. A line may not end
with a space, because a trailing space would be invisible.
The reclassification is terminated if any illegal character is
encountered. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
F. Difficulties with Command Confirmation

Command confirmation was intended to simplify the TCB
and make implementation easier. While it eliminated the
need for a complex parser within the TCB, i t introduced
a form of asynchronous communication between VM’s and
Server processes that was even more complex than a parser
would have been. In retrospect, a menu interface to user
SECURE commands combined with a mechanism for creating
and checking precompiled scripts would have been simpler
than the asynchronous approach and could have significantly
shortened the development time and further improved the
overall human factors of the system.

VI. ASSURANCE

The principal reason for building an A1 security kernel
is to provide a high degree of assurance that the security
features of the system actually work correctly. This section
describes some of the techniques which we have used in the
VAX Security Kernel to provide the necessary assurance of
security, to meet both the requirements of an A1 evaluation

ACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 11, NOVEMBER 1991

Gasser [18, p. 1631 describes Honeywell’s STOP kernel for
the SCOMP [37] and Gemini Computers’ GEMSOS [38] as
commercial-grade security kernels. However, STOP does not
provide software compatibility with existing operating sys-
tems, and GEMSOS to date has only been used in specialized
environments. Shockley et al. [38] report that research is under
way to provide both UNIX and MS-DOS environments for
GEMSOS, but it is not clear whether those environments are
yet working. If Gemini succeeds in providing both UNIX and
MS-DOS environments in GEMSOS, they will have succeeded
at integrating A1 requirements with real-world requirements.
The VAX Security Kernel supported both the VMS and
ULTRIX-32 operating systems with their layered applications
by late 1989. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A . Design and Code Changes

Every change to our code underwent both design and
code review, regardless of whether the code was trusted or
untrusted, or whether i t was a whole new layer or a bug fix.
Design reviews for even the smallest fixes ensured that system-
wide effects were considered. Each layer had an owner, who
participated in the design review and was responsible for the
quality of that layer. Each code change was reviewed both in
the context of its own layer and in the contexts of its calling
and called layers so as to catch interlayer problems.

Reviewers learned from the code they reviewed, as well as
sharing their knowledge through review comments. Reviewers
addressed readability and clarity, security, performance, ele-
gance, and adherence to guidelines. Much like access controls,
design and code guidelines were either mandatory or discre-
tionary. Mandatory guidelines were based on prior experience
in security kernel developments. Discretionary guidelines were
used to avoid well-known traps in the programming language
and to produce consistent, readable code. This consistency
made i t easier for an engineer to pick up and debug in a new
area, reducing engineering costs and time.

The code review results, along with the design and test
plan, were publicized for the entire group to check. This
practice provided a last review of the entire change by a large
audience. Code review results also served as examples from
which engineers could learn good coding practices.

The development team made extensive use of VAX Notes
online conferences to publicize design and coding guidelines,
to discuss specific design issues, to track bug reports, and to
record and publicize the results of the above-mentioned design
and code reviews.

Each coding task was integrated with the current working
system as soon as it was complete. This integration was
constrained to always produce a working system. Continual
and incremental integration avoided major unexpected failures
by identifying design and/or coding errors as soon as possible.

and the requirements of real-world users. It is this integration
of both A1 requirements and real-world requirements which is
of particular research interest, since previous security kernels
have not succeeded at integrating the A1 requirements with
good performance and compatibility with large amounts of
existing commercial software.

B. Environment

As mentioned in Section 111, we developed the VAX Se-
curity Kernel on a VAX Security Kernel system. Thus our
group did its daily work on a system designed to meet A1
security requirements, using most of its features and controls.

KARGER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATHE VAX VMM SECURITY KERNEL 1159

Our VM's ran at meaningful access classes. Different versions
of the kernel were maintained on different VM's to keep
orthogonal tasks from impinging on each other. We also used
VM's for developing and testing the untrusted code which
must run in the VMS and ULTRIX-32 operating systems. We
separated the roles of our own system manager and security
manager, as recommended in the NCSC Evaluation Criteria

The CPU and console of the development machine were
kept inside a lab that only members of the VAX Security
Kernel development group could enter. Within that lab, the
development machine was protected by a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcage, which consists
of another room with a locked door. Physical access to both
the lab and to the cage within the lab was controlled by a key-
card security system. Finally, our development machine was
not connected to Digital's internal computer network, so as to
minimize the external threat to our development environment
and our project.

[61.

C. Testing

Integrating a coding task required that a developer run
a standard regression test suite. Integration occurred usually
at least once a week, and as often as twice a day." This
regression suite consisted of two portions: layer tests, and
KCALL tests. Layer tests were linked directly into the kernel,
and tested layer interfaces and internal routines by calling them
directly and checking their outcome. KCALL tests ran in a
VM, issuing legal, illegal, and malformed requests so as to
check the VM interface.

A separate suite of tests, issued via the VAX DEC/Test
Manager (DTM), was run once every two weeks to test the user
command interface. These tests ran for 30 h. They consisted of
commands that are successful, commands that produce errors,
and commands that send malformed packets to the SSVR
layer. DTM checked both the results of each command and
the displays it produces.

We also ran the standard VAX architecture exerciser (AXE)
that verified that a particular CPU correctly implements a
VAX computer. We ran AXE to test the accuracy of the
VAX virtualization. AXE tests were run extensively during
the development of the CPU microcode extensions and the
VVAX layer. They would have been run again when the kernel
reached final completion.

At the time of the cancellation, we were developing test
plans for fully exercising all of the access control decisions
and other security-relevant checks made by the system and
for system-penetration testing. Some of these new tests would
be developed from scratch, and some would be based on the
formal specifications. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D. Formal Methods

The requirements for an A1 security evaluation state that a
formal security policy model must be written, that a formal
top-level specification (FTLS) of the system design must be
written and proven to satisfy the security policy model, that
the system implementation must be informally shown to be

"Developers, of course, ran individual tests prior to integration

TABLE V
LINES OF FORMAL SPECIFICATIONS

Lines of Ina Jo

Level of Specification Total Transforms

TLS
FTLS
Total

650 294
11758 8410
12408 8704

consistent with the FTLS, and that formal methods must be
used in covert channel analysis of the system. The FTLS must
accurately model system external interfaces, externally visible
behavior, and security-relevant actions. A descriptive top-level
specification (DTLS) is also required as a complete natural
language description of the system.

We used the Formal Development Methodology (FDM)
specification and verification system [39] to help meet these
requirements. We wrote both our security policy model (which
consists of criteria and constraints and the top-level speci-
fication (TLS) of the various transforms) and our FTLS in
the FDM specification language, Ina Jo. We used the FDM
interactive theorem prover (ITP) to show that the TLS obeys
the policy and that the FTLS maps to the TLS. The DTLS
consisted of our internal design documentation, plus some
special glue documents that tie the DTLS and the FTLS
together, particularly describing areas of the kernel which are
not formally modeled in the FTLS.

Table 111 shows the number of executable statements in the
security kernel. For comparison, Table V shows an estimate
of the total number of lines of Ina Jo (comments excluded)
and the number of lines of transforms (declarations excluded)
required to specify that kernel. The numbers are estimates,
because the FTLS was not yet complete when the project
was canceled. The totals show that the number of lines of
transforms are about one-sixth of the number of executable
statements in the security kernel.

Formal methods do not make the system secure by them-
selves. Successful proof that our specifications met secu-
rity policy did not guarantee that there were no lurking
implementation bugs. However, the use of formal methods
significantly improved the overall quality of the security
kernel. When combined with the informal testing procedures,
the use of formal methods improved the assurance that the
security features are effective. Indeed, the very act of formally
specifying the security kernel in Ina Jo detected several kernel
bugs, both because of constraints imposed by proof procedures
and because the process of code correspondence provides a
thorough method for reviewing the TCB code and informal
design specifications. The separation of duties between the
software engineer and the verifier, by itself, provided valuable
extra assurance, even if no proofs had ever been done.

E. Covert Channel Analysis and Countermeasures

We performed extensive analysis of covert channels through-
out the development of the VAX Security Kernel. These
analyses were done partially on an informal basis by engineers

1160 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17. NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11, NOVEMBER 1991

closely studying the system design, and on a formal basis using
a new technique for automating the Shared-Resource Matrix
approach [40] with code-level flow analysis tools. It is inter-
esting to note that the majority of the covert channels found
were identified by the informal method of engineers carefully
thinking about the design of the software and hardware.

The majority of storage channels were eliminated from the
system during the design phase by the technique of always
preallocating resources to avoid resource exhaustion chan-
nels. This preallocation had the side-benefit of significantly
improving the overall robustness of the system, since it was
impossible for any virtual machine to run the system out of
resources.

Optimization of disk arm movements has been well-known
as a source of storage channels since Schaefer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al.’s analysis
of covert channels in KVM/370 [41]. Our analysis of disk
arm optimization found that the storage channels were far
more complex than had been previously thought, and that new
optimizing disk controllers could make countermeasures much
more difficult than those in the time of KVMi370. However,
detailed analysis of the disk arm optimization storage chan-
nels revealed new techniques which could completely close
such channels, without losing the throughput benefits of disk
arm-motion optimizations, even in the presence of hardware
controllers whose optimizations cannot be simply turned off.
Furthermore, the countermeasures did not adversely affect
overall system performance, but actually improved throughput
in certain disk-I/O-intensive benchmarks. The details of these
countermeasures are described in [42].

Timing channels proved a much more serious problem,
because they tended to have higher bandwidths than the
storage channels and because many of them were inherent
in the underlying hardware. Since timing channels appeared
numerous, difficult to enumerate, and difficult to close, we
instead turned out attention to clocks. Timing channels can
only be exploited in the presence of accurate clocks.

Analysis of clocks proved very fruitful, and Wray [43]
developed a new technique for identifying timing channels
based on dual-clock analysis. Essentially, a timing channel
consists of two clocks, one of which must be accurate, while
the Trojan horse attempting to leak information modulates the
rate of the other clock.

We found that identifying all of the sources of accurate
clocks was much easier than finding all of the possible timing
channels in the system. If we could make the clocks less
accurate, then the effective bandwidth of all timing channels
in the system would be lowered. We called this new approach zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
fuzzy time, because we attempted to fuzz the accuracy of all
clocks available in the system.

Fuzzy time must address several different classes of clocks,
including those provided by the system itself through system
calls or clock interrupts, clocks provided by the time-sharing of
the CPU, clocks provided by 1/0 devices, and external clocks
which can be used to time the arrival of output on terminals,
network connections, etc. The techniques for dealing with all
of these clocks are very complex and are beyond the scope
of this paper. They are described in detail by Hu [44]. Fuzzy
time reduced the bandwidth of the worst timing channel in the

VAX Security Kernel by over two orders of magnitude to well
under the 10 b/s guideline of the NCSC [6]. The performance
degradation due to fuzzy time was only 5-6% of CPU usage
on multiprogrammed benchmarks.

F. Configuration Control

We maintained strict configuration control on many items,
including design documents, trusted kernel code, test suites,
user documents, and verification documents. All of our code
was maintained under the VAX DEC/Code Management Sys-
tem (CMS) to maintain a history of each change to each
module. Security reviews checked each item against the spe-
cific NCSC criteria requirements [6] it fulfills, and checked
among the items for internal consistency. Items that had been
reviewed were stored on a master pack which was physically
protected against modification.

Our hardware, firmware, and software development tools
were developed by other groups within the corporation. We
reviewed hardware and firmware ECO’s, prior to supporting
them in the VAX Security Kernel. New versions of software
development tools were tested on a stand-alone laboratory
system prior to use on the kernel development machine.
We used only the standard, released versions of software
development tools, the same versions that had been checked
out for shipment to our customers. With rare exceptions, no
field-test versions were permitted on the kernel development
machine.

G. Trusted Distribution

The end user of a security kernel must have some assurance
that no one has tampered with or substituted counterfeit copies
of the hardware and software which make up the system.
Hardware and software have different trusted distribution
requirements.

1) Hardware Trusted Distribution: To assure that the hard-
ware systems would arrive at the customer’s site meeting
the trusted distribution criteria, we developed a security-
seal program. If someone tampered with the seal, evidence
would be provided of the attempted entry. A locking device
would combine with the security sealing procedures to ensure
a trusted shipment. Full individual accountability would be
provided, including logs of the delivery.

2) Software Trusted Distribution: Installation of an A1
system involves achieving a trusted state. The steps to do this
on VAX 8800 hardware are complex. The console processor
software and CPU microcode must be installed and crypto-
graphically check-summed with stand-alone software to detect
any possible tampering. If a secure site loses its trusted state
for any reason, they must reinstall the console software and the
CPU microcode. The trusted state could be lost just by running
an untrusted operating system or hardware diagnostics on the
system.

Next, the trusted code is installed via untrusted code (VMS)
and the result is cryptographically check-summed to verify that
the untrusted code has not tampered with the trusted code.
The result of the check-sum is checked against a message
authentication code to verify correct installation. The check-

KARGER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: THE VAX VMM SECURITY KERNEL 1161

summing software is shipped separately from the rest of the
software, so that a single failure of the trusted distribution
system could not compromise both the check-sum program
and the authentication code.

For software, there would also be an option of using trusted
couriers instead of the separate delivery paths.

VII. PRODUCTION-QUALITY KERNELS

A production-quality security kernel is designed to protect
and ensure the quality of real-world information. This sec-
tion describes some of the differences between research and
production-quality security kernels that are required to meet
general user requirements, as well as to satisfy the NCSC
criteria for an A1 operating system. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAProducing the Kernel

The primary tools for creating a security kernel are compil-
ers. Quality compilers must work for large programs, produce
efficient object code, and be reliably supported. We sacrificed
programming language elegance in favor of compilers with a
strong track record: the VAX PASCAL and PL/I compilers. We
maintained contact with the compiler developers throughout
the development, and they provided much needed help to us,
including occasional changes to the actual compiler code.

A second tool, a symbolic debuggericrash dump analyzer,
is needed to develop and debug the system. It would also be
needed by users and support personnel to diagnose problems,
and by users who might wish to add functions to the kernel.

A production-quality security kernel must have adequate
performance to justify its purchase in the face of other options
such as multiple separate computers or periods processing. To
help ensure attention to performance, we did our own devel-
opment work on a VAX Security Kernel system. Performance-
critical paths were written in a high-level language, and
then rewritten in assembly language for speed. We added
meters to find performance-critical routines, and a rudimentary
performance monitor to gather statistics on CPU and I10 usage.

Bug-tracking mechanisms are needed both to satisfy NCSC
configuration management guidelines and to give us a means
to respond to problems on a timely basis. They also provided
a means to check against our definition of quality: having no
security bugs and no bug that keeps production work from
running. Statistics on the number of bugs and their severity
provide concrete feedback on stability. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. Robustness

For a system to be widely used, i t must be robust; that
is, it must not fail very often. Robustness was an explicit
nongoal of the development of the VAX Security Kernel,
because we feared that adding fault tolerance would increase
the complexity of the TCB, leading to a possible failure to meet
A1 security requirements. Furthermore, attempting to recover
from some classes of faults could actually conceal or propagate
security penetrations. Therefore, the VAX Security Kernel was
designed to shutdown on the discovery of any sort of fault.

Despite these apparent steps to reduce robustness, the VAX
Security Kernel regularly remained up for nearly three weeks

while under a heavy production load of real users! Such
robustness is unheard of for field test versions of brand-new
operating systems. Most new operating systems (including
virtual machine monitors) consider themselves lucky to stay
up for a few hours when in initial field test.

This unexpected robustness of the VAX Security Kernel
comes from the strict software engineering discipline required
by the A1 security criteria. Such a high level of discipline has
rarely been required in industry, and this level of robustness
confirms the value of the A1 development requirements far
beyond the limited domain of computer security. A1 secure
systems are also good bases for the development of highly
available systems.

C. Documentation

A real security kernel requires extensive documentation for
its users and for its system and security managers. These
documents must not only meet the content requirements of
the NCSC; they must also be clear and understandable to both
novice and sophisticated customers. The VAX Security Kernel
documentation set consists of nine manuals and a reference
card. The manuals include a user's guide, guides to both
system security and system management, a command reference
manual, both basic and advanced programmer's manuals, an
installation guide, a master index, and release notes. These
manuals were written to the same quality standards as the
manuals for the VMS and ULTRIX-32 operating systems.

VIII. COMPARISON WITH KVM/370

While the VAX Security Kernel superficially bears a strong
resemblance to KVMi370, in that both systems create virtual
machines which run at different access classes, the internal
structures of the two systems are very different.

Most significantly, KVM/370 was designed as a retrofit to
the existing VMl370 product, with a specific goal of leaving
at least half of the original code intact [17]. As a result,
KVMi370 was structured as shown in Fig. 6. The KVMl370
security kernel used a variation on self-virtualization to create
a series of NKCP's (Non-Kernel Control Programs), each at a
distinct mandatory access class. The NKCP's ran unmodified
VM/370 code to create multiple virtual machines that then
ran the CMS (Conversational Monitor System), a single-user
operating system designed to run in a virtual machine. The
disadvantage of this approach is that many functions executed
by a virtual machine required two context switches, first into
the NKCP and then into the security kernel. By comparison,
VAX Security Kernel achieves a higher performance level by
allowing the virtual machines to communicate directly with the
security kernel. This makes the VAX Security Kernel larger
than the KVMi370 security kernel, but we believe that the
performance gains justify the increase in size."

KVM/370 never implemented support for VMOS's that
supported virtual memory. It implemented demand paging

"This comparison is not strictly fair to KVMi370, because the KVMi370
team was required to maintain compatibility and a large body of original
code from VMi370, while the VAX Security Kernel team had the liberty of
designing and coding from scratch.

1162 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 11, NOVEMBER 1991

Printer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[VNCV\SSIFIED] I_"-.

Fig. 6. KVMi370 configuration

within its TCB. By contrast, the VAX Security Kernel leaves
virtual memory support to the VMOS's. Eliminating demand
paging reduces kernel complexity and improves performance
at the cost of limiting the number of simultaneously active
virtual machines.

Another major difference is that KVM/370 had a very
limited interface for system management and security manage-
ment functions. For example, new users could not be added
during online operation. By contrast, the VAX Security Kernel
offers a full complement of system and security management
tools, such as are required in a general-purpose system (see
Section V).

While performance comparisons are very tricky to make, the
relative performance of the VAX Security Kernel seems better
than that of KVM/370. KVM/370 reports [17] performance
ranges from 10-50% of VM/370, depending on the workload.
By contrast, the VAX Security Kernel exhibits performance
ranges from 30-90% of VMS capacity, again depending on the
workload. The KVM/370 measurements were of an untuned
system, while the VAX Security Kernel measurements were
of a system with a limited amount of tuning. The KVM/370
comparisons were to VM/370, itself a virtual-machine monitor
with performance degradation compared to a native operating
system. The VAX Security Kernel comparisons were to the
native VMS operating system. KVM/370 reported a number

of desirable performance optimizations that had not been done,
and likewise, we know of a number of optimizations that had
not yet been applied to VAX Security Kernel at the time of
the cancellation.

I x . HISTORY OF THE PROJECT

The idea of a virtual-machine monitor security kernel for
the VAX, similar in concept to KVM/370, was first conceived
by Karger and Lipner in a Mexican restaurant in Palo Alto,
CA, immediately after the 1981 Symposium on Security and
Privacy. An initial design study [45] concluded in 1982
that such a security kernel would be practical for the VAX
architecture.

The security kernel was initially prototyped on a VAX-
1 U730 system. The VAX-111730 CPU [46] was particularly
attractive, because it was vertically microprogrammed and
its microcode was executed from a writable control store
(WCS) which could be reloaded from magnetic tape cassettes.
This environment was ideal for experimenting with alternate
microcode extensions to the VAX architecture, although the
CPU itself was quite slow.

The VMS operating system first successfully booted in a
virtual machine on 19 July 1984. That version of the security
kernel was a research prototype and not a production-quality
system. It was extremely slow (due in part to the choice of the

U R G E R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: THE VAX VMM SECURITY KERNEL 1163

VAX-11/730, and in part to the initial software design which
emphasized quick development and extensive self-checking,
but not performance), and its user interface was extremely
crude.

Once the VMM security kernel prototype was running
reliably on the VAX-111730 and we had accomplished some
performance tuning (that improved system performance by at
least an order of magnitude), we then began investigation
of what a production-quality version would be like. The
extensions to the VAX architecture were reimplemented on
the VAX 8800 family of CPU’s to provide a high-performance
base for the system. Like the VAX-111730, the VAX 8800 CPU
[47] runs its microcode from a writable control store (WCS), so
modifications were possible. The VAX 8800 microcode is or-
ganized horizontally, rather than vertically, and the microcode
is pipelined, so the actual implementation of the extensions
was much more complex than for the VAX-11/730.

Going from the research prototype to the practical version
also gave us the opportunity to revisit a number of design
decisions. In particular, the extensions to the VAX architecture
to support virtualization were simplified, in part due to the
limited availability of microcode memory in the VAX 8800.
A performance study of the VAX Security Kernel prototype
revealed that some of our architectural extensions did not pro-
vide the expected performance gains, while other extensions
would be more valuable. For example, the prototype design in-
cluded complex microcode assistance for delivering exceptions
and interrupts to the virtual machines, but these microcode
assists proved not to be useful and a much simpler scheme
was implemented for the VAX 8800. Similarly, performance
measurements of the prototype revealed that VAX operating
systems (and VMS in particular) use the MTPR instruction
to change their interrupt priority level (IPL) much more
frequently than anyone had expected. Therefore the software
was changed to optimize this particular path and microcode
assistance was considered, although not implemented in this
version.

The move to the production-quality kernel also marked the
development of such features as user and system-management
interfaces, auditing, and error logging. The prototype kernel,
as a research kernel, had no need of such tools, but a real A1
system must have them so that the end users can manage and
reliably run real applications on the system.

By January 1988 the kernel was sufficiently stable that some
engineers could begin doing their development work on a
VM. Also in January 1988 the first VAX Security Kernel was
installed outside the kernel development group. That system
was installed in the European ULTRIX Engineering Group
in Reading, England, for porting the ULTRIX-32 operating
system to a virtual machine. ULTRIX-32 first booted in a
virtual machine on 15 February 1988, only two months after
detailed design for the port began, and less than one month
after a working VAX Security Kernel system was available
for use in Reading.

By August 1988 VAX Security Kernel builds were being
done on virtual machines, and by early 1989 essentially all
software development work was being done on the kernel.
By the Spring of 1989, the kernel was sufficiently stable that

the VAX 8800 that had been running a conventional VMS
time-sharing system for the kernel developers was released
for other purposes. The VAX Security Kernel entered external
field test in late 1989 at a number of government and aerospace
industrial sites. Feedback from the external field test sites was
very favorable, as the VAX Security Kernel allowed the sites
to perform many multilevel secure tasks that were impossible
on other systems. Performance was acceptable, except for the
time needed to actually install the system. Installation time was
very long, due to the extensive checks required to establish
the initial secure state.

X. CANCELLATION

The project was formally canceled by the Digital Equipment
Corporation on 1 March 1990. While the exact reasons for the
cancellation remain confidential, some of the issues can be
discussed here. Most importantly, the VAX Security Kernel
was considered a technical success and there was significant
customer demand for a product version of the security kernel
and for a higher performance, nonsecure version to support
VMS and ULTRIX-32 coexistence.

However, a significant fraction of the customer demand
came from foreign countries who are allied with the United
States under a variety of treaties. The current U.S. State
Department export controls on operating systems at the B3
and A1 levels are extremely onerous and would likely have
interfered with many potential sales, even to close NATO
allies. These export controls do not achieve their goal of
restricting access to high-security operating systems, as the
technology needed to achieve such high security is primarily
based on strict application of well-known software engineering
practices, such as layering and information hiding. In the area
of formal methods, European computer scientists are generally
viewed as equal to or ahead of their U.S. counterparts. In the
U.K., Data Logic has received a government contract [48] to
design a secure UNIX system to meet the U.K. equivalent
of an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA1 rating. The National Research Council’s recent
report, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAComputers ut Risk [49, pp. 158-159], suggests that the
export controls on B3 and A1 systems are in fact discouraging
U.S. industry from developing systems which employ such
technology.

Certain management decisions also affected the decision to
cancel. In the interest of shortening the development schedule,
management chose not to implement Ethernet support in the
initial versions of the VAX Security Kernel. This lack of good
networking support was particularly critical, as most computer
systems today require such support. The primary criticisms
during the external field test came from the lack of Ethernet
support.

The changes to the VAX architecture for virtualization were
officially approved as ECO’s (engineering change orders).
However, the ECO’s were not made mandatory on all new
VAX processors, and most of the development groups for
the VAX processors that followed the VAX 8800 did not
choose to implement the ECO’s. As many of those newer
processors implemented their microcode in ROM’s, adding the
virtualization ECO’s after the fact would have been difficult
and expensive.

1164 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 11, NOVEMBER 1991

XI. CONCLUSIONS R. Crane, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. Elfstrom, J. Ferguson, A. Gabriel-Reilly,

The VAX Security Kernel is a working, production-quality
VMM security kernel with performance sufficient to support
a large number of time-sharing users. It is sufficiently fast
and stable so that it supported its own development team.
It supports vast amounts of existing user software that has
been written for both the VMS and the ULTRIX-32 operat-
ing systems, and it supports both operating systems running
simultaneously on the same CPU. The new covert-channel
countermeasures in the VAX Security Kernel deal effectively
and efficiently against entire classes of storage and timing
channels that had previously been thought intractable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[50].’*
As a research project in what is required to build a practical
security kernel, it has been a major success.

The development of the VAX Security Kernel was long and
arduous, and we learned a number of lessons during that time.
Performance of a security kernel is extremely important, and
getting good performance is very hard. It requires detailed
analysis of what portions of the kernel are performance-critical
and a willingness to redesign those portions for performance
and possible recode them in assembly language or to provide
microcode performance assistance.

Building the system twice-once as a research prototype
and once as a study of a production-quality system-was
extremely valuable. The second time around we were able to
apply some of the performance lessons learned by adjusting
our microcode assistance, and we developed the user and
management interfaces which are essential in a real system.

One very important lesson learned is that it is not sufficient
to just build a high-performance Al-secure system. That
system must also support the features demanded by the user
community. This means that the system must not only support
many commercially available software systems (such as the
VMS and ULTRIX-32 operating systems), but it must also sup-
port high-security, high-speed networking and high-security
windowing systems. A high-security time-sharing system is
no longer sufficient for the marketplace of the 1990’s.

Developing a system to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA1 standards is very hard work.
Some of the A1 requirements can directly conflict with per-
formance and usability goals, and the testing and review
requirements are very time consuming. Furthermore, the ex-
port controls imposed on the A1 systems can seriously reduce
the potential market for a system, making it difficult to recover
the costs in achieving the A1 rating. On the other hand,
the discipline required to meet A1 requirements definitely
improves overall software quality and reliability.

ACKNOWLEDGMENT

A great many people were involved in making the VAX Se-
curity Kernel a success, and space does not permit mentioning
them all here. The VAX-111730 prototype was developed by
a team of P. Karger, A. Mason, C. Kahn, and S. Thigpen. The
VAX-11/730 microcode extensions were done by T. Leonard.
Other engineers on the project included C. Anderson, D. Argo,
M. Bokhan, D. Butchart, T. Casey, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG . Champagne, E. Childs,

I2Patent applications have been filed covering some of these counter-
measures.

R. Gonda, R. Govotski, E. Gugel, J. Hall, A. HSU, W. Hu,
L. Kendall, B. Kindel, C. Lo, M. McClintock, J. Melanson,
L. Nasman, T.C. Pan, S . Pinkoski, T. Priborsky, J. Purretta,
D. Raizen, P. Robinson, P. Sawyer, K. Seiden, G. Shapira,
R. Shepardson, R. Simon, S . Stennett, H. Teng, T. Tierney,
S . Troop, and M.E. Zurko. Verification work was done by
C. Dermody, D. Ellis, R. Marsden, R. Modeen, D. Wittenberg,
and J. Wray, with assistance from E. Cohen, T. Haley,
S . Landauer, and T. Vickers Benzel of Trusted Information
Systems and J. Thomas of the Aerospace Corporation. The
technical writers included E. Aschkenasi, D. Bonin, E. Guth,
J. Hurst, B. Laru, and P. Norton. In addition, the contributions
of managers, supervisors, field test coordinators, compiler
writers, members of the VMS and the European ULTRIX
Engineering groups, product managers, customer service
system engineers, marketing people, operations staff, our
illustrator, and secretaries were all critical to the project.
Finally, we must thank our team from the National Computer
Security Center for their participation throughout the long
development effort and the referees for their suggestions for
improving this paper.

This paper presents the opinions of its authors, which are
not necessarily those of Digital Equipment Corporation or the
Open Software Foundation. Opinions expressed in this paper
must not be construed to imply any product commitment on the
part of Digital Equipment Corporation or the Open Software
Foundation.

Ina Jo is a registered trademark of UNISYS Corporation.
MS-DOS is a registered trademark of Microsoft Corporation.
UNIX is a registered trademark of UNIX Systems Laboratory,
Inc. Ethernet is a registered trademark of Xerox Corpora-
tion. The following are trademarks of Digital Equipment
Corporation: DEC, DEC/CMS, DEC/MMS, DESNC, PDP-11,

VAX zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8550, VAX 8700, VAX 8800, VAX 8810, VAX 8820,
VAX 8830, VAX 8840, VAX DEC/Test Manager, and VMS.

RSTS/E, TOPS-20, ULTRIX, VAX, VAX-11/730, VAX 8530,

REFERENCES

[l] R. R. Schell, “Computer security: the Achilles heel of the electronic air
force?” Air Univ. Rev., vol. X X X , pp. 16-33, Jan.-Feb. 1979.

[2] B. W. Lampson, “A note on the confinement problem,” Commun. ACM,
vol. 16, pp. 613-615, Oct. 1973.

[3] M. A. Harrison, W. L. Ruzzo, and J . D. Ullman, “Protection in operating
systems,’’ Commun. ACM, vol. 19, pp. 461-471, Aug. 1976.

[4] S.B. Lipner, “A comment on the confinement problem,” Operating
Syst. Rev., vol. 9, pp. 192-196, Nov. 1975 (presented at the 5th Symp.
Operating Syst. Principles, Univ. Texas, Austin, 19-21 Nov. 1975).

[5] D. E. Denning, “A lattice model of secure information flow,” Commun.
ACM, vol. 19, pp. 236-243, May 1976.

[6] “Department of defense trusted computer system evaluation criteria,”
DOD, Washington, DC, DOD 5200.28-STD, Dec. 1985.

[7] S . Blotcky, K. Lynch, and S. Lipner, “SENMS: implementing manda-
tory security in VAXNMS,” in Proc. 9th Nat. Comput. Security zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAConf
(Gaithersburg, MD), 15-18 Sept. 1986, pp. 47-54.

[8] D.E. Bell and L.J. LaPadula, “Computer security model: unified ex-

position and Multics interpretation,” MITRE Corp., Bedford, MA, HQ
Electron. Syst. Div., Hanscom AFB, MA, Tech. Rep. ESD-TR-75-306,
June 1975.

[9] K. J. Biba, “Integrity considerations for secure computer systems,”
MITRE Corp., Bedford, MA, HQ Electron. Syst. Div., Hanscom AFB,
MA, Tech. Rep. ESD-TR-76-372, Apr. 1977.

[lo] “Guide to VMS system security,” Digital Equip. Corp., Maynard, MA,
Order No. AA-LA40B-TE, June 1989.

KARGER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al.: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATHE VAX VMM SECURITY KERNEL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1165

[l l] J. Whitmore et al., “Design for Multics security enhancements,”
Honeywell Inform. Syst., Inc., HQ Electron. Syst. Div., Hanscom AFB,
MA, Tech. Rep. ESD-TR-74-176, Dec. 1973.

[12] P.A. Karger, “Computer security research at Digital,” in Proc. 3rd
Seminar on the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADoD Comput. Security Initiative Program (Gaithersburg, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[131 T. E. Leonard, Ed., VMArchitecture Reference Manual. Bedford, MA:
Digital, 1987.

[14] S.E. Madnick and J.J. Donovan, “Application and analysis of the

MD), 18-20 NOV. 1980, pp. E-1-E-6.

virtual machine approach to information-system security,” inProc. ACM
SIGARCH-SIGOPS Workshop on Virtual Comput. Syst. (Cambridge,
MA), 26-27 Mar. 1973, pp. 210-224.
R. Rhode, “Secure multilevel virtual computer systems,” MITRE Corp.,
Bedford, MA, HQ Electron. Syst. Div., Hanscom AFB, MA, Tech. Rep.
ESD-TR-74-370, Feb. 1975.
B. D. Gold et al., “A security retrofit of VM/370,” in AFIPS Con) Proc.,
vol. 48, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1979 Nat. Comput. Con) (Montvale, NJ), 1979, pp. 335-344.
B. D. Gold, R. R. Linde, and P. F. Cudney, “KVMi370 in retrospect,”
in Proc. 2984 Symp. Security and Privacy (Oakland, CA), 29 Apr.-
2 May 1984, pp. 13-23.
M. Gasser, Building a Secure Computer System. New York: Van
Nostrand Reinhold, 1988.
G. J. Popek and R. P. Goldberg, “Formal requirements for virtualizable
third generation architectures,” Commun. ACM, vol. 17, pp. 412-421,
July 1974.
P.A. Karger, T. E. Leonard, and A. H. Mason, “Computer with virtual
machine mode and multiple protection rings,” U.S. Patent No. 4 787 031,
22 Nov. 1988.
J. S. Hall and P. T. Robinson, ”Virtualizing the VAX architecture,”
Comput. ArchitectureNews, vol. 19, pp. 380-389, May 1991 (presented
at the 18th Int. Symp. Comput. Architecture Conf., Toronto, ON, Can.,
27-30 May 1991).
R. P. Goldberg, “Architectural principles for virtual computer systems,”
Ph.D. thesis, Div. Eng. and Appl. Phys., Harvard Univ., Cambridge,
MA, Feb. 1973 (published as ESD-TR-73-105, HQ Electron. Syst. Div.,
Hanscom AFB, MA).
G. J. Popek and C. S. Kline, “The PDP-11 virtual machine architecture:
a case study,” Operating Syst. Rev.. vol. 9, pp. 97-105, Nov. 1975
(presented at the 5th Symp. Operating Syst. Principles, Univ. Texas,
Austin).
M. D. Vahey, “A virtualizer efficiency device for virtual machines,” M.S.
thesis, UCLA, 1975.
“A proposed interpretation of the TCSEC for virtual machine architec-
tures,’’ Trusted Inform. Syst., Inc., Glenwood, MD, Tech. Rep. draft, 31
Mar. 1989.
T.A. Berson and G. L. Barksdale, Jr., “KSOS-development method-
ology for a secure operating system,” in AFIPS Conf Proc., vol. 48,
1979 Nat. Comput. Conf., (Montvale, NJ), 1979, pp. 365-371.
S.E. Madnick and J.J. Donovan, Operating Systems. New York:
McGraw-Hill, 1974.
P. R. Halmos, Naive Se? Theory. New York: Van Nostrand Reinhold,
1960.
E. W. Dijkstra, “The structure of the THE multiprogramming system,”
Commun. ACM, vol. 11, pp. 341-346, May 1968.
P.A. Janson, “Using type extension to organize virtual memory mech-
anisms,’’ Ph.D. thesis, Dept. Elect. Eng. and Comput. Science, MIT,
Cambridge (published as Tech. Rep. MITILCSRR-167, Lab. Comput.
Sci., MIT, Sept. 1976).
D. P. Reed, “Processor multiplexing in a layered operating system,”
S.M. thesis, Dept. Elect. Eng. and Comput. Science, MIT, Cambridge
(published as Tech. Rep. MITILCSRR-164, Lab. Comput. Sci., MIT,
July 1976).
L. A. Cox, Jr. and R. R. Schell, “The structure of a security kernel for
a 28000 multiprocessor,” in Proc. 1981 Symp. on Security and Privacy
(Oakland, CA), 27-29 Apr. 1981, pp. 124-129.
D. P. Reed and R. K. Kanodia, “Synchronization with eventcounts and
sequences,” Commun. ACM, vol. 22, pp. 115-123, Feb. 1979.
K.F. Seiden and J.P. Melanson, “The auditing facility for a VMM
security kernel,” in Proc. 1990 IEEE Symp. Res. in Security and Privacy
<cOakland, CA), 7-9 May 1990, pp. 262-277.
VMS analyzeidisk-structure utility manual,” Digital Equip. Corp.,

Maynard, MA, Order No. AA-LA39A-TE, Apr. 1988.
J. Nagle, “Update on the kernelized security operating system (KSOS),”
in Proc. 3rd Seminar on the DoD Comput. Security Initiative Program
(Gaithersburg, MD), 18-20 Nov. 1980, pp. Q-1-Q-7.
L. J. Fraim, “SCOMP: A solution to the multilevel security problem,”

Computer, vol. 16, pp. 26-34, July 1983.
[38] W. R. Shockley, T. F. Tao, and M. F. Thompson, “An overview of the

GEMSOS class A1 technology and application experience,” in Proc.
11th Nat. Comput. Securiv Cor$, 17-20 Oct. 1988, pp. 238-245.

[39] J. Scheid, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. Anderson, R. Martin, and S. Holtzberg, “The Ina Jo spec-
ification language reference manual-release 1,” System Development
Corp., Santa Monica, CA, TM 6021/001/02, 1986.

[40] R. A. Kemmerer, “A practical approach to identifying storage and timing
channels,” in Proc. 1982 Symp. Security and Privacy (Oakland, CA),
26-28 Apr. 1982, pp, 66-73.

[41] M. Schaefer, B. Gold, R. Linde, and J. Scheid, “Program confinement
in KVM/370,” in Proc. 1977 ACM Ann. Con5 (Seattle, WA), 16-19

I421 P.A. Karger and J.C. Wray, “Storage channels in disk arm optimiza-
tion,” in Proc. 1991 IEEE Comput. Soc. Symp. on Res. in Security and
Privacy (Oakland, CA), 20-22 May 1991, pp. 52-61.

[43] J. C. Wray, “An analysis of covert timing channels,” in Proc. 1991 IEEE
Comput. Soc. Symp. on Res. in Security and Privacy (Oakland, CA),
20-22 May 1991, pp, 2-7.

[44] W.-M. Hu, “Reducing timing channels with fuzzy time,” in Proc. 1991
IEEE Comput. Soc. Symp. on Res. in Security and Privacy (Oakland,
CA), 20-22 May 1991, pp. 8-20.

[45] P.A. Karger, “Preliminary design of a VAX-11 virtual machine monitor
security kernel,” Digital Equip. Corp., Hudson, MA, Tech. Rep. DEC
TR-126, 13 Jan. 1982.

[46] “VAX-11/730 central processing unit technical description,” Digital
Equip. Corp., Maynard, MA, EK-KA730-TD-001, May 1982.

[47] S. N. Mishra, “The VAX 8800 microarchitecture,” Digital Tech. J . ,
pp. 20-33, Feb. 1987.

[48] S. Hill, “Secret service vets Unix,” Comput. Weekly, p. 1, 26 Apr. 1990.
[49] Computers a t Risk: Safe Computing in the Information Age. Washing-

ton, DC: Nat. Acad. Press, 1991.
[50] “Minutes of the first workshop on covert channel analysis,” Cipher:

Newsletter IEEE Comput. Soc. Tech. Committee on Security and Privacy,
July 1990.

Oct. 1977, pp. 404-410.

Paul A. Karger (S’71-M’74) received the S.B., S.M., and Eng. degrees
from the Massachusetts Institute of Technology (MIT) in 1972, 1977, and
1980, respectively, and the Ph.D. degree from the University of Cambridge,
England, in 1989.

He is a Senior Technical Consultant for the Open Software Foundation
(OSF), responsible for all of OSF’s work in computer security. Before joining
OSF, he was a Consulting Software Engineer for the Digital Equipment
Corporation. where he founded the Secure Systems Group and was the Chief
Architect of the prototype security enhancements to the VMS operating system
and of the prototype VAX VMM security kernel.

Mary Ellen Zurko received the S.B. degree in computer science from MIT in
1982, where she is currently working towards the S.M. degree in computer sci-
ence under the sponsorship of the Digital Equipment Corporation’s Graduate
Engineering Education Program. She has worked in Digital’s Secure Systems
Group since 1986. Her research interests include distributed authorization and
fusing security and usability.

Douglas W. Bonin began his career at the Digital Equipment Corporation
in 1977 as a Test Technician in PDP-11 manufacturing. After working as
a Technical Writer for the TOPS-20 operating system, he joined Digital’s
Secure Systems Group and became Project Leader for the VAX Security
Kernel documentation team and author of the “VAX Security Kernel User’s
Guide” and the “VAX Security Kernel Guide to System Security.” Currently,
he is leading the development of Digital’s Corporate ULTRIX Security Policy.

Andrew H. Mason received the S.B. degree in electrical engineering in 1974
and the S.M. degree in electrical engineering and computer science in 1977,
both from MIT, and the S.M. degree in management from MIT’s Sloan School
in 1978.

He is currently a Consulting Software Engineer at the Digital Equip-
ment Corporation. His interests include operating systems, virtual machines,
computer architecture, and amateur astronomy.

Clifford E. Kahn received the B.A. degree in computer science and music
in 1979 from the University of California, Santa Barbara. Since 1980 he has
been with the Digital Equipment Corporation, where he early developed a
command interpreter for RSTSIE. He was a main designer and implementor
of the VMM Security Kernel, particularly its layer structure and its file system.
He is now working on security for distributed environments.

