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Abstract-This paper describes the development of a virtual- 
machine monitor (VMM) security kernel for the VAX archi- 
tecture. The paper particularly focuses on how the system’s 
hardware, microcode, and software are aimed at meeting Al-level 
security requirements while maintaining the standard interfaces 
and applications of the VMS and ULTRIX-32 operating systems. 
The VAX Security Kernel supports multiple concurrent virtual 
machines on a single VAX system, providing isolation and con- 
trolled sharing of sensitive data. Rigorous engineering standards 
were applied during development to comply with the assurance 
requirements for verification and configuration management. 
The VAX Security Kernel has been developed with a heavy 
emphasis on performance and system management tools. The 
kernel performs sufficiently well that much of its development 
was carried out in virtual machines running on the kernel itself, 
rather than in a conventional time-sharing system. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Index Terms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- Computer security, virtual machines, covert 
channels, mandatory security, discretionary security, layered de- 
sign, security kernels, protection rings. 

I. INTRODUCTION 

HE VAX Security Kernel project was a research effort T to determine what is required to build a production- 
quality security kernel, capable of receiving an A1 rating 
from the National Computer Security Center (NCSC). A 
production-quality security kernel is very different from the 
many research-quality security kernels that have been built 
in the past, and this effort has been primarily aimed at 
identifying the differences and their cost in development effort 
and kernel complexity. While the VAX Security Kernel was a 
technical success, underwent a highly successful external field 
test, and had many interested potential customers, the Digital 
Equipment Corporation chose not to bring it to market. 

This paper describes how the VAX Security Kernel met its 
five major goals: 

Meet all A1 security requirements (described below) 
Run on commercial hardware without special modifica- 
tions other than microcode changes for virtualization 
Provide software compatibility for applications written for 
both the VMS and ULTRIX-32 operating systems 
Provide an acceptable level of performance 
Meet the requirements of a commercial software product. 
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Attempting to meet all of these goals, represented a very 
ambitious undertaking, because no system had ever simulta- 
neously met the security, performance, and software compati- 
bility goals. Indeed, very few systems have ever met just the 
security goal, as most so-called secure systems have proven 
to be easily penetrable [l]. 

11. BACKGROUND 

This section presents a brief summary of the basics of 
computer security as background for the remainder of the 
paper. Most secure systems are based on an abstract notion 
of subjects and objects. The secure system must mediate 
access requests from the subjects, typically users or processes, 
to the objects that contain information, typically files, or 
memory. This section outlines the concepts of discretionary 
and mandatory controls and describes how the NCSC evaluates 
allegedly secure systems. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. Discretionary and Mandatory Security Controls 

Discretionary access controls are the commonly available 
security controls found in most operating systems. They are 
called discretionary, because the access rights to an object 
may be determined at the discretion of the owner or controller 
of the object. Both access-control-list and capability systems 
are examples of discretionary access controls. The presence 
of Trojan horses in applications software can cause great 
difficulties with discretionary controls, because a Trojan horse 
could surreptitiously change the access rights on an object or 
could make a copy of protected information and give that copy 
to some unauthorized user. All forms of discretionary controls 
are vulnerable to this type of Trojan-horse attack. A Trojan 
horse in an access-control-list system could surreptitiously 
change the ACL of an object. A Trojan horse in a capability 
system could make a copy of a capability for a protected 
object, and then store that capability in some other object to 
which a penetrator would have read access. In both cases, the 
information is disclosed to an unauthorized recipient. 

Lampson [2] has defined the confinement problem as de- 
termining whether there exists a series of operations in a 
security system that will ultimately leak some information to 
some unauthorized individual. Harrison et al. [ 3 ]  have shown 
that there is no solution to the confinement problem for fully 
general, discretionary access controls, such as either a general 
access-control-list or capability system. Their argument is 
based on modeling the state transitions of the access control 
lists as the state transitions of a Turing machine. They show 
that solving the confinement problem is equivalent to solving 
the Turing-machine halting problem. 
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The paths over which a Trojan horse leaks information are 
called zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcovert channels. Covert channels can be divided into 
two major categories: storage channels and timing channels. 
Information can be leaked through a storage channel by 
changing the values of any of the state variables of the 
system. Thus contents of files, names of files, and amount 
of disk space used are all examples of potential storage 
channels. A Trojan horse can leak information through a 
storage channel in a purely asynchronous fashion. There are 
no timing dependencies. 

By contrast, information can be leaked through a timing 
channel by modifying the length of time that system functions 
take to complete. For example, a Trojan horse could encode 
information into deliberate modifications of the system page- 
fault rate. Timing channels all use synchronous communication 
and require some form of external clocking. 

Mandatory access controls have been developed to deal with 
the Trojan horse problems of discretionary access controls. The 
distinguishing feature of mandatory access controls is that the 
system manager or security officer may constrain the owner 
of an object in determining who may have access rights to 
that object. 

Lipner [4] and Denning [ 5 ]  have shown that for lattice 
security models, unlike for fully general access matrices, it 
is possible to solve the confinement problem. All mandatory 
controls, to date, have been based on lattice security models. 

A lattice security model consists of a set of access classes 
that form a partial ordering. Any two access classes may be 
less than, greater than, equal to, or not ordered with respect to 
one another. Two access classes that are not ordered are called 
disjoint. Furthermore, there exists a lowest access class, called 
system low, such that system low is less than or equal to all 
other access classes, and there exists a highest access class, 
called system high, such that all other access classes are less 
than or equal to system high. 

A very simple lattice might consist of two access classes: 
LOW and HIGH. LOW is less than HIGH. LOW is system 
low, and HIGH is system high. A slightly more complex ex- 
ample might be a list of secrecy levels, such as UNCLASSI- 
FIED, CONFIDENTIAL, SECRET, and TOP SECRET. Each 
level in the list represents data of increasing secrecy. 

There is no requirement for a strict hierarchical relationship 
between access classes. The U.S. military services use a set of 
access classes that have two parts: a secrecy level and a set of 
categories. Categories represent compartments of information 
for which an individual must be specially cleared. To gain 
access to information in a category, an individual must be 
cleared, not only for the secrecy level of the information, 
but also for the specific category. For example, if there 
were a category NUCLEAR, and some information classified 
SECRET-NUCLEAR, then an individual with a TOP SECRET 
clearance would not be allowed to see that information, unless 
the individual were specifically authorized for the NUCLEAR 
category. 

Information can belong to more than one category, and 
category comparison is done using subsets. Thus in the military 
lattice model, for access class A to be less than or equal to 
access class B, the secrecy level of A must be less than or 

equal to the secrecy level of B, and the category set of A 
must be an improper subset of the category set of B. Since 
two category sets may be disjoint, the complete set of access 
classes has only a partial ordering. There is a lowest access 
class, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ UNCLASSIFIED-no categories}, and a highest access 
class, {TOP SECRET-all categories}. The access classes made 
up of levels and category sets form a lattice. 

B. Overview of NCSC Criteria 

The NCSC has developed computer security evaluation 
criteria [6] to aid DoD agencies in the procurement of se- 
cure computer systems. The criteria divide computer security 
systems into four major divisions, with classes within those 
divisions. Computer vendors submit their operating systems 
to the NCSC for design assistance and ultimately formal 
evaluation against the criteria. A number of commercially 
available systems have been successfully evaluated against the 
criteria. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAt least one commercial system has been evaluated 
in each of the four major divisions. 

Division D: Minimal Protection. This division con- 
tains only one class. It i s  reserved for those systems that 
have been evaluated, but that fail to meet the requirements 
for a higher evaluation class. 
Division C: Discretionary Protection. Classes in this 
division provide for discretionary (need-to-know) protec- 
tion: 
Class (CI): Discretionary Security Protection: Class (Cl)  
systems provide a minimal set of security features to 
separate users and their data. Most conventional time- 
sharing systems fall into this class. 
Class (C2): Controlled Access Protection: Class (C2) 
systems require a finer grained control system than class 
(Cl )  systems. For example, simple owner/group/world 
protection schemes would be unacceptable at class (C2). 
Class (C2) systems must also provide improved audit 
trails and login control procedures. 
Division B: Mandatory Protection. Classes in this 
division provide an implementation of the mandatory 
lattice security model: 
Class zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(BI): Labeled Security Protection: Class (Bl )  sys- 
tems must label all storage objects and enforce the 
lattice security model on those objects. However, covert 
channels are not addressed in this class. 
Class (B2): Structured Protection: Class (B2) systems 
must label all system resources (as opposed to only 
storage objects), and must show that covert channels 
have either been eliminated or bandwidth limited. Also, 
a trusted communications path between the user and the 
system must provide two-way authentication. 
Class (B3): Security Domains: Class (B3) systems are 
required to isolate the security functions from the rest of 
the operating system, typically into some form of security 
kernel. At this class, access control lists are explicitly 
required. An informal descriptive top-level specification 
(DTLS) of the design is required. 
Division A: Verified Protection. Division A systems 
are characterized by the use of formal mathematical meth- 
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Fig. 1. VAX VMM Security Kernel configuration. 

ods to assure correctness of design and implementation: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Class (AI): Verijied Design: Class (Al) systems require 
the preparation and verification of a mathematically for- 
mal top-level specification (FTLS) of the security kernel 
design. Informal techniques must be used to show cor- 
respondence between the FTLS and the implemented 
software. 
Beyond Class (AI) :  Classes beyond A1 will probably 
require formal verification of the code of the security 
kernel and some considerations of microcode and hard- 
ware correctness. However, constructing systems at this 
level of security is still beyond current technology, so 
requirements have not yet been stated. 

111. KERNEL OVERVIEW 

The VAX Security Kernel is a virtual-machine monitor that 
runs on the VAX 8530, 8550, 8700, 8800, and 8810 proces- 
s0rs.l It creates isolated virtual VAX processors, each of which 
can run either the VMS or ULTRIX-32 operating system. 
If desired, virtual machines running each of the operating 
systems can run simultaneously on the same computer system.2 

'The VMM does not run on VAX 8820, 8830, or 8840 processors, due to 

*At least one virtual machine must always run the VMS operating system, 
microcode and console differences. 

to carry out certain system management functions. 

The VAX architecture was not virtualizable, and therefore 
extensions were made to the architecture and to the processor 
microcode to support virtualization. 

Fig. 1 shows a typical VAX Security Kernel configuration. 
While the VAX Security Kernel is a VMM, it is primarily a 
security kernel. Therefore, certain features traditionally seen in 
VMM's, such as self-virtualization or debugging of one VM 
from another, have been omitted to reduce kernel complexity. 

The VAX Security Kernel applies both mandatory and 
discretionary access controls to virtual machines. Each vir- 
tual machine is assigned an access class, which consists of 
a secrecy class and an integrity class, similar to those in 
the VMS Security Enhancement Service (VMS SES) [7]. 
The secrecy and integrity classes are based on the Bell and 
LaPadula security [8] and Biba integrity [9] models, respec- 
tively. The VAX Security Kernel also supports access control 
lists (ACL's) on all objects, similar to those in the VMS 
operating system [lo]. 

The VMM security kernel is not a general-purpose operating 
system. The principal subjects and objects are virtual machines 
and virtual disks, rather than conventional processes and files. 
That is the inherent difference between a VMM and a tradi- 
tional operating system. Processes and files are implemented 
within the virtual machines by either the VMS or ULTRIX-32 
operating systems. 
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The VAX Security Kernel can support large numbers of 
simultaneous users.3 Once a basic system was operational, 
all software development of the VAX Security Kernel was 
carried out on several virtual machines running on the VMM 
on a VAX 8800 system. On a typical day, about 40 software 
engineers and managers were logged in running a mixed load 
of text editing, compilation, system building, and document 
formatting. The system provided adequate interactive response 
time and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis sufficiently reliable to support an engineering group 
that must meet strict milestones and schedules. As far as we 
know, the VAX Security Kernel was the first security kernel 
to support its own development team. The Multics Access 
Isolation Mechanism [11] was developed on Multics itself, but 
Multics with AIM was not a security kernel and only received 
a B2 rating. 

At the time of the cancellation, the VAX Security Kernel 
was about to enter the Formal Evaluation Phase with the NCSC 
for an A1 rating. It was formally specified in Ina Jo and formal 
proofs were underway on the specifications. 

IV. DESIGN APPROACH 

This section describes several of the design choices in 
the VAX Security Kernel, including details about the virtual 
machine approach to security kernels, virtualizing the VAX 
architecture, subjects and objects, access classes, our layered 
design, and other software engineering issues. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. Virtual Machine Approach 

The choice to build the VAX Security Kernel as a VMM 
was driven by two goals: to maintain compatibility with 
existing software written for the VAX architecture, and to keep 
software development and maintenance costs to a minimum. 

We began plans to enhance the security of the VAX architec- 
ture in mid-1979. Our initial effort was the design of security 
enhancements to the VMS operating system, first prototyped 
in 1980 and available today in the base VMS operating system 
and in the VMS Security Enhancement Service [7]. 

At the time of the initial prototype of the VMS secu- 
rity enhancements zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 121, Digital considered a traditional ker- 
nel/emulator security kernel to support VMS applications. 
However, it quickly became clear that the software devel- 
opment costs of a VMS emulator would be comparable to 
the cost of development of the VMS operating system itself. 
Worse still, the emulator would have to track all changes made 
to the VMS operating system, resulting in ongoing costs that 
would be unacceptably high for the limited market for A l -  
secure systems. The kernel/emulator system could not replace 
the existing VMS operating system, because its performance 
would not be as good, and it would likely be export-controlled. 
Furthermore, the growing demand for UNIX-based software 
would force development of a UNIX emulator at still more 
development cost. 

To resolve these development cost and compatibility prob- 
lems, we chose a VMM security kernel approach. A VMM 
security kernel presents the interface of a computer architec- 
ture that is comparatively simple and not subject to frequent 

Exact numbers depend on the precise hardware configuration. 

change. Thus the VAX Security Kernel presents an interface 
of the VAX architecture [13] and supports both the VMS and 
ULTRIX-32 operating systems with relatively few modifica- 
tions. 

The idea of a VMM security kernel is not a new one. 
Madnick and Donovan [14] first suggested the merits of 
VMM’s for security, and Rhode [15] first proposed VMM 
security kernels. From 1976 to 1982, System Development 
Corporation (now a part of the UNISYS Corporation) built a 
kernelized version of IBM’s VM/370 virtual-machine monitor, 
called KVM/370 [16]. While the design of the VAX Security 
Kernel is very different from KVM/370, we have applied some 
of the lessons learned in the KVM/370 project [17]. Section 
VI11 compares the VAX Security Kernel with KVM/370. 
Gasser [18, sec. 10.71 provides more detail on some of the 
trade-offs between a VMM security kernel approach and a 
kernel/emulator approach. 

B. Virtualizing the VAX 

The requirements for virtualizing a computer architecture 
were specified by Popek and Goldberg [19]. In essence, they 
require that all sensitive instructions and all references to 
sensitive data structures trap when executed by unprivileged 
code. A sensitive instruction or data structure is one that either 
reveals or modifies the privileged state of the processor. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1) Sensitive Instructions: Unfortunately, the VAX architec- 
ture does not meet Popek and Goldberg’s requirements. Sev- 
eral instructions, including Move Processor Status Longword 
(MOVPSL), Probe (PROBEx), and Return from Exception or 
Interrupt (REI) are sensitive, but unprivileged. Furthermore, 
page table entries (PTE’s) are sensitive data structures that 
can be read and written with unprivileged instructions. 

As a result, we made a number of extensions to the VAX 
architecture to support virtualization. In particular, we added a 
VM bit to the processor status longword (PSL) that indicated 
whether or not the processor was executing in a virtual 
machine. A variety of sensitive instructions were changed to 
trap based on the setting of the VM bit, so that the VMM 
security kernel could emulate their execution. Space does 
not permit a full discussion of the instruction changes. More 
complete descriptions can be found in Karger, Mason, and 
Leonard’s patent [20] and in Hall and Robinson’s paper [21] 
on virtualization of the VAX architecture. 

2) Ring Compression: The most significant and security- 
relevant change to the VAX architecture was to virtualize 
protection rings. In the past, only processors with two protec- 
tion states (such as the IBM 360/370 architecture) had been 
virtualized. Goldberg [22, sec. 4.31 described the difficulties of 
virtualizing machines with protection rings and therefore more 
than two protection states. He proposed several techniques for 
mapping ring numbers, some in software and one with a hard- 
ware ring-relocation register, but he recognized that none of 
his techniques were satisfactory. His software techniques broke 
down because the physical ring number remained visible, and 
his hardware ring-relocation technique broke down because 
virtualizing a machine with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN rings always required N + 1 
rings. 
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Fig. 2. Ring compression. 

Since the VMS operating system uses all four of the 
protection rings of the VAX architecture, it was essential that 
we develop a new technique for virtualization of protection 
rings. That technique is called ring compression. 

Fig. 2 shows how the protection rings of a virtual VAX 
processor are mapped to the rings of a real VAX processor. 
Virtual user and supervisor modes map to their real counter- 
parts, but virtual executive and kernel modes both map to 
real executive mode. The real ring numbers are concealed 
from the virtual machine’s operating system (VMOS) by three 
extensions to the VAX architecture: the addition of the VM bit 
to the PSL, the addition of a VM processor-status longword 
register (VMPSL), and the modification of all instructions that 
could reveal the real ring number. Those instructions, either 
trap to the VMM security kernel for emulation or obtain their 
information from the VMPSL, which contains the virtual ring 
numbers rather than the real ring number. Additional details 
can be found in Karger zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al.’s patent [20] and in Hall and 
Robinson’s paper [21]. 

Ring compression also requires that the security kernel 
change the memory protection of pages belonging to virtual 
machines so that their kernel-mode pages become accessible 
from executive mode. This change of memory protection 
could adversely affect security within a given virtual machine, 
because the virtual machine’s kernel mode is no longer fully 
protected from its executive mode. 

For the two operating systems of interest to the VAX 
Security Kernel, there is no effective loss of security within 
the virtual machines themselves, although there is a loss of 
robustness against the potentially bug-laden executive mode 
code. Fortunately, the VMS operating system grants all pro- 
grams that run in the executive mode the right to change mode 
to kernel at will, and uses the kernel/executive mode boundary 
only as a reliability mechanism. Furthermore, the ULTRIX-32 
operating system does not use the executive mode at all. 

Of course, the compression of kernel and executive modes in 
the virtual machines in no way compromises the security of the 

VMM, as the security kernel runs only in real kernel mode, and 
no virtual machine ever is granted access to real kernel mode 
pages. If there were some other VAX operating system which 
actually used all four rings for security purposes, it would lose 
some of its own security, much as IBM operating systems lose 
some of their security when run in VM/370. However, no such 
operating systems exist for the VAX architecture. 

3) I/O Emulation: Traditional virtual-machine monitors, 
such as IBM’s VM/370, have virtualized not only the CPU, 
but also the I/O hardware. Virtualization of the I/O hardware 
allows the VMOS to run essentially unmodified. Virtualization 
of the VAX I/O hardware is particularly difficult, because its 
1/0 devices are programmed by reading and writing control 
and status registers (CSR’s) that are located in a region of 
physical memory called I/O space. This type of 1/0 originated 
on the PDP-11 series of computers and caused performance 
difficulties in the UCLA PDP-11 virtual-machine monitor [23], 
because the VMM must somehow simulate every instruction 
that manipulates a CSR. Vahey [24] proposed a complex 
hardware performance assist, but such a device would add 
excessive complexity and development cost to the VAX 
Security Kernel. 

Instead, the VAX Security Kernel implements a special 
1/0 interconnection strategy for virtual machines. The VAX 
architecture [13] does not specify how I/O is to be done, 
and different VAX processors have implemented very different 
I/O interfaces. The VAX Security Kernel I/O interface is a 
specialized kernel call mechanism, optimized for performance, 
rather than traditional CSR-based I/O. In essence, a virtual ma- 
chine stores I/O-related parameters (such as buffer addresses, 
etc.) in specified locations in its I/O space, but no I/O takes 
place until the virtual machine executes a Move to Privileged 
Register (MTPR) instruction to a special kernel call (KCALL) 
register. This MTPR traps to security kernel software that then 
performs the I/O. Thus the number of traps to kernel software 
is dramatically less than would be required for CSR emulation. 

This special kernel I/O interface means that special un- 
trusted virtual device drivers had to be written for both the 
VMS and ULTRIX-32 operating systems, but this effort was 
no more than is typically required to support a new VAX 
processor, a small number of engineer-years. 

Because the virtual VAX processors have an I/O interface 
different from that of any existing VAX processors, the VAX 
Security Kernel does not fall into any of Goldberg’s traditional 
categories of VMM’s. Goldberg [22, pp. 22-26] defines a 
Type I VMM as a VMM that runs on a bare machine. He 
defines a Type I1 VMM as a VMM that runs under an 
existing host operating system. Goldberg [22, sec. 3.31 also 
defines a Hybrid Virtual-Machine Monitor as one in which all 
supervisory-state instructions are simulated, rather than just the 
privileged instructions. The VMM security kernel is essentially 
a cross between a self-virtualizing Type I VMM for all non- 
1/0 instructions and a Hybrid Virtual-Machine Monitor for 
1/0 instructions. 

4) Selffirtualization: As we designed the extensions to the 
VAX architecture, we ensured that the architecture would 
permit self-virtualization. Self-virtualization is the ability of 
a virtual-machine monitor to run in one of its own virtual 
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machines and recursively create second-level virtual machines. 
Self-virtualization is very useful for developing and debugging 
the virtual-machine monitor itself, but it is of little value 
to actual users. Since self-virtualization would have added 
significant complexity to the Trusted Computing Base (TCB), 
no software support has been done.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C. Subjects 

There are two kinds of subjects in the VAX Security Kernel: 
users and virtual machines (VM’s). A user communicates 
over the trusted path with a process called a Server. Servers 
are trusted processes, but unlike the trusted processes in 
other systems such as KSOS-11 [26], servers run only within 
the kernel itself. User subjects cannot run user-written code; 
servers execute only trusted code that is part of the TCB. 

The powers of a Server are determined by: 
The user’s minimum and maximum access class 
The terminal’s minimum and maximum access class 
The user’s discretionary access rights 
The user’s privileges 
The privileges exercisable from the terminal. 

A virtual machine is an untrusted subject that runs a VMOS. 
A user interacts with the VMOS in whatever fashion is normal 
for that operating system; for example, by logging into that 
VMOS and issuing commands. A user may write and run 
code inside a VM and even penetrate the VMOS, all without 
affecting the security of other virtual machines or the security 
kernel itself. At worst, a penetrated virtual machine could 
only affect other virtual machines with which it shared disk 
volumes. 

On login to the security kernel, the VMM establishes a con- 
nection between the user’s terminal line and the user’s Server, 
called a session. When the user wants to use some virtual 
machine, the user issues the CONNECT command to his or 
her Server, specifying the name of that VM. If the connection 
is authorized, the system suspends the user’s existing session 
with the Server and establishes a new session between the 
user’s terminal line and the requested virtual machine. Thus 
the Servers and the VM’s have distinct identities and distinct 
security attributes. 

Virtual machines may be run in a single-user mode to 
provide maximum individual accountability. Alternately, they 
can be run in a multiuser mode. In such a case, individual 
accountability might be achieved by running a VMOS with at 
least a C2 rating, as suggested by the proposed Trusted VMM 
Interpretation [25] of Trusted Information Systems, Inc. 

Virtual machines can also be treated as objects, because a 
user may request that the TCB provide a connection between 

4The software changes needed for self-virtualization primarily consist of 
changes to the virtual device drivers and some changes in the emulation of 
certain sensitive instructions. Under the proposed Trusted VMM Interpretation 
[25] ,  it might even be possible for a self-virtualized security kernel to 
itself remain A1 rated. To achieve that goal, the first-level VMM would 
map the second-level VMM’s kernel mode to real executive mode, while 
the VM’s running on top of the second-level VMM would have their 
supervisor, executive, and kernel modes all mapped to the real supervisor 
mode. Of course, as one continues to recursively self-virtualize, one runs out 
of protection rings at the fourth-level VMM, and that VMM would no longer 
be protected from its virtual machines. 

the user’s terminal and some VM. For this operation, the user 
is the subject and the VM is the object. 

D. Objects 

The VAX Security Kernel supports a variety of objects, 
including real devices and volumes and security kernel files. 

One group of objects comprises the real devices on the 
system: disk drives, tape drives, printers, terminal lines, and 
single access-class network lines. As these devices can contain 
or transmit information, access to them must be controlled 
by the TCB. Another object is the primary memory which is 
allocated to each VM when it is activated. 

Disk and tape volumes are also objects. The contents of 
some disk volumes are completely under the control of a 
virtual machine. They may contain a file system structure of 
just an arbitrary collection of bits, depending on the method 
used by the VMOS to access the volume. Such volumes are 
called exchangeable volumes, because they may be exchanged 
with other computer systems running conventional operating 
systems. Other disk volumes contain a VAX Security Kernel 
file structure and are called VAX Security Kernel volumes. 
These volumes must not be directly accessed by a VMOS or 
exchanged with other systems, as an untrusted subject could 
subvert the kernel’s file system or read information to which 
i t  was not entitled. The VAX Security Kernel does not provide 
trusted tape volumes; all tape volumes are exchangeable. 

VAX Security Kernel volumes contain VAX Security Kernel 
files which are organized as a flat file system. VAX Security 
Kernel files are used for a variety of purposes in the system and 
are considered objects by the TCB. One use for VAX Security 
Kernel files is to hold long-term system databases such as the 
audit log and authorization file. These files are considered part 
of the TCB and, with the exception of the audit log, error log, 
and crash dump files, cannot be directly referenced by virtual 
machines. 

Another use of VAX Security Kernel files is to create 
virtual disk volumes, loosely analogous to mini-disks in IBM’s 
VMi370 [27, pp. 549-5631, Mini-disks allow a physical disk 
to be partitioned, so that one need not dedicate an entire 
physical disk to a small virtual machine that only requires a 
small amount of disk space. Such virtual disks may contain the 
file structure of some VMOS, such as a VMS file structure or 
an ULTRIX-32 file structure. However, the VMM deals with 
virtual disks only as a whole. The contents of a virtual disk 
are all part of a single object as far as the VMM is concerned. 

E. Access Classes 

The VAX Security Kernel enforces mandatory access con- 
trols, as required of all A1 systems. Both secrecy and integrity 
models are supported, based on the work of Bell and LaPadula 
[8] and of Biba [9], respectively. To implement mandatory 
access controls, each kernel subject and kernel object is 
assigned a sensitivity label, called an access class.’ An access 
class consists of two components: a secrecy class and an 
integrity class. These components are each further divided into 

’Some objects. such as terminal lines. may be assigned a range of access 
classes. 
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TABLE I 
USER PRIVILEGES 

Privilege Powers 

CLASSIFY-DEVICE 
CLASSIFY-SUBJECT 
CLASSIFY-VOLUME 
DELETE-AUDIT Delete audit data 
DOWNGRADE-SECRECY 
DOWNGRADE-SECRECY-NOINSPECT 
ENABLE-DEBUGGER Enable untrusted kernel debugger 
OPERATE 
REGISTER 
SET-AUDIT 
SET-COVERT-CHANNEL-DEFENSE 
SET-FILE 
SET-PASSWORD 
UPGRADE-INTEGRITY 
UPGRADE-INTEGRITY-NOINSPECT 

Assign access classes to 1 / 0  devices and privileges to terminals 
Assign access classes and privileges to subjects; name levels and categories 
Register and assign access classes to volumes 

Downgrade secrecy of text after human inspection 
Downgrade secrecy of data without inspection 

Mount volumes, change printer paper, boot and shutdown system 
Register and change non-security attributes of devices, virtual machines, and users 
Control audit log and real-time alarms 
Enable or disable covert channel defenses 
Create, delete, or copy kernel files 
Change users’ passwords and password parameters 
Upgrade integrity of text after human inspection 
Upgrade integrity of data without inspection 

TABLE I1 
VIRTUAL MACHINE PRIVILEGES 

Privilege Powers 
~ ~~ ~ 

OPERATE 
SET-ACL 

Dismount volumes; activate and deactivate other virtual machines; set login limits 
Change any object’s ACL, if access class permits 

a level and a category set. A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsecrecy level is a hierarchical 
classification. The secrecy category set is the set of nonhier- 
archical secrecy categories which represents the sensitivity of 
the access class. The integrity level and integrity category set 
are defined analogously. For compatibility with VMS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[7],  
the kernel supports 256 secrecy levels, 256 integrity levels, 64 
secrecy categories, and 64 integrity categories. 

Given the complex structure of access classes, two defini- 
tions must be carefully constructed: 

Definition 1 
An access class A is equal to an access class B if and only if: 

The secrecy level of A is equal to the secrecy level of B 
The secrecy category set of A is equal to the secrecy 
category set of B 
The integrity level of A is equal to the integrity level of 
B, and 
The integrity category set of A is equal to the integrity 
category set of B. 

Definition 2 
An access class A dominates an access class B if and only i f  

The secrecy level of A is greater than or equal to the 

The secrecy category set of A is a superset of the secrecy 

The integrity level of A is less than or equal to the 

The integrity category set of A is a subset of the integrity 

It is important to note that if two access classes are equal, 
each also dominates the other. This is because if P is a subset of 
Q, then P may contain some or all of the Q’s members, while 
if P is a proper subset of Q, P must contain fewer members 

secrecy level of B 

category set of B 

integrity level of B, and 

category set of B. 

than Q. This terminology for subset relationships is based on 
Halmos [28, p. 31. The corresponding relationships apply for 
supersets and proper supersets. 

The secrecy and integrity models define that a subject may 
reference an object depending on the access classes of the 
subject and object and on the type of reference. A subject 
may read from an object only if the subject’s access class 
dominates the access class of the object. A subject may write to 
an object only if the object’s access class dominates the access 
class of the subject.6 Thus, for example, a virtual machine may 
mount for read-write access an exchangeable volume only if 
the VM’s access class is equal to that of the volume. However, 
the VM may mount for read-only access any exchangeable 
volume where the VM’s access class dominates that of the 
volume. 

F. Privileges 

System managers, security managers, and operators gain 
their powers by having privileges. The privileges allow great 
flexibility in the assignment of powers and responsibilities, 
including a measure of two-person control and separation 
of duties. Privileges restrict access beyond the protections 
provided by mandatory and discretionary access controls. 
A privileged user cannot see data that would be otherwise 
inaccessible. Only the downgrading privileges allow bypassing 
of access controls, and the use of those privileges is audited. 

Most privileges can be exercised only through the trusted 
path, and are called user privileges (see Table I). Two priv- 
ileges can be exercised by virtual machines, and are called 
virtual-machine privileges (see Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11). 

‘In general, write access is even further restricted; a subject may write 
to an object only if the subject’s and object’s access classes are equal. This 
disallows blind writes to an object that cannot be read. 
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G. Layered Design 

The VAX Security Kernel was implemented following the 
strict levels of abstraction approach originally used by Dijkstra 
[29] in the THE system. Janson [30] developed the use of 
levels of abstraction in ‘security kernel design as a means 
of reducing complexity and providing precise and under- 
standable specifications. Each layer of the design implements 
some abstraction in part by making calls on lower layers. In 
no case does a lower layer invoke or depend upon higher 
layer abstractions. By making lower layers unaware of higher 
abstractions, we reduced the total number of interactions 
in the system and thereby reduce the overall complexity. 
Furthermore, each layer can be tested in isolation from all 
higher layers, allowing debugging to proceed in an orderly 
fashion, rather than haphazardly throughout the system. This 
type of layering is called out in the requirements for B3 and 
A1 systems when the NCSC evaluation criteria [6, p. 381 state 
that: “The TCB shall incorporate significant use of layering, 
abstraction and data hiding. Significant system engineering 
shall be directed toward minimizing the complexity of the 
TCB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . . .” 

The layered design of the VAX Security Kernel was based 
heavily on the Multics kernel design work of Janson [30] and 
Reed [31], and to a lesser extent on the Naval Postgraduate 
School kernel design [32]. Fig. 3 shows a diagram of the VAX 
Security Kernel. The arrows in the diagram indicate how each 
layer functionally depends on the abstract machine created by 
lower layers. 

Each layer adds specific functions with security kernel, 
such that at the security perimeter, the secrecy and integrity 
models are enforced. The kernel itself is process-structured, 
as described in the summary of the various layers. Unlike 
many other kernels, all of the trusted processes run within the 
security perimeter and are included in the formal specifications 
of the system. 

1) HIH: The Hardware-Interrupt Handler layer is imme- 
diately above the physical VAX hardware and modified mi- 
crocode. It contains the interrupt handlers for the various I/O 
controllers and certain CPU-specific code. 

2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALLS: The Lower-Level Scheduler is based strongly on 
Reed’s two-level scheduler design [31]. It creates the ab- 
stractions of level one virtual processors (vpl ’s) that are the 
basic unit of scheduling for the system. The LLS supports 
symmetric multiprocessing by binding and unbinding real 
CPU’s to individual vpl’s. As shown in Fig. 4, there are 
three kinds of vpl’s: dedicated vpl’s that typically contain 
device drivers, bindable vpl’s that can be bound to dedicated 
vp2’s by the higher level scheduler, and addressable vpl ’s 
that can be bound to bindable vp2’s and thereby to virtual 
machines. Vpl’s are intended to be very inexpensive processes 
for use within the kernel. Only addressable vpl ’s have full 
address spaces; all other vpl’s run out of the global address 
space of the kernel. Thus the lower-level scheduler can context 
switch in and out of most vpl ’s by merely saving registers 
and switching stack pointers. The lower-level scheduler also 
implements eventcounts [33] as the basic synchronization 
mechanism of the kernel. Eventcounts can be awaited or 

I I 
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Fig. 3. VAX Security Kernel layers. 

advanced in the normal way, or a processor interrupt can be 
tied to an eventcount, such that a VM can be interrupted when 
an eventcount has reached a particular value. This processor- 
interrupt mechanism provides upward transfers of control that 
are otherwise forbidden in the kernel. Processor interrupts are 
only delivered when the CPU is executing outside the security 
kernel. 

3) IOS: The 1/0 services layer implements device drivers 
that control the real 1/0 devices. The current version supports 
only directly connected terminals and storage devices. 
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Fig. 4. Level-one and level-two virtual processors. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4) VMP: The VM physical memory layer manages real 

physical memory, and assigns it to virtual machines. 
5) VMV: The VM virtual memory layer implements the 

shadow page tables needed to support virtual memory in 
the virtual machines.’ VMV implements a primary-memory- 
only strategy, requiring that all the physical memory that a 
virtual machine sees be physically resident when that virtual 
machine is active. While this technique limits the number 
of simultaneously active virtual machines to the number that 
can fit into physical memory simultaneously, i t  significantly 
reduces kernel complexity by eliminating the need for a 
demand-paging mechanism in the kernel. It also eliminates 
the phenomenon of double paging that is often seen in other 
VMM’s, where the demand paging mechanisms of the VMM 
and of the VMOS can thrash against one another, leading to 
serious performance degradation. In the VMM security kernel, 
the virtual machines are allocated a fixed amount of physical 
memory and do all their own paging. 

6)  HLS: The Higher-Level Scheduler is also based on Reed’s 
two-level scheduler (311. Unlike Reed’s design, our higher 
level scheduler is extremely simple, because i t  does not need to 
schedule access to primary memory. The HLS does create the 
abstraction of level-two virtual processors (vp2’s). There are 
two kinds of vp2’s: dedicated vp2’s which are used primarily 
by the SSVR layer described below, and hindable vp2’s which 
are used for virtual machines. Fig. 4 shows the relationships 
between vpl’s and vp2’s. 

7) AUD: The auditing layer provides the facilities for 
security auditing and security alarms. It  is described in detail 
in [34]. 

8) F l lF :  The Files-11 Files layer implements a subset of 
the ODs-2 file system that is also used in the VMS operating 

’Shadow page tables are created by a VMM, because the physical addresses 
in page table entries must be relocated. Shadow page tables are described in 
detail by Madnick and Donovan [27,  sec. 9-51, Shadow page tables are also 
where ring compression occurs. 

system.* The most significant restrictions on the VAX Security 
Kernel implementation of ODs-2 are that all files must be 
preallocated and contiguous. This reduces kernel complexity 
by eliminating the need for dynamic file extensions. F l lF  
implements ODs-2 files only as a flat file system. 

9) VOL: The Volumes layer implements VAX Security 
Kernel and exchangeable volumes and provides registries of 
all subjects and objects. These registries are much simpler 
than ODs-2 directories. 

10) VTerm: The Virtual Terminals layer implements virtual 
terminals for each virtual machine and manages the physical 
terminal lines. Each user may have multiple sessions connected 
to different virtual machines, and VTerm provides the session 
management functions and also implements asynchronous 
network lines to allow virtual machines to connect to single- 
access-class networks via specially dedicated terminal lines. 
The current version of the system has no support for higher- 
speed network connections. 

11) VPrint: The Virtual Printers layer implements virtual 
printers for each virtual machine and multiplexes the real 
physical printers among the virtual printers. It provides top 
and bottom labeling, as well as trusted banner pages to delimit 
listings of different access classes and different VM’s. 

12) KI: The Kernel Interface layer implements virtual con- 
trollers for the various virtual I/O devices and the security 
function controller, which implements such functions as load- 
ing virtual disks into virtual drives. 

13) WAX: The Virtual VAX layer completes the virtual- 
ization process by emulating sensitive instructions, delivering 
exceptions and interrupts to the virtual machine, etc. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

14) SSVR: The Secure Server layer implements the trusted 
path for security kernel, log users in and out, and provides 
security-related administrative functions. There is a dedicated 
vp2 for each terminal line to provide a Server process for 
each logged in user. 

15) VMOS: The VMOS layer is the virtual machine’s 
operating system. 

16) USERS: The users in Fig. 3 include both the untrusted 
applications programs that run on top of the VMOS, and 
the human beings who communicate directly with the secure 
server via the trusted path. 

H. Software Engineering Issues zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A number of interesting software engineering issues arose 

during the development of the VAX Security Kernel. While 
space does not permit discussing all of them, this section 
highlights a few of the most significant. 

I )  Programming Language Choice: Perhaps the most criti- 
cal software engineering issue in the VAX Security Kernel 
design was the choice of a programming language. From the 
problems that KSOS-11 [26], [36] had with its choice of 
compilers, i t  was clear that we needed high-quality compilers 
to develop our security kernel. While we wanted as strongly 
typed a language as possible, it was much more critical that the 
compiler correctly compile very large programs, produce high- 

‘A brief summary of the Files-11 ODS-2 structure can be found in [35, 
appendices]. 
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TABLE I11 
EXECUTABLE STATEMENTS PER LAYER 

Layer MACRO PASCAL PL/I Total 

VVAX 
SSVR 
KI 
VPRINT 
VTERM 
VOL 
F l l F  
AUD 
HLS 
VMV 
VMP 
10s 
LLS 
HIH 

COMMON 
PMM 
SVSBOO 
VMMBOOT 
VMMLIB 
Total 

3371 
0 

10 
0 
0 
0 
0 
0 
0 

129 
0 
0 

1289 
815 

244 
0 

2541 
55 

3021 
11475 

1502 
6876 
3354 
1455 
1419 
2553 
2962 
543 

0 
0 
0 

4725 
13 

2393 

0 
0 

734 
213 
503 

29245 

0 
330 

0 
0 
0 
0 
0 
0 

430 
1069 
352 

0 
3839 

174 

0 
176 

0 
430 

1265 
8065 

4873 
7206 
3364 
1455 
1419 
2253 
2962 
543 
430 

1198 
352 

4125 
5141 
3382 

244 
176 

3275 
698 

4789 
48785 

quality VAX object code, and be supported by an organization 
that could quickly respond to any problems we might find. 

At the time the VAX Security Kernel prototype effort began, 
there were only a small number of systems programming 
languages available for the VAX architecture: BLISS-32, PL/I, 
PASCAL, and C. BLISS-32 was rejected because of its lack 
of data typing facilities. PASCAL was rejected because the 
V2.0 compiler that generated high-quality code was not yet 
available. This left PL/I and C, both of which used the 
same good quality code generator. We chose PL/I because 
of its slightly better data-typing support, because of its better 
support for character string manipulation, and because the first 
prototype developers had extensive prior experience in coding 
operating systems in PL/I. 

We were not happy with the choice of PL/I, because its 
data types were not strongly enforced. When the high-quality 
V2.0 PASCAL compiler became available, we began writing 
new code for the kernel in PASCAL. PASCAL provides much 
stronger data-type checking than PL/I, and the VAX calling 
standard made interlanguage calls easy to implement. 

Higher level language compilers cannot generate optimal 
code for all programs. Therefore we found it necessary to 
implement those modules that actual measurements had shown 
to be performance-critical in the MACRO-32 assembly lan- 
guage. Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111 shows how much code was written in each of 
the languages for each layer of the kernel.’ The table shows 
the number of executable source code statements (excluding 
comments, declarations, and white space) and per-layer and 
per-language totals. 

In retrospect, the use of both PL/I and PASCAL has led to 
certain difficulties. Software engineers must be trained in both 

’Table I11 includes a number of entries that are not shown in the layer 
diagram in Fig. 3. These layers, COMMON, PMM, SVSBOO, VMMBOOT, 
and VMMLIB provide certain booting and runtime library support functions. 
The normal runtime libraries for the PL/I and PASCAL languages are not 
linked into the kernel, because they would have added a large amount of code 
that would need to be evaluated and placed under configuration control. 

languages, and some kernel bugs have resulted from misun- 
derstandings of how to pass parameters from one language to 
the other. Future security kernel developers would do well to 
choose one systems programming language and stick to it. 

2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACoding zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAStrategies: A number of coding strategies proved 
very useful in the development of the VAX Security Kernel. 
For example, we avoided all use of global pools within the 
kernel to minimize the possibility of storage channels. The 
maximum size of data structures is determined at system boot 
time (based on system-generation parameters), and memory is 
allocated for that maximum size during kernel initialization. 

Different sections of memory within the kernel are separated 
by no-access guard pages to detect run-away array or string 
references. Unused memory is set to all ones to increase the 
chance of detecting the use of uninitialized variables, because 
zeros are less likely to generate exceptions. 

The layers of the kernel are coded defensively with sanity 
checks to protect each layer from higher layers. If irregularities 
are detected, the system crashes to avoid the possibility of 
a security compromise. These sanity checks were devised to 
aid in the debugging of the kernel and do not themselves 
provide security assurance mechanisms. However, many of 
the checks remain enabled in the finished kernel to help detect 
any remaining bugs. 

The actions of a user or a virtual machine cannot crash the 
kernel. They can cause error messages, exception conditions 
raised in the virtual machine, or in extreme cases, the halting 
of an offending subject. 

Since the entire TCB runs in kernel mode, there are no 
hardware-enforced firewalls between layers. However, the 
layering methodology forbids lower layers from calling higher 
layers. To help us spot layer violations, we applied both auto- 
matic and manual techniques. Using the features of the VAX 
DEC/Module Management System (VAX DEC/MMS) and the 
VAX DEC/Code Management Systems (VAX DEUCMS), we 
were able to isolate all dependencies of a layer on other layers. 
By visual inspection, we could immediately spot upward 
references. In fact during development, we did detect and fix 
several such occurrences. 

V. HUMAN INTERFACES 

High-security systems have developed a reputation for being 
hard to use, primarily due to their limited user interfaces. We 
believe that it is essential that a human interface meet the 
expectations of today’s commercial computer users. However, 
we faced the same obstacles faced by other developers of 
high-security systems: 

Development resources are limited, and satisfying the A1 
criteria takes precedence over all other efforts 
The kernel must be small and verifiable. User interface 
features such as a sophisticated command parser are large 
and often difficult to verify. Consequently, an interface 
built entirely on trusted code cannot match the usability 
of an interface built on untrusted code. 

We overcame these obstacles by creating two separate 
command sets: the Secure Server commands, and the SECURE 
commands. The Secure Server commands are implemented 
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$ SECURE DELETE TLS:STATUS.RPT 
Press SECURE ATTEHTIOI to complete execution of this command. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
User presses SECURE ATTENTION to establish a trusted path. 

Delete VAX Security Kernel file TLS:STATUS.RPT 

Confirmation [Yes or No] : Y 

VMM: File deleted 
Resuming.. . 

Fig. 5. Example of a User SECURE command. 

entirely in trusted code. The administrative commands, the 
SECURE commands, are parsed in the VMS and ULTRIX-32 
operating systems. With this approach we reduce the amount of 
trusted code and gain the well-developed command interfaces 
of these mature commercial operating systems. SECURE 
commands are normally only issued by the system manager, 
the security manager, the operators, and the auditors, although 
ordinary users may need to issue a few of them at times. By 
contrast, all users must issue some Secure Server commands 
to login and connect to virtual machines. 

A. Secure Server Commands 

The Secure Server is the user’s direct interface to the kernel. 
A user invokes a trusted path to the Secure Server by pressing 
the Secure Attention Key. This key operates at all times and 
cannot be intercepted by untrusted code. We have chosen the 
BREAK key to be the Secure Attention Key. 

The Secure Server’s commands control terminal connec- 
tions to virtual machines in the same way that a terminal server 
controls terminal connections to physical machines, using 
commands such as: CONNECT, DISCONNECT, RESUME, 
and SHOW SESSIONS. A user can create sessions with several 
virtual machines at different access classes and can quickly 
switch from one to another. 

The interface for the Secure Server commands is built 
entirely in trusted code and offers only minimal command-line 
editing functions. 

B. SECURE Commands 

The tools for managing the system are the SECURE com- 
mands. The SECURE commands and utilities are implemented 
just as are other commands in the VMS and ULTRIX-32 
command languages, except that they issue kernel calls to 
do their work. The complete set of SECURE commands and 
utilities is installed in the VMS operating system. A subset 
of the SECURE commands is offered by the ULTRIX-32 
operating system. 

The SECURE commands, unlike the Secure Server com- 
mands, are parsed by the VMS and ULTRIX-32 command 
language interpreters. The user can take advantage of such 
features as command-line recall and command procedures. 

There are two types of SECURE commands: VM SECURE 
commands, and User SECURE commands. Both types of 
SECURE commands are issued from the VM’s operating- 
system command level. VM SECURE commands are executed 
in the context of the issuing VM. User SECURE commands are 

submitted to the Secure Server for execution. The commands 
are distinguished by the type of subject, a user or a virtual 
machine, that holds the access class and privileges necessary 
to issue the command. 

C. Command Confirmation 

While both the User and VM SECURE commands are 
administrative commands, only the User SECURE commands 
must be trusted. For such security-relevant commands, we 
require A1 assurance that: 

The command was issued by a user and not by a Trojan 
horse in a VM 
The command received by the Secure Server is exactly 
the same command typed by the user, and not a command 
that was covertly modified by a Trojan horse 
The user who issued the command can be identified in 
the audit log. 

Our design for the User SECURE commands provides both 
trust and individuality accountability, even for commands 
issued from an untrusted environment. Upon receipt of a 
valid User SECURE command, the VM instructs the user to 
press SECURE ATTENTION. This key invokes a trusted path 
between the user’s terminal and the Secure Server. A SECURE 
ATTENTION signal can be sent to the Secure Server only by 
manually pressing the BREAK key. This prevents a Trojan 
horse from completing the execution of a User SECURE 
command. 

To prevent a VM from spoofing the user by passing a 
different command from what the user typed, the Secure Server 
displays the action which will be taken by the command and 
prompts the user to approve or reject the operation. Fig. 5 is 
an abbreviated example of a User SECURE command issued 
from a VMS virtual machine. Resuming indicates that control 
of the terminal will be returned to the virtual machine. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D. SECURE Utilities 

Managing the VMM security kernel requires a number of 
utilities. Our SECURE utilities are modeled after VMS utilities 
and are summarized in Table IV. 

E. Reclassifying Information 

Users can be permitted to change the access class of the 
contents of a VAX Security Kernel file or an exchangeable 
volume with the SECURE RECLASSIFY command. This 
command copies the contents of a kernel file or volume to an 
existing kernel file or volume labeled with a different access 
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TABLE IV 
SECURE UTILITIES 

SECURE Utility Purpose 

Authorize 
RegisteriDevice Registers U0 devices 
RegisteriVolume 
Sysgen 
Crash Dump Analyzer 

Registers users and virtual machines, etc. 

Registers disk and tape volumes. 
Sets limits on system resources. 
Provides data for determining the cause of a 

system crash. 

class. The source and destination objects must lie within the 
user’s access-class range. In addition, privileges are required 
if the reclassification downgrades the data’s secrecy class or 
upgrades its integrity class. 

Reclassification normally requires trusted inspection by the 
user. Inspection is required to be sure that a Trojan horse 
has not inserted additional information that the user did not 
intend to reclassify. To make inspection easier, the user can 
opt to print the VAX Security Kernel file or display the file 
on the terminal, one screen at a time. Once the complete file 
is printed or displayed, the user is prompted to approve the 
reclassification. To prevent the covert passing of information 
from the source file to the target file in the form of invisible 
escape sequences, inspected files must contain only printing 
characters, spaces, and form feeds. A line may not end 
with a space, because a trailing space would be invisible. 
The reclassification is terminated if any illegal character is 
encountered. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
F. Difficulties with Command Confirmation 

Command confirmation was intended to simplify the TCB 
and make implementation easier. While it eliminated the 
need for a complex parser within the TCB, i t  introduced 
a form of asynchronous communication between VM’s and 
Server processes that was even more complex than a parser 
would have been. In retrospect, a menu interface to user 
SECURE commands combined with a mechanism for creating 
and checking precompiled scripts would have been simpler 
than the asynchronous approach and could have significantly 
shortened the development time and further improved the 
overall human factors of the system. 

VI. ASSURANCE 

The principal reason for building an A1 security kernel 
is to provide a high degree of assurance that the security 
features of the system actually work correctly. This section 
describes some of the techniques which we have used in the 
VAX Security Kernel to provide the necessary assurance of 
security, to meet both the requirements of an A1 evaluation 
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Gasser [18, p. 1631 describes Honeywell’s STOP kernel for 
the SCOMP [37] and Gemini Computers’ GEMSOS [38] as 
commercial-grade security kernels. However, STOP does not 
provide software compatibility with existing operating sys- 
tems, and GEMSOS to date has only been used in specialized 
environments. Shockley et al. [38] report that research is under 
way to provide both UNIX and MS-DOS environments for 
GEMSOS, but it is not clear whether those environments are 
yet working. If Gemini succeeds in providing both UNIX and 
MS-DOS environments in GEMSOS, they will have succeeded 
at integrating A1 requirements with real-world requirements. 
The VAX Security Kernel supported both the VMS and 
ULTRIX-32 operating systems with their layered applications 
by late 1989. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A .  Design and Code Changes 

Every change to our code underwent both design and 
code review, regardless of whether the code was trusted or 
untrusted, or whether i t  was a whole new layer or a bug fix. 
Design reviews for even the smallest fixes ensured that system- 
wide effects were considered. Each layer had an owner, who 
participated in the design review and was responsible for the 
quality of that layer. Each code change was reviewed both in 
the context of its own layer and in the contexts of its calling 
and called layers so as to catch interlayer problems. 

Reviewers learned from the code they reviewed, as well as 
sharing their knowledge through review comments. Reviewers 
addressed readability and clarity, security, performance, ele- 
gance, and adherence to guidelines. Much like access controls, 
design and code guidelines were either mandatory or discre- 
tionary. Mandatory guidelines were based on prior experience 
in security kernel developments. Discretionary guidelines were 
used to avoid well-known traps in the programming language 
and to produce consistent, readable code. This consistency 
made i t  easier for an engineer to pick up and debug in a new 
area, reducing engineering costs and time. 

The code review results, along with the design and test 
plan, were publicized for the entire group to check. This 
practice provided a last review of the entire change by a large 
audience. Code review results also served as examples from 
which engineers could learn good coding practices. 

The development team made extensive use of VAX Notes 
online conferences to publicize design and coding guidelines, 
to discuss specific design issues, to track bug reports, and to 
record and publicize the results of the above-mentioned design 
and code reviews. 

Each coding task was integrated with the current working 
system as soon as it was complete. This integration was 
constrained to always produce a working system. Continual 
and incremental integration avoided major unexpected failures 
by identifying design and/or coding errors as soon as possible. 

and the requirements of real-world users. It is this integration 
of both A1 requirements and real-world requirements which is 
of particular research interest, since previous security kernels 
have not succeeded at integrating the A1 requirements with 
good performance and compatibility with large amounts of 
existing commercial software. 

B. Environment 

As mentioned in Section 111, we developed the VAX Se- 
curity Kernel on a VAX Security Kernel system. Thus our 
group did its daily work on a system designed to meet A1 
security requirements, using most of its features and controls. 



KARGER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATHE VAX VMM SECURITY KERNEL 1159 

Our VM's ran at meaningful access classes. Different versions 
of the kernel were maintained on different VM's to keep 
orthogonal tasks from impinging on each other. We also used 
VM's for developing and testing the untrusted code which 
must run in the VMS and ULTRIX-32 operating systems. We 
separated the roles of our own system manager and security 
manager, as recommended in the NCSC Evaluation Criteria 

The CPU and console of the development machine were 
kept inside a lab that only members of the VAX Security 
Kernel development group could enter. Within that lab, the 
development machine was protected by a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcage, which consists 
of another room with a locked door. Physical access to both 
the lab and to the cage within the lab was controlled by a key- 
card security system. Finally, our development machine was 
not connected to Digital's internal computer network, so as to 
minimize the external threat to our development environment 
and our project. 

[61. 

C. Testing 

Integrating a coding task required that a developer run 
a standard regression test suite. Integration occurred usually 
at least once a week, and as often as twice a day." This 
regression suite consisted of two portions: layer tests, and 
KCALL tests. Layer tests were linked directly into the kernel, 
and tested layer interfaces and internal routines by calling them 
directly and checking their outcome. KCALL tests ran in a 
VM, issuing legal, illegal, and malformed requests so as to 
check the VM interface. 

A separate suite of tests, issued via the VAX DEC/Test 
Manager (DTM), was run once every two weeks to test the user 
command interface. These tests ran for 30 h. They consisted of 
commands that are successful, commands that produce errors, 
and commands that send malformed packets to the SSVR 
layer. DTM checked both the results of each command and 
the displays it produces. 

We also ran the standard VAX architecture exerciser (AXE) 
that verified that a particular CPU correctly implements a 
VAX computer. We ran AXE to test the accuracy of the 
VAX virtualization. AXE tests were run extensively during 
the development of the CPU microcode extensions and the 
VVAX layer. They would have been run again when the kernel 
reached final completion. 

At the time of the cancellation, we were developing test 
plans for fully exercising all of the access control decisions 
and other security-relevant checks made by the system and 
for system-penetration testing. Some of these new tests would 
be developed from scratch, and some would be based on the 
formal specifications. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D. Formal Methods 

The requirements for an A1 security evaluation state that a 
formal security policy model must be written, that a formal 
top-level specification (FTLS) of the system design must be 
written and proven to satisfy the security policy model, that 
the system implementation must be informally shown to be 

"Developers, of course, ran individual tests prior to integration 

TABLE V 
LINES OF FORMAL SPECIFICATIONS 

Lines of Ina Jo 

Level of Specification Total Transforms 

TLS 
FTLS 
Total 

650 294 
11758 8410 
12408 8704 

consistent with the FTLS, and that formal methods must be 
used in covert channel analysis of the system. The FTLS must 
accurately model system external interfaces, externally visible 
behavior, and security-relevant actions. A descriptive top-level 
specification (DTLS) is also required as a complete natural 
language description of the system. 

We used the Formal Development Methodology (FDM) 
specification and verification system [39] to help meet these 
requirements. We wrote both our security policy model (which 
consists of criteria and constraints and the top-level speci- 
fication (TLS) of the various transforms) and our FTLS in 
the FDM specification language, Ina Jo. We used the FDM 
interactive theorem prover (ITP) to show that the TLS obeys 
the policy and that the FTLS maps to the TLS. The DTLS 
consisted of our internal design documentation, plus some 
special glue documents that tie the DTLS and the FTLS 
together, particularly describing areas of the kernel which are 
not formally modeled in the FTLS. 

Table 111 shows the number of executable statements in the 
security kernel. For comparison, Table V shows an estimate 
of the total number of lines of Ina Jo (comments excluded) 
and the number of lines of transforms (declarations excluded) 
required to specify that kernel. The numbers are estimates, 
because the FTLS was not yet complete when the project 
was canceled. The totals show that the number of lines of 
transforms are about one-sixth of the number of executable 
statements in the security kernel. 

Formal methods do not make the system secure by them- 
selves. Successful proof that our specifications met secu- 
rity policy did not guarantee that there were no lurking 
implementation bugs. However, the use of formal methods 
significantly improved the overall quality of the security 
kernel. When combined with the informal testing procedures, 
the use of formal methods improved the assurance that the 
security features are effective. Indeed, the very act of formally 
specifying the security kernel in Ina Jo detected several kernel 
bugs, both because of constraints imposed by proof procedures 
and because the process of code correspondence provides a 
thorough method for reviewing the TCB code and informal 
design specifications. The separation of duties between the 
software engineer and the verifier, by itself, provided valuable 
extra assurance, even if no proofs had ever been done. 

E. Covert Channel Analysis and Countermeasures 

We performed extensive analysis of covert channels through- 
out the development of the VAX Security Kernel. These 
analyses were done partially on an informal basis by engineers 
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closely studying the system design, and on a formal basis using 
a new technique for automating the Shared-Resource Matrix 
approach [40] with code-level flow analysis tools. It is inter- 
esting to note that the majority of the covert channels found 
were identified by the informal method of engineers carefully 
thinking about the design of the software and hardware. 

The majority of storage channels were eliminated from the 
system during the design phase by the technique of always 
preallocating resources to avoid resource exhaustion chan- 
nels. This preallocation had the side-benefit of significantly 
improving the overall robustness of the system, since it was 
impossible for any virtual machine to run the system out of 
resources. 

Optimization of disk arm movements has been well-known 
as a source of storage channels since Schaefer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al.’s analysis 
of covert channels in KVM/370 [41]. Our analysis of disk 
arm optimization found that the storage channels were far 
more complex than had been previously thought, and that new 
optimizing disk controllers could make countermeasures much 
more difficult than those in the time of KVMi370. However, 
detailed analysis of the disk arm optimization storage chan- 
nels revealed new techniques which could completely close 
such channels, without losing the throughput benefits of disk 
arm-motion optimizations, even in the presence of hardware 
controllers whose optimizations cannot be simply turned off. 
Furthermore, the countermeasures did not adversely affect 
overall system performance, but actually improved throughput 
in certain disk-I/O-intensive benchmarks. The details of these 
countermeasures are described in [42]. 

Timing channels proved a much more serious problem, 
because they tended to have higher bandwidths than the 
storage channels and because many of them were inherent 
in the underlying hardware. Since timing channels appeared 
numerous, difficult to enumerate, and difficult to close, we 
instead turned out attention to clocks. Timing channels can 
only be exploited in the presence of accurate clocks. 

Analysis of clocks proved very fruitful, and Wray [43] 
developed a new technique for identifying timing channels 
based on dual-clock analysis. Essentially, a timing channel 
consists of two clocks, one of which must be accurate, while 
the Trojan horse attempting to leak information modulates the 
rate of the other clock. 

We found that identifying all of the sources of accurate 
clocks was much easier than finding all of the possible timing 
channels in the system. If we could make the clocks less 
accurate, then the effective bandwidth of all timing channels 
in the system would be lowered. We called this new approach zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
fuzzy time, because we attempted to fuzz the accuracy of all 
clocks available in the system. 

Fuzzy time must address several different classes of clocks, 
including those provided by the system itself through system 
calls or clock interrupts, clocks provided by the time-sharing of 
the CPU, clocks provided by 1/0 devices, and external clocks 
which can be used to time the arrival of output on terminals, 
network connections, etc. The techniques for dealing with all 
of these clocks are very complex and are beyond the scope 
of this paper. They are described in detail by Hu [44]. Fuzzy 
time reduced the bandwidth of the worst timing channel in the 

VAX Security Kernel by over two orders of magnitude to well 
under the 10 b/s guideline of the NCSC [6]. The performance 
degradation due to fuzzy time was only 5-6% of CPU usage 
on multiprogrammed benchmarks. 

F. Configuration Control 

We maintained strict configuration control on many items, 
including design documents, trusted kernel code, test suites, 
user documents, and verification documents. All of our code 
was maintained under the VAX DEC/Code Management Sys- 
tem (CMS) to maintain a history of each change to each 
module. Security reviews checked each item against the spe- 
cific NCSC criteria requirements [6] it fulfills, and checked 
among the items for internal consistency. Items that had been 
reviewed were stored on a master pack which was physically 
protected against modification. 

Our hardware, firmware, and software development tools 
were developed by other groups within the corporation. We 
reviewed hardware and firmware ECO’s, prior to supporting 
them in the VAX Security Kernel. New versions of software 
development tools were tested on a stand-alone laboratory 
system prior to use on the kernel development machine. 
We used only the standard, released versions of software 
development tools, the same versions that had been checked 
out for shipment to our customers. With rare exceptions, no 
field-test versions were permitted on the kernel development 
machine. 

G. Trusted Distribution 

The end user of a security kernel must have some assurance 
that no one has tampered with or substituted counterfeit copies 
of the hardware and software which make up the system. 
Hardware and software have different trusted distribution 
requirements. 

1) Hardware Trusted Distribution: To assure that the hard- 
ware systems would arrive at the customer’s site meeting 
the trusted distribution criteria, we developed a security- 
seal program. If someone tampered with the seal, evidence 
would be provided of the attempted entry. A locking device 
would combine with the security sealing procedures to ensure 
a trusted shipment. Full individual accountability would be 
provided, including logs of the delivery. 

2) Software Trusted Distribution: Installation of an A1 
system involves achieving a trusted state. The steps to do this 
on VAX 8800 hardware are complex. The console processor 
software and CPU microcode must be installed and crypto- 
graphically check-summed with stand-alone software to detect 
any possible tampering. If a secure site loses its trusted state 
for any reason, they must reinstall the console software and the 
CPU microcode. The trusted state could be lost just by running 
an untrusted operating system or hardware diagnostics on the 
system. 

Next, the trusted code is installed via untrusted code (VMS) 
and the result is cryptographically check-summed to verify that 
the untrusted code has not tampered with the trusted code. 
The result of the check-sum is checked against a message 
authentication code to verify correct installation. The check- 
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summing software is shipped separately from the rest of the 
software, so that a single failure of the trusted distribution 
system could not compromise both the check-sum program 
and the authentication code. 

For software, there would also be an option of using trusted 
couriers instead of the separate delivery paths. 

VII. PRODUCTION-QUALITY KERNELS 

A production-quality security kernel is designed to protect 
and ensure the quality of real-world information. This sec- 
tion describes some of the differences between research and 
production-quality security kernels that are required to meet 
general user requirements, as well as to satisfy the NCSC 
criteria for an A1 operating system. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAProducing the Kernel 

The primary tools for creating a security kernel are compil- 
ers. Quality compilers must work for large programs, produce 
efficient object code, and be reliably supported. We sacrificed 
programming language elegance in favor of compilers with a 
strong track record: the VAX PASCAL and PL/I compilers. We 
maintained contact with the compiler developers throughout 
the development, and they provided much needed help to us, 
including occasional changes to the actual compiler code. 

A second tool, a symbolic debuggericrash dump analyzer, 
is needed to develop and debug the system. It would also be 
needed by users and support personnel to diagnose problems, 
and by users who might wish to add functions to the kernel. 

A production-quality security kernel must have adequate 
performance to justify its purchase in the face of other options 
such as multiple separate computers or periods processing. To 
help ensure attention to performance, we did our own devel- 
opment work on a VAX Security Kernel system. Performance- 
critical paths were written in a high-level language, and 
then rewritten in assembly language for speed. We added 
meters to find performance-critical routines, and a rudimentary 
performance monitor to gather statistics on CPU and I10 usage. 

Bug-tracking mechanisms are needed both to satisfy NCSC 
configuration management guidelines and to give us a means 
to respond to problems on a timely basis. They also provided 
a means to check against our definition of quality: having no 
security bugs and no bug that keeps production work from 
running. Statistics on the number of bugs and their severity 
provide concrete feedback on stability. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. Robustness 

For a system to be widely used, i t  must be robust; that 
is, it must not fail very often. Robustness was an explicit 
nongoal of the development of the VAX Security Kernel, 
because we feared that adding fault tolerance would increase 
the complexity of the TCB, leading to a possible failure to meet 
A1 security requirements. Furthermore, attempting to recover 
from some classes of faults could actually conceal or propagate 
security penetrations. Therefore, the VAX Security Kernel was 
designed to shutdown on the discovery of any sort of fault. 

Despite these apparent steps to reduce robustness, the VAX 
Security Kernel regularly remained up for nearly three weeks 

while under a heavy production load of real users! Such 
robustness is unheard of for field test versions of brand-new 
operating systems. Most new operating systems (including 
virtual machine monitors) consider themselves lucky to stay 
up for a few hours when in initial field test. 

This unexpected robustness of the VAX Security Kernel 
comes from the strict software engineering discipline required 
by the A1 security criteria. Such a high level of discipline has 
rarely been required in industry, and this level of robustness 
confirms the value of the A1 development requirements far 
beyond the limited domain of computer security. A1 secure 
systems are also good bases for the development of highly 
available systems. 

C. Documentation 

A real security kernel requires extensive documentation for 
its users and for its system and security managers. These 
documents must not only meet the content requirements of 
the NCSC; they must also be clear and understandable to both 
novice and sophisticated customers. The VAX Security Kernel 
documentation set consists of nine manuals and a reference 
card. The manuals include a user's guide, guides to both 
system security and system management, a command reference 
manual, both basic and advanced programmer's manuals, an 
installation guide, a master index, and release notes. These 
manuals were written to the same quality standards as the 
manuals for the VMS and ULTRIX-32 operating systems. 

VIII. COMPARISON WITH KVM/370 

While the VAX Security Kernel superficially bears a strong 
resemblance to KVMi370, in that both systems create virtual 
machines which run at different access classes, the internal 
structures of the two systems are very different. 

Most significantly, KVM/370 was designed as a retrofit to 
the existing VMl370 product, with a specific goal of leaving 
at least half of the original code intact [17]. As a result, 
KVMi370 was structured as shown in Fig. 6. The KVMl370 
security kernel used a variation on self-virtualization to create 
a series of NKCP's (Non-Kernel Control Programs), each at a 
distinct mandatory access class. The NKCP's ran unmodified 
VM/370 code to create multiple virtual machines that then 
ran the CMS (Conversational Monitor System), a single-user 
operating system designed to run in a virtual machine. The 
disadvantage of this approach is that many functions executed 
by a virtual machine required two context switches, first into 
the NKCP and then into the security kernel. By comparison, 
VAX Security Kernel achieves a higher performance level by 
allowing the virtual machines to communicate directly with the 
security kernel. This makes the VAX Security Kernel larger 
than the KVMi370 security kernel, but we believe that the 
performance gains justify the increase in size." 

KVM/370 never implemented support for VMOS's that 
supported virtual memory. It implemented demand paging 

"This comparison is not strictly fair to KVMi370, because the KVMi370 
team was required to maintain compatibility and a large body of original 
code from VMi370, while the VAX Security Kernel team had the liberty of 
designing and coding from scratch. 
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Fig. 6. KVMi370 configuration 

within its TCB. By contrast, the VAX Security Kernel leaves 
virtual memory support to the VMOS's. Eliminating demand 
paging reduces kernel complexity and improves performance 
at the cost of limiting the number of simultaneously active 
virtual machines. 

Another major difference is that KVM/370 had a very 
limited interface for system management and security manage- 
ment functions. For example, new users could not be added 
during online operation. By contrast, the VAX Security Kernel 
offers a full complement of system and security management 
tools, such as are required in a general-purpose system (see 
Section V). 

While performance comparisons are very tricky to make, the 
relative performance of the VAX Security Kernel seems better 
than that of KVM/370. KVM/370 reports [17] performance 
ranges from 10-50% of VM/370, depending on the workload. 
By contrast, the VAX Security Kernel exhibits performance 
ranges from 30-90% of VMS capacity, again depending on the 
workload. The KVM/370 measurements were of an untuned 
system, while the VAX Security Kernel measurements were 
of a system with a limited amount of tuning. The KVM/370 
comparisons were to VM/370, itself a virtual-machine monitor 
with performance degradation compared to a native operating 
system. The VAX Security Kernel comparisons were to the 
native VMS operating system. KVM/370 reported a number 

of desirable performance optimizations that had not been done, 
and likewise, we know of a number of optimizations that had 
not yet been applied to VAX Security Kernel at the time of 
the cancellation. 

I x .  HISTORY OF THE PROJECT 

The idea of a virtual-machine monitor security kernel for 
the VAX, similar in concept to KVM/370, was first conceived 
by Karger and Lipner in a Mexican restaurant in Palo Alto, 
CA, immediately after the 1981 Symposium on Security and 
Privacy. An initial design study [45] concluded in 1982 
that such a security kernel would be practical for the VAX 
architecture. 

The security kernel was initially prototyped on a VAX- 
1 U730 system. The VAX-111730 CPU [46] was particularly 
attractive, because it was vertically microprogrammed and 
its microcode was executed from a writable control store 
(WCS) which could be reloaded from magnetic tape cassettes. 
This environment was ideal for experimenting with alternate 
microcode extensions to the VAX architecture, although the 
CPU itself was quite slow. 

The VMS operating system first successfully booted in a 
virtual machine on 19 July 1984. That version of the security 
kernel was a research prototype and not a production-quality 
system. It was extremely slow (due in part to the choice of the 
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VAX-11/730, and in part to the initial software design which 
emphasized quick development and extensive self-checking, 
but not performance), and its user interface was extremely 
crude. 

Once the VMM security kernel prototype was running 
reliably on the VAX-111730 and we had accomplished some 
performance tuning (that improved system performance by at 
least an order of magnitude), we then began investigation 
of what a production-quality version would be like. The 
extensions to the VAX architecture were reimplemented on 
the VAX 8800 family of CPU’s to provide a high-performance 
base for the system. Like the VAX-111730, the VAX 8800 CPU 
[47] runs its microcode from a writable control store (WCS), so 
modifications were possible. The VAX 8800 microcode is or- 
ganized horizontally, rather than vertically, and the microcode 
is pipelined, so the actual implementation of the extensions 
was much more complex than for the VAX-11/730. 

Going from the research prototype to the practical version 
also gave us the opportunity to revisit a number of design 
decisions. In particular, the extensions to the VAX architecture 
to support virtualization were simplified, in part due to the 
limited availability of microcode memory in the VAX 8800. 
A performance study of the VAX Security Kernel prototype 
revealed that some of our architectural extensions did not pro- 
vide the expected performance gains, while other extensions 
would be more valuable. For example, the prototype design in- 
cluded complex microcode assistance for delivering exceptions 
and interrupts to the virtual machines, but these microcode 
assists proved not to be useful and a much simpler scheme 
was implemented for the VAX 8800. Similarly, performance 
measurements of the prototype revealed that VAX operating 
systems (and VMS in particular) use the MTPR instruction 
to change their interrupt priority level (IPL) much more 
frequently than anyone had expected. Therefore the software 
was changed to optimize this particular path and microcode 
assistance was considered, although not implemented in this 
version. 

The move to the production-quality kernel also marked the 
development of such features as user and system-management 
interfaces, auditing, and error logging. The prototype kernel, 
as a research kernel, had no need of such tools, but a real A1 
system must have them so that the end users can manage and 
reliably run real applications on the system. 

By January 1988 the kernel was sufficiently stable that some 
engineers could begin doing their development work on a 
VM. Also in January 1988 the first VAX Security Kernel was 
installed outside the kernel development group. That system 
was installed in the European ULTRIX Engineering Group 
in Reading, England, for porting the ULTRIX-32 operating 
system to a virtual machine. ULTRIX-32 first booted in a 
virtual machine on 15 February 1988, only two months after 
detailed design for the port began, and less than one month 
after a working VAX Security Kernel system was available 
for use in Reading. 

By August 1988 VAX Security Kernel builds were being 
done on virtual machines, and by early 1989 essentially all 
software development work was being done on the kernel. 
By the Spring of 1989, the kernel was sufficiently stable that 

the VAX 8800 that had been running a conventional VMS 
time-sharing system for the kernel developers was released 
for other purposes. The VAX Security Kernel entered external 
field test in late 1989 at a number of government and aerospace 
industrial sites. Feedback from the external field test sites was 
very favorable, as the VAX Security Kernel allowed the sites 
to perform many multilevel secure tasks that were impossible 
on other systems. Performance was acceptable, except for the 
time needed to actually install the system. Installation time was 
very long, due to the extensive checks required to establish 
the initial secure state. 

X. CANCELLATION 

The project was formally canceled by the Digital Equipment 
Corporation on 1 March 1990. While the exact reasons for the 
cancellation remain confidential, some of the issues can be 
discussed here. Most importantly, the VAX Security Kernel 
was considered a technical success and there was significant 
customer demand for a product version of the security kernel 
and for a higher performance, nonsecure version to support 
VMS and ULTRIX-32 coexistence. 

However, a significant fraction of the customer demand 
came from foreign countries who are allied with the United 
States under a variety of treaties. The current U.S. State 
Department export controls on operating systems at the B3 
and A1 levels are extremely onerous and would likely have 
interfered with many potential sales, even to close NATO 
allies. These export controls do not achieve their goal of 
restricting access to high-security operating systems, as the 
technology needed to achieve such high security is primarily 
based on strict application of well-known software engineering 
practices, such as layering and information hiding. In the area 
of formal methods, European computer scientists are generally 
viewed as equal to or ahead of their U.S. counterparts. In the 
U.K., Data Logic has received a government contract [48] to 
design a secure UNIX system to meet the U.K. equivalent 
of an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA1 rating. The National Research Council’s recent 
report, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAComputers ut Risk [49, pp. 158-159], suggests that the 
export controls on B3 and A1 systems are in fact discouraging 
U.S. industry from developing systems which employ such 
technology. 

Certain management decisions also affected the decision to 
cancel. In the interest of shortening the development schedule, 
management chose not to implement Ethernet support in the 
initial versions of the VAX Security Kernel. This lack of good 
networking support was particularly critical, as most computer 
systems today require such support. The primary criticisms 
during the external field test came from the lack of Ethernet 
support. 

The changes to the VAX architecture for virtualization were 
officially approved as ECO’s (engineering change orders). 
However, the ECO’s were not made mandatory on all new 
VAX processors, and most of the development groups for 
the VAX processors that followed the VAX 8800 did not 
choose to implement the ECO’s. As many of those newer 
processors implemented their microcode in ROM’s, adding the 
virtualization ECO’s after the fact would have been difficult 
and expensive. 
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XI. CONCLUSIONS R. Crane, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. Elfstrom, J. Ferguson, A. Gabriel-Reilly, 

The VAX Security Kernel is a working, production-quality 
VMM security kernel with performance sufficient to support 
a large number of time-sharing users. It is sufficiently fast 
and stable so that it supported its own development team. 
It supports vast amounts of existing user software that has 
been written for both the VMS and the ULTRIX-32 operat- 
ing systems, and it supports both operating systems running 
simultaneously on the same CPU. The new covert-channel 
countermeasures in the VAX Security Kernel deal effectively 
and efficiently against entire classes of storage and timing 
channels that had previously been thought intractable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[50].’* 
As a research project in what is required to build a practical 
security kernel, it has been a major success. 

The development of the VAX Security Kernel was long and 
arduous, and we learned a number of lessons during that time. 
Performance of a security kernel is extremely important, and 
getting good performance is very hard. It requires detailed 
analysis of what portions of the kernel are performance-critical 
and a willingness to redesign those portions for performance 
and possible recode them in assembly language or to provide 
microcode performance assistance. 

Building the system twice-once as a research prototype 
and once as a study of a production-quality system-was 
extremely valuable. The second time around we were able to 
apply some of the performance lessons learned by adjusting 
our microcode assistance, and we developed the user and 
management interfaces which are essential in a real system. 

One very important lesson learned is that it is not sufficient 
to just build a high-performance Al-secure system. That 
system must also support the features demanded by the user 
community. This means that the system must not only support 
many commercially available software systems (such as the 
VMS and ULTRIX-32 operating systems), but it must also sup- 
port high-security, high-speed networking and high-security 
windowing systems. A high-security time-sharing system is 
no longer sufficient for the marketplace of the 1990’s. 

Developing a system to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA1 standards is very hard work. 
Some of the A1 requirements can directly conflict with per- 
formance and usability goals, and the testing and review 
requirements are very time consuming. Furthermore, the ex- 
port controls imposed on the A1 systems can seriously reduce 
the potential market for a system, making it difficult to recover 
the costs in achieving the A1 rating. On the other hand, 
the discipline required to meet A1 requirements definitely 
improves overall software quality and reliability. 
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