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Wind power, a rapidly growing alternative energy source, has been threatened by 33 

reductions in global average surface wind speed that have been occurring over land since 34 

the 1980s, a phenomenon known as global terrestrial stilling. Here, we use wind data from 35 

in-situ stations worldwide to show that the stilling reversed around 2010 and global wind 36 

speeds over land have recovered. We illustrate that decadal-scale variations of near-surface 37 

wind are likely dertermined by internal decadal ocean/atmosphere oscillations, rather than 38 

vegetation growth and/or urbanization as hypothesized previously. The strengthening has 39 

increased potential wind energy by 17 ±2% for 2010-2017, boosting U.S. wind power 40 

capacity factor by ~2.5% that explains half the increase in U.S. wind capacity since 2010. In 41 

the longer-term, the use of ocean/atmosphere oscillations to anticipate future wind speeds 42 

could allow optimization of turbines for expected speeds during their productive life spans.  43 

 44 

Reports of a global decline in land surface wind speed of 8% from ~1980 to 2010 have raised 45 

concerns about outputs from future wind power
1-5

. Wind power (p) varies with the cube of wind 46 

speed (u) according to the formula  47 

                                                                       3

2

sf
p u

ρ
=                                                             (1), 48 

where ρ  is air density, s  the swept area of the turbine, and f  an efficiency factor
6
. The decline 49 

has been manifest in the northern mid-latitude countries where the majority of wind turbines are 50 

installed including China, the U.S. and Europe
1
. If the observed trend from 1980 to 2010 were to 51 

continue to the end of the century, global u would reduce by 21%, halving the amount of power 52 

available in the wind (using Equation (1)). Understanding the drivers of this long-term decline in 53 

wind speed is critical not merely to maximize wind energy production
7-9

 but also to address other 54 

globally significant environmental problems related to stilling, including reduced aerosol 55 



dispersal, changes in evapotranspiration rates, and adverse effects on animal behavior and 56 

ecosystem functioning
1,3,4,10

.  57 

 58 

The potential causes for the global terrestrial stilling are complex and remain contested
2,3,11,12

. 59 

Many regional-scale studies
13-17

 using reanalysis datasets have found correlations of u with 60 

various climate indices. Those studies hypothesize that terrestrial stilling is caused by changes in 61 

large-scale circulations
11

, which appear as consistent wind speed changes at the surface and at 62 

higher levels in reanalysis datasets
11,14

. Nevertheless, there are large uncertainties in these 63 

datasets
2,11,14

, and more importantly, global terrestrial stilling is either not reproduced or has been 64 

largely underestimated in global reanalysis products
2,11

 (Supplementary Fig. 1) and/or climate 65 

model simulations for IPCC AR5 (Supplementary Fig. 2). Acknowledging that wind speed 66 

reanalysis datasets do not represent land surface dynamics, the discrepancies between the 67 

decreasing trends derived from in-situ stations and from reanalysis or climate model simulations 68 

lead to the hypothesis that global terrestrial stilling is caused by increased drag related to 69 

increased surface roughness from the greening of the Earth and/or urbanization
2,18

, both of which 70 

would suggest further declines in the future.  71 

 72 

However, conversely, recent studies have described wind speed reversal at local scales
19,20

 or an 73 

increase of global wind speed during a particular year
21

, despite uncertainty over the global trend 74 

of wind speed change
5,11

. The recent reversal over land, if evidenced to be true at the global 75 

scale, could elucidate the causes of global terrestrial stilling and potentially improve future wind 76 

energy projections.  77 

 78 



Analysis 79 

We integrate direct in-situ observations of u from ground weather stations from 1978 to 2017 80 

together with statistical models for detection of trends. The stations, mainly distributed in the 81 

northern mid-latitudes countries, were carefully selected from the Global Summary of Day 82 

(GSOD) database following strict quality control procedures (Supplementary Fig. 3; see Methods 83 

for details). To test for a continuation of the terrestrial stilling after 2010 (refs 1-3), we use a 84 

piecewise linear regression model to examine the potential trend changes
22,23

.  85 

 86 

Scope of a reversal in global terrestrial stilling  87 

The analysis shows that global mean annual u decreased significantly at a rate of -0.08 m s
-1

 (or -88 

2.3%) per decade during the first three decades beginning in 1978 (P-value < 0.001; Fig. 1a, 89 

Supplementary Table 1). While the decreasing trend has previously been shown
2-4

 and confirms 90 

global terrestrial stilling as an established phenomenon during the period of 1978-2010, we find 91 

that u has significantly increased in the current decade. This turning point is statistically 92 

significant at P < 0.001 with a goodness of fit of an R
2
 = 90% (Fig. 1a). The recent increasing 93 

rate of 0.24 m s
-1

 decade
-1

 (P < 0.001) is three-fold the decreasing rate before the turning point in 94 

2010.  95 

 96 

To exclude the possibility that the turning point is caused by large wind speed changes at only a 97 

few sites, we repeat our analyses 300 times by randomly resampling 40% of the global stations 98 

each time (grey lines in Fig. 1a; 40% of the stations are selected to ensure a sufficient sample 99 

size (n > 500)). We find significant turning points in each randomly-selected sub-sample (P < 100 

0.001; R
2
 ≥ 76%). Run-specific turning points occur between 2002 and 2011, with most (95%) of 101 



them between 2009 and 2011 (Fig. 1b). In addition, mean annual u changes before and after a 102 

specific turning point based on the 300 sub-sample estimates are -0.08 ± 0.01 m s
-1

 per decade 103 

and 0.24 ± 0.03 m s
-1

 per decade, respectively (Fig. 1c), identical to those values based on all 104 

global samples.  105 

 106 

Spatial analyses further confirm that the recent reversal is a global-scale phenomenon 107 

(Supplementary Fig. 4a-c). A majority (79%) of the stations where u decreased significantly 108 

during 1978-2010 (Supplementary Fig. 4b) have positive trends after 2010 (Supplementary Fig. 109 

4c). The stations are mainly distributed over North America, Europe, and Asia. Significant 110 

turning points exist in all the three regional mean annual u time series (P < 0.001, Supplementary 111 

Fig. 4d-f), but they vary in the specific year of occurrence. For example, a turning point occurs 112 

earlier in Asia (2001, R
2
 =80%, Supplementary Fig. 4f) and Europe (2003, R

2
 = 56%, 113 

Supplementary Fig. 4e) than in North America (2012, R
2
 = 80%, Supplementary Fig. 4d). 114 

Nevertheless, all the three regions have the most significant increase in u after ~2010 115 

(Supplementary Fig. 4d-f).  116 

 117 

The existence of turning points is robust regardless of season (Supplementary Table 1 and 118 

Supplementary Fig. 5) or wind variable chosen for analysis (Supplementary Fig. 6), and shows 119 

no dependence on quality control procedures for weather station data (Supplementary Fig. 7). 120 

For maximum sustained wind and wind gusts, the turning points appear earlier and the recent 121 

increasing rates are weaker (Supplementary Fig. 6). Furthermore, we show that our findings are 122 

robust and repeatable (Supplementary Fig. 8) using a different data set—the HadISD database, 123 

which follows station selection criteria and a suite of quality control tests established by Met 124 



Office Hadley Centre
24

. We also find that the tendency for an increasing number of stations 125 

becoming automated during recent decades (Supplementary Figs 9 and 10) does not affect the 126 

result (Supplementary Fig. 11). Finally, to test the effect of inhomogeneity, we remove all the 127 

stations with change points detected by Pettitt tests
25

. After removal, the results do not change 128 

when the analysis is repeated (Supplementary Fig. 12). All these lines of evidence provide 129 

independent support that the trends in u are not caused by changes in measurement methods and 130 

inhomogeneity.  131 

 132 

Causes of the reversal in global terrestrial stilling  133 

A variety of theories have been presented previously to explain stilling, many of which focus on 134 

the drag force of u linked to increased terrestrial roughness caused by urbanization and/or 135 

vegetation changes
2,12

. These theories are debated
26

 (also see Supplementary Figs 13 and 14). 136 

Our finding of a global stilling change after 2010, and especially the finding of an increasing rate 137 

which is three times that of the decreasing rate before 2010 (Fig. 1a), are counter to these 138 

theories because terrestrial roughness did not suddenly change in 2010. More likely, the variation 139 

in u (including prior stilling and the recent reversal) is determined mainly by driving forces 140 

associated with decadal variability of large-scale ocean/atmospheric circulations.  141 

 142 

Wind is created by pressure gradients associated with uneven heating of the Earth surface 143 

(temperature anomalies or heterogeneity), and the latter is to a large extent described by climate 144 

indices for oscillations. To test such associations, we first include twenty-one climate indices in 145 

the pool of indicators for ocean/atmosphere oscillations (Supplementary Table 2 and Methods). 146 

To avoid overfitting, we apply stepwise regression
27

 to identify six largest explanatory power 147 



factors for the decadal variations of u over the globe, North America, Europe, and Asia, 148 

respectively (see Supplementary Table 3). The reconstructed u obtained from the stepwise linear 149 

regression matches well with the observed u (Supplementary Figs 15 and 16, and discussion in 150 

Methods). Finally, we train our models using only the detrended time series before the turning 151 

points (2010 for the globe, 2012 for North America, 2003 for Europe, and 2001 for Asia), finding 152 

that the models are capable of reproducing the positive trends after the turning points, not only 153 

for the globe (P < 0.001; Fig. 2a), but also for all the three regions (P < 0.001; Fig. 2b-d). The 154 

magnitude of the increasing rate after the turning points is well modelled (Fig. 2). These results 155 

suggest a predictive relationship between wind changes and ocean/atmosphere oscillations, 156 

which would be very valuable for the wind energy sector.  157 

 158 

We further construct the composite annual mean surface temperature for the years that exhibit 159 

negative (Fig. 3a) and positive (Fig. 3b) anomalies of detrended u. During the years of negative u 160 

anomalies (Fig. 3a) the following are observed: (a) positive anomalies of temperature prevail 161 

over the tropical northern Atlantic (5.5
o
N to 23.5

o
N, 15

o
W to 57.5

o
W), showing a positive value 162 

for Tropical Northern Atlantic Index (TNA); (b) the west (east) Pacific is warmer (colder) than 163 

normal years, demonstrating a negative value for Pacific Decadal Oscillation (PDO); and (c) 164 

positive anomalies of temperature occur near the Azores and negative anomalies occur over 165 

Greenland, indicating a negative value for North Atlantic Oscillation (NAO). The opposite 166 

pattern (i.e. negative TNA, positive PDO and NAO) occurs during the years of positive u 167 

anomalies (Fig. 3b). Furthermore, TNA has strong, significant, and negative correlations with 168 

regional u, in particular, over North America (Fig. 3c); PDO has significant positive correlations 169 

with regional u globally (Fig. 3e); and NAO has overwhelmingly significant positive correlations 170 



with regional u in the U.S. and Northern Europe, but negative correlations with regional u in 171 

Southern Europe (Fig. 3d). These patterns are consistent with the finding that the greatest 172 

explanatory power factor is TNA for North America (R = -0.67, P < 0.001), PDO for Asia (R = 173 

0.50, P < 0.01), and NAO for Europe (R = 0.37, P < 0.05) (for more discussion refer to Methods). 174 

The ocean/atmosphere oscillations, characterized as the decadal variations in these climate 175 

indices (mainly TNA, NAO, PDO), can therefore explain the decadal variation of u (i.e., the 176 

long-term stilling and the recent reversal) (Figs 2 and 3f-h).  177 

 178 

Several theories
28-31

 have tried to provide potential physical mechanisms describing how 179 

different ocean/atmosphere oscillations affect regional u over land. With respect to TNA, prior 180 

studies demonstrate that the positive phase of TNA is linked with a weakened Hadley circulation 181 

(details of the theory refer to ref. 28). We also find that during the positive phase of TNA there is 182 

a cold anomaly over the eastern coast of the U.S. (Fig. 3a and ref. 28). This pattern leads to a 183 

southward component of surface wind and a stable environment of weak convergence from the 184 

tropics to the mid-latitudes, resulting a reduction of u in the mid-latitudes, the U.S. in particular 185 

(Fig. 3c and Supplementary Fig. 17a,b). As for NAO, its negative and positive phases have 186 

different jet stream configurations and wind systems in Northern versus Southern Europe 187 

(Supplementary Fig. 17c,d; refer to ref. 29). During the positive (negative) phase, the pressure 188 

gradient across the North Atlantic
29

 generates strong winds and storms across Northern 189 

(Southern) Europe (Supplementary Fig. 17c,d), explaining the contrasting correlations of NAO to 190 

u in these two regions (Fig. 3d, Supplementary Fig. 18). For PDO, the temperature gradient 191 

during the negative (positive) phase generates an easterly (westerly) component of surface wind 192 

(refer to refs 30, 31), which weakens (strengthens) the prevailing westerly winds in the mid-193 



latitudes (Supplementary Fig. 17e,f) and explains the widespread and significant positive 194 

correlations between PDO and u across the whole mid-latitudes (Fig. 3e). However, despite these 195 

potential physical mechanisms
28-31

, the relationships between ocean/atmosphere oscillations and 196 

long-term wind speeds over land are still uncertain and require more investigations.  197 

 198 

Finally, it is critical to determine why global reanalysis products do not reproduce or 199 

underestimate the historical terrestrial stilling (Supplementary Fig. 1), which is a major basis for 200 

prior studies
2,12

 rejecting ocean/atmosphere oscillations as a dominant driver for terrestrial 201 

stilling. While global reanalysis products are generated at numerical weather prediction centers 202 

with advanced data assimilation systems, most cannot assimilate near-surface winds over land 203 

properly due to inappropriate model topography and inaccuarency of atmospheric boundary layer 204 

processes that are implemented into the data assimilation systems. ERA-Interim
32

, one of the best 205 

products available, can only assimilate surface winds over seas from scatterometers, ships and 206 

bouys. The capacities of these products in reproducing the near-surface wind speed over land are 207 

thus generally poor and rely on climate models. We find that in the regions where AMIP model 208 

simulations (i.e. atmospheric simulations forced with observed sea surface temperature) capture 209 

the stilling, such as Europe and India (Fig. 4a,b in ref. 26), the global reanalysis products are also 210 

capable of reproducing the stilling (Fig. S1c). In constrast, for regions where AMIP simulations 211 

do not capture the stilling, such as North America
26,33

, the global reanalysis products also fail to 212 

reproduce the stilling
2,11

 (Fig. S1b). Model limitations therefore are likely the reason preventing 213 

global reanalysis products from reproducing the observed near-surface wind speed changes in 214 

some regions. More efforts are required to improve surface process parameterization scheme and 215 



its connection to ocean/atmosphere circulations in climate models and operational weather data 216 

assimilation systems.  217 

 218 

Implications for wind energy production 219 

In wind power assessments, near-surface wind observations from weather stations (u at the 220 

height of 
r

z  = 10 meters) are often used to estimate wind speeds at the height of a turbine (
tb

u  at 221 

the height of 
tb

z  = 50-150 meters) using an exponential wind profile power law relationship:  222 

                                                                     tb
tb

r

z
u u

z

α
 

=  
 

                                                          (2) 223 

where the α is commonly assumed to be constant (1/7) in wind resource assessments because the 224 

differences between these two levels are unlikely great enough to introduce considerable errors 225 

in the estimates
5
.  226 

 227 

Changes in wind speed matter not only on average but also in the percentage of time wind speeds 228 

are high or low. A velocity of utb > 3 m s
-1

 is a typical minimum value needed to drive turbines 229 

efficiently and therefore, wind speeds below 3 m s
-1

 are typically wasted from the power 230 

generation perspective. Although periods of high wind speed greatly increase the physical 231 

capacity to generate power according to formula (1), turbines are built with a maximum capacity, 232 

so periods of high wind speed can also “waste” the uses of wind with the threshold depending on 233 

the capacity of the turbine.  234 

 235 

On average, the increase of global mean annual u from 3.13 m s
-1

 in 2010 to 3.30 m s
-1

 in 2017 236 

(Fig. 1a; see Methods for details) increases the amount of energy entering a hypothetical wind 237 



turbine receiving the global average wind by 17 ±2% (uncertainty is associated with subsamples 238 

in Fig. 1a; regionally, 22 ±2% for North America, 22 ±4% for Europe, and 11 ±4% for Asia). At 239 

the hourly scale, the frequency of low u decreases while the frequency of high u increases (Fig. 240 

4a). Using one General Electric GE 2.5 – 120 turbine
34

 (Supplementary Fig. 19) for illustration, 241 

the effects of changes in global average u increase potential power generation from 2.4 million 242 

kWh in 2010 to 2.8 million kWh in 2017 (+17%). If the present trend persists for at least another 243 

decade, in light of the robust increasing rate during 2000-2017 (Fig. 1a) and the long cycles of 244 

natural ocean/atmosphere oscillations
28-31,35

 (Supplementary Fig. 20), power would rise to 3.3 245 

million kWh in 2024 (+37%), resulting in a +3% per decade increase of global-average capacity 246 

factor (mean power generated divided by rated peak power). This change is even larger than the 247 

projected change in wind power potential caused by climate change under multi-scenairos
36

.  248 

 249 

During the past decade, the capacity factor of the U.S. wind fleet
37

 has steadily risen at a rate of 250 

+7% per decade (Fig. 4b), previously attributed solely to technology innovations
38

. We find that 251 

the capacity factor for wind generation in the U.S. is highly and significantly correlated with the 252 

variation in the cube of regional-average u (u
3
, R = 0.86, P < 0.01; Fig. 4b). To isolate the u-253 

induced increase in capacity factor from that due to technology innovations, we use the regional 254 

mean hourly wind speed in 2010 and 2017 to estimate the increase of capacity factor for a given 255 

turbine, thereby controlling for technology innovations. It turns out that the increased u
3
 explains 256 

~50% of the increase of the capacity factor (see Methods for details). Therefore, in addition to 257 

technology innovations, the strengthening u is another key factor powering the increasing 258 

reliability of wind power in the U.S. (and other mid-latitude countries where u is increasing, such 259 

as China and European countries).  260 



 261 

To illustrate the consequences, one turbine (General Electric GE 1.85 – 87 (ref. 39)) installed at 262 

one of our in-situ weather stations in the U.S. in 2014 (inset plot in Fig. 4c), which was expected 263 

to produce 1.8 ±0.1 million kWh using four years of u records before the installation (2009-264 

2013)
39

, actually produced 2.2 ±0.1 million kWh between 2014-2017 (+25%). This system has 265 

the potential to generate 2.8 ±0.1 million kWh (+56%) if u recovers to the 1980s level (red bars 266 

in Fig. 4d; see Methods for details). Globally, 90% of the global cumulative wind capacity has 267 

been installed in the last decade
40

, during which global u has been increasing (see above).  268 

 269 

Discussion  270 

Although the response of ocean/atmosphere oscillations to anthropogenic warming remains 271 

unclear
31

, the increases in wind speeds should continue for at least a decade because these 272 

oscillations change over decadal time frames
28-31,35

. Climate model simulations constrained with 273 

historical sea surface temperature also show a long cycle in u over land (Supplementary Fig. 20). 274 

Our findings are therefore good news for the power industry for the near future.  275 

 276 

However, oscillation patterns in the future will likely cause returns to declining wind speeds, and 277 

anticipating these changes should be important for the wind power industry. Wind farms should 278 

be constructed in the areas with stable winds and high effective utilization hours (e.g. 3 - 25 m s
-

279 

1
). If high wind speeds are likely to be common, building turbines with larger capacities could be 280 

justified. For example, capturing more available wind energy (blue bars in Fig. 4d) could be 281 

achieved through the installation of higher capacity wind turbines (e.g. General Electric GE 2.5 – 282 

120, green bars in Fig. 4d), greatly increasing total power generation. Most turbines tend to 283 



require replacement after 12-15 years
41

. Further refinement of the relationships uncovered in this 284 

paper could allow choices of turbine capacity, rotor and tower that are optimized not just to wind 285 

speeds of the recent past but to likely future changes during the lifespan of the turbines.  286 

 287 

In summary, we find that after several decades of global terrestrial stilling, wind speed has 288 

rebounded, increasing rapidly in the recent decade globally since 2010. Ocean/atmosphere 289 

oscillations, rather than increased surface roughness, are likely the causes. These findings are 290 

important for those vested in maximizing the potential of wind as an alternative energy source. 291 

The development of renewable energy sources including wind power
6-9,40

 is central to energy 292 

scenarios
8
 that help keep warming well below 2 ◦C. One megawatt (MW) of wind power reduces 293 

1,309 tonnes of CO2 emissions and also saves 2,000 liters of water compared with other energy 294 

sources
9,40

. Since its debut in the 1980s, the total global wind power capacity reached 539 295 

gigawatts by the end of 2017, and the wind power industry is still booming globally. For instance, 296 

the total wind power capacity in the U.S. alone is projected to increase fourfold by 2050 (ref. 9). 297 

The reversal in global terrestrial stilling bodes well for the expansion of large-scale and efficient 298 

wind power generation systems in these mid-latitude countries in the near future. 299 

 300 

  301 



References.  302 

1. Roderick, M. L., Rotstayn, L. D., Farquhar, G. D. & Hobbins, M. T. On the attribution of 303 

changing pan evaporation. Geophys. Res. Lett. 34, 1–6 (2007). 304 

2. Vautard, R., Cattiaux, J., Yiou, P., Thépaut, J. N. & Ciais, P. Northern Hemisphere 305 

atmospheric stilling partly attributed to an increase in surface roughness. Nat. Geosci. 3, 756–306 

761 (2010). 307 

3. Mcvicar, T. R., Roderick, M. L., Donohue, R. J. & Van Niel, T. G. Less bluster ahead? 308 

ecohydrological implications of global trends of terrestrial near-surface wind speeds. 309 

Ecohydrology 5, 381–388 (2012). 310 

4. McVicar, T. R. et al. Global review and synthesis of trends in observed terrestrial near-surface 311 

wind speeds: Implications for evaporation. J. Hydrol. 416–417, 182–205 (2012). 312 

5. Tian, Q., Huang, G., Hu, K. & Niyogi, D. Observed and global climate model based changes 313 

in wind power potential over the Northern Hemisphere during 1979–2016. Energy 167, 1224– 314 

1235 (2019).  315 

6. Lu, X., McElroy, M. B. & Kiviluoma, J. Global potential for wind-generated electricity. Proc. 316 

Natl. Acad. Sci. 106, 10933–10938 (2009). 317 

7. UNFCCC. Adoption of the Paris Agreement (FCCC/CP/2015/L.9/Rev.1., 2015). 318 

8. IPCC. Summary for policymakers in Climate change 2014: Mitigation of climate change. 319 

Contribution of working group III to the fifth assessment report of the Intergovernmental Panel 320 

on Climate Change (O. Edenhofer et al., Eds., Cambridge University Press, Cambridge, UK and 321 

New York, USA, 2014). 322 

9. U.S. Department of Energy. Projected growth wind industry now until 2050 (Washington, 323 

D.C., 2018). 324 



10. Nathan, R. & Muller-landau, H. C. Spatial patterns of seed dispersal, their determinants and 325 

consequences for recruitment. Trends Ecol. Evol. 15, 278–285 (2000). 326 

11. Torralba, V., Doblas-Reyes, F. J. & Gonzalez-Reviriego, N. Uncertainty in recent near-327 

surface wind speed trends: a global reanalysis intercomparison. Environ. Res. Lett. 12, 114019 328 

(2017). 329 

12. Wu, J., Zha, J. L., Zhao, D. M. & Yang, Q. D. Changes in terrestrial near-surface wind speed 330 

and their possible causes: an overview. Clim. Dyn. 51, 2039–2078 (2018). 331 

13. Nchaba, T., Mpholo, M. & Lennard, C. Long-term austral summer wind speed trends over 332 

southern Africa. Int. J. Climatol. 37, 2850–2862 (2017). 333 

14. Chen, L., Li, D. & Pryor, S. C. Wind speed trends over China: quantifying the magnitude and 334 

assessing causality. Int. J. Climatol. 33, 2579–2590 (2013). 335 

15. Naizghi, M. S. & Ouarda, T. B. Teleconnections and analysis of long-term wind speed 336 

variability in the UAE. Int. J. Climatol. 37, 230–248 (2017). 337 

16. Guo, H., Xu, M. & Hu, Q. Changes in near-surface wind speed in China: 1969-2005. Int. J. 338 

Climatol. 31, 349-358 (2011). 339 

17. Wu, J., Zha, J. L., Zhao, D. M. & Yang, Q. D. Changes of wind speed at different heights 340 

over Eastern China during 1980-2011. Int. J. Climatol. 38, 4476-4495 (2018). 341 

18. Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Chang. 6, 791–796 (2016). 342 

19. Kim, J. C. & Paik, K. Recent recovery of surface wind speed after decadal decrease: a focus 343 

on South Korea. Clim. Dyn. 45, 1699–1712 (2015). 344 

20. Azorin-Molina, C. et al. Homogenization and assessment of observed near-surface wind 345 

speed trends over Spain and Portugal, 1961-2011. J. Clim. 27, 3692–3712 (2014). 346 



21. Tobin, I., Berrisford, P., Dunn, R. J. H., Vautard, R. & McVicar, T. R. [Global climate; 347 

Atmospheric circulation] Surface winds [in “State of the Climate in 2013”. Bull. Am. Meteorol. 348 

Soc. 95, S28-S29 (2014). 349 

22. Toms, J. D. & Lesperance, M. L. Piecewise regression: a tool for identifying ecological 350 

thresholds. Ecology 84, 2034–2041 (2003). 351 

23. Ryan, S. E. & Porth, L. S. A tutorial on the piecewise regression approach applied to 352 

bedload transport data (2007). 353 

24. Dunn, R. J. H., Willett, K. M., Morice, C. P. & Parker, D. E. Pairwise homogeneity 354 

assessment of HadISD. Clim. Past 10, 1501–1522 (2014). 355 

25. Pettitt A. N. A non-parametric approach to the change-point problem. J. R. Stat. Soc. Ser. C: 356 

Appl. Stat. 28, 126–135 (1979). 357 

26. Zeng, Z. et al. Global terrestrial stilling: does Earth’s greening play a role? Environ. Res. 358 

Lett. 13, 124013 (2018). 359 

27. Draper, N. R. & Smith, H. Applied Regression Analysis, 3rd Edition (Wiley-Interscience, 360 

1998). 361 

28. Wang, C. Z. Atlantic climate variability and its associated atmospheric circulation cells. J. 362 

Clim. 15, 1516–1536 (2002). 363 

29. Hurrell, J. W., Kushnir, Y., Ottersen, G. & Visbeck, M. The North Atlantic Oscillation 364 

climatic significance and environmental impact (eds. Hurrell, J. W., Kushnir, Y., Ottersen, G. & 365 

Visbeck, M., 2003). 366 

30. Zhang, Y., Xie, S.-P., Kosaka, Y. & Yang, J.-C. Pacific decadal oscillation: Tropical Pacific 367 

forcing versus internal variability. J. Clim. 31, 8265–8279 (2018). 368 

31. Timmermann, A. et al. El Niño-Southern Oscillation complexity. Nature 559, 535–545 369 



(2018). 370 

32. Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data 371 

assimilation system. Q J. Roy. Meteor Soc. 137, 553–597 (2011). 372 

33. Pryor, S. C. et al. Wind speed trends over the contiguous USA. J. Geophys. Res. D: Atmos. 373 

114, D14105 (2009). 374 

34. Wind-turbine-models.com. General Electric GE 2.5 - 120. (2018). at https://www.en.wind-375 

turbine-models.com/turbines/310-general-electric-ge-2.5-120 376 

35. Steinman, B. A. et al. Atlantic and Pacific multidecadal oscillations and Northern 377 

Hemisphere temperatures. Science 347, 988-991(2015). 378 

36. Tobin, I. et al. Climate change impacts on the power generation potential of European mid-379 

century wind farms scenario. Environ. Res. Lett. 11, 034013 (2016). 380 

37. U.S. Energy Information Administration. Capacity factors for utility scale generators not 381 

primarily using fossil fuels, January 2013-August 2018. (2018). at 382 

https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_6_07_b 383 

38. Dell, J. & Klippenstein, M. Wind Power Could Blow Past Hydro’s Capacity Factor by 2020. 384 

(2018). at <https://www.greentechmedia.com/articles/read/wind-power-could-blow-past-hydros-385 

capacity-factor-by-2020> 386 

39. Wind-turbine-models.com. General Electric GE 1.85 - 87. (2018). at https://www.en.wind-387 

turbine-models.com/turbines/745-general-electric-ge-1.85-87 388 

40. Global Wind Energy Council. Global Wind Energy Outlook 2018 (2018). 389 

41. Hughes, G. The Performance of Wind Farms in the United Kingdom and Denmark (the 390 

Renewable Energy Foundation, 2012). 391 

42. Morice, C. P., Kennedy, J. J., Rayner, N. A. & Jones, P. D. Quantifying uncertainties in 392 



global and regional temperature change using an ensemble of observational estimates: The 393 

HadCRUT4 data set. J. Geophys. Res. Atmos. 117, 1–22 (2012). 394 

43. Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C. & Wang, W. An improved in 395 

situ and satellite SST analysis for climate. J. Clim. 15, 1609–1625 (2002). 396 

 397 

  398 



Additional information  399 

Supplementary information is available in the online version of the paper. Reprints and 400 

permissions information is available online at www.nature.com/reprints.  401 

Correspondence and requests for materials should be addressed to Z. Zeng.  402 

 403 

Acknowledgements  404 

This study was supported by the Strategic Priority Research Program of Chinese Academy of 405 

Sciences (grant no. XDA20060402), the start-up fund provided by Southern University of 406 

Science and Technology (29/Y01296122) and Lamsam-Thailand Sustain Development (B0891). 407 

L. Li was partially supported by the National Key Research and Development Program of China 408 

(Grant-2018YFC1507704). J. Liu was supported by the National Natural Science Foundation of 409 

China (41625001). We thank Della Research Computing in Princeton University for providing 410 

computing resources. We thank the U.S. National Climatic Data Center and the U.K. Met Office 411 

Hadley Centre for providing surface wind speed measurements, and thank the Program for 412 

Climate Model Diagnosis and Intercomparison and the IPSL Dynamic Meteorology Laboratory 413 

for providing surface wind speed simulations.  414 

 415 

Author contributions  416 

Z. Zeng and E. Wood designed the research. Z. Zeng and L. Yang performed analysis; Z. Zeng, 417 

A. Ziegler, T. Searchinger wrote the draft; and all the authors contributed to the interpretation of 418 

the results and the writing of the paper.  419 

 420 



Data availability. The data for quantifying wind speed changes are the Global Surface Summary 421 

of the Day database (GSOD, ftp://ftp.ncdc.noaa.gov/pub/data/gsod), and the HadISD (version 422 

v2.0.2.2017f) global sub-daily database (https://www.metoffice.gov.uk/hadobs/hadisd/). The 423 

time series of climate indices describing monthly atmospheric and oceanic phenomena are 424 

obtained from the National Oceanic and Atmospheric Administration 425 

(https://www.esrl.noaa.gov/psd/data/climateindices/list/). Simulated wind speed changes in 426 

Coupled Model Intercomparison Project Phase 5 (CMIP5) are available in the Program for 427 

Climate Model Diagnosis and Intercomparison (https://esgf-node.llnl.gov/projects/cmip5/). 428 

Simulated wind speed changes constrained by historical sea surface temperature are provided by 429 

the IPSL Dynamic Meteorology Laboratory. Wind records in reanalysis products include the 430 

ECMWF ERA-Interim Product (apps.ecmwf.int/datasets/data/interim-full-daily/), the ECMWF 431 

ERA5 Product (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-432 

monthly-means) and the NCEP/NCAR Global Reanalysis Product 433 

(http://rda.ucar.edu/datasets/ds090.0/). The processed wind records and the relevant code are 434 

available in Supplementary Data 1 and 2 (https://doi.org/10.6084/m9.figshare.9917246.v2). All 435 

datasets are also available on request from Z. Zeng.  436 

 437 

Code availability. The program used to generate all the results is MATLAB (R2014a) and 438 

ArcGIS (10.4). Analysis scripts are available at https://doi.org/10.6084/m9.figshare.9917246.v2. 439 

The code producing wind records are available in Supplementary Data 1 and 2. 440 

 441 

Competing financial interests  442 

The authors declare no competing financial interests.  443 

444 



Methods  445 

Wind datasets. The key data used in this analysis is the Global Surface Summary of the Day 446 

(GSOD) database processed by the National Climatic Data Center (NCDC) of the U.S. 447 

(download August 1
st
 2018 from ftp://ftp.ncdc.noaa.gov/pub/data/gsod). The database is derived 448 

from the United States Air Force (USAF) DATSAV3 Surface data and the Federal Climate 449 

Complex Integrated Surface Hourly dataset grounding on data exchanged under the World 450 

Meteorological Organization (WMO) World Weather Watch Program according to WMO 451 

Resolution 40 (Cg-XII)
44

. There is a total of 28,149 stations included in the GSOD database 452 

globally (for the distributions see the dots in Supplementary Fig. 3). The original records from all 453 

the weather stations have undergone extensive quality control procedures (more than 400 454 

algorithms, see www.ncdc.noaa.gov/isd for details). These synoptic hourly observations were 455 

processed into mean daily values from recorded hourly data by NCDC.  456 

 457 

We focus our study on the decadal variation of u and other wind variables (maximum sustained 458 

wind speed, maximum wind gust) for the 40-year period of 1978-2017, when the data are the 459 

most complete. In selection of the final subset of stations, we employ strict selection criteria to 460 

avoid including incomplete data series. Firstly, we only select stations with complete data for all 461 

the 40 years of the analysis (1978-2017), each year with complete records for all the 12 months. 462 

Secondly, each monthly value has to be derived from at least 15 days of data. Finally, the daily 463 

values have to be derived from a minimum of four observations. As a result, only 1,435 stations 464 

are included for analysis (locations are shown in Supplementary Fig. 3; and the mean number of 465 

observations in a day is shown in Supplementary Fig. 10; code and the processed data is 466 

available in Supplementary Data 1). Among them, 543 stations are automatic monitoring stations 467 



that are in operation during the entire study period. For some analyses (Supplementary Fig. 7) we 468 

relax our selection criteria to include more stations – for instance, by allowing 1, 5, 10 or 20 469 

years of missing data. Last, the results show no dependence on whether global mean annual u or 470 

global median annual u is used to describe the decadal variation of global u (Supplementary Fig. 471 

21 versus Fig. 1a).  472 

 473 

We also repeat the wind analyses using the HadISD (version v2.0.2.2017f)
24

 global sub-daily 474 

database, which is distributed by the Met Office Hadley Centre and is freely accessed from: 475 

https://www.metoffice.gov.uk/hadobs/hadisd/. The total number of stations in HadISD is 8,103, 476 

all of which passed quality control tests that are designed to remove bad data while keeping the 477 

extremes of wind speed and direction, temperature, dew point temperature, sea-level pressure, 478 

and cloud data (total, low, mid and high level). For example, a set of quality control procedures
24

 479 

(e.g., duplicate check, distributional gap check, neighbor outlier check, and so on) has been 480 

performed on the major climatological variables. In our analysis, we use the criteria that is 481 

described above to select stations that have uninterrupted, continuous monthly records during the 482 

period 1978-2017 (n = 1,542; code and the processed data is available in Supplementary Data 2).  483 

 484 

Climate indices. The dynamics of ocean/atmospheric circulations can be described with climate 485 

indices. Almost all climate indices are associated to some extent with regional surface 486 

temperature anomalies (or temperature heterogeneity), in particular sea surface temperature 487 

(SST). We select twenty-one time series of climate indices describing monthly atmospheric and 488 

oceanic phenomena to compare decadal variations of the Earth’s climate system with changes in 489 

wind speed (Supplementary Table 2). Only indices that are available for the whole study period 490 



(1978-2017) are considered (downloaded from 491 

https://www.esrl.noaa.gov/psd/data/climateindices/list/). For example, we include the following 492 

eight teleconnection indices: Pacific Decadal Oscillation (PDO); Pacific North American Index 493 

(PNA); Western Pacific Index (WP); North Atlantic Oscillation (NAO); East Pacific/North 494 

Pacific Oscillation (EP/NP); North Pacific pattern (NP); East Atlantic pattern (EA); and 495 

Scandinavia pattern (SCAND). We include one atmospheric index (Arctic Oscillation (AO)) and 496 

one multivariate El Niño–Southern Oscillation (ENSO) index. We include six indices describing 497 

regional SST in Pacific oceans: Eastern Tropical Pacific SST (5
o
N – 5

o
S, 150

o 
W – 90 

o
W) 498 

(NINO3); Central Tropical Pacific SST (5
o
N-5

o
S) (160

o
E-150

o
W) (NINO4); Extreme Eastern 499 

Tropical Pacific SST (0 – 10
o
S, 90

o
W – 80

o
W) (NINO12); East Central Tropical Pacific SST 500 

(5
o
N – 5

o
S) (170

o
W – 120

o
W) (NINO34); Oceanic Nino Index (ONI); and Western Hemisphere 501 

warm pool (WHWP). Two of the indices describe regional SST in Atlantic oceans—the Tropical 502 

Northern Atlantic Index (TNA) and the Tropical Southern Atlantic Index (TSA). The final three 503 

indices are the Atlantic Meridional Mode (AMM), the Southern Oscillation Index (SOI), and the 504 

10.7-cm Solar Flux (Solar). All these indices are widely used by the climate community and are 505 

informative regarding the decadal variations of ocean/atmospheric circulations. 506 

 507 

Statistical analyses. It is apparent that the trend varies in the time series of global and/or 508 

regional average mean annual u for different ranges of year (e.g., Fig. 1a). A traditional single 509 

linear model does not provide an adequate description of a change in the tendency. Therefore, we 510 

apply a piecewise linear regression model
22,23

 to quantify potential turning points in a given time 511 

series. Piecewise linear regression is capable of detecting where the slope of a linear function 512 

changes, and allows multiple linear models to be fitted to each distinct section of the time series. 513 



For a time series y (e.g. global average mean annual u), a continuous piecewise linear regression 514 

model with one turning point (TP) can be described as:  515 

                                           0 1

0 1 2

,

( ) ,

t t TP
y

t t TP t TP

β β ε

β β β ε

+ + ≤
= 

+ + − + >
                                      (3) 516 

where t  is year; 0β , 1β  and 2β  are regression coefficients; and ε  is the residual of the 517 

regression. The linear trend is 1β  before the TP (year), and 1 2β β+  after the TP. We use least 518 

square error techniques to fit the model to the data and determine TP, 0β , 1β  and 2β . To avoid 519 

linear regression in a period with too few years, we confine TP to be within the period of 1980 to 520 

2015. The necessity of introducing TP is tested statistically with the t-test under the null 521 

hypothesis that “ 2β  is not different from zero”. The diagnostic statistics for the regression also 522 

include the goodness of fit (R
2
), the P value for the whole model, and the P values for the trends 523 

before and after TP. We consider P < 0.05 as significant.  524 

 525 

In addition, we use a forward stepwise regression algorithm
27

 to select major climate indices that 526 

have the largest explanatory power for the decadal variations in u. The algorithm is a systematic 527 

method for adding predictors from a multilinear model according to their statistical significance 528 

in explaining the response (decadal variation of u in this study). The initial regression model 529 

contains only an intercept term. The explanatory power of incrementally larger and smaller 530 

models is then compared to determine which predictor should be included. At each step, the P-531 

value of an F-statistic is calculated to examine models with a potential predictor that is not 532 

already in the model. The null hypothesis is that the predictor has a zero coefficient if included in 533 

the model. If there is sufficient evidence at a given significant level to reject the null hypothesis, 534 



the predictor is added to the model. Therefore, the earlier the predictor enters in to the model, the 535 

larger the explanatory power the predictor has.  536 

 537 

We apply the forward stepwise regression to determine six climate indices (referred as major 538 

indices hereafter) from a generalized linear model according to their statistical significance in 539 

explaining u. We use only six indices in the regression because the fit improvement becomes 540 

marginal when the number of indices retained in the stepwise regression is greater. The 541 

regression model is then applied to reconstruct interannual variations of u over the globe and/or 542 

the regions using the selected six climate indices. The forward stepwise regression is first applied 543 

to the original time series considering the total variances, and then applied to the detrended time 544 

series to exclude the variances from linear trends (Supplementary Figs 15 and 16). Last, to test 545 

whether these climate indices can be used to predict u, we further train the models using only the 546 

detrended time series before the turning points; we then compare the reconstructed u with the 547 

observed u after the turning points (Fig. 2).  548 

 549 

Analyses on the possible causes for the interannual variability of wind speed. Globally, the 550 

indicators (climate indices) significantly correlated with u include TNA (R = -0.50; P-value < 551 

0.01), PDO (R = 0.46; P < 0.01), WHWP (R = -0.46; P < 0.01), NAO (R = 0.39; P < 0.05), 552 

AMM (R = -0.39; P < 0.05), EP/NP (R = 0.37; P < 0.05), TSA (R = -0.38; P < 0.05), Solar (R = 553 

0.35; P < 0.05), SOI (R = -0.32; P < 0.05), and EA (R = 0.31; P < 0.05). Overall, the twenty-one 554 

climate indices explain 90% of the interannual variation in global mean annual u (adjusted R
2
 = 555 

78%). Regionally, they explain 91%, 75% and 87% of the interannual variation in mean annual u 556 



for North America (adjusted R
2
 = 81%), Europe (adjusted R

2
 = 46%) and Asia (adjusted R

2
 = 557 

71%), respectively.  558 

 559 

To avoid overfitting, we use stepwise linear regression to discuss whether multiple regression of 560 

six indices can reconstruct interannual variations of u over the globe and/or regions. To estimate 561 

the uncertainty associated with samples, we randomly select 40% of stations for the calculation 562 

of global/regional u and repeat the analyses 300 times. The number in parentheses in 563 

Supplementary Table 3 shows how many times climate indices are selected as six major 564 

predictors. These climate indices explain 70 ±5%, 79 ±3%, 48 ±9%, and 51 ±8% of the 565 

interannual variation in mean annual u for the globe, North America, Europe, and Asia, 566 

respectively (Supplementary Table 3, Supplementary Fig. 15). Furthermore, we also test 567 

stepwise regression analysis after detrending all data, although this adjustment may mask 568 

relationships underlying long term stilling. The goodness of fit decreased as expected when the 569 

stilling trend is removed (Supplementary Fig. 16). Yet, detrended indices still significantly 570 

explain detrended variation of u, in particular the recent reversal (Supplementary Fig. 16), 571 

supporting the robustness of the regression analyses.  572 

 573 

The greatest explanatory power factor for each region is associated with the following indices: 574 

TNA for North America (R = -0.67, P < 0.001); NAO for Europe (R = 0.37, P < 0.05); and PDO 575 

for Asia (R = 0.50, P < 0.01) (Supplementary Tables 2 and 3). These three indices are also 576 

significantly correlated with global mean annual u (P < 0.01; Supplementary Table 2). We 577 

further conduct Granger causality tests
45

, in which we select lag length using a Bayesian 578 

information criterion. Global mean annual u is “Granger caused” by TNA (P < 0.001), NAO (P < 579 



0.01) and PDO (P < 0.1). Regionally, the tests also reject the null hypothesis that (a) TNA does 580 

not Granger cause u over North America (P < 0.001), (b) NAO does not Granger cause u over 581 

Europe (P < 0.1), and (c) PDO does not Granger cause u over Asia (P = 0.11). In addition, 582 

although the reversal of winds and the retained climate indices differ in regions, owing to 583 

ocean/atmosphere oscillations having some degree of synchronization during turning points of 584 

multidecadal climate variability
46

, the pattern of terrestrial stilling and its reversal seems to be 585 

synchronized.  586 

 587 

PDO and TNA are important predictors regardless of the subset of stations used. Yet, while NAO 588 

has the largest explanatory power for regional u over Europe, there are 169/300 cases that NAO 589 

is not included as a major predictor (Supplementary Table 3). Thus, even within Europe, the 590 

impact of NAO differs regionally. We thus investigate the spatial patterns of the correlation 591 

between the three indices (PDO, TNA, NAO) and the regional winds (Fig. 3c-e). The regional 592 

wind is calculated using all stations within a 5
o
 × 5

o
 cell; and only the cells with more than three 593 

stations are included in the analysis. TNA has a strong, significant negative correlation with 594 

regional u in North America excluding western Canada and areas near Mexico (Fig. 3c). PDO 595 

has a significant positive correlation with regional u globally (Fig. 3e). NAO has 596 

overwhelmingly significant positive correlation with regional u in the U.S. and Northern Europe, 597 

in particular the U.K.. In contrast it has a negative correlation with regional u in Southern Europe 598 

(Fig. 3d). Statistically, NAO is negatively correlated with European winds south of 48
o
N (R = -599 

0.39, P < 0.05); in contrast, it is significantly and positively correlated with European winds 600 

north to 48
o
N (R = 0.48, P < 0.01).  601 

 602 



Calculations for wind power assessments. Due to the nonlinear relationship between wind 603 

power (p) and wind speed (u) (Equation (1)), high temporal resolution data are needed for u to 604 

produce an accurate estimate of p. Thus, we use the HadISD global sub-daily database from the 605 

Met Office Hadley Centre
24

. For each station that has uninterrupted, continuous monthly records 606 

during the period 1978-2017 (n = 1,542), we use linear interpolation to interpolate a sub-daily 607 

time series to an hourly time series. Fig. 4a shows the frequency distributions of global average 608 

hourly wind speed in 2010 and 2017, and the year 2024, assuming the same increasing rate.  609 

 610 

We then discuss annual wind power production given these hourly wind speed time series for 611 

2010, 2017 and 2024, considering that production is dependent on the specifications of wind 612 

turbines. Here we use General Electric GE 2.5 – 120 (ref. 34) as an example. The parameters for 613 

this turbine include the following: rated power, 2,500.0 kW; cut-in wind speed, 3.0 m s
-1

; cut-out 614 

wind speed, 25.0 m s
-1

; diameter, 120 m; swept area, 11,309.7 m
2
; and hub height: 110/139 m 615 

(here we take 120 m). The power curve for this turbine is shown in Supplementary Fig. 22. The 616 

wind speed time series (2010, 2017 and 2024) at the height of the turbine (i.e. 120 m) are first 617 

estimated using the wind profile power law (Equation (2)), and are then converted into the hourly 618 

wind power (Supplementary Fig. 19) using the power curve (Supplementary Fig. 22). Owing to 619 

the increased frequency of high u, annual wind power production from the turbine increases from 620 

2.4 million kWh in 2010 to 2.8 million kWh in 2017, and then to 3.3 million kWh in 2024. As a 621 

result, the overall capacity factor increases 1.9% during 2010-2017, and 2.2% during 2018-2024.  622 

 623 

To compare the significance of the increased capacity factor induced by the strengthening u with 624 

that due to technology innovation (e.g. improvement of the turbine’s power efficiency), we 625 



collect the overall capacity factor for wind generation in the U.S. from the U.S. Energy 626 

Information Administration
37

 (the black line in Fig. 4b). In the U.S., the overall capacity factor is 627 

highly correlated with the cube of regional wind speed (u
3
) (R = 0.86, P < 0.01; Fig. 4b). Even 628 

for the detrended time series, the correlation coefficient between capacity factor and u
3
 is as high 629 

as 0.71 (P < 0.05), showing that wind speed is a key factor for the year-to-year variation of wind 630 

power energy production. It is well known that technology innovation is a key factor that drives 631 

the increase of capacity factor for wind generation
38

. To isolate the u-induced increase in 632 

capacity factor from that due to technology innovation, we use the regional mean hourly wind 633 

speed in 2010, 2017 and 2024 (assuming the same increasing rate) to estimate the increase of 634 

capacity factor for a given turbine, thereby controlling for technology innovation. The u-induced 635 

increase in capacity factor is +2.5% between 2010 and 2017, and +3.2% between 2017 and 2024. 636 

It explains more than 50% of the overall increase of capacity factor for wind generation in the 637 

U.S..  638 

 639 

We also collect information regarding the installed turbines from the U.S. Wind Turbine 640 

Database (n = 57,646; https://eerscmap.usgs.gov/uswtdb) (locations refer to Supplementary Fig. 641 

23). The turbine with the nearest distance to one of the HadISD weather stations (n = 1,542) is at 642 

Deaf Smith County, the U.S. (<1 km; wind farm name: Hereford 1; case ID: 3047384; location 643 

see the inset plot in Fig. 4c). The turbine was installed in 2014. The turbine is a General Electric 644 

GE 1.85 – 87 (ref. 39). The parameters for this turbine include: rated power, 1,850.0 kW; cut-in 645 

wind speed, 3.0 m s
-1

; rated wind speed, 12.5 m s
-1

; cut-out wind speed, 25.0 m s
-1

; diameter, 646 

87.0 m; swept area, 5,945.0 m
2
; hub height: 80 m. We combine these parameters with Equation 647 

(1) to estimate the power curve for the turbine (Supplementary Fig. 24). Finally, we integrate the 648 



power curve with the hourly wind speed from 1978 to 2017 at the hub height at this station to 649 

calculate annual wind power production generated by the General Electric GE 1.85 – 87 turbine 650 

(Supplementary Fig. 25a; red bars in Fig. 4d). In addition, we calculate annual wind power 651 

production at the station generated by the General Electric GE 2.5 – 120 turbine (Supplementary 652 

Fig. 25b; green bars in Fig. 4d). We also use the Equation (1) to estimate maximum annual wind 653 

power production at the station given diameter of 120 m and hub height of 120 m (the same as 654 

the General Electric GE 2.5 – 120 turbine), which is constrained by the Betz Limit (f = 16/27 in 655 

Equation (1)) (Supplementary Fig. 25c; blue bars in Fig. 4d). The Beltz Limit describes the 656 

theoretical maximum ratio of power that can be extracted by a wind turbine to the total power 657 

contained in the wind.  658 

 659 
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Figure Legends.  687 

Figure 1. Turning point for mean global surface wind speed (u). (a) Global mean annual u 688 

during 1978-2017 (black dot and line). The piecewise linear regression model indicates a 689 

statistically significant turning point in 2010. The red line is the piecewise linear fit (R
2
 = 90%, P 690 

< 0.001). The dashed line indicates the turning point. The trends before and after the turning 691 

point are shown in the inset. Each grey line (n = 300) is a piecewise linear fit for a randomly 692 

selected subset (40%) of the global stations. (b) Frequency distribution of the estimated turning 693 

points derived from 300 resampling results. (c) Frequency distribution of the trends in mean 694 

annual u before and after the turning points identified inthe 300 resampling results. The result is 695 

based on the weather stations in the GSOD database.  696 

Figure 2. Factors driving the decadal variations in u. Observed (black) and reconstructed 697 

(red) detrended mean annual u over the following: (a) the globe, (b) North America, (c) Europe, 698 

and (d) Asia. The models are trained using only the detrended time series before the turning 699 

points. The dashed line indicates the turning point (2010 for the globe, 2012 for North America, 700 

2003 for Europe, and 2001 for Asia). For the globe and each of the three continents, we select six 701 

largest explanatory climate indices for the decadal variations of u with a stepwise forwarding 702 

regression model. The selected climate indices are then used to reconstruct decadal variations of 703 

u via a multiple regression. Uncertainties are the inter-quartile range of the results based on a 704 

randomly selected 40% subset of the station pools (repeated 300 times). Inset plots indicate the 705 

locations of the stations. Inset black numbers are coefficients of determination between observed 706 

and reconstructed u before the turning points. Inset red numbers are correlation coefficient and 707 

its significance between observed and reconstructed u after the turning points. 708 



Figure 3. Mechanisms for the decadal variation in u. Normalized mean annual surface 709 

temperature for the years with negative (a) and positive (b) anomalies of detrended wind. 710 

Characteristic regions for Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO) 711 

and Tropical Northern Atlantic Index (TNA) are outlined by green, red, and blue polygons, 712 

respectively. Surface temperature over land is obtained from Climate Research Unit TEM4 with 713 

a spatial resolution of 5° by 5° (ref. 42), and that over ocean is from NOAA Optimum 714 

Interpolation (OI) Sea Surface Temperature V2, with a spatial resolution of 1° by 1° (ref. 43). 715 

Spatial patterns of the correlation between the regional (5
o
 × 5

o
) mean annual u and the 716 

following: (c) TNA; (d) NAO; and (e) PDO for 1978-2017. Dotting represents significant at P < 717 

0.05 level. Decadal variations are shown in panels (f) for TNA and regional u in North America; 718 

(g) for NAO and regional u in Europe; and (h) for PDO and regional u in Asia. The thin lines are 719 

annual values; and the thick lines are 9-year-window moving averages. The black lines are wind 720 

speed; and each of the colored lines are TNA, NAO, and PDO, respectively.  721 

Figure 4. Implications of the recent reversal in global terrestrial stilling for wind energy 722 

industry. (a) Frequency distribution of global mean hourly u in 2010 and 2017, and the year 723 

2024 assuming the same increasing rate. (b) Time series of the overall capacity factor for wind 724 

generation in the U.S. (black line) and the cube of the regional-average u (u
3
; blue line) from 725 

2008 to 2017. The inset scatter plot shows the significant relationship between the overall 726 

capacity factor and the regional u
3
 (R = 0.86, P < 0.01). The inset black numbers show the trend 727 

in the overall capacity factor for wind generation, and the inset red numbers show the u-induced 728 

increase of capacity factor in the U.S.. (c) Mean annual u observed at a weather station near an 729 

installed turbine at Deaf Smith County in the U.S. (<1 km;location shown in the inset). The 730 

turbine was installed in 2014. The background colors separate different periods: P0, the 1980s 731 



level when u is relative strong (1978-1995); P1, the evaluation years before the installation of the 732 

turbine (2009-2013); P2, the operation years when the turbine was generating power (2014-733 

2017). (d) Mean annual wind power production at Deaf Smith County from different wind 734 

turbines during the three periods of reference (grey: General Electric GE 1.85 – 87; green: 735 

General Electric GE 2.5 – 120 turbine; blue: the theoretical maximum ratio of power that can be 736 

extracted by a wind turbine given diameter of 120 m and hub height of 120 m). Error bars show 737 

the interannual variability within the periods.  738 

 739 







(a) Negative phase (b) Positive phase

(c) TNA (d) NAO (e) PDO

(f) North America (g) Europe (h) Asia




	页 1
	Article File
	Figure 1
	Figure 2
	Figure 3
	Figure 4

