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Abstract: Due to the nonlinear modeling capabilities, deep learning prediction networks have become
widely used for smart agriculture. Because the sensing data has noise and complex nonlinearity,
it is still an open topic to improve its performance. This paper proposes a Reversible Automatic
Selection Normalization (RASN) network, integrating the normalization and renormalization layer
to evaluate and select the normalization module of the prediction model. The prediction accuracy
has been improved effectively by scaling and translating the input with learnable parameters. The
application results of the prediction show that the model has good prediction ability and adaptability
for the greenhouse in the smart agriculture system.

Keywords: normalization; time series prediction; reversible normalization; deep learning; automatic
normalization; smart agriculture system

1. Introduction

The smart agricultural system combines mobile Internet, cloud computing, and Inter-
net of Things (IoT) technologies. Thanks to various sensor nodes and wireless communica-
tion networks such as environmental temperature and humidity, soil moisture, CO2, and
images, massive time series can be obtained [1,2], shown in Figure 1. Based on the sensing
time series data, prediction and analytics have been used in agronomy for precision agricul-
ture tools and as parts of decision support systems for farm management [3–5]. Accurate
and reliable prediction can provide information for production planning and control.

Currently, time series prediction methods can be broadly classified into three cate-
gories: traditional statistical models, machine learning, and deep learning methods [6,7].
Traditional statistical models are highly interpretable, but their modeling requires high a
priori knowledge. It is difficult to determine the model’s predefined parameters, and the
applicability and flexibility of model prediction are limited. The time series models are
based on statistical data, and the model parameters can be estimated through identification
methods [8–17], such as the hierarchical algorithms [18–22]. Machine learning methods,
such as shallow neural networks, do not require a priori physical knowledge or assump-
tions and can handle data with nonlinear characteristics. Still, their simple structures suffer
from slow learning speed and overfitting. Deep learning methods are currently the most
widely used methods for time series prediction, which have a strong fitting capability, are
big data-driven, and yield more advanced results than previous methods [23–25].

However, the current deep learning prediction methods also face difficulties in the
practical smart agriculture system because the data collected by sensors have noise and
outliers, which affect the fitting of the model, even leading to overfitting or underfitting of
the model [26,27]. Further, the input data for time series prediction usually have different
magnitudes, i.e., the large differences between the values, which will cause a slow model
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training speed and a large model training error. Therefore, it is necessary to use the
preprocessing stage before training the deep learning networks.
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Figure 1. Schematic diagram of data collection environment. (a–d) show the sensors used to collect 
data on temperature, humidity, light, CO2, and light intensity at the top, ground, front, and back of 
the greenhouse, respectively; (e) shows a panoramic view of the greenhouse. 

As one of the preprocessing techniques to remove the magnitudes difference, nor-
malization methods have been widely used for neural networks. The classical normaliza-
tion methods include Min-Max normalization [28], z-score normalization [29], etc. The 
purpose of normalization is to make the preprocessed data limited to a certain range (e.g., 
[0, 1] or [–1, 1]) to eliminate the adverse effects caused by data magnitudes and outliers. 
Normalizing deep learning can improve the model convergence speed [30] and accuracy 
[31]. Zou et al. [32] compared four methods, including Min-Max, z-score, logarithmic, and 
standard normalization, proving that different normalization in the preprocessing stage 
has a large impact on the prediction results; therefore, data normalization methods should 
be chosen carefully. 

To avoid the drawbacks of a single normalization method, Dalwinder Singh et al. 
[33] proposed the feature-wise normalization method, in which each input data is normal-
ized independently by using different methods, and a normalization unit is developed to 
combine the multiple methods so that the data can be better normalized. Additionally, 
Sukirty Jain et al. [34] used normalization selection techniques. In the above study, the 
normalization is in the data preprocessing stage and was not a component of the deep 
learning network. Moreover, the normalized data is fixed and cannot be adjusted through 
learning. 

The researchers believed that if the normalization method is set as a layer of the deep 
neural network, the normalization will be learned and more adaptive to the characteristics 
of the input data. Sergey Ioffe et al. [35] added the batch normalization layer to the deep 
network, which uses the z-score method to learn how to perform normalization on each 
layer. Passalis et al. [36] designed an adaptive input normalization layer that was trained 
using an end-to-end backpropagation approach and learned how to perform normaliza-
tion, with a significant performance improvement compared with the fixed normalization. 
Tomar et al. [37] used a deep convolutional generator network, which can achieve cross-
modal image transformation results by intermediately activated self-attention space nor-
malization. Park et al. [38] designed a spatially adaptive normalization layer to implement 

Figure 1. Schematic diagram of data collection environment. (a–d) show the sensors used to collect
data on temperature, humidity, light, CO2, and light intensity at the top, ground, front, and back of
the greenhouse, respectively; (e) shows a panoramic view of the greenhouse.

As one of the preprocessing techniques to remove the magnitudes difference, normal-
ization methods have been widely used for neural networks. The classical normalization
methods include Min-Max normalization [28], z-score normalization [29], etc. The purpose
of normalization is to make the preprocessed data limited to a certain range (e.g., [0, 1]
or [–1, 1]) to eliminate the adverse effects caused by data magnitudes and outliers. Nor-
malizing deep learning can improve the model convergence speed [30] and accuracy [31].
Zou et al. [32] compared four methods, including Min-Max, z-score, logarithmic, and stan-
dard normalization, proving that different normalization in the preprocessing stage has a
large impact on the prediction results; therefore, data normalization methods should be
chosen carefully.

To avoid the drawbacks of a single normalization method, Dalwinder Singh et al. [33]
proposed the feature-wise normalization method, in which each input data is normalized in-
dependently by using different methods, and a normalization unit is developed to combine
the multiple methods so that the data can be better normalized. Additionally, Sukirty Jain
et al. [34] used normalization selection techniques. In the above study, the normalization is
in the data preprocessing stage and was not a component of the deep learning network.
Moreover, the normalized data is fixed and cannot be adjusted through learning.

The researchers believed that if the normalization method is set as a layer of the deep
neural network, the normalization will be learned and more adaptive to the characteristics
of the input data. Sergey Ioffe et al. [35] added the batch normalization layer to the
deep network, which uses the z-score method to learn how to perform normalization
on each layer. Passalis et al. [36] designed an adaptive input normalization layer that
was trained using an end-to-end backpropagation approach and learned how to perform
normalization, with a significant performance improvement compared with the fixed
normalization. Tomar et al. [37] used a deep convolutional generator network, which
can achieve cross-modal image transformation results by intermediately activated self-
attention space normalization. Park et al. [38] designed a spatially adaptive normalization
layer to implement synthetic images based on the semantic layout of a given input. The
experimental results show that the introduction of the normalization layer is effective. Still,
the network mentioned above [35–38] only applies an image-based normalization method,
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and the network cannot be used for prediction problems in smart agricultural systems
directly [39,40].

In order to improve the adaptability to the input data characteristics, the researchers
designed switchable normalization layers (SN). Luo et al. [41] combined three normalization
methods, batch, channel, and layer normalization, to calculate the mean and variance of the
input data. The performance of the SN layer was verified on benchmark datasets such as
ImageNet, COCO, CityScapes, ADE20K, Kinetics, etc. Shao et al. [42] designed the sparse
SN to reduce the computational redundancy. Yang et al. [43] applied an SN block in the
DeepLabV3 segmentation model to mitigate feature divergence in RGB and NIR images.
From the above research results, we can see that the SN method can adapt the deep network
to complex data features and improve the modeling ability of the network. However, these
networks are all applied to image classification [44]. Unlike image recognition and general
classification tasks, the time series prediction task in smart agriculture applications is a
regression modeling problem. The output is not a classification probability but requires
inverse normalization. Inverse normalization requires mean and variance in normalization,
which limits the switching and fusion operations of the normalization layer.

Therefore, this paper proposes a Reversible Automatic Selection Normalization (RASN)
prediction network for the smart agriculture system with the following innovation.

(1) Design adaptive and inverse normalization layers based on four normalization
methods and backpropagation principles. Compared with traditional techniques, it can im-
prove the adaptive ability of normalization methods and retain the data expression ability;

(2) Design the automatic selection module of normalization methods, comprehensively
compare the prediction effects of four normalization methods, and output the most suitable
normalization method and prediction results.

The other sections of this paper are organized as follows. Section 2 introduces the
model framework designed in this paper and explains the operation of the model. Section 3
uses the method proposed in this paper to predict temperature, humidity, CO2, light inten-
sity, etc., for the smart agricultural system in Weifang, Shandong, China. The experimental
results show that the proposed method can improve the accuracy of environmental infor-
mation prediction of smart agricultural systems, and finally, Section 4 draws conclusions.

2. Materials and Methods
2.1. Networks Structure

This paper uses four normalization calculation methods, including Min-Max, interval,
decimal calibration, and z-score normalization. All four normalization methods have their
advantages and disadvantages. They can achieve different normalization purposes while
maintaining the correlation between the input and output data. The four normalization
methods can lead to different changes in data and the loss of some hidden information,
which may lead to deviations in the model fitting to the normalized data.

The comparison of the data obtained by the four normalization methods with the
source data is shown in Figure 2. Min-Max normalization completely normalizes the data
to the range of (0–1), but it loses the negative information of the data. In contrast, interval
and decimal calibration normalize the data between (−0.8–0.8) and (−0.1–0.1), preserving
the negative number information of the source data. The z-score method maintains the
0-mean case of the values, but the values are in the range of (−2–2), which is not friendly
for the fitting process of the normalized neural network.

The analysis of the effect of different normalizations using the correlation analysis
method [45,46] shows that the data processed by the four methods have a different correla-
tion between the input data and the output data of the networks.
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the changes in correlation after applying different normalization methods. As shown in 
Table 1, the correlation between X and Y is 0.660778. Use four normalization methods, 
including Min-Max, Interval, Decimal calibration, and z-score, to normalize X. The ob-
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respectively, and z-score has little effect (the correlation is 0.660724, almost the same as 
the correlation between X and Y 0.660778). 

 
Figure 3. Schematic diagram of correlation analysis method. 

In contrast, the Decimal calibration method reduces the correlation to 0.644289. The 
highly correlated input and output data can make the modeling performance of the pre-
diction network better, and more accurate prediction performance can be obtained. There-
fore, in a smart agricultural system, when we use X as input data and Y as output data to 

Figure 2. Comparison of the effects of four normalization methods; (a) the input data; (b) the effect
after using Min-Max normalization, it normalizes the data to the range of (0–1); (c) the effect after
using interval normalization, it normalizes the data to the range of (−0.8–0.8); (d) the effect after
decimal calibration normalization, it normalizes the data to the range of (−0.1–0.1), and (e) the effect
after z-score normalization, it normalizes the data to the range of (−2–2).

The schematic diagram of the correlation analysis method is shown in Figure 3. For ex-
ample, assume that we want to predict indoor temperature (Y) by outdoor temperature (X),
so for the prediction networks, X is input data, and Y is output data. Let us examine the
changes in correlation after applying different normalization methods. As shown in Table 1,
the correlation between X and Y is 0.660778. Use four normalization methods, including
Min-Max, Interval, Decimal calibration, and z-score, to normalize X. The obtained results
are represented by XM, XI, XD, and Xz, respectively. Then, let us consider the correlation
between XM, XI, XD, Xz, and Y, respectively. It can be seen that Min-Max and Interval
normalization enhance the correlation from 0.660778 to 0.670713 and 0.670713, respectively,
and z-score has little effect (the correlation is 0.660724, almost the same as the correlation
between X and Y 0.660778).
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In contrast, the Decimal calibration method reduces the correlation to 0.644289. The
highly correlated input and output data can make the modeling performance of the predic-
tion network better, and more accurate prediction performance can be obtained. Therefore,
in a smart agricultural system, when we use X as input data and Y as output data to train
the prediction network, we need to choose the Min-Max normalization or Interval normal-
ization, and Decimal calibration should be avoided. So, we can find that it is necessary to
select the normalization method and find the most suitable method to make the normalized
model predict better.

Table 1. Correlation by four normalization methods.

Methods Between X and Y
Between XM and Y

(Min-Max
Normalization)

Between XI and Y
(Interval

Normalization)

Between XD and Y
(Decimal

Calibration)

Between XZ and Y
(z-Score

Normalization)

Correlation 0.660778 0.670713 0.670713 0.644289 0.660724

The proposed model in this paper contains four main parts. The first part is the
adaptive normalization layer (The details are mentioned in Section 2.2). The input data
are divided into minibatches to enter the model. Then, the fundamental values such
as mean and variance necessary for the normalization are calculated and updated. The
updating methods are all exponentially weighted averages, which can memorize the past
data and gradually fit the global distribution. Then, the normalization layer contains four
normalization calculation methods: Min-Max, Interval, Decimal calibration, and z-score.
Min-Max normalizes the data to between (0–1), while z-score treats the data to a state
with a mean of 0 and a variance of 1. The Decimal calibration normalization method can
quickly scale the data and better affect negative numbers without removing the positive and
negative data. The interval normalization is similar to the Decimal calibration, which can
retain the negative characteristics of the data and normalize the data to the intense action
interval of the activation function. The results of the four normalization methods need
to be calculated with the parameters of the normalization layer to output the normalized
results. The parameters, the scaling, and translation factors, can realize the scaling and
translation of the normalized values. The values can be trained by backpropagation so that
the adaptive normalization can be realized.

The second part is a deep learning model based on Gated Recurrent Unit (GRU),
a variant of recurrent neural network (RNN) with a simple structure and the ability to
retain long-term information of time series, which has proven its effectiveness in many
applications [47,48]. The model contains three GRU layers and two Dropout layers [49],
and the predicted values are output by a fully connected layer.

The third part is the adaptive renormalization layer (The details are mentioned in
Section 2.3). It also corresponds to each of the four calculations in the normalization layer,
using the inverse operation corresponding to the normalization. In order to perform the
inverse operation, we use the renormalization layer to obtain the min and max of the batch
data for the normalization calculation and obtain the renormalization result accordingly.
This layer also sets trainable parameters similar to the normalization layer, used to scale
and translate the renormalization results. The renormalization can also be trained by
backpropagation so that adaptive renormalization can be achieved.

The fourth part is the normalization method selection module (details in Section 2.4).
Since different normalization methods have different effects on data processing, we need
to select the appropriate normalization method according to the model prediction perfor-
mance. This module compares the root mean square error (RMSE) and mean absolute error
(MAE) of the prediction results given by the four normalization methods and finally selects
the normalization method with the slightest error and outputs the prediction results of that
method. The model structure diagram is shown in Figure 4.
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Figure 4. The RASN structure. The networks take over the input of the minibatch and later unify
the data into a two-dimensional format; min, max, µ, σ2 and d represent the calculated minimum,
maximum, mean, variance, and fractional displacement values of the batch. These key computational
parameters are shared between the normalization and denormalization layers (indicated by the blue
dashed line); hi and xi represent the output of the normalization and renormalization layers, both
processed by the scaling and translation factors. The activation functions used in the deep learning
(DL) networks model are all tanh activation functions to reduce the influence on the model results.

2.2. Adaptive Normalization Layer

This layer includes the four normalization calculation methods in Equations (1)–(4).

x̂ =
x−min

max−min
(1)

x̂ = a +
(b− a)(x−min)

max−min
(2)

x̂ =
x

10ˆ
⌈

log10

∣∣x∣∣max

⌉ (3)

x̂ =
x−mean√

var + 1× 10−5
(4)

where x represents the original data, x̂ represents the normalized data, min, max, mean, var
represents the maximum, minimum, mean, and variance of the original data, respectively.
a, b represent the intervals on both sides that need to be normalized.

The data can be directly input into the deep learning networks. After processing by
the adaptive normalization layer, the normalized output results of the four methods can be
obtained, which is convenient for the subsequent comparison of normalization effects.

The input data of time series for prediction are generally two-dimensional or three-
dimensional. In order to facilitate the normalization calculation, the normalization layer
first unifies the format of the input data into two dimensions. Subsequently, the input data’s
key values (minimum min, maximum max, mean µ, variance σ2, and decimal shift d) are
calculated and saved. They are necessary to complete the normalization and renormaliza-
tion calculations, so they must be shared between the normalization and renormalization
layers. Since the normalization layer designed in this paper is combined inside the deep
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learning model and takes over the data of the batch, in the training phase of the model, the
key values of the batch are calculated each time, and the size of the values will change with
the batch. The model parameters have been fixed in the testing phase, and the fundamen-
tal values such as mean and variance are matched. The exponentially weighted average
method [50] is used to record the mean and variance of each batch so that the values used
in the testing phase are close to the distribution of the total sample, and the calculation
formulae are shown in Equations (5)–(9).

running_meant = m ∗ running_meant−1 + (1−m)µt (5)

running_vart = m ∗ running_vart−1 + (1−m)σ2
t (6)

running_maxt = m ∗ running_maxt−1 + (1−m) ∗maxt (7)

running_mint = m ∗ running_mint−1 + (1−m) ∗mint (8)

running_dt = m ∗ running_dt−1 + (1−m) ∗ dt (9)

where running_meant and running_meant−1 represent updating the value of mean µ at
moments t and t− 1, running_vart, running_vart−1 represent updating the moment values
of variance σ2, running_maxt, running_maxt−1 represent updating the moment values
of max, running_mint, running_mint−1 represent updating the moment values of min,
running_dt, running_dt−1 represent updating the moment values of d. m represents the
weight of retaining information from previous moments, set to 0.6.

In addition, to make the normalization layer better adaptable to complex data, we
added learnable parameters and scaling and translation factors, respectively. The two
parameters can be back-propagated to be updated in an end-to-end training manner during
training. The fixed normalized output can be scaled and panned at the output of the
normalization layer to make the data more expressive and improve the model fit to the
input data. The expression at the output of the normalization layer can be expressed as:

Yi = αhi + β (10)

where Yi denotes the output of the batch’s normalization layer, denotes the batch’s value
after the normalization calculation, α is the scaling factor, and β is the translation factor.

Finally, to make the normalization layer’s output acceptable to the GRU-based deep
learning network, the final output needs to be converted to the data format. If the source
data is three-dimensional, then it only needs to be reduced to the source data format.
Furthermore, if the input data is two-dimensional, then the output needs to be extended to
three-dimensional. In this way, the output values of the normalization layer can be directly
fed into the deep learning model for training. Algorithm 1 shows the algorithm for the
normalization layer.
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Algorithm 1 Normalization Layer Algorithm Framework

Input: minibatch : R= {x1, . . . , xm}, Interval : a, b, Forgetting weight: m,
Selection parameter: mode; Learning parameters : α, β

Output:
{

yi = RASNLayerα,β(xi)}

min← xmin, max ← xmax, µR ← 1
m

m
∑

i=1
xi, σ2

R ←
1
m

m
∑

i=1
(xi − µR)

2, d = 10̂
⌈

log10
∣∣x∣∣max

⌉
running_maxt ← m ∗ running_maxt−1 + (1−m) ∗max // Update max parameters
running_mint ← m ∗ running_mint−1 + (1−m) ∗min // Update min parameters
running_dt ← m ∗ running_dt−1 + (1−m) ∗ d // Update d parameters
if mode = ‘minmax’ then //Min-Max normalization

outputi ←
xi−running_min

running_max−running_min
if mode = ‘Interval’ then //Interval normalization

outputi ← a + (b−a)(xi−running_min)
running_max−running_min

if mode = ‘calibrate’ then // Decimal calibration normalization
outputi ← xi

running_d
if mode = ‘z-score’ then //z-score normalization

if flag = ‘train’ then
outputi ←

xi−µR√
σ2

R+1×10−5

running_meant ← m ∗ running_meant−1 + (1−m)µR
running_vart ← m ∗ running_vart−1 + (1−m)σ2

R // Update var parameters
else

outputi ←
xi−running_meant√

running_vart+1×10−5

yi ← outputi ∗ α + β ≡ RASNLayerα,β(xi)

2.3. Adaptive Inverse Normalization Layer

The renormalization layer is also integrated into the model. It contains four renor-
malization methods: Min-Max, Interval, decimal calibration, and z-score renormalization,
which correspond to the four methods in the normalization layer and can be used to
renormalize the output values of each normalization operation. The corresponding renor-
malization formulas are:

x = x̂ ∗ (max−min) + min (11)

x =
(max−min)(x̂− a)

b− a
+ min (12)

x = x̂ ∗ 10ˆd log10|x|maxe (13)

x = x̂ ∗
√

var + 1× 10−5 + mean (14)

where x represents the data after renormalization, x̂ represents the data without renor-
malization, and min, max, mean, var represents the four parameters of maximum value,
minimum value, mean value, and variance in the original data. Then, represents the
Interval to which both sides need to be normalized.

To perform the inverse operation, we must know the key values for the normalization
calculation, including min, max, µ, σ2, and the decimal shift value d. Therefore, the renormal-
ization layer first obtains these five parameters as known quantities, and when performing
the renormalization operation, the corresponding renormalization calculation method is
invoked using the values entered into the layer, and the parameters in the formula use the
key values obtained during the normalization calculation.

Furthermore, we add learnable parameters λ and ν to the renormalization layer as
scaling and translation factors, respectively. At the output of the inverse normalization
layer, the two parameters can scale and translate the fixed renormalization output to
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improve the adaptability of the model to nonstationary data. Thus, the expression at the
output of the renormalization layer can be expressed as:

yi = λxi + ν (15)

where yi denotes the actual value of the output of the inverse normalization layer of the
batch, xi denotes the value of the batch after the renormalization calculation, λ is the scaling
factor, ν is the translation factor.

After adding the renormalization layer, the obtained result needs to be transformed
into the desired data format by the scaling factor and translation factor to perform the
renormalization operation, so the data format of both λ and ν is needed to be carefully
considered. Algorithm 2 shows the algorithm for the renormalization layer.

Algorithm 2 Renormalization Layer Algorithm Framework

Input: DL Model′s output : R̂= {x̂1, . . . , x̂m}, Interval : a, b,
Selection parameter : mode, Learning parameters : λ, ν

Output:
{

ŷi = RASNLayer2λ,ν(x̂i)}
if mode = ‘minmax’ then //Min-Max renormalization

outputi ← x̂i ∗ (running_max− running_min) + running_min
if mode = ‘Interval’ then // Interval renormalization

outputi ←
(running_max−running_min)(x̂i−a)

b−a + running_min
if mode = ‘calibrate’ then // Decimal calibration renormalization

outputi ← x̂ ∗ running_d
if mode = ‘z-score’ then // z-score renormalization

if flag = ‘train’ then
outputi ← x̂ ∗

√
σR2 + 1× 10−5 + µR

else
outputi ← x̂ ∗

√
running_var + 1× 10−5 + running_mean

ŷi ← outputi ∗ λ + ν ≡ RASNLayer2λ,ν(x̂i)

2.4. Normalization Method Selection Module

Different normalization methods have very different effects on data processing and
must be selected reasonably for the characteristics of the data. In this paper, after the
adaptive normalization layer and the inverse normalization layer, a normalization method
selection module is added to enable the selection of normalization methods.

This module is mainly implemented by comparing the prediction performance of
the four normalization methods. Since the adaptive normalization layer and the inverse
normalization layer designed in this paper contain four normalization methods for dif-
ferent types of data, during the training and testing of the model, the four normalization
methods process the source data separately and input the results into the GRU-based deep
learning model to finally obtain the prediction results of the four methods. At this time, the
normalization method selection module obtains the prediction results of the four methods,
evaluates the prediction performance using root mean square error (RMSE) and mean
absolute error (MAE), and judges the optimal normalization method by comparing the
values of evaluation indexes. The process within the module is:

RMSEmode =

√
1
m

m
∑

i=1
(yi − ŷi)

2

MAEmode = 1
m

m
∑

i=1
|(yi − ŷi)|

mode← Min(RMSEmode, MAEmode)

(16)

where mode is the normalization method, m is the total number of values, ŷ represents
the true value of the data, y is the prediction result given by the model, RMSEmode is
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the RMSE value of each normalization method, and MAEmode is the MAE value of each
normalization method. The module finally outputs the best normalization method and its
prediction value.

3. Experiments and Analysis
3.1. Experimental Dataset

The indoor data from the smart greenhouses in Weifang, Shandong, China, were
used in this experiment and collected by each environmental monitoring station and IoT
sensors developed by the Beijing Agricultural Intelligent Equipment Technology Research
Center itself [51,52]. Each greenhouse is equipped with an intelligent management system
to collect, analyze, and process massive environmental information inside and outside
the entire greenhouse. The measurement of various parameters of the greenhouse has
been recorded and transmitted to the cloud platform via serial port and stored in the
database of the management system. Then, these data are automatically transmitted to
the backend cloud server through CAN/4G/WiFi and other forms of communication at
regular intervals and stored in the database of the management system through the serial
port at any time [53].

Accurate prediction of temperature, humidity, CO2, and light intensity can plan
the growth state of indoor crops and intelligently control them to improve greenhouse
production [54]. In this experiment, temperature, humidity, CO2, and light intensity data
inside the greenhouse from 1 August 2020 to 20 January 2021 is used. The selected data is
shown in Figure 5.
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3.2. Evaluation Indexes

In order to evaluate the reliability of the predicted values given by the model and
quantify the performance of the model, this paper uses five evaluation indexes: root mean
square error RMSE, mean absolute error MAE, mean square error MSE, mean absolute
percentage error MAPE, and Pearson correlation coefficient R. Among them, the smaller the
value of the four evaluation indexes RMSE, MAE, MSE, and MAPE, the more the predicted
values given by the model are. The smaller the value of RMSE, MAE, MSE, and MAPE, the
closer the prediction value given by the model is to the true value, and the larger the value
of R, the better the fitting ability of the model. The calculation Equations (17)–(21) for the
five evaluation indicators are shown below.
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RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)
2 (17)

MAE =
1
m

m

∑
i=1
|(yi − ŷi)| (18)

MSE =
1
m

m

∑
i=1

(yi − ŷi)
2 (19)

MAPE =
100%

m

m

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (20)

R =

m
∑

i=1
(yi − yi)(ŷi − ŷi)√

m
∑

i=1
(yi − yi)

2

√
m
∑

i=1
(ŷi − ŷi)

2
(21)

where m is the total number of data sets, ŷ denotes the true value of the data, y is the
prediction result given by the model, ŷ is the average of the true value, and y denotes the
average of the prediction result.

3.3. Prediction in the Greenhouse in Smart Agriculture

To validate the model performance, we compared the RASN Model with other deep
learning models such as BP, LSTM, GRU, BiLSTM, and Attention_LSTM, which all use the
traditional normalization method, i.e., normalizing the data in the preprocessing stage. The
number of network layers for BP, LSTM, GRU, and BiLSTM is set to three, the number of
neurons in each layer is 100, 48, and 24, respectively, the batch_size of the model is set to
24, the number of training iterations is 100, the optimizer is ADAM, and the learning rate
is 0.001.

There are 9276 sets of data collected in the smart agriculture house with an interval of
30 minutes, divided into 80% for training and 20% for testing. This experiment predicts the
12 hours of temperature, humidity, CO2, and light intensity, respectively.

The model prediction performance was evaluated using the evaluation metrics pro-
posed in Section 3.2, and the experiment was repeated 10 times for each model indepen-
dently. The specific performance metrics are shown in Table 2.

Table 2. Comparison of model prediction performance based on temperature data.

MODELS RMSE MAE MSE MAPE R

BP [55] 2.2326 1.6305 4.9848 1.0068 0.8358
LSTM [56] 2.3901 1.8321 5.7132 1.0049 0.8034
GRU [57] 2.4916 1.8748 5.7296 1.0034 0.7814

BiLSTM [58] 2.3745 1.8002 5.6022 0.9991 0.8124
BiGRU [59] 2.3603 1.7999 5.5714 0.9873 0.8207

Attention_LSTM [6] 2.2372 1.7033 5.3406 1.0112 0.8341
Attention_GRU [60] 2.1542 1.6613 4.6404 1.0008 0.8426

RASN (our) 1.9032 1.4609 3.4609 0.7001 0.8928

Figure 6 visualizes the differences between the evaluation indexes of the model pro-
posed in this paper and the other models. As can be seen from the Figure, the three
evaluation indexes of RMSE, MAE, and MAPE of the proposed model are lower than those
of other models, indicating that the difference between the predicted value and the true
value given by the model is smaller. At the same time, the R index of the model is larger
than that of other models, which indicates that the model proposed in this paper has a
better fit. Compared with the best-performing Attention_GRU model in this dataset, the
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RMSE of the proposed model is reduced by 11.6%, MAE is reduced by 12.1%, and R is
improved by 6%.

Agronomy 2022, 12, 591 12 of 20 
 

 

BiGRU [59] 2.3603 1.7999 5.5714 0.9873 0.8207 
Attention_LSTM [6] 2.2372 1.7033 5.3406 1.0112 0.8341 
Attention_GRU [60] 2.1542 1.6613 4.6404 1.0008 0.8426 

RASN (our) 1.9032 1.4609 3.4609 0.7001 0.8928 

Figure 6 visualizes the differences between the evaluation indexes of the model pro-
posed in this paper and the other models. As can be seen from the Figure, the three eval-
uation indexes of RMSE, MAE, and MAPE of the proposed model are lower than those of 
other models, indicating that the difference between the predicted value and the true 
value given by the model is smaller. At the same time, the R index of the model is larger 
than that of other models, which indicates that the model proposed in this paper has a 
better fit. Compared with the best-performing Attention_GRU model in this dataset, the 
RMSE of the proposed model is reduced by 11.6%, MAE is reduced by 12.1%, and R is 
improved by 6%. 

 
Figure 6. Comparison of experimental evaluation indicators for temperature prediction. 

Figure 7 shows the temperature prediction values given by the model used in the 
comparison test. From the Figure, it can be seen that the prediction results given by the 
model proposed in this paper have a good fit with the real values and can better reflect 
the trend of the real temperature data. 

0

0.5

1

1.5

2

2.5

RMSE MAE MAPE R

BP
LSTM
GRU
BiLSTM
BiGRU
LSTMAttention
GRUAttention
RASN(our)

Figure 6. Comparison of experimental evaluation indicators for temperature prediction.

Figure 7 shows the temperature prediction values given by the model used in the
comparison test. From the Figure, it can be seen that the prediction results given by the
model proposed in this paper have a good fit with the real values and can better reflect the
trend of the real temperature data.
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Table 3 shows the comparison of evaluation metrics based on humidity data. Figure 8
shows the comparison of evaluation metrics in humidity prediction. The best performing
benchmark model in the humidity prediction task is the Attention_GRU model with an
RMSE of 2.2025, while the model proposed in this paper has a 4.6% reduction in the
RMSE metric, a 12.2% reduction in the MAE metric, and a 5.9% improvement in R on
this basis. The humidity prediction curves given by each model are shown in Figure 9.
As shown in the Figure, the proposed model in this paper can give the most realistic
humidity prediction values.
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Table 3. Comparison of model prediction performance based on humidity data.

MODELS RMSE MAE MSE MAPE R

BP [55] 2.6413 2.1036 6.7658 1.9965 0.7161
LSTM [56] 2.4681 1.8895 6.2634 1.8759 0.7379
GRU [57] 2.5015 1.9033 6.3631 1.8996 0.7321

BiLSTM [58] 2.3946 1.8112 6.0986 1.8769 0.7568
BiGRU [59] 2.3711 1.8012 6.0124 1.8586 0.7621

Attention_LSTM [6] 2.2172 1.6863 5.8735 1.7121 0.7989
Attention_GRU [60] 2.2025 1.6036 5.8632 1.6876 0.8068

RASN (our) 2.1017 1.4077 5.6007 1.4553 0.8572
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Figure 9. Comparison of model predictions based on humidity data.

The model evaluation metrics based on CO2 data are shown in Table 4. From the
evaluation indexes, it can be seen that the proposed model has the lowest RMSE, MAE, and
MAPE indexes and the highest R index, compared with the other seven comparison models.
This result shows that the prediction results given by the model are more in line with
the real values compared with the other benchmark models, demonstrating the excellent
prediction ability of the model for the CO2 content data in the actual greenhouse. Figure 10
shows the comparison graph of the evaluation indicators.
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Table 4. Comparison of model prediction performance based on CO2 data.

MODELS RMSE MAE MAPE R

BP [55] 102.2564 79.2658 30.1542 0.3026
LSTM [56] 92.6584 69.2546 22.2165 0.4996
GRU [57] 89.6359 65.2597 20.6541 0.5248

BiLSTM [58] 77.6521 54.9854 15.5896 0.7316
BiGRU [59] 75.3654 53.6218 14.3584 0.7568

Attention_LSTM [6] 69.7441 49.1254 10.9651 0.8368
Attention_GRU [60] 69.7258 48.9856 10.4852 0.8436

RASN (our) 67.7661 47.0659 9.2122 0.8778
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Figure 10. Comparison of evaluation indexes of the model based on CO2 data.

Light intensity has a strong nonlinearity, and its data is highly volatile, often being
zero for 12 consecutive data and then suddenly changing to a larger value. Hence, the
prediction of light intensity is a greater test of model performance. Figure 11 shows the
evaluation index of the prediction performance based on light intensity. Table 5 compares
the evaluation indexes of the model prediction results. By comparing the evaluation
indexes of the models, it can be seen that the model proposed in this paper achieves the
best results among all the compared models. The prediction of light intensity is difficult,
and the other comparative models poorly fit the light intensity. The better model is the
Attention_GRU model. Still, the model proposed in this paper improves 15.9% in the R
index, demonstrating a better fitting ability for the strong nonlinear data.
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Table 5. Comparison of model prediction performance based on light intensity data.

MODELS RMSE MAE R

BP [55] 140.6614 120.5418 0.2114
LSTM [56] 129.4581 101.5268 0.3265
GRU [57] 128.6524 96.5924 0.3254

BiGRU [59] 112.3584 85.6521 0.5876
Attention_GRU [60] 100.7216 71.6594 0.6551

RASN (our) 91.6691 66.6154 0.7791

In order to consider the influence of more complex greenhouse external conditions and
verify the predictive ability of the model for multi-input variables, three variables of external
greenhouse temperature, external wind speed, and internal greenhouse temperature are
used as inputs to verify the performance of the model in outputting 24-step and 36-step
indoor temperature prediction. The results of the evaluation indicators are shown in Table 6.

Table 6. Prediction performance of the model with multiple input variables.

STEP RMSE MAE MSE MAPE R

36-step 2.2364 1.5242 5.0014 1.6478 0.8358
24-step 2.0289 1.4467 4.1165 0.5279 0.8673

Figure 12 shows the model’s prediction performance with different step sizes under
multivariable input. From the verification results of multiple input variables, the proposed
model can still maintain good prediction accuracy under external complex input. Still, the
long output step length will affect the prediction effect of the model. When the model
considers the long prediction output step, the prediction accuracy decreases, while the
prediction accuracy is higher in the short term.
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The model proposed in this paper can fit temperature and humidity, CO2, and light in-
tensity data in greenhouses and output more accurate future prediction values. The accurate
prediction can provide data support for greenhouse management, significantly improve the
intelligent management of greenhouses, and help the development of smart agriculture.

4. Conclusions

To solve the problems of switching normalization methods and poor adaptability to
predicting in the greenhouse for a smart agriculture system, we proposed a deep prediction
model that can achieve automatic normalization in this paper.
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The model includes an adaptive normalization layer, a GRU-based deep network
model, an adaptive inverse normalization layer, and a normalization method selection
module. The data are normalized by each of the four normalization methods in the nor-
malization layer, and the normalized data are scaled and panned by learnable parameters.
Second, the normalized data are fed into the GRU deep learning network to derive the
prediction results. Again, the four normalized prediction results are transformed into actual
data by the corresponding inverse normalization methods in the inverse normalization
layer, and the learnable parameters optimize this data. The optimized actual data is output
to the model. Finally, the normalization selection module evaluates the prediction data ob-
tained by different normalization methods to obtain the prediction result that best matches
the true value.

The model performance is validated using the data sets sensing from the practical
greenhouse and compared with other benchmark models. The experimental results show
that the proposed method can better adapt to nonstationary data and better predict green-
house meteorological data. Good prediction accuracy can play a positive role in promoting
greenhouse control and the development of smart agriculture. The proposed prediction
approaches of time series models in the paper can combine other parameter estimation
algorithms [61–68] with studying the parameter identification problems of linear and non-
linear systems with different disturbances [69–77] for building the soft sensor models and
prediction models based on the time series data. It can be applied to other fields [78–81],
such as signal processing, engineering application systems [82–93], and others.

In future work, we will further validate the portability of our proposed RASN model.
At the same time, we will explore more normalization methods to comprehensively consider
and verify the influence of various normalization methods on the model effect.
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