
INFORMATICA, 2020, Vol. 31, No. 3, 481–497 481
© 2020 Vilnius University
DOI: https://doi.org/10.15388/20-INFOR411

A Reversible Hiding Technique Using LSB
Matching for Relational Databases

Min-Shiang HWANG1,2, Ming-Ru XIE3, Chia-Chun WU4,∗
1 Department of Computer Science and Information Engineering, Asia University,

Taichung 41354, Taiwan
2 Department of Medical Research, China Medical University Hospital,

China Medical University, Taichung 404, Taiwan
3 Department of Computer Science, National Chiao Tung University, Taiwan
4 Department of Industrial Engineering and Management, National Quemoy University,

Kinmen 892, Taiwan
e-mail: mshwang@asia.edu.tw, ccwu0918@nqu.edu.tw

Received: July 2018; accepted: March 2020

Abstract. Data hiding technique is an important multimedia security technique and has been ap-
plied to many domains, for example, relational databases. The existing data hiding techniques for
relational databases cannot restore raw data after hiding. The purpose of this paper is to propose
the first reversible hiding technique for the relational database. In hiding phase, it hides confidential
messages into a relational database by the LSB (Least-Significant-Bit) matching method for rela-
tional databases. In extraction and restoration phases, it gets the confidential messages through the
LSB and LSB matching method for relational databases. Finally, the averaging method is used to
restore the raw data. According to the experiments, our proposed technique meets data hiding re-
quirements. It not only enables to recover the raw data, but also maintains a high hiding capacity.
The complexity of our algorithms shows their efficiencies.
Key words: reversible data hiding, database security, right protection, ownership protection.

1. Introduction

The data hiding technique is a kind of multimedia security technique. It hides secret in-
formation into another unimportant original data, and the original data is still meaningful.
Because the original data is not gibberish, the technique could defraud the adversary and
send the secret information. Data hiding technology can be grouped into non-reversible
and reversible data hiding schemes (Chen et al., 2020; Chen and Guo, 2020; Chen Y. et
al., 2020). The image of the former will be completely damaged and cannot be restored
after hiding the secret information. However, the image of the latter, after retrieving the
secret information, can still be recovered to the original image. The data hiding technique
has been applied to many domains, such as videos, images for medicine (Lu et al., 2015a),

*Corresponding author.

https://doi.org/10.15388/20-INFOR411

482 M.S. Hwang et al.

digital sounds, etc. An interesting application of this technique is applied in the relational
database.

IBM’s first relational database product for business purposes was released in 1981,
and the relational database has become an important tool for enterprises and the govern-
ment agencies to save data today. Enterprises use it to save employee data, customer data,
product data, etc. The government uses it to save financial data, tax data, judicature data,
etc. Original relational databases only save data; afterwards, Data Warehouse and Data
Mining techniques make us analyse the relational database and find out the relationships
among data, and then provide analytical results to enterprises for decision-making (Ke
and Wang, 2006). Therefore, data has become an important resource for enterprises. Be-
cause of the importance of data, Taiwan has implemented Personal Data Protection Act
in 2012; and thus the question is how to protect data from being stolen by someone else.
We discuss security issues in the relational databases in the next section.

The data saved in relational databases is digital data, and it is the same as videos and
images, which can all be copied easily. After the Internet has appeared, digital data can be
delivered easily to others, resulting that the problem of data theft is becoming more and
more serious. Relational databases have an authority control mechanism; only legitimate
users can access the data in the database, and thereby it can prevent data from being stolen
by unauthorized users. However, if legitimate users steal data and sell it to B, and then B
asserts the data belongs to him, how can we prove who owns the data? The ownership
information in the relational database can prove to whom these data belong.

Furthermore, let us consider another case; a data owner needs data mining service, so
he transmits the relational database to a data mining company (Kamran et al., 2013). When
he transmits, the attacker may steal and tamper the relational database, so the recipient will
receive the tampered relational database. When it happens, how can we prove the relational
database is original, and the data is not tampered? Tamper proofing can help us.

A kind of technique, called watermarking relational databases, can achieve above-
mentioned purposes. Its concept comes from the data hiding technique. Its purpose is to
hide invisible digital watermark into relational databases for ownership protection and
tamper proofing (Agrawal and Kiernan, 2002; Iftikhar et al., 2015; Ke and Wang, 2006).

This paper is organized as follows: Section 2 will briefly describe the development
history of watermark relational databases. We carefully explain our proposed method in
Section 3. The experimental results are given in Section 4. Finally, the conclusion sum-
marizes the results obtained and proposes future work for this article.

2. Related Works

Using a digital watermark to prove copyright of digital media has been a well-known
technique. The first ones who proposed a new idea of using a digital watermark to secure a
database is Khanna and Zane in 2000 (Khanna and Zane, 2000), and then Rakesh Agrawal
and Jerry Kiernan proposed the first scheme for Watermarking relational databases in
2002 (Agrawal and Kiernan, 2002). Their scheme uses a hash function to pick out the

A Reversible Hiding Technique Using LSB Matching for Relational Databases 483

LSB (Least-Significant-Bit) of some tuples they want to mark, and then they embed the
watermark by setting the selected LSB. If the hash function value of the concatenation of
the private key and the primary key is even, the selected LSB will be set to 0; otherwise
the selected LSB will be set to 1.

According to the scientific studies of Bhesaniya et al. (2014) Dwivedi et al. (2014)
Mohanpurkar and Joshi (2011), the Watermarking relational databases can include two
kinds of databases: data distortion watermarking relational databases and data distortion-
free watermarking relational databases. Agrawal’s and Kiernan’s scheme is improved by
embedding fingerprints instead of meaningless bits in Li et al. (2003). Mehta and Rao
proposed to embed the digital watermark in two attributes, namely the LSB of the digi-
tal attribute and the SS of the date attribute (Mehta and Rao, 2011). Hanyurwimfura et
al. proposed a digital watermark could be expressed by the horizontal shifting position
of a non-numeric attribute of selected tuples (Hanyurwimfura et al., 2010). Melkundi et
al. proposed embedding a digital watermark into a textual attribute and a numeric at-
tribute, and finally used Levenshtein Distance to verify the extracted watermark and the
original watermark (Melkundi and Chandankhede, 2015). In Kamran et al. (2013), a high
robustness and distortion minimization scheme for data distortion watermarking relational
databases was proposed. This scheme first divides the data set into several data partitions,
and then uses thresholds and hash functions to select tuples for embedding the watermark.
If the embedded watermark bit is 1, the selected tuple value is added to the percentage
value; if the embedded watermark bit is 0, the selected tuple value is subtracted from
the percentage value. Experimental results show that this scheme can not only resist six
attacks, but also minimize data distortion.

In the data distortion watermarking relational database, Zhang et al. proposed a subdo-
main in 2006, called the reversible watermarking relational database (Zhang et al., 2006).
They use histogram extension techniques to implement a reversible watermarking scheme.
The idea of reversible watermarking relational databases was derived from the image
because the data in the database will be distorted after embedding a digital watermark.
However, for some data, for example, categorical data, it cannot tolerate any distortion;
otherwise, it will become useless (Li et al., 2004); therefore, we need this technique to re-
store raw data in the database. Gupta and Pieprzyk proposed a reversible blind watermark-
ing scheme that can resist secondary watermarking attacks (Gupta and Pieprzyk, 2009).
This scheme will analyse the features and select the appropriate watermark features, then
use the genetic algorithm (GA) to generate the watermark. Therefore, the watermark will
evolve from a random binary string to the best watermark information string, and obtain
the best fitness value (β). The best fitness value is used to embed the watermark bit and en-
sure that the data quality is not affected. Experimental results show that RRW can retrieve
the original data and watermark after malicious attacks.

The next domain we want to introduce is data distortion-free watermarking relational
databases. Its main concept is to use the function of the database to generate a watermark,
and the watermark will not be directly embedded in the database. Therefore, this technol-
ogy can maintain the integrity of the original data without causing data distortion. Li et
al. proposed the first scheme in 2004 (Li et al., 2004). Their scheme generates a fragile

484 M.S. Hwang et al.

Table 1
The overview of D.

Tuple index P A0 Ai Ai2 An−1

j tuplej (Ai) tuplej (Ai2)

j + 1 tuplej+1(Ai) tuplej+1(Ai2)

watermark based on the group’s data order (ascending order means watermark bit = 0;
descending order means watermark bit = 1). The fragile watermark is used to detect any
modification in a relational database. In 2014, Camara et al. proposed a fragile watermark-
ing technology that generates watermarks based on data partitions in a relational database
(Camara et al., 2014). Encrypt the watermark and record it in a certificate authority. A cer-
tification authority (CA) is a trusted party that can detect suspicious databases. When we
want to validate the database, we first generate a watermark from the data partition and
then compare the watermark with the original watermark retrieved from the CA.

Our proposed scheme is inspired from Lu et al.’s data hiding technology (Lu et al.,
2015a, 2015b). They are based on the LSB matching method to devise a dual imaging-
based reversible hiding technique. First, it copies the original image into the same images.
By LSB matching method, it embeds confidential messages into two image pixel values,
respectively. Lastly, through the LSB and LSB matching methods, it will get the confiden-
tial messages. Through the averaging method, it will restore the original image.

3. The Proposed Reversible Data Hiding Scheme for Relational Databases

3.1. Basic Concept

In this section, we propose a new reversible data hiding technique using LSB matching
method for relational databases. The main difference between the proposed method and
Lu et al.’s method is that a confidential message is hidden in the digital attributes of a
relational database, not a pixel in an image. After hiding confidential messages (for ex-
ample, the digital watermark of the database owner) into a relational database, the data
in the database will be distorted, but the proposed method can restore the original data.
Because the research is not robust enough to resist malicious attacks, it is a reversible data
hiding technique for relational databases. Moreover, Section 4 also proves the proposed
technique is a linear time algorithm (the running time linearly increases as the size of a
data set); therefore, our technique is suitable for relational databases with a large amount
of data.

Database relation D is the original data set with primary key attributes P and n at-
tributes, whose scheme is (P,A0, . . . , An−1). Table 1 gives an overview of D. Therefore,
this method can hide all numeric attributes in D. However, to simplify the description,
only one numerical attribute Ai is selected to explain the method.

Figure 1 is the LSB matching method of relational database inspired by Mielikainen
(2006). This steganography is designed to hide binary messages into tuple values in a
relational database.

A Reversible Hiding Technique Using LSB Matching for Relational Databases 485

Fig. 1. LSB matching method for relational databases.

Assume that the encrypted confidential message (CM) is a binary number, s1 is the
first bit of the CM, s2 is the second bit of the CM, s3 is the third bit of the CM, and
s4 is the fourth bit of the CM; i is the attribute index; j is the tuple index. First, cal-
culate the LSB of the tuplej (Ai). If the LSB of the tuplej (Ai) is equal to s1, go to
the second layer F(tuplej (Ai), tuplej+1(Ai)) = s2. Otherwise, go to the second layer
F(tuplej (Ai)−1, tuplej+1(Ai)) = s2. In the second layer, F(·) is used to check whether
the value of F(·) is the same as s2. In layer 3, pretend tuple values are generated. Here,
tuplej (Ai) and tuplej+1(Ai) are the original tuple values; tuplej ‘(Ai) and tuplej+1‘(Ai)

pretend to be tuple values after hiding s1 and s2. The situations are explained as follows:

Situation A: When LSB(tuplej (Ai)) = s1 and F(·) = s2, tuplej (Ai) and tuplej+1(Ai)

are unchanged.
Situation B: When LSB(tuplej (Ai)) = s1 and F(·) �= s2, tuplej (Ai) is unchanged and

tuple′
j+1(Ai) = tuplej+1(Ai) + 1.

Situation C: When LSB(tuplej (Ai)) �= s1 and F(·) = s2, tuple′
j (Ai) = tuplej (Ai) − 1

and tuple′
j+1(Ai) is unchanged.

Situation D: When LSB(tuplej (Ai)) �= s1 and F(·) �= s2, tuple′
j (Ai) = tuplej (Ai) + 1

and tuple′
j+1(Ai) is unchanged.

Through the LSB matching method of the relational database, tuplej ‘(Ai) and
tuplej+1‘(Ai) are embedded in the secret messages s1 and s2, and tuplej ‘(Ai2) and
tuplej+1‘(Ai2) are embedded in the secret messages s3 and s4. Table 2 shows when the
secret messages are hidden in two pairs of tuple values at the same time through the LSB
matching method of a relational database, and under what circumstances can the two pairs
of tuple values be restored to the original tuple values. 0 means that the tuple value does
not need to be modified; +1 means that the tuple value is increased by 1; −1 means that
the tuple value is subtracted by 1. We use the symbol x to indicate that the recovered tuple

486 M.S. Hwang et al.

Table 2
The rule table for relational databases.

Cases The tuple value
modification statuses

Original tuple values
restoration statuses

tuplej (Ai) tuplej+1(Ai) tuplej (Ai2) tuplej+1(Ai2) tuplej (Ai) tuplej+1(Ai)

1 0 0 0 0
2 0 0 0 +1
3 0 0 −1 0 x
4 0 0 +1 0
5 0 +1 0 0
6 0 +1 0 +1 x
7 0 +1 −1 0 x
8 0 +1 +1 0
9 −1 0 0 0 x
10 −1 0 0 +1 x
11 −1 0 −1 0 x
12 −1 0 +1 0
13 +1 0 0 0
14 +1 0 0 +1
15 +1 0 −1 0
16 +1 0 +1 0 x

Table 3
The extraordinary process of modification rule table.

Rules Cases The final modified pretend tuple values
tuple′

j
(Ai) tuple′

j+1(Ai) tuple′
j
(Ai2) tuple′

j+1(Ai2)

1 3 tuplej (Ai) + 2 tuplej+1(Ai) + 1 tuplej (Ai2) − 1 tuplej+1(Ai2) + 1
2 6 tuplej (Ai) tuplej+1(Ai) + 1 tuplej (Ai2) tuplej+1(Ai2) − 1
3 7 tuplej (Ai) + 2 tuplej+1(Ai) tuplej (Ai2) − 1 tuplej+1(Ai2)

4 9 tuplej (Ai) − 1 tuplej+1(Ai) tuplej (Ai2) + 2 tuplej+1(Ai2) + 1
5 10 tuplej (Ai) − 1 tuplej+1(Ai) tuplej (Ai2) + 2 tuplej+1(Ai2)

6 11 tuplej (Ai) − 1 tuplej+1(Ai) + 2 tuplej (Ai2) + 1 tuplej+1(Ai2) − 1
7 16 tuplej (Ai) − 1 tuplej+1(Ai) − 1 tuplej (Ai2) + 1 tuplej+1(Ai2) + 2

value calculated by the averaging method is different from the original tuple value. To
handle the case where the tuple value cannot be restored, we modify Table 2 and describe
the new modification rules for relational databases in Table 3.

Taking Case 6 as an example, the first pair of tuplej (Ai) is 0 and tuplej+1(Ai) is +1.
The second pair of tuplej (Ai2) is 0 and tuplej+1(Ai2) is +1 of the tuple value modifica-
tion statuses; In this case, the recovered tuple value calculated by the averaging method
is different from the original tuple value, so we need to use Rule 2 in Table 3. There-
fore, the new tuple value modification state is that the first pair of tuplej (Ai) is 0, the
tuplej+1(Ai) is +1, and the second pair of tuplej (Ai2) is 0, the tuplej+1(Ai2) is −1.
Therefore, the final modified pretend tuple values are: tuplej ‘(Ai) does not need to be
changed, tuplej+1‘(Ai) = tuplej+1(Ai) + 1, tuplej ‘(Ai2) is unchanged, tuplej ‘(Ai2) =
tuplej+1(Ai2) − 1.

A Reversible Hiding Technique Using LSB Matching for Relational Databases 487

3.2. Hiding Phase

The private key was originally used to encrypt secret messages. It is assumed that the
length of the encrypted confidential message is m bits, and the attribute to be hidden
is located in Ai . First, copy Ai into the same two attributes Ai and Ai2. In Fig. 1,
two tuple values are used: tuplej (Ai, Ai2) and tuplej+1(Ai, Ai2) as sets to hide all
sets to obtain D’ (hidden data set after CM) = {tuple′

1(Ai, Ai2), tuple′
2(Ai, Ai2), . . . ,

tuple′
(m/2−1)(Ai, Ai2), tuple′

(m/2)(Ai, Ai2)}. The overall steps are as follows: First, use
Table 2 to hide CM into D. If something happens during the hiding process, use Table 3
to modify the pretend tuple value. By the averaging method, the pretend tuple values can
be restored: tuple′

j (Ai), tuple′
j (Ai2), tuple′

j+1(Ai), and tuple′
j+1(Ai2) can be recovered

to the original tuplej (Ai) and tuplej+1(Ai), respectively.
The complete explanation for hiding phases is as follows:

1) Copy Ai into the same two attributes Ai and Ai2.
2) Each 2 tuple values tuplej (Ai, Ai2) and tuplej+1(Ai, Ai2) are used as a set, and for

each set, 4 consecutive bits are obtained from the CM. Therefore, four consecutive bits
are retrieved from the CM. s1 is first, s2 is second, s3 is third, and s4 is fourth bits.
Next, through Fig. 1, s1 and s2 are hidden in tuplej (Ai) and tuplej+1(Ai), respectively,
and then s3 and s4 are hidden in tuplej (Ai2) and tuplej+1(Ai2), respectively.
For example, after hiding 4 continuous bits into tuples by Fig. 1, if the first pair tuple
values are tuplej (Ai) = 0, tuplej+1(Ai) = +1, and the second pair tuple values
are tuplej (Ai2) = 0, tuplej+1(Ai2) = +1; then this condition belongs to Case-6.
However, according to the restoration state of the original tuple value, the original
tuplej+1(Ai) cannot be restored. Therefore, Table 3 is used to adjust the pretend tuple
values.

3) Cases 3, 6, 7, 9–11, 16: In Table 2, there are 7 cases (Cases 3, 6, 7, 9–11, 16) that
cannot recover the original tuple value by averaging. If this happens, use Table 3 to
modify the pretend tuple value. As just mentioned, according to Table 3, Case 6 will
set tuplej+1(Ai) to +1 in the first pair tuple values, and tuplej+1(Ai2) in the second
pair tuple values is also set to −1.

4) Steps 2) and 3) are repeated in order to hide all CM into the tuple values.

Algorithm 1 is a hiding function that implements the concepts of Fig. 1, Table 2 and
Table 3, and Fig. 2 is Algorithm 1 flow chart. Algorithm 2 is a function that retrieves an as-
signed bit of CM. As shown in Table 1, tuplej (Ai) and tuplej (Ai2), and tuplej+1(Ai) and
tuplej+1(Ai2) are two pairs of tuple values in D. In lines 5–11, Algorithm 1 first retrieves
tuples from D, and temporarily saves them into tempDBValue array (a two-dimensional
array); hence lines 12–60 can hide confidential message into tempDBValue array, and then
tempDBValue array is updated to D in line 61. Line 12 is that when a tuple number is even,
lines 13–60 begin to hide CM through the LSB matching method for relational databases
and Modification rule table. Every time, lines 13–19 get 4 continuous bits from CM by
Get_CMbit function (Algorithm 2), and they are stored in s1, s2, s3, and s4, respectively.
Lines 20–45 determine which situation tuplej (Ai, Ai2) and tuplej+1(Ai, Ai2) belong to.
Afterwards, if some cases happen, Table 3 is further used to adjust tempDBValue array in
lines 46–60. Therefore, CM is hidden into tempDBValue array.

488 M.S. Hwang et al.

Algorithm 1 Hiding function.
1: Input: Original Data Set D, CM
2: Output: D’
3: String tempDBValue[2][2];
4: while each tuple ∈ D do
5: if (tuple number %2 != 0) then
6: tempDBValue[0][0] = tuplej (Ai);
7: tempDBValue[0][1] = tuplej (Ai2);
8: else
9: tempDBValue[1][0] = tuplej+1(Ai);

10: tempDBValue[1][1] = tuplej+1(Ai2);
11: end if
12: if (tuple number%2 == 0) then
13: s1 = Get_CMbit((tuple number × 2)-4, CM);
14: s2 = Get_CMbit((tuple number × 2)-3, CM);
15: s3 = Get_CMbit((tuple number × 2)-2, CM);
16: s4 = Get_CMbit((tuple number × 2)-1, CM);
17: if (s1||s2||s3||s4 == null) then
18: end loop;
19: end if
20: if (LSB(tempDBValue[0][0]) == s1) then
21: if (F(tempDBValue[0][0], tempDBValue[1][0]) == s2) then
22: Situation A.
23: else
24: Situation B.
25: end if
26: else
27: if (F(tempDBValue[0][0]-1, tempDBValue[1][0]) == s2) then
28: Situation C.
29: else
30: Situation D.
31: end if
32: end if
33: if (LSB(tempDBValue[0][1]) == s3) then
34: if (F(tempDBValue[0][1], tempDBValue[1][1]) == s4) then
35: Situation A.
36: else
37: Situation B.
38: end if
39: else
40: if (F(tempDBValue[0][1]-1, tempDBValue[1][1]) == s4) then
41: Situation C.
42: else
43: Situation D.
44: end if
45: end if
46: if (Case 3) then
47: Rule 1.
48: else if (Case 6) then
49: Rule 2.
50: else if (Case 7) then
51: Rule 3.
52: else if (Case 9) then
53: Rule 4.
54: else if (Case 10) then
55: Rule 5.
56: else if (Case 11) then
57: Rule 6.
58: else if (Case 16) then
59: Rule 7.
60: end if
61: Finally, in order to hide CM, update D by tempDBValue array.
62: end if
63: end while
64: return D’

A Reversible Hiding Technique Using LSB Matching for Relational Databases 489

Fig. 2. Algorithm 1 flow chart.

Algorithm 2 Get_CMbit function.
1: Input: an assigned numeral cmNum, CM
2: Output: CMbit (An assigned bit of CM)
3: char CMbit = CM.charAt(cmNum);
4: return CMbit

3.3. Extraction and Restoration Phases

CM and recovery raw data are extracted separately in this phase. Firstly, we extract CM
from the first pair tuple values: tuplej (Ai), tuplej+1(Ai), and the second pair tuple val-
ues: tuplej (Ai2), tuplej+1(Ai2) through the LSB and LSB matching method for relational
databases. s1 is obtained from tuplej (Ai) by the LSB equation. After that, s2 is gained
by equation (1). Substitute x = tuplej (Ai) and y = tuplej+1(Ai) into F(·), and the value
for F(·) represents s2. In the same way, s3 and s4 are obtained from the second pair tuple
values: tuplej (Ai2), tuplej+1(Ai2). Lastly, CM is decrypted by the same private key.

490 M.S. Hwang et al.

During restoration phases, the average value of the two tuple values can be calcu-
lated through the averaging method to recover the raw data, namely, using equation (2)
to compute �(tuplej ′(Ai) + tuplej ′(Ai2))/2� we can restore the original tuplej (Ai); by
computing �(tuplej+1′(Ai)+tuplej+1′(Ai2))/2� we can restore the original tuplej+1(Ai).
The following formula is equation (1) (Lu et al., 2015a):

F(x, y) = LSB
(�x/2� + y

)
. (1)

The following formula for the averaging method is equation (2):

{
tuplej (Ai) = �(tuplej ′(Ai) + tuplej ′(Ai2))/2�,

tuplej+1(Ai) = �(tuplej+1′(Ai) + tuplej+1′(Ai2))/2�.
}

(2)

Algorithm 3 Extract Restore function.
1: Input: D’
2: Output: CM, D
3: String tempDBValue[2][2]; // 1
4: while each tuple ∈ D’ do
5: if (tuple number %2 != 0) then
6: tempDBValue[0][0] = tuplej (Ai);
7: tempDBValue[0][1] = tuplej (Ai2);
8: else
9: tempDBValue[1][0] = tuplej+1(Ai);

10: tempDBValue[1][1] = tuplej+1(Ai2);
11: end if
12: if (tuple number%2 == 0) then
13: s1 = LSB(tempDBValue[0][0]);
14: s2 = F(tempDBValue[0][0], tempDBValue[1][0]);
15: s3 = LSB(tempDBValue[0][1]);
16: s4 = F(tempDBValue[0][1], tempDBValue[1][1]);
17: CM = CM+s1+s2+s3+s4;
18: tempDBValue[0][0] = �(tempDBValue[0][0] + tempDBValue[0][1])/2�;
19: tempDBValue[1][0] = �(tempDBValue[1][0] + tempDBValue[1][1])/2�;
20: Finally, in order to restore D, update D’ by tempDBValue array.
21: end if
22: end while
23: return CM, D

Algorithm 3 is an extract restore function that extracts CM from D’ and restores the raw
data, and Fig. 3 is Algorithm 3 flow chart. In lines 5–12, Algorithm 3 first retrieves tuples
from D’, and temporarily saves them into tempDBValue array (a two-dimensional array);
hence, lines 14–18 can get CM, and then lines 19–20 restore raw data into tempDBValue
array, and, finally, tempDBValue array is updated to D in line 21. Line 13 is that when
tuple number is even, it calculates the CM through LSB and LSB matching method for
relational databases in lines 14–18, and restores the raw data through averaging method
in lines 19–20. Lastly, this function returns CM and D.

A Reversible Hiding Technique Using LSB Matching for Relational Databases 491

Fig. 3. Algorithm 3 flow chart.

3.4. Example

We have already proved our algorithms are feasible on a computer with Intel(R)
Core(TM)2 Quad CPU, 4 GB of RAM, and MySQL 5.6 is our database. In this section,
we illustrate our experimental examples to let readers understand the proposed scheme.

The format of Figs. 4 and 5 in (Lu et al., 2015a) are taken as a reference to design
our own experimental examples. Take Fig. 4 for example, we explain hiding phases as
follows: firstly, Price is copied into two same attributes Price and Price2, and then use
(2563, 2563) and (3333, 3333) as the first set. Suppose that the CM = 1011, through Fig. 1,
s1, s2 are hidden into (tuplej (Ai), tuplej+1(Ai)) = (2563, 3333) in Price separately,
and then s3, s4 are hidden into (tuplej (Ai2), tuplej+1(Ai2)) = (2563, 3333) in Price2
separately. When hiding s1, s2, because LSB(2563) = 1 = s1 = 1, substituting 2563,
3333 into equation (1), it gains F(2563, 3333) = LSB(4614) = 0 = s2 = 0. Because
of F value = s2, therefore, this is Situation A in Fig. 1. Afterwards, s3, s4 are hidden
into (tuplej (Ai2), tuplej+1(Ai2)) = (2563, 3333). Because LSB(2563) = 1 = s3 = 1,
substituting 2563, 3333 into equation (1), it obtains F(2563, 3333) = LSB(4614) =
0 �= s4(= 1). Due to F value �= s4, therefore, this is Situation B in Fig. 1. As just
mentioned, (tuplej (Ai), tuplej+1(Ai)) is Situation A = (2563, 3333), and (tuplej (Ai2),
tuplej+1(Ai2)) is Situation B = (2563, 3333+1). This is Case-2 in Table 2, and thus
the original tuple values can be recovered. Therefore, Table 3 is not needed, and we get

492 M.S. Hwang et al.

Fig. 4. An example for hiding phase.

Fig. 5. An example for extraction and restoration phase.

tuple′
j (Ai) = 2563, tuple′

j+1(Ai) = 3333 and tuple′
j (Ai2) = 2563, tuple′

j+1(Ai2) =
3334.

Next, assume that the CM = 0000, and then (7777, 7777) and (9999, 9999) are used
as the second set. s1, s2 are hidden into (tuplej (Ai), tuplej+1(Ai)) = (7777, 9999) in
Price, respectively, and then hide s3, s4 into (tuplej (Ai2), tuplej+1(Ai2)) = (7777, 9999)

in Price, respectively. By Fig. 1, it knows (tuplej (Ai), tuplej+1(Ai)) is Situation D =
(7777 + 1, 9999), and (tuplej (Ai2), tuplej+1(Ai2)) is Situation D = (7777+1, 9999).

A Reversible Hiding Technique Using LSB Matching for Relational Databases 493

This is Case-16 in Table 2, so the original tuple values cannot be restored. Therefore,
Table 3 (Modification rule table) is further used to modify the pretend tuple values. Case-
16 follows Rule-7 in Table 3, so it gains tuple′

j (Ai) = 7777 − 1 = 7776, tuple′
j+1(Ai) =

9999 − 1 = 9998 and tuple′
j (Ai2) = 7777 + 1 = 7778, tuple′

j+1(Ai2) = 9999 + 2 =
10001.

Take Fig. 5 as an example, we illustrate extraction and restoration phases as follows:
Extract CM and recovery raw data separately. In the first set, s1 = 1 is gotten from
tuple′

j (Ai) = 2563 by the LSB equation. After that, substitute x = tuple′
j (Ai) = 2563

and y = tuple′
j+1(Ai) = 3333 into equation (1), and then get s2 = F(2563, 3333) = 0.

In the same way, s3 = 1 and s4 = 1 are obtained from the second pair tuple values:
tuple′

j (Ai2) = 2563, tuple′
j+1(Ai2) = 3334. By the above-mentioned way, CM is also

extracted from the second set, i.e. s1 = LSB(7776) = 0, s2 = F(7776, 9998) = 0,
s3 = LSB(7778) = 0, and s4 = F(7778, 10001) = 0.

During restoration phase, equation (2) is used to compute �(tuplej ′(Ai) = 2563 +
tuplej ′(Ai2) = 2563)/2�, and then the original tuplej (Ai) = 2563 is restored.
�(tuplej+1′(Ai) = 3333 + tuplej+1′(Ai2) = 3334)/2� is computed, and then the orig-
inal tuplej+1(Ai) = 3333 is restored. Similarly, the original tuple value 7777, 9999 are
restored.

4. Capacity and Complexity Analysis of Our Method

We all know that the data-hiding technique has two important requirements, the integrity
of raw data and data hiding capacity. With respect to the integrity of raw data, since our
proposed technique is reversible, it can recover the raw data. Therefore, the following
paragraphs analyse data hiding capacity and the complexity of our algorithms:

4.1. Data Hiding Capacity

The data hiding capacity of our technique depends on the database. The more tuples in D,
the more hiding capacity of our technique. Assume there are n tuples in D, and then the
maximum hiding capacity = 2n bits.

Our technique uses each 2 tuple values: tuplej (Ai, Ai2) and tuplej+1(Ai, Ai2) as a set,
and then hides a bit into each tuple value, i.e. hiding four bits into tuplej (Ai), tuplej (Ai2),
tuplej+1(Ai), tuplej+1(Ai2), respectively. Therefore, the watermark bits we intend to hide
must be multiple of four. Furthermore, if n is odd, the last tuple cannot be used to hide
confidential messages.

4.2. The Complexity of Our Algorithms

According to Franco-Contreras et al. (2014), Xie et al. (2016), computation time is an
important issue we should consider. Thus, we analyse the complexity of Algorithm 1 and
Algorithm 3, and try to prove whether they are efficient or not. We assume there are n tu-
ples in D, and the time of updating the value in the database is TDB (it is determined by

494 M.S. Hwang et al.

the database and the amount of data, so we ignore it); moreover, assume situations A–D
in Fig. 1 will happen averagely, and furthermore assume the probability of occurrence of
the cases in Table 3 is very small, so we can ignore them. Therefore, the number of execu-
tions of every instruction is shown in comments of Algorithms 1 and 3. Because line 12
in Algorithm 1 and Algorithm 3 limits tuple number to even numbers, the numbers of
executions of the instructions after line 12 will be reduced to n/2.

In Algorithm 1, lines 20–32 execute n/2 times. Because we assume situations A–D
happen averagely, lines 21–25 and lines 27–31 share n/2 of lines 20–32; hence, lines 21–
25 and lines 27–31 are executed (n/2)

2 times, respectively. Lines 22 and 24 share (n/2)
2 times

of lines 21–24; therefore, lines 22 and 24 are executed ((n/2)/2)
2 times, respectively. More-

over, lines 22 and 24 both have two-line code, so we multiply ((n/2)/2)
2 times of lines 22

and 24 by two. Lines 28 and 30 are in the same way. For the same reason, we calculate the
number of executions of every instruction between lines 33–45. Because we ignore cases
in Table 3, lines 47, 49, 51, 53, 55, 57, and 59 will not be calculated.

The number of executions of total instructions in Algorithm 1 is 1+n+n+n/2+n/2+
n/2+n/2+n+5n/2+2(n/2+n/4+n/4+n/4+n/4+n/8+n/4)+n/2+(n/2)TDB =
11n + 3n/4 + 1 + (n/2)TDB, and moreover, its time complexity is O(n). Therefore, it is
a linear time algorithm.

The number of executions of total instructions in Algorithm 3 is 1 + n + n + n/2 +
n/2 + n/2 + n/2 + n + 5n/2 + n/2 + n/2 + (n/2)TDB = 8n + n/2 + 1 + (n/2)TDB,
and moreover, its time complexity is O(n). Therefore, it is also a linear time algorithm.

As mentioned above, time complexity of our algorithms in Algorithms 1 and 3 are both
linear time algorithms. According to “Linear time is the best possible time complexity
in situations where the algorithm has to sequentially read its entire input (Sudhan and
Kalaiarasan, 2017)”, our technology reads the entire database sequentially and meets the
linear time requirements; therefore, our proposed technique is not only efficient in hiding
phase but also efficient in extraction and restoration phases.

5. Discussion and Conclusion

In this study, we proposed a reversible hiding technique for relational databases by using
the LSB matching method. In the experiments, we proved that our technique meets data
hiding requirements, and it not only enables to recover the raw data, but also maintains a
high hiding capacity. Additionally, we analyse the complexity of our algorithms to demon-
strate our technique is efficient. Therefore, according to Xie et al. (2016), our algorithms
can be applied to big data databases. To the best of our knowledge, it is the first reversible
hiding technique for relational databases. Furthermore, we want to discuss two issues:

1) Application: In our opinion, our technique is most suitable for statistical databases.
Statistical databases (SDB) have an inference problem: an attacker may infer the correct
data from known information and well-chosen queries (Tendick and Matloff, 1994);
however, data perturbation can solve this problem. Data perturbation is a technique that
adds noises into the sensitive data. Its method is to change data through mathematic

A Reversible Hiding Technique Using LSB Matching for Relational Databases 495

formulas (such as adding and subtracting) (Adam and Worthmann, 1989; Taneja et al.,
2014). After SDB passes above-mentioned preprocess, it transforms these data into a
perturbed SDB (Adam and Worthmann, 1989; Taneja et al., 2014). The searchers only
query the perturbed SDB, so they never get correct results. Therefore, it is hard for
people to infer the correct data (Adam and Worthmann, 1989).

Because our technique must copy data into the same two data in the relational
database, an attacker may doubt whether this database has confidential messages or
not. Therefore, attribute Ai2 can be put into the perturbed SDB after hiding phases,
i.e. regarding the hiding method as mathematic formulas and regarding Ai2 as per-
turbed data. Because Ai2 is in the perturbed SDB and Ai is in the original SDB, it
can prevent the original SDB from having an additional data, so the attacker does not
doubt if the SDB has confidential messages. During extraction and restoration phases,
confidential messages is extracted and raw data is recovered through attribute Ai in the
SDB and attribute Ai2 in the perturbed SDB.

2) Future work: Because our research is not robust enough to resist malicious attacks, it is
just a data hiding technique for relational databases. In the future, we will strengthen the
robustness in order to make our technique become watermarking relational databases.

Funding

This study was supported by the National Science Council of Taiwan under grant MOST
108-2410-H-468-023 and MOST 108-2622-8-468-001-TM1.

References

Adam, N.R., Worthmann, J.C. (1989). Security-control methods for statistical databases: a comparative study.
ACM Computing Surveys, 21, 515–526.

Agrawal, R., Kiernan, J. (2002). Watermarking relational databases. In: Proceedings of the 28th International
Conference on Very Large Data Bases, Hong Kong, China, pp. 155–166.

Bhesaniya, M., Rathod, J.N., Thanki, K. (2014). Various approaches for watermarking of relational databases.
International Journal of Engineering Science and Innovative Technology, 3, 215–220.

Camara, L., Li, J., Li, R., Xie, W. (2014). Distortion-free watermarking approach for relational database integrity
checking. Mathematical Problems in Engineering, 2014, 10.

Chen, H.F., Chang, C.C., Chen, K.M. (2020). Reversible data hiding schemes in encrypted images based on the
paillier cryptosystem. International Journal of Network Security, 22, 523–533.

Chen, X., Guo, W. (2020). Reversible data hiding scheme based on fully exploiting the orientation combinations
of dual stego-images. International Journal of Network Security, 22, 126–135.

Chen, Y., Lin, J.Y., Chang, C.C., Hu, Y.C. (2020). Low-computation-cost data hiding scheme based on turtle
shell. International Journal of Network Security, 22, 296–305.

Dwivedi, A.K., Sharma, B.K., Vyas, A.K. (2014). Watermarking techniques for ownership protection of rela-
tional databases. International Journal of Emerging Technology and Advanced Engineering, 4, 368–375.

Franco-Contreras, J., Coatrieux, G., Cuppens, F., Cuppens-Boulahia, N., Roux, C. (2014). Robust lossless water-
marking of relational databases based on circular histogram modulation. IEEE Transactions on Information
Forensics and Security, 9, 397–410.

Gupta, G., Pieprzyk, J. (2009). Database relation watermarking resilient against secondary watermarking attacks.
In: International Conference on Information Systems Security. Springer, Berlin, Heidelberg, pp. 222–236.

Hanyurwimfura, D., Liu, Y., Liu, Z. (2010). Text format based relational database watermarking for non-numeric
data. In: 2010 International Conference On Computer Design And Appliations, ICCDA 2010. IEEE, pp. V4-
312–V4-316.

496 M.S. Hwang et al.

Iftikhar, S., Kamran, M., Anwar, Z. (2015). RRW - a robust and reversible watermarking technique for relational
data. IEEE Transactions on Knowledge and Data Engineering, 27, 1132–1145.

Kamran, M., Suhail, S., Farooq, M. (2013). A robust, distortion minimizing technique for watermarking rela-
tional databases using once-for-all usability constraints. IEEE Transactions on Knowledge and Data Engi-
neering, 25, 2694–2707.

Ke, C.H., Wang, M.S. (2006). A Study of Watermarking in Relational Database. Department of Engineering
Science. National Cheng Kung University, Taiwan.

Khanna, S., Zane, F. (2000). Watermarking maps: hiding information in structured data. In: Proceedings of the
Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, California, USA, pp. 596–
605.

Li, Y., Swarup, V., Jajodia, S. (2003). Constructing a virtual primary key for fingerprinting relational data.
In: Proceedings of the 3rd ACM Workshop on Digital Rights Management, Washington, DC, USA. ACM
pp. 133–141.

Li, Y., Guo, H., Jajodia, S. (2004). Tamper detection and localization for categorical data using fragile water-
marks. In: Proceedings of the 4th ACM Workshop on Digital Rights Management, Washington DC, USA,
ACM, pp. 73–82.

Lu, T.C., Tseng, C.Y., Wu, J.H. (2015a). Dual imaging-based reversible hiding technique using lsb matching.
Signal Processing, 108, 77–89.

Lu, T.C., Wu, J.H., Huang, C.C. (2015b). Dual-image-based reversible data hiding method using center folding
strategy. Signal Processing, 115, 195–213.

Mehta, B.B., Rao, U.P. (2011). A novel approach as multi-place watermarking for security in database. In: Int’l
Conf. Security and Management, San Diego, California, USA, SAM, pp. 703–707.

Melkundi, S., Chandankhede, C. (2015). A robust technique for relational database watermarking and verifica-
tion. In: 2015 International Conference on Communication, Information & Computing Technology (ICCICT),
Mumbai, India. IEEE, pp. 1–7.

Mielikainen, J. (2006). LSB matching revisited. IEEE Signal Processing Letters, 13, 285–287.
Mohanpurkar, A.A., Joshi, M.S. (2011). Applying watermarking for copyright protection, traitor identification

and joint ownership: A review. In: 2011 World Congress on Information and Communication Technologies
(WICT). IEEE, pp. 1014–1019.

Sudhan, S.H., Kalaiarasan, C. (2017). Study on sorting algorithm and position determining sort. International
Research Journal of Engineering and Technology (IRJET), 4(7),

Taneja, S., Khanna, S., Tilwalia, H. (2014). A review on privacy preserving data mining: techniques and research
challenges. International Journal of Computer Science and Information Technologies, 5, 2310–2315.

Tendick, P., Matloff, N. (1994). A modified random perturbation method for database security. ACM Transactions
on Database Systems, 19, 47–63.

Xie, M.R., Wu, C.C., Shen, J.J., Hwang, M.S. (2016). A survey of data distortion watermarking techniques for
relational databases. International Journal of Network Security, 18, 1022–1033.

Zhang, Y., Yang, B., Niu, X.M. (2006). Reversible watermarking for relational database authentication. Journal
of Computers, 17, 59–66.

A Reversible Hiding Technique Using LSB Matching for Relational Databases 497

M.-S. Hwang received MS in industrial engineering from National Tsing Hua Univer-
sity, Taiwan in 1988; and PhD degree in computer and information science from National
Chiao Tung University, Taiwan in 1995. He was a professor and chairman of the Depart-
ment of Management Information Systems, NCHU, during 2003–2009. He was also a
visiting professor at the University of California (UC), Riverside and UC. Davis (USA)
during 2009–2010. He was a distinguished professor of Department of Management Infor-
mation Systems, NCHU, during 2007–2011. He obtained the 1997, 1998, 1999, 2000, and
2001 Excellent Research Award of National Science Council (Taiwan). Dr. Hwang was a
dean of College of Computer Science, Asia University (AU), Taichung, Taiwan. He is cur-
rently a chair professor with Department of Computer Science and Information Engineer-
ing, AU. His current research interests include information security, electronic commerce,
database and data security, cryptography, image compression, and mobile computing. Dr.
Hwang has published over 300+ articles on the above research fields in international jour-
nals.

M.-R. Xie received his MS in management information systems from National Chung
Hsing University, Taiwan in 2016. He had worked in IT industry in Taiwan for ten years.
He is currently a PhD degree student at the Department of Computer Science, National
Chiao Tung University, Taiwan. His current research interests include database security,
information security, and digital image techniques.

C.-C. Wu received a PhD degree from the Department of Computer Science and Engi-
neering, National Chung-Hsing University, Taichung, Taiwan, in 2011. He is currently
an associate professor at the Department of Industrial Engineering and Management, Na-
tional Quemoy University, Kinmen County, Taiwan. His current research interests include
database security, secret image sharing, mobile applications development, and digital im-
age techniques.

