
A reversible transform for seismic data processinga

aPublished in Journal of Geophysics and Engineering, 8, 477-486, (2011)

William A. Burnett1 and Robert J. Ferguson2

ABSTRACT

We use the nonstationary equivalent of the Fourier shift theorem to derive a gen-
eral one-dimensional integral transform for the application and removal of certain
seismic data processing steps. This transform comes from the observation that
many seismic data processing steps can be viewed as nonstationary shifts. The
continuous form of the transform is exactly reversible, and the discrete form pro-
vides a general framework for unitary and pseudounitary imaging operators. Any
processing step which can be viewed as a nonstationary shift in any domain is a
special case of this transform. Nonstationary shifts generally produce coordinate
distortions between input and output domains, and those that preserve ampli-
tudes do not conserve the energy of the input signal. The nonstationary frequency
and time distortions and nonphysical energy changes inherent to such operations
are predicted and quantified by this transform. Processing steps of this type are
conventionally implemented using interpolation operators to map discrete data
values between input and output coordinate frames. Although not explicitly
derived to perform interpolation, the transform here assumes the Fourier basis
to predict values of the input signal between sampling locations. We demon-
strate how interpolants commonly used in seismic data processing and imaging
approximate the proposed method. We find that our transform is equivalent
to the conventional sinc-interpolant with no truncation. Once the transform is
developed, we demonstrate its numerical implementation by matrix-vector mul-
tiplication. As an example, we use our transform to apply and remove normal
moveout.

INTRODUCTION

It is well known that the Fourier transform has a variety of properties that make it
useful for signal processing in geophysics (Yilmaz, 2001). The Fourier transform essen-
tially rearranges the data an input function into its complex frequency components
(Karl, 1989). This can be done because continuous functions and their discretely-
sampled equivalents can be expressed in terms of the Fourier basis. The organization
of data in the Fourier domain allows many otherwise complex operations to be applied
easily. Properties described by the Faltung, Weiner-Khintchine, and shift theorems
(Sneddon, 1995) can exploit this organization because of another property, described
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by the inversion theorem (Sneddon, 1995), which states that the Fourier transform is
exactly reversible.

Many individual seismic data processing steps also simply rearrange input data,
and can therefore be viewed as transforms. Barring destructive processes such as
muting or band-limited frequency filtering, even an entire data processing flow is itself
simply transformations the input data into a corrected set. However, conventional
methods used to perform processing steps of this type are usually not implemented
as transforms. Instead, they are implemented with data-mapping algorithms that
require interpolation (Harlan, 1982).

Most conventional interpolation schemes contradict the primary assumption of the
Fourier transform, as they do not assume the continuous equivalent of the recorded
data is constructed with the Fourier basis. Instead, they assume some other basis in
order to design efficient but approximate interpolants (Karl, 1989). These methods
not only have the risk of immediately altering the data, but they are also inherently
irreversible. Applying or removing processing steps in this way causes a small amount
of information loss. With quantitative analysis methods as a goal of modern seismic
data processing, it is important to preserve as much of the input information as
possible during the flow.

In order to address the problem of data loss due to interpolation-based methods,
we propose a reversible one-dimensional transform for the implementation of seis-
mic data processing steps. The proposed transform provides a general framework for
unitary and pseudounitary operators common to seismic data processing and imag-
ing (Biondi and Claerbout, 1985; Claerbout, 1992). This framework is developed in
the context of nonstationary filtering (Margrave, 1998). Implementing imaging steps
as reversible transforms does not require interpolation in the continuous case, and
correctly assumes the Fourier basis in agreement with the Fourier transform for in-
terpolation in the discrete case. Although several seismic data processing operations
have been individually described by transforms of exactly this type (Margrave, 1998;
Margrave and Ferguson, 1999; Margrave, 2001; Claerbout, 1992), the transform here
is the general form (Burnett, 2007; Burnett and Ferguson, 2008c).

Since the Fourier basis is used, the forward transform is theoretically exactly
invertible. Just as the inversion theorem quantitatively justifies the Fourier domain as
a valid processing domain, a reversible transform for data processing steps justifies the
use of corrected data sets as if they are in valid processing domains themselves. Any
processing step that can be viewed as a nonstationary shift can be easily implemented
by this transform. Seismic imaging steps are naturally useful for separating signal
from noise, so they offer familiar, exploitable organizations of data (McMechan and
Sun, 1991; Yu et al., 2005). Therefore, the proposed reversible transform for seismic
data processing offers a useful set of quantitatively valid domains in which to work.

The general transform we derive is based on classical Fourier transform theory
(Papoulis, 1962; Sneddon, 1995), and the theory of nonstationary filtering (Margrave,
1998). We first develop the general form for the forward data processing transform,
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and then derive the inverse of the transform. Following the transform development,
we implement the normal moveout correction as an example, and then we discuss
how conventional interpolation methods relate to the proposed transform.

THEORY

Many conventional seismic imaging steps are special cases of nonstationary shifts,
which can be performed simultaneously with the Fourier transform via nonstationary
convolution or combination (Margrave, 1998). This section shows how the nonsta-
tionary shift operator can be combined with the Fourier transform kernel to create a
general data processing transform kernel.

It is important to define a convention for the forward and inverse Fourier transform
before proceeding. The shift-direction determined by the sign in a shifting exponential
will reverse if the opposite sign convention for the Fourier transform is used. We use
the forward Fourier transform convention,

F (β) =

∫ ∞
−∞

f (p) e−i β p dp, (1)

where F (β) is the complex Fourier transform (commonly a function of frequency) of
the input signal, f(p) (commonly a function of time). With the Fourier transform
convention defined in equation 1, a positive sign in the shifting exponential causes a
backward shift of the input function. The inverse Fourier transform,

g (q) =
1

2π

∫ ∞
−∞

F (β) ei β q dβ, (2)

has an output function, g(q), that is strictly different from the original input function.
A special property of the Fourier transform is that the input and output axes, p and
q, are identical, and f(p) = g(q), meaning that the input function passes unchanged
when put through both the forward and inverse Fourier transforms alone.

In general, any processing step that requires a mapping from an input coordinate
that is a function of the output coordinate, to that output coordinate, can be viewed
as a nonstationary shift by combination. Examples of such processing steps include
normal moveout (NMO), dip-moveout (DMO), and frequency-wavenumber (f-k) mi-
gration. NMO is a nonstationary shift in the time-space domain, while f-k migration
performs a similar shift in the frequency-wavenumber domain. To remain general
though, it is better at this point to think in terms of input and output coordinates
rather than input and output times, so that frequency, wavenumber, space, or time
shifts can be admitted, depending on the desired domain.

To emphasize that the input and output coordinates do not necessarily correspond
to time, we use the above p − q notation. A general nonstationary data processing
shift in this notation is,

∆ (q) = p (q)− q, (3)
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where p and q are the input and output coordinates, respectively. Using these general
coordinates, the nonstationary data processing shift applied to an input function,
f(p), is,

g (q) ≡ f (q + ∆ (q)) =
1

2 π

∫ ∞
−∞

F (β) ei β∆(q) ei β q dβ, (4)

where F (β) is the Fourier transform of f(p), β is the Fourier dual of p, and the
output signal, g(q) is the desired result of processing the input signal f(p). Unlike
the Fourier transform, p and q are not identical, although they represent the same
dimension. The convenient form of ∆(q) allows the exponentials to be reduced by
combining the Fourier transform kernel with the nonstationary shifting exponential.
The result is a concise form of the forward data processing transform,

g (q) =
1

2π

∫ ∞
−∞

F (β) ei β p(q) dβ, (5)

which confirms the desired result,

g (q) = f (p) . (6)

The forward transform given in 5 is in the mixed-domain. For example, if the
input function is defined over time, 5 takes the frequency spectrum of that input
function, and outputs a new time series. This should not be alarming, as the Fourier
transform itself is a mixed-domain transform. It may seem questionable how p (q) is
handled in the exponent. However, since the nonstationary shift is formulated here
as a nonstationary combination, and the integration is over β, nothing new is needed
to handle the relation between p and q.

Although nonstationary combination kinematically performs nonstationary shifts
correctly, amplitudes are not changed, and therefore energy is not conserved between
input and output traces. Figure 1 demonstrates how the area under the input signal
changes under a nonstationary combination shift. This nonphysical energy change
within a trace is inherent to any processing step that applies or approximates a non-
stationary shift. Rayleigh’s theorem (also known as Plancherel’s theorem) states that
the integral of the square of an input function must be the same as the integral of its
squared Fourier transform (Karl, 1989). Physically, this means that energy should
be conserved between the input and Fourier domains, and clearly, the forward data
processing transform violates this. Although nonphysical in most cases, nonstation-
ary combination provides exactly the type of shift desired for the NMO correction
and many other seismic data processing steps. The well-known issue of NMO stretch
(Barnes, 1992) is a clear example of this type of energy change, where the seismic
amplitudes remain unchanged after each trace has undergone the time-variant shift of
the NMO correction. Relative to the input signal, this energy change means distor-
tions in both the input and Fourier domains. These distortions are accounted for and
handled by the inverse transform developed below, which relies on physically valid
nonstationary convolution instead.
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Figure 1: Element area change
caused by a nonstationary combi-
nation shift. The values of f at p1

and p2 are mapped to g at q1 and
q2, respectively. Since ∆f does
not equal ∆g, the areas Af and
Ag are not equal. Therefore, by
Rayleigh’s Theorem, energy is not
conserved. Scaling g (q) by α(q)
makes the areas the same.

To quantify how the energy has been changed by the forward transform, take the
ratio of areas of a shifted and unshifted rectangular element as in Figure 1:

α (q) =
∆p
(
f(p1)+f(p2)

2

)
∆q
(
g(q1)+g(q2)

2

) . (7)

Equation 6 shows that the shifted values of the input function are not changed. This
corresponds to the height of the rectangular elements shown in Figure 1 remaining
unchanged by the forward transform (f(pi) = g(qi)), giving,

α (q) =
∆p

∆q
. (8)

In the continuous limit, 8 goes to,

α (q) =
dp

dq
. (9)

The output function, g (q), is of course distorted by different amounts for various
q since the applied shift is nonstationary. By scaling g(q) by α(q) and integrating,
we claim that the energy change can be accounted for via Rayleigh’s theorem in the
inverse transform.

Now that there is a mechanism for removing amplitude distortions, the rest of the
inverse transform development comes from removing the kinematic shift. The output
function of the forward transform, g (q), becomes the input function of the inverse
transform. Since the forward shift is applied simultaneously with the inverse Fourier
transform, the reverse shift should be applied simultaneously with the forward Fourier
transform. That is, the inverse data processing transform should naturally recover
the original input spectrum, F (β), rather than go directly back to the original input
signal.

We first apply the Fourier transform to g (q) in terms of its own coordinate, q,
then reverse the nonstationary shift simultaneously,

G (γ) =

∫ ∞
−∞

α (q) g (q) e−i γ q e−i γ∆(q) dq , (10)
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where γ is the Fourier dual of q, and G(γ) is the desired uncorrected spectrum. Two
interesting simplifications come from 10. First, we can again exploit the convenient
form of ∆(q) to reduce the exponential giving,

G (γ) =

∫ ∞
−∞

α (q) g (q) e−i γ p(q) dq . (11)

Doing so forces integrating p (q) in the exponential over q, which may at first seem
like an unattractive approach, but we must do so to account for the nonphysical
distortion caused by the forward transform. The second simplification helps, as the
scaling function, α(q) = dp

dq
conveniently acts as a change-of-integration-variable fac-

tor, giving,

G (γ) =

∫ ∞
−∞

g (q) e−i γ p(q)dp. (12)

By Rayleigh’s theorem, the energy change can be accounted for by scaling g (q) by
α (q) inside an integral over q. This observation, combined with 6, shows that 12
is equivalent to a regular Fourier transform of f(p). Therefore, we can recover the
unprocessed Fourier domain function–the goal of the mixed-domain general inverse
data processing transform,

G (γ) = F (β) . (13)

The original unprocessed input function can then be exactly recovered by a regular
inverse Fourier transform:

h (q) =
1

2π

∫ ∞
−∞

G (γ) ei γ qdγ, (14)

where, h(q) is the final unprocessed function of the inverse Fourier transform. Equa-
tion 14 is just a regular inverse Fourier transform of G(γ) over its own coordinate, γ.
Therefore, using 13, it is clear that 14 is equivalent to a regular IFT of F (β) over β,
and that the desired result of the inverse transform is confirmed:

h (q) = f (q) . (15)

The kinematics of this general data processing transform are clear under nonsta-
tionary filtering theory. We claim that for any data processing step implemented by
transform, the kinematics of the step can also be clearly understood, and that α (q)
trivially predicts the amplitude corrections which are otherwise difficult to quantify
using conventional filtering theory.

IMPLEMENTATION

Now that the general form of the transform has been developed, an appropriate
method is needed to implement it. The method we review and discuss here is matrix
vector multiplication.
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In order to computationally implement an integral transform, recognize that the
input function can be viewed as a vector, or a one-dimensional array, and that the
transform kernel can be viewed as a matrix, or a two-dimensional array. The output
of a matrix vector multiplication is analogous to the output function of the integral,
but it is another vector along a new coordinate axis. The important feature of matrix
vector multiplication is that it can be used to simultaneously multiply and integrate
two functions over an input index. This concept is certainly not new to engineering or
geophysics, and many of its benefits have been explored in detail (Claerbout, 1992).

Constructing a matrix operator for the forward and inverse data processing trans-
form follows the same procedure one would use for any transform operator. The
general procedure is summarized here:

1. Identify the kernel of the transform and the input and output signals.

2. Construct the discrete input and output axes based on the sampling interval
and domain of the input signal.

3. For an input signal of N -samples, initialize an empty matrix of size N ×N , and
associate the matrix indices with the input and output axes.

4. For each (j, l) matrix (row,column) coordinate pair, calculate the kernel value
and place it in the matrix.

The concise form of the forward data processing transform can be cast as a matrix
vector multiplication following the above steps as:

g (qj) =
N∑
l=1

ei βlp(qj)

2π
F (βl) . (16)

A convenient feature of the data processing transform matrices is that they do not
differ from the form of the Fourier transform matrices other than a distorted time
axis. So by carefully matching the frequency axis, any standard FFT can be used
together with the discrete data processing transform.

The inverse data processing transform is more similar in form to the forward
Fourier transform, in that it takes the series from the input domain and outputs a
Fourier spectrum. Again following the procedure to construct a transform matrix, we
cast the inverse data processing transform (11) as a matrix-vector multiplication:

F (βl) =
N∑
l=1

[
α (ql) e

−i βj p(ql)
]

2π
f (pl) , (17)

with no summation over l inside brackets. Again by carefully matching the frequency
axis, a standard inverse fast Fourier transform (IFFT) can be applied to the output
vector of equation 17 to recover the unprocessed input signal.
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Although not necessary for implementation, it is insightful to separate the data
processing transform matrices as a composition of a Fourier transform matrix with
a shifting matrix. For a set of traces that are of the same length, the only part of
the data processing transform matrix that changes from trace to trace is the shifting
exponential. It is only because of the unique form of the shift itself that the expo-
nentials reduce to a single transform exponential. Before this reduction, the Fourier
transform matrices can be constructed separately from the forward and reverse shift-
ing matrices for the same data. The construction of the Fourier transform matrices
is well-known, and elements of the forward shift matrix, A, are given by:

ajl ≡ ei ωl ∆j = ei ωl(p(qj)−qj). (18)

Elements of the reverse shifting matrix, B, are then given by:

bjl = α (ql) e
−i ωj (p(ql)−ql), (19)

with no summation over indices. This approach requires the Fourier matrices to be
calculated only once for an input data set. For each trace in the given data set,
the shifting matrix is computed and then combined with the Fourier matrix as a
Hadamard (entry-wise) matrix product.

The inverse of the discrete data processing transform can be exactly formulated
as in the continuous case. The discrete data processing transform has very similar
form to the Fourier matrices, and its approximate inverse is easily calculated. From
equations 18 and 19, we claim that the inverse matrix for each trace can be accurately
approximated by the adjoint of the forward matrix, scaled by α(ql).

NMO BY TRANSFORM

The kinematics of the shift required for the NMO correction simply shift data values
backwards from input time, tx, to output time, t0, where tx depends on t0. For ideal
continuous data, the input and output times are both arbitrary, but for discrete field
data, both must coincide exactly with a sampling time or values must be interpo-
lated. In the continuous case, this is exactly a nonstationary shift by combination
as described by Margrave (1998), where for the NMO correction, the nonstationary
shift is expressed as,

∆NMO (t0) = tx (t0)− t0, (20)

(Burnett and Ferguson, 2008a) with,

tx(t0) =

√
t20 +

x2

v2
, (21)

where, x is the source-receiver offset, and v is the normal moveout velocity. It is the
goal of the NMO correction to flatten each event to its associated zero-offset arrival
time. The NMO correction can be clearly recognized as a nonstationary shift, where
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Figure 2: Synthetic CMP gather. Left: Velocity model. Four reflectors are placed
in a background velocity that increases linearly with depth (v(z) = 7.0 + z kft/s).
Right: CMP gather generated using the velocity model. Arrival times predicted by
Kirchhoff modeling are convolved with a 25 Hz Ricker wavelet.

Figure 3: The forward NMO transform matrix can be composed as the Hadamard
(entry-wise) product of the inverse Fourier transform matrix (left) and the NMO
forward shifting matrix for an example trace at x = 3, 600 ft (right). The real part
of each matrix is shown here.
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Figure 4: The inverse NMO transform matrix can be composed as the Hadamard
product of the forward Fourier transform matrix (left) and the NMO reverse shifting
matrix for an example trace at x = 3, 600 ft (right). The real part of each matrix is
shown here.

Figure 5: Reversible NMO applied to gather from Figure 2. Left: Semblance panel
and picked velocity. Center: NMO-corrected gather. Right: Inverse NMO applied to
gather.
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Figure 6: NMO applied to and removed from a single trace at x = 2, 100 ft. Input
trace: thin-magenta line. NMO-corrected trace: thick-green line. Inverse NMO
without α: line of * symbols. Inverse NMO using α: line of + symbols. The use
of α allows one to recover the input trace by accounting for the non-physical energy
distortion caused by forward NMO (NMO stretch).
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tx(t0) is a special case of p(q), and t0 is a special case of q. Direct substitution into 5
yields the forward NMO transform:

g (t0) =
1

2π

∫ ∞
−∞

F (ω)eiωtx(t0)dω, (22)

where ω is the Fourier dual of tx. This transform takes the frequency spectrum of
an input seismic trace, F (ω), and directly outputs the NMO-corrected trace, g(t0).
Figure 2 shows a synthetic common midpoint (CMP) gather generated using Kirchhoff
modeling. We estimate a reasonable NMO velocity from the synthetic gather in Figure
2 using a semblance scan, and then apply the NMO transform to yield the result in
Figure 5.

In the case of the NMO correction, the time distortion caused by the shift is well-
known, and referred to as NMO stretch (Buchholtz, 1972; Dunkin and Levin, 1973).
Various authors have developed strategies for handling the effects of NMO stretch in
practical seismic data processing (Miller, 1992; Perroud and Tygel, 2004; Shatilo and
Aminzadeh, 2000). NMO stretch manifests the most at far offsets and early times,
where the NMO correction is the most severe. The waveform of an event in this area
is stretched to a longer period as the NMO correction is applied (Yilmaz, 2001). The
amplitude of that event is not affected, but its time distortion causes an alteration in
its frequency content. Specifically, the lower frequency content is boosted, and since
the amplitude of the waveform is maintained, a nonphysical addition of energy to the
input signal has occurred. Yilmaz (2001) quantifies the frequency distortion caused
by NMO stretch in terms of ∆NMO and t0:

∆f

f
=

∆NMO

t0
, (23)

where, f is the dominant frequency of the input waveform. This expression is derived
from geometric arguments and assumes t0 >> f−1 (Yilmaz, 2001). Another approach
to describing NMO stretch comes from analyzing the effects of the NMO correction
in terms of instantaneous frequency (Barnes, 1992). This approach provides excellent
insight into the frequency distortion, and yields an exact expression for NMO stretch,
S:

S =
tx

t0 − x2v′(t0)
v3(t0)

, (24)

where v′ is the derivative of v with respect to time (Barnes, 1992). This expression
quantifies NMO stretch without approximations, and is not dependent only on the
dominant frequency as in equation 23. It is valid for variable velocity models, and for
a constant velocity model, the derivative of velocity goes to zero, and S − 1 agrees
with the approximation in equation 23.

As equation 24 suggests, NMO stretch is itself nonstationary, and therefore can-
not be removed exactly using stationary filtering theory. However, since the data
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processing transform takes advantage of nonstationary filtering, NMO stretch can be
removed exactly. Substituting the NMO variables, ∆NMO and αNMO (t0) into 11,
gives the inverse NMO transform:

F (ω) =

∫ ∞
−∞

αNMO (t0) g (t0) e−iωtx(t0)dt0. (25)

Here, insight into the role of α can finally be gained. αNMO (t0) is given as,

αNMO (t0) ≡ ∂tx
∂t0

=
t0 − x2v′(t0)

v3(t0)

tx
. (26)

The inverse NMO transform does account for NMO stretch, and in fact, αNMO =
S−1 exactly. Realizing that the two are equivalent leads to a straightforward (once
nonstationary filtering is allowed) perspective on predicting and quantifying NMO
stretch. Further, Barnes (1992) proves, in terms of instantaneous power and en-
ergy spectra, that S, and therefore αNMO (t0) indeed describe the nonphysical energy
change caused by the NMO correction. Figure 6 shows the application and removal
of the NMO correction to a single trace. Two cases are shown for inverse NMO: one
where α is not included and one where it is. In the case where α is used, the amplitude
is recovered correctly, whereas when α is not used, inverse NMO preserves the energy
of the NMO-corrected trace, leading to too much energy in the recovered signal. It
can be shown that α plays a similar role in accounting for nonphysical energy changes
introduced by other imaging steps such as so-called “Stolt stretch” associated with
Stolt migration (Burnett and Ferguson, 2008b).

The NMO transform acts as a map between the uncorrected spectrum and the
NMO-corrected trace. As such, the first step in implementing the forward NMO
transform on a trace is to apply a standard forward Fourier transform to the input
trace. This gives the uncorrected spectrum, which becomes the input column vector
for a matrix vector multiplication. Following 16, the discrete NMO transform is given
as,

g
(

[t0]j

)
=

N∑
l=1

ei ωlp(t0,j)

2 π
F (ωl) . (27)

One can also decompose the forward NMO transform operator as the Hadamard
product of the inverse Fourier transform matrix and the NMO shifting matrix follow-
ing 18 (see Figure 3). The frequency axis of the shifting operator must exactly match
the frequency axis used for the forward Fourier transform, since it will simultaneously
remove that Fourier transform as it NMO-corrects the data. The inverse NMO trans-
form can also be implemented by matrix-vector multiplication by substituting tx and
αNMO into 17. As seen in Figure 4, the full inverse NMO transform operator can be
decomposed as the Hadamard product of the forward Fourier transform matrix and
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the NMO reverse shifting matrix. We conclude this example by removing the NMO
correction by transform, shown in Figure 5. Most of the gather is recovered nearly
perfectly–only parts which were mapped to t0 = 0 are not recovered well.

RELATION TO INTERPOLATION

Casting a theoretically continuous input signal as a vector is a natural way to view
recorded seismic data. The time-sampling interval of the recorded data determines the
Nyquist frequency of the recorded signal (Gubbins, 2004), and it can be assumed that
the data is frequency band-limited between zero and the Nyquist frequency (Gubbins,
2004). This means that the recorded signal is exactly determined by this small and
discrete range of frequencies. No information is gained by using filters that operate
on frequencies higher than the Nyquist frequency. This observation, combined with
the Fourier sampling theorem, suggests that a continuous, but band-limited form
of the recorded signal exists, and it is exactly described by the Fourier basis. This
continuous form is not necessarily the same as the true continuous function that a
seismometer attempts to record. Conventional processing algorithms estimate the
values of this continuous function by assuming that the function behaves like some
interpolant between samples. A repeatable and accurate approach to discrete data
processing is to return the exact value of the band-limited continuous equivalent of
the recorded signal at any desired input coordinate. The data processing transform
does exactly this.

The data processing transform is a special case of the nonstationary Fourier shift
theorem. It follows then, for the continuous case, that data processing steps im-
plemented by transform are effectively performing convolution with a shifting scaled
Dirac delta function. The sifting property of the delta function justifies using convo-
lution with a delta function to extract the exact values of a continuous input function
at exact target times. This is the ideal way to apply data processing corrections
in either transform or mapping approaches, but the discrete nature of seismic data
prevents this. By showing that interpolation operators are approximations to the
Dirac delta function, we suggest that any interpolation scheme can be viewed as an
approximation to a continuous and exact nonstationary shift.

The Dirac delta function can be formulated as the generalized limit of other more
common functions (Papoulis, 1962). Two clear examples of this are boxcar (rectan-
gle) and Gaussian functions, which both approach an impulse as their widths go to
zero and their heights go to infinity (Papoulis, 1962). Take for example the boxcar
function:

rε (t) =

{
1
ε
|t| ≤ ε

0 |t| > ε
. (28)

As ε approaches zero, the width of the boxcar goes to zero, and the height goes to
infinity (see Figure 7). As this occurs, the boxcar function approaches the Dirac delta
function:

lim
ε→0

rε (t) = δ (t) . (29)
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The scaled boxcar function is used as an interpolant for nearest-neighbour interpo-
lation, where the width of the boxcar is equal to the sampling interval. This is a
poor choice in most cases, as nearest-neighbour interpolation in the time domain,
for example, has the unwanted effect of multiplying the frequency spectrum by a
sinc function. Conversely, nearest neighbour interpolation in the frequency domain
introduces ringing into the time series.

Linear interpolation is equivalent to convolution with a scaled triangle function
with a width equal to twice the sampling interval (Harlan, 1982). The triangle func-
tion also approaches the delta function as its width goes to zero and height goes to
infinity:

Λε (t) =

{
1
ε
− |t|

ε2
|t| ≤ ε

0 |t| > ε
, (30)

lim
ε→0

Λε (t) = δ (t) . (31)

This behaviour can be seen in Figure 8. A more common interpolant used in seismic
data processing is the sinc function. Data processing corrections implemented by
sinc-interpolation algorithms effectively perform convolution of the input signal with
a shifting scaled sinc-function. In the general continuous case, this has no clear
justification, but for band-limited or discrete data, the purpose of the sinc-function
becomes apparent. The Fourier transform of the sinc-function is a boxcar function
over its own frequency content (Harlan, 1982). Since the ideal interpolant should not
affect the frequency content of the data while it estimates an intermediate value, a
sinc function with frequency content at least up to the Nyquist frequency of the input
signal will be the ideal interpolant (Harlan, 1982). Computational efficiency is often
increased by truncating the length of the sinc operator (Harlan, 1982), and tapering
of the truncated sinc function is often performed (Rosenbaum and Boudeaux, 1981)
to reduce the Gibbs phenomena ringing.

The sinc function is a very good choice for an interpolant as it attempts to respect
the finite bandwidth of the recorded data. However, convolution with a sinc function
is still an approximation to ideal continuous convolution with the delta function.
For the following expression (Elliot and Rao, 1982), as ε approaches infinity, the
normalized sinc function approaches an impulse (See Figure 9):

sincε (t) =
ε sin π εt

π εt
, (32)

lim
ε→∞

sincε (t) = δ (t) . (33)

There are more similarities between the narrowing sinc function and the Dirac delta
function than just the shape of the pulse. When ε is less than infinity in 32, the
side lobes of the sinc function mimic Gibbs phenomenon in Fourier transform theory
(Papoulis, 1962). Since the Fourier transform of a sinc function is a boxcar function,
one can also visualize how it approaches the delta function in the Fourier domain.
As the sinc function narrows, its frequency content increases, and its boxcar Fourier
transform broadens. When the sinc function finally becomes an impulse, its Fourier
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spectrum is an infinitely wide boxcar, which is simply a constant, just as the Fourier
transform of the delta function. Applying a band-pass filter to a delta function yields
a sinc function, and conversely, the sinc-function is a band-limited estimation of
the Dirac delta function. Therefore, the sinc-function interpolant, before truncation
or tapering, respects the Fourier basis assumed by the Fourier transform, and is
equivalent to processing by discrete nonstationary filtering.

The inverse to any processing step is exactly formulated here for the continuous
case using the nonstationary version of the Fourier shift theorem. This is not sur-
prising, as even the conventional procedure of mapping data directly between input
and output times is exactly reversible assuming continuous data. Casting the integral
kernel as a discrete matrix defined on the sampling intervals allows a precise method
of approximating the exact continuous form assuming a Fourier basis.

CONCLUSIONS

Using the theory of nonstationary filtering, we have developed a general transform
that applies and removes many common seismic data processing and imaging oper-
ations. Any data processing or imaging step that can be viewed as a nonstationary
shift in any domain is a special case of this transform. We have provided a deriva-
tion of the general data processing transform and we have used NMO as a familiar
example.

Like the Fourier transform, the data processing transform is a mixed-domain trans-
form. In the general case, the input data should be viewed as an image, and then
a distorted version of that image is the desired output. The data processing trans-
form moves data directly between the Fourier spectrum of the input image and the
corrected image. Regardless of the physical meaning of input and the Fourier co-
ordinates, viewing the input and output data each as an image makes the general
application of the transform to any processing step clear. The physical meaning of
the transform coordinates and distortions can be defined only when discussing specific
processing steps.

Common nonstationary shifts in seismic data processing are often nonphysical, as
they do not conserve the energy of a given input signal. The general data processing
transform predicts and quantifies the change in energy caused by such processing
steps. Processing artifacts such as NMO stretch associated with the NMO correc-
tion and Stolt stretch associated with Stolt and frequency-wavenumber migration are
examples of this type of nonphysical energy change. Under the framework of the
general data processing transform, these effects are both special cases of, and are
easily quantified by, the nonstationary scaling function α(q). We have shown that
the data processing transform is reversible by accounting for these energy changes
while simultaneously reversing the kinematic shift applied by the forward transform.

Rather than explicitly interpolating discrete data, the data processing transform
assumes that the input signal behaves according to the Fourier basis between samples.
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The Fourier transform itself predicts a continuous form of given discrete data, and the
transform here performs a nonstationary shift on this continuous function. Just as in
the stationary case, nonstationary shifts can be viewed as convolution with a Dirac
delta function. We have demonstrated how common interpolants such as boxcar,
triangle, and sinc functions approximate the delta function, but add assumptions
about how the input signal behaves in between samples which may contradict the
Fourier basis. By analysis in both input and Fourier domains, we have shown that
the use of an untruncated sinc function as an interpolant is equivalent to the discrete
form of this transform.

Having a reversible transform for seismic data processing allows the various stages
of a processing flow to be viewed as valid processing domains. For example, one may
use this transform to apply a correction to the input data which organizes it into
a format better suited for multiple attenuation, then perform multiple attenuation,
and last transform back to the input domain with no residual effects of the correction
itself. Further, the discrete form of this general transform provides a straightforward
framework for constructing and understanding the matrix operators associated with
seismic imaging steps. Future studies may be able to exploit symmetries of these
operators to improve computational efficiency while mitigating interpolation artifacts.
We anticipate a variety of future applications of the reversible transform using these
concepts.

Figure 7: Nearest-neighbour in-
terpolant approaching δ (t). As
ε approaches zero, the rectangle
function defined by equation 28
approaches the Dirac delta func-
tion. Thin magenta line: ε = 1.0.
Green line: ε = 0.5. Thick cyan
line: ε = 0.1.
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Figure 8: Linear interpolant ap-
proaching δ (t). As ε approaches
zero, the triangle function defined
by equation 30 approaches the
Dirac delta function. Thin ma-
genta line: ε = 1.0. Green line:
ε = 0.5. Thick cyan line: ε = 0.1.

Figure 9: Sinc interpolant ap-
proaching δ (t). As ε approaches
infinity, the sinc-function defined
by equation 32 approaches the
Dirac delta function. Magenta *
line: ε = 5.0, Dotted green line:
ε = 2.5. Solid cyan line: ε = 0.5.
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