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J. C. Newman, Jr.
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ABSTRACT

The stress-intensity factor solutions proposed for a surface crack in a
finite plate subjected to uniform tension are reviewed. Fourteen different
solutions for the stress-intensity factors are compared. These solutions
have been obtained over the past 16 years using approximate analytical
methods, experimental methods, and engineering estimates.

The present paper assesses the accuracy of the various solutions by
correlating fracture data on surface-cracked tension specimens made of a
brittle epoxy material. TFracture of the epoxy material was characterized by
a constant value of stress-intensity factor at failure. Thus, the
correctness of the various solutions are judged by the variations in the
stress-intensity factors at fajlure. The solutions were ranked in order of
minimum standard deviation. The highest ranking solutions correlated
95 percent of data analyzed within *10 percent, whereas the lowest ranking
solutions correlated 95 percent of data analyzed within *20 percent.
However, some solutions could be applied to all data considered, whereas

others were limited with respect to crack shapes and crack sizes that could

be analyzed.
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INTRODUCTION

Surface cracks [1,2) are among the most common flaws in many practical
structures. Accurate stress-intensity factors for surface cracks are
needed for reliable prediction of crack-growth rates and fractures
strengths. Exact solutions are not available,
but solutions have been obtained by approximate methods. However, due to
the difficulties involved, these approximate solutions differ considerably.

In 1973, Merkle [3] and Keays [4] presented reviews of some of the
earlier stress-intensity factor solutions for the surface crack. Since
these reviews, the number of proposed solutions have nearly doubled. The
objective of the present paper was to review the stress-
intensity factor solutions proposed for the surface crack in a finite
plate subjected to uniform tension and to assess the accuracy of the
various solutions by correlating fracture data on a brittle material.
Fourteen stress-—-intensity factor solutions were reviewed. Other solutions,
those that had severe limitations on crack shape and crack size, were not
considered in the assessment. This review was limited to linear-elastic analyses
and to application to brittle materials.

The present assessment of the fourteen éolutions was based on correlating
fracture data. Fracture data from a large number of tests on surface-cracked
tension specimens made of a bfittle epoxy material were available in the
literature [5]. In theée data, the crack-depth-to-
specimen-thickness ratios ranged from 0.15 to 1 and the crack-depth-to-
crack-length ratios ranged from‘0.3 to 0.84. PFracture of the epoxy
material was characterized in the present paper by a constant value of

stress-intensity factor at failure. Thus, the

»

¥

f § ¥ E 8§ B E XN IEEHEEGNEERETEIEITIERTE:



correctness of the various solutions was judged by the variations in the
stress-intensity factors at failure, and the solutions were ranked in order
of minimum standard deviation. The range of applicability of the various

solutions was also considered in assessing their usefulness.

SYMBOLS
a depth of surface crack, m
c half-length of surface crack, m
F boundary-correction factor on stress intensity
K mode I elastic stress~intensity factor, 1\T/m3/2
Kcr fracture toughness, N/m3/2
Me’Mk’Ms’Mt’Ml’MZ magnification factors defined in text
n number of data analyzed
Q elastic shape factor for an elliptical crack
S gross—section stress, N/m2
t specimen thickness, m
W specimen width, m
o - standard deviation
¢ complete elliptic integral of second kind
¢ parametric angle of ellipse
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ELASTIC STRESS-~INTENSITY FACTORS

The stress-intensity factor solutions for cracks in finite plates are
usually expressed in terms of a boundary-correction factor that modifies
the stress-intensity factor for cracks in infinite bodies. Thus, the
elastic solution for an elliptical crack embedded in an infinite solid
(Fig. 1) has a major role in the surface-crack solution. In this section,
a brief review of the stress-intensity factors for the elliptical crack
embedded in an infinite solid and the form of stress-intensity factor

for the surface crack in a finite plate are presented.

Infinite Solid
Irwin [1) derived an exact expression for the mode I stress-intensity
factor around an elliptical crack in an infinite elastic solid subjected

to uniform tension (Fig. 1) based on an exact stress analysis by Green

and Sneddon [6)]. The stress-intensity factor along the boundary of the

elliptical crack was given by

2 1/h
K = §!§§ EE c052¢ + sin2¢ (1)
c

where ¢ 1is the complete elliptic integral of second kind and is given by

2 2. a® 2. .1/2
¢ = (sin“¢ + =5 cos ¢) d¢ (2)
c

=

o

As 1is customary, the elliptic integral is expressed in terms of the elastic
2
shape factor, Q. The shape factor Q equals ¢ .
Very useful empirical expyressions for @Q have been developed by Rawe

(see Ref. 3). The expressions are

’
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The maximum error in the stress-intensity factor by using these equations
for Q was about 0.13 percent for all values of a/c. (Rawe's original
equation was written in terms of a/2c.)

For c > a the maximum stress-intensity factor is at ¢ = m/2 and

is given by

Finite Plate
The surface crack in a finite plate is shown in Figure 2. The
crack is semi-elliptical with a crack of half-length c¢ and of depth a.
The plate is of thickness t and width, W, which is usually large with
respect to the crack length. The configuration is subjected to a uniform
tensile stress, S, normal to the crack plane. The form of the mode 1

stress-intensity factor is given by

K =8 /H%F(%, —2‘-, -%, 6) (5)

The boundary-correction factor, F, accounfs for the influence of the front
face, back face, and finite width on the stress-intensity factor for a
crack in an infinite solid. The parametric angle is defined in the

insert on Figure 2. Many analysts, through approximation techniques,

have tried to determine the correct
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expression for F. Some of the approximate methods used were the
alternating method, finite-element method, boundary-integral equations,
method of lines, line-spring model, experimental methods, and engineering
estimates.

In the Appendix, fourteen solutions [1,7-22] for the boundary-correction
factor, F, are presented. Table I gives the chronological order of
development for these solutions, the method used, limitations on a/c,

a/t and 2c¢/W, and the form of the results. The solutions were given

in either graphical or equation form. Most solutions were

proposed for analyzing fracture of surface-cracked tension specimens and
give the stress-intensity factor at the maximum depth point. A few

give the stress-intensity factors at other locations along the crack front
for a/ec ratios greater than about 0.6. Some solutions also

included plasticity corrections for analyzing fracture of ductile
materials. However, in the present paper only the elastic solutions are

presented and used.
COMPARISON OF STRESS INTENSITY CORRECTION FACTORS

Figures 3 to 6 show a comparison among the various stress intensity
correction factors for the surface crack subjected to uniform tension for
some common crack shapes (a/c) as a function of a/t. Figure 3 shows the
stress intensity corfection factor, F, at the maximum depth point
(¢ = m/2) for a crack with an a/c ratio of 0.2. The stress-intensity
factor at the maximum depth point was also the maximum stress-intensity
value. The solid and dashed curves show correction factors obtained from

equations and graphs, respectively. These results show that for a/t

¢
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ratios less than about 0.2, most solutions were in good agreement (i5
percent). However, for a/t ratios greater than 0.2, the differences
among the various solutions were considerable. The percentage differences
were as large as 80 percent for an a/t ratio of 0.6. The upper solid
line at a/t =1 (F = 2.35) denotes the equivalent correction factor
for a through crack of length 2c in an infinite plate. This is
the approximate limiting value for the surface crack as a/t approaches
unity.

Figure 4 shows the correction factor at the maximum-depth point
but for a crack with an a/c ratio of 0.6. The stress-intensity factor
at ¢ = m/2 was alsoc the maximum stress intensity for most solutions
which reported the variation in stress intensity along the crack front
[3, 18 and 22]. 1In Reference 22, for an =a/t ratio of 0.8 the maximum
stress intensity did not occur at the maximum depth point but occurred
near the intersection of the crack with the front face (¢=0). Figure U4 shows
that for a/t ratios less than about 0.3, most solutions agree within
about 5 percent. For an a/t ratio of 0.6, the percentage difference
between the upper and lower bounds was abéut 20 percent. Again, the
upper solid line at a/t =1 (F = 1.65) denotes the approximate limiting
value for the surface crack as a/t approaches unity.

" Figures 5 and 6 show the correction factor at ¢ = m/2 and the
maximum value, respectively, fér a semi-circular surface crack (a/c = 1).
The maximum stress-intensity factor occurred at or near the intersection
of the crack with the front surface, ¢ = 0. Some of the fourteen solutions
reviewed were not included in these figures because they did not

consider the semi-circular crack or their results should not be applied
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to these particular values of ¢; Figure 5 shows that all solutions, except
the estimate from Irwin [1], agree within about 5 percent for a/t ratios
less than 0.4. For larger a/t ratios, the percentage difference was as
large as 35 percent. The results from Hellen and Blackburn [26] (not
included in the fourteen solutions reviewed) have also been included in
Figure 5 for comparison. Hellen and Blackburn analyzed only the semi-
circular surface crack using a three-dimensional finite-element analysis.

Figure 6 shows the maximum stress-intensity factors for semi-circular
surface cracks as calculated by four investigators. The maximum stress-
intensity values reported in the literature [3, 21, and 26], occurred at
or near the intersection of the crack with the front face. Again, the
finite-element results from Hellen and Blackburn [26] and unpublished
results from Kobayashi have also been included for comparison. The
results from Kobayashi were obtained using the analysig described in
Reference 20. For a/t ratios less than 0.3, the solutions were in good
agreement. However, for larger a/t ratios, the solutions generally
disagree (as much as 30 percent). The results from Kobayashi and Raju
and Newman ([21] were in good agreement (within 5 percent).

Some of the differences shown in Figures 3 to 6 may be attributed to
improper boundary conditions imposed on the surface-crack configuration.
Some of the earlier stress~-intensity factor solutions [10, 17] did not
aﬁalyze the surface-crack configuration, but analyzéd approximate
configurations for which solutions could be readily obtained, such as an
elliptical crack approaching a free boundary in a semi-infinite solid -
(18] or two elliptical craéks approaching each other in an infinite solid.

Kobayashi [20] has also demonstrated that his earlier applications of the
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alternating method inadvertently induced improper bending restraint by
limiting the areas of front- and back-faces that are free of residual
surface tractions. The more recent analyses of the surface crack [21, 25
and 26] have used the finite-element method and any inaccuracies in these
analyses would be associated with modeling the surface crack and with

how well the governing equations in the interior were satisfied.

ANALYSIS OF FRACTURE DATA

The accuracy of the stress-intensity factor solutions, previously
reviewed, were independently verified herein by analyzing fracture data
from the literature on brittle epoxy materials. These data had a wide
range in crack shape (a/c) and crack size (a/t). Solutions which gave
the best correlation of data and which applied over the widest range of
af/c and a/t were regarded as the most useful.

Smith [5] conducted fracture tests on a large number of surface-
crack tension specimens made of a brittle epoxy material (ultimate
tensile strength of about 60 MPa). All his specimens were 25 mm wide
and héd thicknesses ranging from 2.5 to 9.5 mm. He conducted 150
fracture tests on specimens with a/t ratios that ranged from 0.15 to
1 and a/c ratios that ranged from 0.3 to 0.84. The test specimens were
arranged into five different groups. Each group of specimens was
manufactured at a different time (denoted with a "plate date") and
each group had the same specimen thickness. The estimated plane-strain
plastic-zone size using the largest value of fracture toughness (computed)
was about 0.015 mm. This estimated plastic-zone size was orders of magnitude

smaller than the minimum specimen thickness. The extremely small plastic
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zone indicates that linear-elastic analyses are adequate.

The fourteen stress-intensity factor solutions presented in the
Appendix were used herein to analyze Smith's fracture data on epoxy
specimens. Fracture was characterized herein by a constant value of
stress-intensity factor at failure (denoted as Kcr)' The fracture
toughness, Kcr’ for each group of specimens was calculated for each
solution by averaging the stress-intensity factors at failure for

data where the a/t ratios were less than 0.5 and was given by
n
I K, (6)

where n 1s the number of data analyzed for each group of specimens.
This particular limit on a/t was chosen because, as previously mentioned,
for low a/t ratios most solutions were in fair agreement. Thus, the

calculated fracture toughness values would also be in fair agreement.

The fracture toughness values computed from the various solutions for each group of
specimens are given in Table IT. As expected, the maximum and minimum KCr values
from the various solutions for each "plate date" material were in fair agreement

(within #10 percent of their average value).

ASSESSMENT OF THE SOLUTIONS

To assess the accuracy of the various stress-intensity factor
solutions, comparisons afe made between the calculated stress-intensity
factors at failure and the fracture toughness, Kcr’ for all fracture data
considered (0.15 < a/t < 1; 0.3 < a/c < 0.84). Thus, for a/t ratios greater

than 0.5, these comparisons show how well the various solutions predict failure
of the epoxy specimens. Fracture data which exceeded the limitations on a/t
or afc for each solution (see Table I) were not included in the analysis

using that particular solution.
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Figures 7 through 20 show the ratio of the stress-intensity factor at
failure normalized by the fracture toughness, Kcr’ plotted against the a/t
ratio for each solution. The fracture toughness values used for each group
of specimens are given in Table II. The solid line at unity denotes
perfect agreement and the dashed lines denote #10 percent scatter. Stress-
intensity factor ratios (K/Kcr) that deviate substantially from unity
indicate substantial deficiencies in that particular solution. (The ratio
of K/Kcr is equivalent also to the ratio of experimental failure stress to
predicted failure stress.) The standard deviation (o) and the number of
tests analyzed (n) are also shown on each figure.

To rank the various solutions, the standard deviation was calculated
from the results for each stress-intensity factor solution. The standard

deviation was given by

where n 1is the number of data points analyzed and
= _
e, =% 1 (8)

Ki is the stress-intensity factor at failure for each data point
considered and Kcr is the fracture toughness for that particular group
of specimens.

The ranking of the various solutions in order of minimum standard

deviation is shown in Table III. This table shows the investigator(s),
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date of publication, limitation on a/t, percent of data analyzed, standard deviation
and the form of the results for each solution. The standard deviations ranged from
.0k to .089 for the fourteen solutions considered. Assuming a normal
distribution, two standard deviations (+20) about the mean (K/Kcr = 1)
form bounds in which'95 percent of the data should fall. The highest ranking
solutions correlated 95 percent of the data analyzed within #+10 percent,
whereas the lowest ranking solutions correlated 95 percent of the data
analyzed within #20 percent. However, the percent of data analyzed ranged
from 57 to 100 percent. Of the lowest ranking solutions, most under-
estimated the stress-intensity factors for a/t ratios greater than 0.5
(K/Kcr less than unity); and one solution (Newman, Fig. 15) overestimated
the stress-intensity factors for a/t greater than about 0.8.

The stress-intensity factor solutions which gave low values of
standard deviation tended to give large values for the correction factors
shown in Figures 3 to 5. Those solutions which used stress-intensity
factors at locations other than the maximum-depth point for the near semi-circular
cracks (Figs. 9, 19, and 20), generally, gave low values of standard deviation. Only
three solutions (Fig. 15, 19 and 20) used a finite-width correction on the
stress-intensity factor for the surface crack. Analyses made with a
finite-widtﬁ correction gave slightly lower values of standard deviation
than did the same analyses made without a width correction (see Table III,

Raju and Newman, 1977).
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CONCLUDING REMARKS

The stress-intensity factor solutions proposed for a sufface crack in a
finite plate subjected to uniform tension were reviewed. These solutions
have been developed over the past sixteen years using approximate analytical
methods, experimental methods, and engineering estimates. Comparison of
the various solutions at the maximum depth point showed good agreement (15
percent) for crack-depth-to-specimen~thickness ratios less than about 0.3.
However, for larger crack-depth-to-specimen-thickness ratios (0.3 to 1) the
solutions were in considerable disagreement (20 to 80 percent), especially,
for cracks with small crack-depth-to-crack-length ratios (0.2 to 0.6). Some
of the discrepancies among the various solutions were attributed to improper
boundary conditions imposed on the surface-crack configuration.

To assess the accuracy of the various solutions, fracture data on
surface-crack tension specimens made of a brittle epoxy material were analyzed.
The various solutions were ranked on the variation in the stress-intensity
factors at failure. Standard deviations ranged from .04k to .089 for the
fourteen stress-intensity factor solutions considered. The solutions,
ranked in order of minimum standard deviation, were Raju-Newman, Smith,
Newman-Raju, Paris-Sih, Masters-Haese-Finger, Irwin, Newman, Kobayashi,
Smith-Alavi, Rice-Levy, Smith-~Sorensen, Shah-Kobayashi, Anderson-Holmes-
Orange, and Kobayashi-Moss. The highest ranking solutions correlated 95
percent of the data analyzed within +10 percent, whereas the lowest
ranking solutions correlated 95 percent of data analyzed within 120 percent.
However, some solutions were applied to all data considered, whereas

others were limited on crack shapes and crack sizes that could be analyzed.
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APPENDIX

BOUNDARY-CORRECTION FACTORS FOR SURFACE CRACKS

IN FINITE PLATES

The fourteen expressions for the boundary-correction factor, F, used
in the text are briefly reviewed herein. The stress-intensity factor is
given by equation 5.

Irwin (1962)[1]. - He estimated the boundary-correction factor for

a shallow semi-elliptical surface crack in a finite-thickness plate at
¢ = m/2 as

F=/1.2~1.1 (9)

The coefficient 1.1 accounted for the combined influence of both the
front- and back-face effects in the range 0 < a/t < 0.5 and 0 < a/ec < 1.

Paris and Sih (1965)[7] - They estimated the correction factor at

¢ = m/2, which included a front- and back-face correction, as

a. 2t Ta
= + . - =3 -=
F=(1+0.12(1-2) [Ztan () (10)
for a/t < 0.75 and a/c < 1. The "tangent" term was obtained from an
analysis of an infinite plate (two dimensional) containing an infinite
periodic array of cracks.

Smith (1966) [3,8). -~ He proposed a modification of the semi-circular

surface crack solution, given in Reference 8, to obtain an estimate for a

semi-elliptical surface crack in a finite-thickness plate under tension
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(Boeing Airplane Co., Structural Development Research Memorandum No. 17,
Aug. 1966, see Ref. 3). The solution presented in Reference 8, using the
alternating method, was the first analysis to consider the variation of
stress intensity around the crack front for a semi-circular surface crack
in a semi-infinite solid.

For fracture, he proposed to use the maximum stress-intensity factor

for which the correction factor was given by
F = MM, £(9) (11)

where M1 and M are the front- and back-face magnification factors,

2
respectively, and f(6) is an angular function (8] (6 = /2 - ¢). The

maximum value of the product M1 times f(8) for various a/c ratios is

a/c M £(0)
.2 1.09
b 1.075
.6 1.06
.8 1.07

1.0 1.21

The back-face magnification factor, M2, for a/c =1 was obtained by Smith

using the alternating method (see Ref. 3). Using M, for a/c =1 and

2
the single edge-crack solution for a/e = 0 [9]), curves of M2 for other
a/c ratios were estimated by graphical interpolation. The curves for
M2 have been reproduced in Reference 3 on page 25. These curves had

various limitations on the maximum a/t ratio. For a/c = 0.2, the

B RN ENEYNINEEREEEREEIIIL;



16

maximum a/t ratio was less than 0.6 and for a/c =1, the maximum a/t
ratio was less than about 0.9.

Kobayashi and Moss (1969)[10). - They estimated the correction factor as

F = MlM2 (12)

where Ml’ the front-face magnification factor, was given by

2
- a
M =1+0.12 (1 - C) (13)

The back-face magnification factor, M,, was obtained from an existing

2
solution for a pair of coplanar elliptical cracks under uniform tension,
with a plane of symmetry (simulated back face) located midway between the
two cracks [10]. Assuming no interaction between the front- and back-~
faces, boundary-correction factors were estimated for ratios of a/c
ranging from O to 1 and ratios of a/t ranging from O to 0.98. The
curves for the correction factors (product of Ml and M2) are given in
Reference 10 (page L42).

Masters, Haese, and Finger (1969)(11]. - They used an experimental

method to obtain the correction factors. The experimental method involved L
fracture tests of surface-crack tension specimens (with various a/c and
a/t ratios) made of é2l9-T87 aluminum alloy material (t = 16mm) at room
and cryogenic temperature. The correction factors were then obtained by
reduiring that the calculated stress-intensity factor be equal to the

plane-strain fracture toughness, K. , at the same test temperature. The

Ic

correction factors were given as

>
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F=1.1M (1)

for a/t < 0.85 and 0.1 < a/c < 0.8. The curves for MK are given in
Reference 11 ( page 67 , Fig. 58). These same correction factors have
also been used to correlate fracture data on aluminum and titanium alloys
in Reference 12.

Smith and Alavi (1969)[13]. - They were the first to analyze the

part-circular surface crack in a semi-infinite solid using the alternating
method. The crack was a segment of a circle where the crack depth, a,
was less than the crack length, c¢. The boundary-correction factor for the

part-circular surface crack in a finite-thickness plate was given by
F=MM (15)

for a/t < 0.8 and 0.4 <a/e <1. M, was the front-face magnification

and Mt was the back-face magnification. MS was the same as the product

of M1 times f£(8) in equation (11). The back-face magnification was

estimated from the solution for an embedded circular crack near a free
boundary in a semi-infinite solid. Curves of Mt for various a/e¢ ratios
are given in Reference 3 (page 33).

Rice and Levy (1970)(14]). - They determined the stress-intensity

factors at ¢ = m/2 wusing a "line spring'” model. The line spring model
reduces the three-dimensional crack problem to a two-dimensional analogy
(single-edge~cracked plate) where the crack is represented as a line of
reduced stiffness. The results of their analysis were presented

graphically in terms of the ratio of the stress-intensity factor at the
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deepest point of a semi-elliptical surface crack (K.) to the stress-

I

intensity factor for a single-edge-~cracked specimen (Kw) with a crack of

the same depth. The correction factor, rewritten in terms of equation 5 ,

Kr\ _
F = E—/Qf (16)

where KI/Kw was obtained from Reference 14 for uniform tension and f,

was given by

the correction factor for a single-edge-cracked plate [9], was given by

2
£ =1.12 - 0.23 (%) + 10.55 (%) - 21.71 (%)

L
+ 30.38 (%) (17)

o

They calculated the ratio of K /K, for 0.1 <Z2<0.7Tand 0<=<1.

o 0

Anderson, Holms, and Orange (1970)(15]. - They modified the boundary-

correction factor equation of Paris and Sih (7] and estimated the

correction factor as

F=_1+0.12(1- f:‘—)]jM tan (Gio (18)

ma

for a/t <1 and ~%.§’l where @Q is the elastic shape factor.

Newman (1972)[16]}. - He used the analytical results from Smith and

Alavi [12], Rice and Levy [13], and Gross and Srawley (9] for particular
ranges of a/c to obtain an expression for the correction factor. The
results from Smith and Alavi for a near semi-circular crack (a/c = 0.k

and 1), Rice and Levy for shallow cracks (a/c = 0.1 and 0.2), and Gross
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and Srawley for a single-edge crack (a/c = Q) were used. An equation was
chosen to fit these particular results. The equation for the correction

factor was given by

Pewg s [y s (fazom @) e[ 1] as)

where

3
p=2+38 (%) (20)

The expression for Q was approximated by

1.64
1+ 1.47 (%) for

O
1]

0|
A
’_l

(21)
1.6k
1+ 1.47 (%) for

0|
Y
'_.J

E:»)
1]

The maximum error in the stress-intensity factor by using three equations
for Q was about 0.25 percent. The front-face correction, Ml’ was

given by

1.13 - 0.1 (3) for 0.02 %<

0@

<1

"

(22)

(o] Cy- a :
— = = >
/a (1 + 0.03 a) for = 1

!

For -% < .02, the stress-intensity factor for the single-edge cracked
plate (a/c = 0) subjected to uniform tension [9] was assumed to apply and

F was given by equation 1T7.
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As a/t approaches unity for any value of a/c (except zero), equation
5 with F given by equation 19 reduces to the stress-intensity factor for a
through crack of length 2c¢ in a finite-width plate. The "secant" term
in equation 19 is the finite-width correction.

Shah and Kobayashi (1972)[17]. - They estimated the correction factors

from an empirical front-face magnification (Ml) and from an analytical
back~face magnification (M2) obtained from the solution for an embedded
elliptical crack approaching the free surface of a semi-infinite solid

(18]. The front-face magnification was given by equation 13. The correc-
tion factor, due to both the front- and back-faces, was obtained by
multiplying the back-face magnification, M2, by equation 13. The correction

factor was given by

F =M = MM, (23)

for a/t < 0.9 and 0.1 <

0o

< 1. The curves for MK are given in
Reference 17 (page 11L).

Smith and Sorensen (1974)({19]. - They used the alternating method to

calculate the variation of the stress—intensity factor along semi-elliptical
surface cracks in finite-thickness plates. They made calculations for a/c
ratios ranging from 0.1 to 0.6. The results for a/c ratios of 0.8 and 1
used by Smith and Sorehsen were obtained from Shah and Kobayashi [17].

The boundary-correction factors are presented in Reference 19 (page 88).

Kobayashi (1976)[20]. - He used the alternating method with improved

boundary conditions to obtain the correction factors. In previous analyses

by Kobayashi using the alternating method some inappropriate boundary
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conditions (bending restraints) were inadvertently induced by limiting the
areas of front- and back-face surfaces that are free of residual surface
tractions. To estimate the effect of this bending restraint, a two-
dimensional finite-element model of a single-edge-cracked tension plate

was analyzed with side constraints. The side constraints induced a similar
bending moment. The change in stress intensity caused by this bending
moment was calculated and used to modify the stress intensity for the
surface crack. The stress-intensity factors at the maximum depth point
were calculated for a/c = 0.2 and 0.98. The stress-intensity factor for
other a/c ratios (0.4, 0.6 and 0.8) were obtained by interpolation between
the results from a/c = 0.2 and 0.98. The correction factors were given

by F =M, for a/t < 0.9 and 0.2 < a/c < 0.98. The curves for M, are
given in Reference 20 (Fig. 12).

Raju and Newman (1977)[21,22]. - They used a three-dimensional finite-

element analysis with singularity elements to obtain the correction factors.
To verify the accuracy of the finite-element method, elliptical cracks
(a/c = 0.2 to 1) embedded in a large solid body were analyzed [21] and
the stress-intensity factors agreed generally within 1 percent of the
exact solutions [6]. To verify the finite-element models employed, conver-
gence was studied by varying the number of degrees of freedom from 1500
to 6900. The correction factors were calculated for semi-elliptical
surface cracks (a/c = 0.2 to 2) in finite-thickness plates with a/t ranging
from 0.2 to 0.8 for W > 10c. The correction factors are tabulated in
References 21 and 22.

For fracture, they proposed to use the maximum stress—intensity.factor

for a/c < 0.6. For a/c ratios between 0.6 and 1, an "average"
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stress-intensity factor (average between the values at ¢ =0 and ¢ = 1/2)
was used. These results were calculated for a surface crack in a wide
plate. To compensate for the influence of finite width, the results were

multiplied by f_, the finite-width correction (23] given by

fw = | sec [%9 /%] (2kL)

Newman and Raju (1978) . — They used the results from Raju and

Newman (21,22] for the semi-elliptical surface crack and from Gross and

Srawley (9] for a single-~edge crack to obtain an equation for the
correction factors. The form of the equation was similar to that used in

Reference 16. The equation was given by

P 2p
F:Me=[ml+(]Q§-Ml>(%) tfa g, - D@ ]fw (25)

where p = /1 and Q 1is given by equations 3. The front-face correction,

Ml’ was gilven by

M, =1.13-0.1 (3) for .03<2<1
¥
(26) i
= |C < a
Ml—];(l+.03a) for Z>1
and M2 was given by
I a
Me—/: for C_<_l
(27)
- T _ a
M2—1+a(/; 1) for = >1
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The finite-width correction, fw’ was given by equation 24. For %-< .03,
the stress-intensity factor for the single-edge crack plate, a/c = 0,
subjected to uniform tension [9]} was assumed to apply and F was given by
equation 17.

Other Analyses of the Surface Crack. - A large number of reports

consider the surface-crack configuration. Some of these reports analyze
[24-2T7] or experimentally determine [28] the stress-intensily factors for
only a few select configurations. The results from these reports were
too limited in values of a/ec and a/t to use in the "Analysis of
Fracture Data" section. Many other reports (see, for example, References
[29-30]) use stress-intensity factor solutions previously reviewed. One
report [31] analyzes the surface-crack configuration from a non-fracture

mechanics approach.
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Fig. 3- Stress-intensity correction factor at maximum depth point for
semi~elliptical surface crack (a/c = 0.2).
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Fig. 4- Stress-intensity correction factor at maximum depth point for

semi-elliptical surface crack (a/c = 0.6).
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Fig. 5- Stress-intensity correction factor at maximum depth point for
semi-circular surface crack (a/c = 1).
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Fig. 6- Maximum stress-intensity correction factor for semi-circular
surface crack (a/c = 1).
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