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ABSTRACT '

The stress-intensity factor solutions proposed for a surface crack in a

finite plate subjected to uniform tension are reviewed. Fourteen different

solutions for the stress-intensity factors are compared. These solutions

have been obtained over the past l6 years using approximate analytical

methods, experimental methods, and engineering estimates.

The present paper assesses the accuracy of the various solutions by

correlating fracture data on surface-cracked tension specimens made of a

brittle epoxy material. Fracture of the epoxy material was characterized by

a constant value of stress-intensity factor at failure. Thus, the

correctness of the various solutions are judged by the variations in the

stress-intensity factors at failure. The solutions were ranked in order of

minimum standard deviation. The highest ranking solutions correlated

95 percent of data analyzed within ±10 percent, whereas the lowest ranking

solutions correlated 95 percent of data analyzed within ±20 percent.

However, some solutions could be applied to all data considered, whereas

others were limited with respect to crack shapes and crack sizes that could

be analyzed.



INTRODUCTION

Surface cracks [1,2] are among the most common flaws in many practical

structures. Accurate stress-intensity factors for surface cracks are

needed for reliable prediction of crack-growth rates and fractures

strengths. Exact solutions are not available,

but solutions have been obtained by approximate methods. However, due to

the difficulties involved, these approximate solutions differ considerably.

In 1973, Merkle [3] and Keays [k] presented reviews of some of the

earlier stress-intensity factor solutions for the surface crack. Since

these reviews, the number of proposed solutions have nearly doubled. The

objective of the present paper was to review the stress-

intensity factor solutions proposed for the surface crack in a finite

plate subjected to uniform tension and to assess the accuracy of the

various solutions by correlating fracture data on a brittle material.

Fourteen stress-intensity factor solutions were reviewed. Other solutions,

those that had severe limitations on crack shape and crack size, were not

considered in the assessment. This review was limited to linear-elastic analyses

and to application to brittle materials.

The present assessment of the fourteen solutions was based on correlating

fracture data. Fracture data from a large number of tests on surface-cracked

tension specimens made of a brittle epoxy material were available in the

literature [5]- In these data, the crack-depth-to-

specimen-thickness ratios ranged from 0.15 to 1 and the crack-depth-to-

crack-length ratios ranged from 0.3 to 0.8U. Fracture of the epoxy

material was characterized in the present paper by a constant value of

stress-intensity factor at failure. Thus, the
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correctness of the various solutions was judged by the variations in the

stress-intensity factors at failure, and the solutions vere ranked in order

of minimum standard deviation. The range of applicability of the various

solutions was also considered in assessing their usefulness.

SYMBOLS

a depth of surface crack, m

c half-length of-surface crack, m

F "boundary-correction factor on stress intensity

3/2
K mode I elastic stress-intensity factor, N/m

3/2
K fracture toughness, N/m

M ,M, ,M ,M ,M_,M0 magnification factors defined in text
e K s t l c.

n number of data analyzed

Q elastic shape factor for an elliptical crack

2
S gross-section stress, N/m

t specimen thickness, m

W specimen width, m

a '• standard deviation

$ complete elliptic integral of second kind

<j> parametric angle of ellipse
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ELASTIC STRESS-INTENSITY FACTORS

The stress-intensity factor solutions for cracks in finite plates are

usually expressed in terms of a boundary-correction factor that modifies

the stress-intensity factor for cracks in infinite bodies. Thus, the

elastic solution for an elliptical crack embedded in an infinite solid

(Fig. l) has a major role in the surface-crack solution. In this section,

a brief review of the stress-intensity factors for the elliptical crack

embedded in an infinite solid and the form of stress-intensity factor

for the surface crack in a finite plate are presented.

Infinite Solid

Irwin [l] derived an exact expression for the mode I stress-intensity

factor around an elliptical crack in an infinite elastic solid subjected

to uniform tension (Fig. 1) based on an exact stress analysis by Green

and Sneddon [6]. The stress-intensity factor along the boundary of the

elliptical crack was given by

$ \ 2
\c

where $ is the complete elliptic integral of second kind and is given by

IT/2 2

/

? « 9 i /?/ . c_i . cL c.i\±ld. _ , /^»\^sin q) + ~~^ cos (p) dtp (2)
c2

0

As is customary, the elliptic integral is expressed in terms of the elastic
2

shape factor, Q. The shape factor Q equals $ .

Very useful empirical expressions for Q have been developed by Rawe

(see Bef. 3)« The expressions are
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Q = 1 + 1.U6U (̂ )1'5 for - < 1c c —

Q = 1 + I.k6k (-2-)1'65 for - > 1
a c

(3)

The maximum error in the stress-intensity factor by using these equations

for Q was about 0.13 percent for all values of a/c. (Rawe's original

equation was written in terms of a/2c.)

For c > a the maximum stress-intensity factor is at <j> = Ti/2 and

is given by

K = S /7j (U)
^ w

Finite Plate

The surface crack in a finite plate is shown in Figure 2. The

crack is semi-elliptical with a crack of half-length c and of depth a.

The plate is of thickness t and width, W, which is usually large with

respect to the crack length. The configuration is subjected to a uniform

tensile stress, S, normal to the crack plane. The form of the mode I

stress-intensity factor is given by

The boundary-correction factor, F, accounts for the influence of the front

face, back face, and finite width on the stress-intensity factor for a

crack in an infinite solid. The parametric angle is defined in the

insert on Figure 2. Many analysts, through approximation techniques,

have tried to determine the correct



expression for F. Some of the approximate methods used were the

alternating method, finite-element method, boundary-integral equations,

method of lines, line-spring model, experimental methods, and engineering

estimates.

In the Appendix, fourteen solutions [1,7-22] for the boundary-correction

factor, F, are presented. Table I gives the chronological order of

development for these solutions, the method used, limitations on a/c,

a/t and 2c/W, and the form of the results. The solutions were given

in either graphical or equation form. Most solutions were

proposed for analyzing fracture of surface-cracked tension specimens and

give the stress-intensity factor at the maximum depth point. A few

give the stress-intensity factors at other locations along the crack front

for a/c ratios greater than about 0.6. Some solutions also

included plasticity corrections for analyzing fracture of ductile

materials. However, in the present paper only the elastic solutions are

presented and used.

COMPARISON OF STRESS INTENSITY CORRECTION FACTORS

Figures 3 to 6 show a comparison among the various stress intensity

correction factors for the surface crack subjected to uniform tension for

some'common crack shapes (a/c) as a function of a/t. Figure 3 shows the

stress intensity correction factor, F, at the maximum depth point

(<j> = Tf/2) for a crack with an a/c ratio of 0.2. The stress-intensity

factor at the maximum depth point was also the maximum stress-intensity

value. The solid and dashed curves show correction factors obtained from

equations and graphs, respectively. These results show that for a/t
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ratios less than about 0.2, most solutions were in good agreement (_+5

percent). However, for a/t ratios greater than 0.2, the differences

among the various solutions were considerable. The percentage differences

were as large as 80 percent for an a/t ratio of 0.6. The upper solid

line at a/t = 1 (F = 2.35) denotes the equivalent correction factor

for a through crack of length 2c in an infinite plate. This is

the approximate limiting value for the surface crack as a/t approaches

unity.

Figure h shows the correction factor at the maximum-depth point

"but for a crack with an a/c ratio of 0.6. The stress-intensity factor

at <j) = TT/2 was also the maximum stress intensity for most solutions

which reported the variation in stress intensity along the crack front

[3, 18 and 22]. In Reference 22, for an a/t ratio of 0.8 the maximum

stress intensity did not occur at the maximum depth point but occurred

near the intersection of the crack with the front face(<{>=0). Figure h shows

that for a/t ratios less than about 0.3, most solutions agree within

about 5 percent. For an a/t ratio of 0.6, the percentage difference

between the upper and lower bounds was about 20 percent. Again, the

upper .solid line at a/t =1 (F = 1.65) denotes the approximate limiting

value for the surface crack as a/t approaches unity.

Figures 5 and 6 show the correction factor at <f> = 7T/2 and the

maximum value, respectively, for a semi-circular surface crack (a/c = l).

The maximum stress-intensity factor occurred at or near the intersection

of the crack with the front surface, $ = 0. Some of the fourteen solutions

reviewed were not included in these figures because they did not

consider the semi-circular crack or their results should not be applied

r
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to these particular values of <}>. Figure 5 shows that all solutions, except

the estimate from Irwln [ 1], agree within about 5 percent for a/t ratios

less than 0.4. For larger a/t ratios, the percentage difference was as

large as 35 percent. The results from Hellen and Blackburn [26] (not

included in the fourteen solutions reviewed) have also been included in

Figure 5 for comparison. Hellen and Blackburn analyzed only the semi-

circular surface crack using a three-dimensional finite-element analysis.

Figure 6 shows the maximum stress-intensity factors for semi-circular

surface cracks as calculated by four investigators. The maximum stress-

intensity values reported in the literature [3, 21, and 26], occurred at

or near the intersection of the crack with the front face. Again, the

finite-element results from Hellen and Blackburn [26] and unpublished

results from Kobayashi have also been included for comparison. The

results from Kobayashi were obtained using the analysis described in

Reference 20. For a/t ratios less than 0.3, the solutions were in good

agreement. However, for larger a/t ratios, the solutions generally

disagree (as much as 30 percent). The results from Kobayashi and Raju

and Newman [21] were in good agreement (within 5 percent).

Some of the differences shown in Figures 3 to 6 may be attributed to

improper boundary conditions imposed on the surface-crack configuration.

Some of the earlier stress-intensity factor solutions [10, 1J] did not

analyze the surface-crack configuration, but analyzed approximate

configurations for which solutions could be readily obtained, such as an

elliptical crack approaching a free boundary in a semi-infinite solid

[18] or two elliptical cracks approaching each other in an infinite solid.

Kobayashi [20] has also demonstrated that his earlier applications of the

B 1 I I I M I I I I I I I 1 I I I I I
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alternating method inadvertently induced improper "bending restraint by

limiting the areas of front- and back-faces that are free of residual

surface tractions. The more recent analyses of the surface crack [21, 25

and 26] have used the finite-element method and any inaccuracies in these

analyses would be associated with modeling the surface crack and with

how well the governing equations in the interior were satisfied.

ANALYSIS OF FRACTURE DATA

The accuracy of the stress-intensity factor solutions, previously

reviewed, were independently verified herein by analyzing fracture data

from the literature on brittle epoxy materials. These data had a wide

range in crack shape (a/c) and crack size (a/t). Solutions which gave

the best correlation of data and which applied over the widest range of

a/c and a/t were regarded as the most useful.

Smith [5] conducted fracture tests on a large number of surface-

crack tension specimens made of a brittle epoxy material (ultimate

tensile strength of about 60 MPa). All his specimens were 25 mm wide

and had thicknesses ranging from 2.5 to 9-5 mm. He conducted 150

fracture tests on specimens with a/t ratios that ranged from O.15 to

1 and a/c ratios that ranged from 0.3 to 0.81*. The test specimens were

arranged into five different groups. Each group of specimens was

manufactured at a different time (denoted with a "plate date") and

each group had the same specimen thickness. The estimated plane-strain

plastic-zone size using the largest value of fracture toughness (computed)

was about 0.015 mm. This estimated plastic-zone size was orders of magnitude

smaller than the minimum specimen thickness. The extremely small plastic

I. I I I I I I I I I I I I I I I I I I
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zone indicates that linear-elastic analyses are adequate.

The fourteen stress-intensity factor solutions presented in the

Appendix were used herein to analyze Smith's fracture data on epoxy

specimens. Fracture was characterized herein by a constant value of

stress-intensity factor at failure (denoted as K ). The fracturecr

toughness, K , for each group of specimens was calculated for each

solution by averaging the stress-intensity factors at failure for

data where the a/t ratios were less than 0.5 and was given "by

K =- E K. (6)
cr n i

where n is the number of data analyzed for each group of specimens.

This particular limit on a/t was chosen because, as previously mentioned,

for low a/t ratios most solutions were in fair agreement. Thus, the

calculated fracture toughness values would also be in fair agreement.

The fracture toughness values computed from the various solutions for each group of

specimens are given in Table II. As expected, the maximum and minimum K values

from the various solutions for each "plate date" material were in fair agreement

(within ±10 percent of their average value).

ASSESSMENT OF THE SOLUTIONS

To assess the accuracy of the various stress-intensity factor

solutions, comparisons are made between the calculated stress-intensity

factors at failure and the fracture toughness, K , for all fracture data

considered (0.15_<a/t£l; 0.3 < a/c £ 0.81*). Thus, for a/t ratios greater

than 0.5, these comparisons show how well the various solutions predict failure

of the epoxy specimens. Fracture data which exceeded the limitations on a/t

or a/c for each solution (see Table I) were not included in the analysis

using that particular solution.
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Figures 7 through 20 show the ratio of the stress-intensity factor at

failure normalized by the fracture toughness, K , plotted against the a/t

ratio for each solution. The fracture toughness values used for each group

of specimens are given in Table II. The solid line at unity denotes

perfect agreement and the dashed lines denote ±10 percent scatter. Stress-

intensity factor ratios (K/KQ ) that deviate substantially from unity

indicate substantial deficiencies in that particular solution. (The ratio

of K/K is equivalent also to the ratio of experimental failure stress to

predicted failure stress.) The standard deviation (a) and the number of

tests analyzed (n) are also shown on each figure.

To rank the various solutions, the standard deviation was calculated

from the results for each stress-intensity factor solution. The standard

deviation was given by

where n is the number of data points analyzed and

cr

K. is the stress-intensity factor at failure for each data point

considered and K is the fracture toughness for that particular group

of specimens.

The ranking of the various solutions in order of minimum standard

deviation is shown in Table III. This table shows the investigator(s),

I I I I I S I I I I I I I I 1 I I I |
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date of publication, limitation on a/t, percent of data analyzed, standard deviation

and the form of the results for each solution. The standard deviations ranged from

.Okk to .089 for the fourteen solutions considered. Assuming a normal

distribution, two standard deviations (+2cr) about the mean (K/K = l)
C X

form bounds in which 95 percent of the data should fall. The highest ranking

solutions correlated 95 percent of the data analyzed within +IQ percent,

whereas the lowest ranking solutions correlated 95 percent of the data

analyzed within ±20 percent. However, the percent of data analyzed ranged

from 57 to 100 percent. Of the lowest ranking solutions, most under-

estimated the stress-intensity factors for a/t ratios greater than 0.5

(K/K less than unity); and one solution (Newman, Fig. 15) overestimated

the stress-intensity factors for a/t greater than about 0.8.

The stress-intensity factor solutions which gave low values of

standard deviation tended to give large values for the correction factors

shown in Figures 3 to 5- Those solutions which used stress-intensity

factors at locations other than the maximum-depth point for the near semi-circular

cracks (Figs. 9, 19, and 20), generally, gave low values of standard deviation. Only

three solutions (Fig. 15, 19 and 20) used a finite-width correction on the

stress-intensity factor for the surface crack. Analyses made with a

finite-width correction gave slightly lower values of standard deviation

than did the same analyses made without a width correction (see Table III,

Raju and Newman, 1977).

• 1 I 1 I 1 I I 1 1 1 I I I 1 1 I I I
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CONCLUDING REMARKS

The stress-intensity factor solutions proposed for a surface crack in a

finite plate subjected to uniform tension vere reviewed. These solutions

have been developed over the past sixteen years using approximate analytical

methods, experimental methods, and engineering estimates. Comparison of

the various solutions at the maximum depth point showed good agreement (+5

percent) for crack-depth-to-specimen-thickness ratios less than about 0.3.

However, for larger crack-depth-to-specimen-thickness ratios (0.3 to l) the

solutions were in considerable disagreement (20 to 80 percent), especially,

for cracks with small crack-depth-to-crack-length ratios (0.2 to 0.6). Some

of the discrepancies among the various solutions were attributed to improper

boundary conditions imposed on the surface-crack configuration.

To assess the accuracy of the various solutions, fracture data on

surface-crack tension specimens made of a brittle epoxy material were analyzed.

The various solutions were ranked on the variation in the stress-intensity

factors at failure. Standard deviations ranged from . OUU to .089 for the

fourteen stress-intensity factor solutions considered. The solutions,

ranked in order of minimum standard deviation, were Raju-Newman, Smith,

Newman-Raju, Paris-Sih, Masters-Haese-Finger, Irvin, Newman, Kobayashi,

Smith-Alavi, Rice-Levy, Smith-Sorensen, Shah-Kobayashi, Anderson-Holmes-

Orange, and Kobayashi-Moss. The highest ranking solutions correlated 95

percent of the data analyzed within ±10 percent, whereas the lowest

ranking solutions correlated 95 percent of data analyzed within ±20 percent.

However, some solutions were applied to all data considered, whereas

others were limited on crack shapes and crack sizes that could be analyzed.

I I I I I I I ' I I I I I I I I I I I I '



APPENDIX

BOUNDARY-CORRECTION FACTORS FOR SURFACE CRACKS

IN FINITE PLATES

The fourteen expressions for the boundary-correction factor, F, used

in the text are "briefly reviewed herein. The stress-intensity factor is

given "by equation 5 .

Irwin (1962)[l]. - He estimated the "boundary-correction factor for

a shallow semi-elliptical surface crack in a finite-thickness plate at

<J> = TT/2 as

F = /1~2 * 1.1 (9)

The coefficient 1.1 accounted for the combined influence of "both the

front- and back-face effects in the range 0 £ a/t £0.5 and 0 £ a/c £ 1.

Paris and Sih (1965) [T] - They estimated the correction factor at

$ = ir/2, which included a front- and "back-face correction, as

F = [l + 0.12(1 - t>lf tan (ff) (10)

for a/t £ 0.75 and a/c £ 1. The "tangent" term was obtained from an

analysis of an infinite plate (two dimensional) containing an infinite

periodic array of cracks.

Smith (1966) [3,8]. - He proposed a modification of the semi-circular

surface crack solution, given in Reference 8, to obtain an estimate for a

semi-elliptical surface crack in a finite-thickness plate under tension

f
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(Boeing Airplane Co., Structural Development Research Memorandum No. 17,

Aug. 1966, see Ref. 3). The solution presented in Reference 8, using the

alternating method, was the first analysis to consider the variation of

stress intensity around the crack front for a semi-circular surface crack

in a semi-infinite solid.

For fracture, he proposed to use the maximum stress-intensity factor

for which the correction factor was given by

F = MjMg f(9) (11)

where M^ and M_ are the front- and back-face magnification factors,

respectively, and f(9) is an angular function [8] (0 = Tr/2 - <})). The

maximum value of the product M,. times f(6) for various a/c ratios is

a/c

.2

.4

.6

.8

l.O

^ f ( e )

1.09

1.075

1.06

1.07

1.21

The "back-face magnification factor, M?, for a/c = 1 was obtained by Smith

using the alternating method (see Ref. 3). Using M for a/c = 1 and

the single edge-crack solution for a/c = 0 [9] » curves of M? for other

a/c ratios were estimated by graphical interpolation. The curves for

M have been reproduced in Reference 3 on page 25. These curves had

various limitations on the maximum a/t ratio. For a/c = 0.2, the

I i I I 1 I If I I I I I I I I I I
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maximum a/t ratio was less than 0.6 and for a/c = 1, the maximum a/t

ratio was less than about 0.9-

Kobayashi and Moss (1969)[10] . - They estimated the correction factor as

F = M^M (12)

where VL , the front-face magnification factor, was given by

2
M^ = 1 + 0.12 (1 - -) (13)

The back-face magnification factor, M~, was obtained from an existing

solution for a pair of coplanar elliptical cracks under uniform tension,

with a plane of symmetry (simulated back face) located midway between the

two cracks [10]. Assuming no interaction between the front- and back-

faces, boundary-correction factors were estimated for ratios of a/c

ranging from 0 to 1 and ratios of a/t ranging from 0 to 0.98. The

curves for the correction factors (product of M^ and M?) are given in

Reference 10 (page

Masters, Haese, and Finger (1969H11]• - They used an experimental

method to obtain the correction factors. The experimental method involved

fracture tests of surface-crack tension specimens (with various a/c and

a/t ratios) made of 2219-T8T aluminum alloy material (t = l6mm) at room

and cryogenic temperature. The correction factors were then obtained by

requiring that the calculated stress-intensity factor be equal to the

plane-strain fracture toughness, KT , at the same test temperature. The

correction factors were given as

I I I 1 I 1 I I I 1 I 1 1 1 I 1 I 1 1 r
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F = 1.1 MJJ. (lU)

for a/t < 0.85 and 0.1 £ a/c £ 0.8. The curves for IVL. are given in

Reference 11 (page 67 »Fig. 58). These same correction factors have

also been used to correlate fracture data on aluminum and titanium alloys

in Reference 12.

Smith and Alayi (1969)[13]. - They were the first to analyze the

part-circular surface crack in a semi-infinite solid using the alternating

method. The crack was a segment of a. circle where the crack depth, a,

was less than the crack length, c. The boundary-correction factor for the

part-circular surface crack in a finite-thickness plate was given by

F = MgMt (15)

for a/t £ 0.8 and O.h £ a/c < 1. M was the front-face magnification
S

and M, was the back-face magnification. M was the same as the product
U S

of M times f(8) in equation (11). The back-face magnification was

estimated from the solution for an embedded circular crack near a free

boundary in a semi-infinite solid. Curves of M. for various a/c ratios
"C

are given in Reference 3 (page 33).

Rice and Levy (1970) [1̂ ]• - They determined the stress-intensity

factors at <f> = TT/2 using a "line spring" model. The line spring model

reduces the three-dimensional crack problem to a two-dimensional analogy

(single-edge-cracked plate) where the crack is represented as a line of

reduced stiffness. The results of their analysis were presented

graphically in terms of the ratio of the stress-intensity factor at the

I I l l - I I I I I I I I I I I I I I I
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deepest point of a semi-elliptical surface crack (K ) to the stress-

intensity factor for a single-edge-cracked specimen (K̂ ) with a crack of

the same depth. The correction factor, rewritten in terms of equation 5 ,

was given by

F=(-i)/Qf (16)

where KT/K was obtained from Reference lU for uniform tension and f,I °°

the correction factor for a single-edge-cracked plate [9] , was given by

2 3
f = 1.12 - 0.23 (f) + 10.55 (f) - 21.71 (f)

+ 30.38 (|) (17)

They calculated the ratio of KT/K for 0.1 < r < 0.7 and 0 < — < 1.I oo _ - ( - _ ' _ c _

Anderson, Holms, and Orange (1970)[15]. - They modified the boundary-

correction factor equation of Paris and Sih [7] and estimated the

correction factor as

F • [l * 0.18 (1 - t O t a n ) (18) [

f\

for a/t _< 1 and — £ 1 where Q is the elastic shape factor.

Newman (I972)_[l61. - He used the analytical results from Smith and

Alavi [12]5 Rice and Levy [13], and Gross and Srawley [9] for particular

ranges of a/c to obtain an expression for the correction factor. The

results from Smith and Alavi for a near semi-circular crack (a/c = O.U

and l), Rice and Levy for shallow cracks (a/c =0.1 and 0.2), and Gross

1 I I I 1 1 I I I 1 I I I 1 E 1 I I
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and Srawley for a single-edge crack (a/c = 0) were used. An equation was

chosen to fit these particular results. The equation for the correction

factor was given by

F = M e = |M1+ (7QJ-V (-) IJsecff f ]

where

„ 3
p = 2 + 8 () (20)

The expression for Q was approximated by

1.6U
for - < 1 ]c — I

(21)

Q = 1 + 1.1*7 (-) for - < 1c c —

1.6U
Q = 1 + 1.U7 (-) for - > 1a c

The maximum error in the stress-intensity factor by using three equations

for Q was about 0.25 percent. The front-face correction, 1VL , was

given by

M^ = 1.13 - 0.1 (-) for 0.02 < - < 11 c — c —

(22)

IVL = /-(! + 0.03 -)' for - > 11 v a a c

aFor — < .02, the stress-intensity factor for the single-edge cracked

plate (a/c = 0) subjected to uniform tension [9] was assumed to apply and

F was given by equation 17-

fl 1 I I I 1 I I I 1 I I t I I I I I |
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As a/t approaches unity for any value of a/c (except zero), equation

5 with F given by equation 19 reduces to the stress-intensity factor for a

through crack of length 2c in a finite-width plate. The "secant" term

in equation 19 is the finite-width correction.

Shah and Kobayashi (1972) [IT]. - They estimated the correction factors

from an empirical front-face magnification (M ) and from an analytical

back-face magnification (M~) obtained from the solution for an embedded

elliptical crack approaching the free surface of a semi-infinite solid

[18]. The front-face magnification was given by equation 13. The correc-

tion factor, due to both the front- and back-faces, was obtained by

multiplying the back-face magnification, Mp, by equation 13- The correction

factor was given by

F = M = MM (23)

Q

for a/t j< 0.9 and' 0.1 _< — _< 1. The curves for M^ are given in

Reference 17 (page

Smith and Sorensen (19TM [193- - They used the alternating method to

calculate the variation of the stress-intensity factor along semi-elliptical

surface cracks in finite-thickness plates. They made calculations for a/c

ratios ranging from 0.1 to 0.6. The results for a/c ratios of 0.8 and 1

used by Smith and Sorensen were obtained from Shah and Kobayashi [IT].

The boundary-correction factors are presented in Reference 19 (page 88).

Kobayashi (19T6)[2Q], - He used the alternating method with improved

boundary conditions to obtain the correction factors. In previous analyses

by Kobayashi using the alternating method some inappropriate boundary
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conditions ("bending restraints) were inadvertently induced by limiting the

areas of front- and back-face surfaces that are free of residual surface

tractions. To estimate the effect of this bending restraint, a two-

dimensional finite-element model of a single-edge-cracked tension plate

was analyzed with side constraints. The side constraints induced a similar

bending moment. The change in stress intensity caused by this bending

moment was calculated and used to modify the stress intensity for the

surface crack. The stress-intensity factors at the maximum depth point

were calculated for a/c = 0.2 and 0.98. The stress-intensity factor for

other a/c ratios (O.U, 0.6 and 0.8) were obtained by interpolation between

the results from a/c = 0.2 and 0.98. The correction factors were given

by F = M^ for a/t £0.9 and 0.2 _< a/c <_ 0.98. The curves for M^ are

given in Reference 20 (Fig. 12).

Raju and Newman (1977)[21,22]. - They used a three-dimensional finite-

element analysis with singularity elements to obtain the correction factors.

To verify the accuracy of the finite-element method, elliptical cracks

(a/c = 0.2 to 1) embedded in a large solid body were analyzed [21] and

the stress-intensity factors agreed generally within 1 percent of the

exact solutions [6], To verify the finite-element models employed, conver-

gence was studied by varying the number of degrees of freedom from 1500

to 6900. The correction factors were calculated for semi-elliptical

surface cracks (a/c = 0.2 to 2) in finite-thickness plates with a/t ranging

from 0.2 to 0.8 for W _> lOc. The correction factors are tabulated in

References 21 and 22.

For fracture, they proposed to use the maximum stress-intensity factor

for a/c < 0.6. For a/c ratios between 0.6 and 1, an "average"

r
A.
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stress-intensity factor (average between the values at cj) = 0 and <J> = TT/2)

was used. These results were calculated for a surface crack in a wide

plate. To compensate for the influence of finite width, the results were

multiplied by f , the finite-width correction [23] given by
w

(2U)

Newman and Raju (1978) - They used the results from Raju and

Newman [21,22] for the semi-elliptical surface crack and from Gross and

Srawley [9] for a single-edge crack to obtain an equation for the

correction factors. The form of the equation was similar to that used in

Reference l6. The equation was given by

F = M = + (Q-
 + (M2 - ^

where p = /rr and Q is given by equations 3. The front-face correction,

VL , was given by

VL = 1.13 - 0.1 (-) for .03 < - < 11 c — c —

= p- (1 + .03 -) for - > 1a a c

(26)

and M was given by

(27)

c / /TT -, \ ™ a
M2 = ! -

I 1 1 I I I I I I 1 I 1 1 E I 1 I I 1
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Q

The finite-width correction, f , was given by equation 2k. For — < .03,

the stress-intensity factor for the single-edge crack plate, a/c = 0,

subjected to uniform tension [9] was assumed to apply and F was given by

equation 17-

Other Analyses of the Surface Crack. - A large number of reports

consider the surface-crack configuration. Some of these reports analyze

[2̂ -27] or experimentally determine [28] the stress-intensity factors for

only a few select configurations. The results from these reports were

too limited in values of a/c and a/t to use in the "Analysis of

Fracture Data" section. Many other reports (see, for example, References

[29-30]) use stress-intensity factor solutions previously reviewed. One

report [31] analyzes the surface-crack configuration from a non-fracture

mechanics approach.

-II I I 1 I I I I I I I I I i I | |
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Fig. 3- Stress-intensity correction factor at maximum depth point for
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