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Abstract—Brain Computer Interfaces (BCI) are a natural 

extension to Human Computer Interaction (HCI) technologies. 

BCI is especially useful for people suffering from diseases, such 

as Amyotrophic Lateral Sclerosis (ALS) which cause motor 

disabilities in patients. To evaluate the effectiveness of BCI in 

different paradigms, the need of benchmark BCI datasets is 

increasing rapidly. Although, such datasets do exist, a 

comparative study of such datasets is not available to the best of 

our knowledge. In this paper, we provided a comprehensive 

overview of various BCI datasets. We briefly describe the 

characteristics of these datasets and devise a classification 

scheme for them. The comparative study provides feature 

extractors and classifiers used for each dataset. Moreover, 

potential use-cases for each dataset are also provided. 
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I. INTRODUCTION 

Human brain controls all internal and external body 
functions. It is responsible for activities such as learning, 
creativity, memories and many others [1]. The functions and 
structure of the human brain have always fascinated 
researchers [2], [3]. A clear understanding of human brain 
helps in disease diagnostics and a similar mechanism can be 
used to develop intelligent machines [4], [5]. To reverse 
engineer the magnificent brain, many sensory computational 
models have been developed [6], [7]. These models cover 
various aspects of human brain and the data collected from 
these models is available for further exploration. The data 
collected from these models have various applications ranging 
from medical diagnostics to autonomous robot navigation 
[8], [9]. 

The sensory models used for brain recordings are broadly 
divided into two categories: Invasive and Non-Invasive [10]. 
The invasive method is used for medical diagnoses of diseases 
such as seizure, sclerosis, tumors, epilepsy, and spinal cord 
trauma. The treatment of these diseases requires surgery for 
the placement of electrodes in brain gray matter. Invasive 
methods record brain activity from the cortical surface and 
include techniques such as Electrocorticography (ECOG) and 
Intracranial Electroencephalography (IEEG). Non-invasive 
methods do not need surgery or insertion of an instrument in 
the patient's body. These methods include models such as 
Electroencephalography (EEG), Magnetoencephalography 
(MEG), Functional Magnetic Resonance Imaging (FMRI), 
Positron Emission Tomography (PET), Infrared (IR) Imaging, 

Near Infrared Spectroscopy (NIRS), and Fetal 
Magnetoencephalography (FMEG).  

EEG recordings are measured in Hertz (cycles per second) 
and are divided into different frequency bands as slow, 
moderate, and fast waves [11] as shown in Table I. To record 
brain activity, a complete paradigm needs to be designed. The 
paradigm involves the presentation of cues to the subject. 
Electromagnetic activity as a result of these cues is recorded 
using a headset. The cues might include audio or visual 
information which facilitates us in the collection of brain 
activity for particular classes which is later used for testing 
and evaluation. 

The brain datasets developed based on various 
computational models using both invasive and non-invasive 
techniques. In this paper, we present short description of each 
datasets and describe different characteristics of the datasets in 
tabular format. We further classify the datasets according to 
our proposed classification scheme.  

Moreover, these datasets are saved using different formats. 
These datasets can be used for conducting new experiments 
and hypothesis validation. Using existing datasets saves the 
time and energy of researches. These existing datasets and 
availability of the work already done on them accelerate 
further development in the area of brain-computer interfacing. 
The datasets will be help full for fresh researcher in this 
domain has limited resources and can take full advantage of 
these datasets. 

Distribution of paper is given as: In Section 2 we present 
the review of datasets. The datasets classification scheme is 
illustrated in Section 3. In Section 4 we summarize 
classification of datasets and discuss their importance features. 

TABLE. I. TYPE OF EEG BRAIN WAVES RAMADAN ET AL. (2015) 

Wave Frequency Activated 

Delta Waves 0.5Hz-3.5Hz 
During sleep and normally found in young 

children 

Theta Waves 4Hz-7Hz During sleep 

Alpha Waves 8Hz-12Hz During walking or when mentally active 

Mu Waves 8Hz-12Hz During movement or intent of movement 

Beta Waves 12Hz-38Hz 
alert, attentive, engaged in problem-

solving or decision making 

Gamma 

Waves 
38Hz-42Hz 

State of universal love, altruism and 

high virtues 
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II. DESCRIPTION OF DATASETS 

In this section, we describe different characteristics of each 
dataset. Many of the datasets are collected using different 
devices, sampling rate, filter, and classes. Most of the data set 
are collected by using more than 64 electrodes device for 
experimentation. Furthermore, we also described how much 
participants (healthy or unhealthy) takes part in each of the 
experiment. Next, each of the datasets is concisely explained. 

1) Motor Imagery, Uncued Classifier Application: 
The dataset on motor imagery uncued classifier [12] was 

recorded from seven healthy subjects. Data was collected 
using 64 EEG channels (0.05-200Hz) with a sampling rate of 
1000Hz. The task for collecting data was motor imagery and 
without subject feedback. Motor Imagery dataset from 
Institute for Knowledge Discovery contains data from 9 
healthy subjects[13]. 22 Ag/AgCl electrodes EEG channels 
and 3 EOG channels were used and data was recorded with a 
sampling frequency of 250Hz. Data was notch filtered 
between 0.5Hz and 100Hz. 

2) Hand movement direction in MEG:  
Dataset Hand Movement Direction in MEG was recorded 

from 2 right-handed healthy subjects [14]. It was recorded 
using 10 MEG channels and a band pass filtered between 0.5 
Hz to 100 Hz with a sampling frequency of 400 Hz. The 
subjects performed wrist movements in four different 
directions using MEG with 625 Hz sampling rate.  

3) Finger movements in ECoG:  
Finger Movements in ECoG dataset was recorded from 

epileptic patients at Harborview Hospital in Seattle[15]. The 
data was recorded using 48 to 64 ECoG channels band pass 
filtered between 0.15Hz to 200Hz having 1000Hz sampling 
rate. The dataset contains ECoG data during individual 
flexions of the five fingers; movements acquired with a data 
glove. 

4) Error-related potentials (ERPs) during continuous 

feedback:  
Error-Related Potentials (ERP) During Continuous 

Feedback dataset [16] was recorded from 10 healthy subjects 
having age between 24 years to 25 years. 28 EEG electrodes 
were used to record EEG and 3 EOG electrodes were used to 
measure EOG. The data has a sampling rate of 512 Hz, notch 
filterer at 50 Hz and band-pass filtered between 0.5 Hz and 
60 Hz. 

5) Two-finger game-play with deliberately failing 

controller:  
Another dataset on Two-Finger Gameplay with 

Deliberately Failing Controller comprises of data on 12 
subject performing a paceman game [17]. For recording 
purpose the EEG and Biomedical signals, BioSemi ActiveTwo 
EEG system was used having a sampling rate of 512 Hz. 32 
Ag/AgCl active electrodes were used to record the EEG 
signals. 4 EOG was used to measure ocular and muscle 
artifacts and 4 EMG signals over the muscles used to press 
with the index finger.  

6) Covert and overt ERP-based BCI: 
Covert and Overt ERP based BCI Dataset [18] contains 

recordings of P300 evoked potentials. It was recorded with 
BCI2000 using two different paradigms like overt attention 
and covert attention based on  P300 Speller  [19] and 
GeoSpell interface [20] respectively. The EEG signals 
digitized at 256 Hz with frequency range in between of 0.1 Hz 
and 20 Hz were recorded with 16 Ag/AgCl electrodes using 
g.USBamp amplifier. It was recorded from 10 healthy female 
subjects having a mean age of 26.8+- 5.6.  

7) Neuroprosthetic control of an EEG/EOG BNCI: 
The dataset on Neuroprosthetic Control of an EEG/EOG 

BNCI used 26 5 EEG channels for EEG recordings using an 
active electrode EEG system. EEG signals had a sampling rate 
of 200 Hz and band-pass filtered between 0.4 Hz to 70 Hz. 1 
EOG channel was also used with a sampling rate of 200 Hz. 
The dataset was collected from a highly defected spinal cord 
patient with upper limb paralyzed.  

8) Individual imagery: 
Another dataset on Individual Imagery [21], in which EEG 

data was recorded from 9 patients instructed to relax and avoid 
eye moments, suffering from spinal cord injury and brain 
stroke. EEG signals were recorded using 30 channels. The 
g.tec GAMMAsys a system with g.LADYbird active 
electrodes and 2 g.USBamp bio signal amplifiers were used 
for recording. The EEG signals were band-pass filtered 
between 0.5-100 Hz with a notch filter at 50 Hz having a 
sampling rate of 256 Hz.   

9) ECOG-based BCI based on cognitive control: 
ECOG-Based BCI Based On Cognitive Control dataset 

[22] is about cognitive control network for BCI purposes. 
They used FMRI for non-invasive localization of the cognitive 
control network and recorded data from an epilepsy patient, 
who was implanted with subdural grid electrodes over the left 
and right frontal cortex temporarily. The subject performed 
two target tasks in several runs using the high-frequency 
power of 55-95 Hz.   

10)  Emergency braking during simulated driving: 
Emergency Braking During Simulated Driving dataset [23]  

was collected from 18 subjects by using 59 EEG electrodes 
and 2 bi-polar EOG with Ag/AgCl electrodes mounted on a 
cap with a sampling rate of 200 Hz.  BrainAmp hardware was 
used to amplify and digitize the EEG and EMG signals. 
TORCS software was used to provide information about 
technical and behavioral markers.  

11)  Mental arithmetic: 
Mental arithmetic dataset [24] was recorded from 8 

subjects (3 male and 5 female) having a mean age of 26 years 
with a standard deviation of 2.8 years. A multi-channel system 
was used which contain 16 photo detectors and 17 light 
emitters, and it was a 3 x 11 grid having a total of 52 FNIRS 
with a sampling rate of 10 Hz. To record brain oxygenation 
continues wave system was used. An aggressive 
hemodynamic response [24] was shown during the tasks of 
mental arithmetic. 
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12)  Auditory oddball during hypnosis: 
 Auditory oddball during hypnosis dataset was recorded 

from 2 healthy subjects, one male and one female of right-
handed by using 27 EEG active electrodes and 4 EOG 
channels were used to record eye movement by using a 
sampling frequency of 512 Hz. Data was band-pass filtered 
between 0.01-100 Hz and notch filtered at 50 Hz.   

13)  SCP Training in stroke: 
The dataset on SCP Training in Stroke was recorded from 

2 chronic stroke patients by using a single electrode Cz with a 
Nexus-10 MKII DC amplifier having a sampling frequency of 
256 Hz. For a record of eyes movement, 2 bipolar EOG 
electrodes were used.  

14)  Mental imagery, multi-class: 
Mental Imagery Multi-Class dataset [25]  has 32 integrated 

electrodes (DC-256Hz) having a sampling rate of 512 Hz were 
used to collect data from 3 normal subjects during 4 non-
feedback sessions. The dataset is presented in two ways, raw 
EEG signals, and precomputed features. Raw EEG signals 
have a sampling rate of 512 Hz. On the other hand, in 
precomputed features, Surface Laplacian was used to spatially 
filter raw EEG signals.  Imaginary repetitive self-paced right-
hand movements and generating words start with same 
random letter. 

15)  Motor imagery, small training sets: 
Motor Imagery dataset [26] is focused on applying 

machine learning approach to BCI. The EEG data were 
recorded from 5 healthy subjects by using BrainAmp 
amplifiers, in which 118 out of 128 channel Ag/AgCl 
electrode were used and data were band-pass filtered between 
0.05-200 Hz, digitized at 1000 Hz. For analysis purpose 
another version of data with a down-sampled rate of 1000Hz.  

16)  Monitoring error-related potentials: 
Monitoring error-related potentials dataset [27]  is about 

Error Related Potential (ERP) recorded via EEG.  The subject 
had to monitor the performance of an external device that was 
not controlled by subject. The EEG data were recorded from 6 
subjects having a mean age of 27.83 +- 2.23 by using 64 
electrodes of Biosemi active two systems at full DC with a 
sampling rate of 512 Hz. 

17)  Emotion recognition using EEG signals: 
Another dataset is Emotion Recognition Using EEG 

Signals [28], collected from 15, 7 males and 8 females had a 
mean age of 23.27 years and standard deviation of 2.37 years. 
ESI NeuroScan System is used, in which a total of 62 
Ag/AgCl electrodes channels were used with a sampling 
frequency of 1000 Hz. A band-pass filter with a frequency 
range between 0-75 Hz was used.  

18)  Visual search within natural images: 
Visual Search within Natural Images [29] dataset is a short 

demo of 5 experimental trials. Brain Products amplifiers 
having 25 recording channels were used to record EEG signals 
and this data was band-pass filtered between 1-40 Hz offline. 
For eye movements binocularly was used and SMI IView X 
tracker was used and data was recorded with a sampling rate 
of 500 Hz.  

19)  EEG Eye State (Planning &\ Relax): 
 EEG Eye State (Planning and Relax) dataset [30] contains 

EEG recordings that are used for classification for two mental 
stages namely planning of motor imagery actions and relaxed 
state. The dataset was recorded from a 25 years old healthy 
right-handed subject. A Medelec Profile Digital EEG machine 
was used for recordings which contain 8 EEG Ag/AgCI 
electrodes and has a sampling rate of 256 Hz This data was 
filtered with a high frequency of 50 Hz and low frequency of 
1.6 Hz, notch filtered at 50 Hz.   

20)  Indications of nonlinear deterministic and finite 

dimensional structures in time series of brain electrical 

activity: 
The dataset for Indications of Nonlinear Deterministic and 

Finite Dimensional Structures in Time Series of Brain 
Electrical Activity: Dependence on Recording Region and 
Brain State[31]  was provided to study the dynamic properties 
of brain EEG signals recorded from different brain regions 
and different physiological and pathological brain states. The 
datasets were recorded from 5 healthy subjects by using 128 
electrodes with a sampling rate of 173.61Hz. The datasets 
were low-pass filtered at 40 Hz and band-pass filtered at 0.53 
Hz to 40 Hz. 

21)  Self-regulation of SCPs: 
The dataset for Self-Regulation of SCPS[32] was 

presented to study cortical positivity and cortical negativity. 
The dataset was recorded from an artificially respired 
Amyotrophic Lateral Sclerosis (ALS) patient using 6 channels 
using PsyLab EEG Amplifier with a range of +/-1000 microV 
with a sampling rate of 256 Hz.  

22)  Self-paced: 
Self-Paced dataset [33] was presented to predict the 

upcoming finger movement for both hands, 130 milliseconds 
before the key press. The data was recorded from a healthy 
subject with no feedback provided by using 28 EEG channels 
with a sampling rate of 1000Hz. NeuroScan amplifier and 
Ag/AgCl electrode cap from ECI was used for recording EEG 
signals. The dataset is band pass filtered between 0.05-200Hz 
and down sampled with 100Hz. 

23)  EEG Motor Movement/Imagery Dataset: 
Motor Movement and Imagery Dataset[15] was provided 

by the developers of the BCI2000 instrumentation system[34]. 
The data were collected from 109 subjects by using 64 EEG 
channels and each signal sampled at 160 samples per second. 
The data is provided in European Data Format (EDF+). 
DREAMS Subject dataset [35] was recorded during 
DREAMS project to analyze, test and train classification 
algorithms for automatic sleep stages.  

24)  The DREAMS Subject database: 
The datasets were collected from 20 subjects 14 females, 4 

males having age between 20 years to 65 years by using 
polysomnographic (PSG) for the whole night with a sampling 
frequency of 200Hz. The PSG recording was annotated in 
different sleep stages according to criteria of Rechtschaffen 
and Kales (R and K) [36] standards introduced by American 
Academy of Sleep Medicine (AASM). The data was acquired 
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in sleep lab of Belgium Hospital. For each recording, at least 1 
EOG channel, 3 EEG channels and 1 EMG channel were used. 

25)  The DREAMS REMs Database: 
DREAMS REMs database [35] is about Rapid Eye 

Movement (REM) [37] sleep, which is a period of sleep 
during which one experiences clear dreams. This dataset was 
recorded for DREAMS project to analyze, train and test the 
classification algorithms for automatic detection. There were 9 
excerpts, each of which was 30 minutes long. The dataset was 
acquired in a sleep lab of Belgium Hospital and recorded from 
5 healthy subjects of both males and female having age 
between 20 years to 46 years by using 32 channel polygraph 
of BrainnetTM System of MEDATEC, Brussels, Belgium. 
The recordings involved 2 EOG channels, 3 EEG channels 
and 1 EMG channel with a sampling frequency of 200Hz.   

26)  4 Class EEG Data: 
The dataset for  Multi-Class Motor Imagery EEG[38] is 

about multi-class cued motor imagery having four classes as 
left hand, right hand, foot, and tongue. The data were recorded 
from three subjects with 60 EEG channels amplifier from 
Neuroscan, where left mastoid was used as a reference and 
right mastoid was used as ground. The EEG data were 
sampled at 250 Hz and filtered between 1-50 Hz with notch 
filter on. There were 60 trials per class and data across all 
trials were concatenated.  This dataset was stored as 
Geographic Data Files (GDF) [39]. 

27)  Motor imagery in ECoG recordings, session-to-

session transfer: 
Dataset for Motor Imagery in ECOG Recordings, Session-

to-Session Transfer[40] was provided with the goal that 
classifiers for BCI systems usually do not perform better for 
the data acquired on different days and sessions from the same 
subject without retraining. The dataset was recorded by using 
8x8, 64 channel ECoG platinum electrode grid, placed on the 
right motor cortex also partly covering surrounding cortex 
areas and was sampled at 1000 Hz. The data was also filtered 
at a frequency range of 0.016-300 Hz.  The data was about the 
cued motor imagery of left pinky and tongue from 1 subject.  

28)  P300 speller paradigm: 
The dataset for P300 Speller Paradigm [19] was presented 

with the goal to estimate the probability of subject paying 
attention to the letters in a 6 x 6 matrix by intensifying the rows 
and columns respectively. This dataset was collected from 2 
healthy subjects by using BCI2000 system with 64 EEG 
channels, which is digitalized at a sampling rate of 240Hz and 
data were band-pass filtered between 0.1 Hz to 60 Hz. 

29)  ERP-based Brain-Computer Interface recordings: 
The dataset for ERP-based Brain-Computer Interface[41], 

[42] was provided with the goal to identify the factor affecting 
the performance of BCI based on event-related potentials and 
to improve the usability and transfer rate of these interfaces. 
The data were recorded from 12 subjects by using a BioSemi 
ActiveTwo EEG system. A total of 64 EEG electrodes were 
used with a sampling frequency of 2048 Hz.  

30)  EEG brain wave for confusion: 
The data was stored in European Data Format (EDF+) 

with signals and annotations. EEG dataset for confusion [43], 
[44] contains EEG signals recorded from 10 college students 
who watched 10 Massive Open Online Course (MOOC) video 
clips. There are two types of videos confusing and non-
confusing for each student. For recording signals, single-
channel wireless-Mindset over frontal lobe of subjects are 
used. There are 100 data points and sampling rate was 0.5 
seconds and high-frequency signals were reported during this 
0.5 seconds. 

31)  Motion VEP Speller: 
Motion VEP Speller dataset [45] was provided with the 

goal to estimate the usability of gaze-independent 
communication. The data were recorded from 16 healthy 
subjects, 10 males, and 6 females, having age between 21 
years to 30 years with a mean age of 23.8 years. To record 
EEG signals, Brain Products (Munich, Germany) actiCap 
active electrode system with 64 electrodes and a BrainAmp 
EEG amplifier was used. The data were sampled at 1000 Hz 
and band-pass filtered at a frequency range of 0.016-250 Hz. 
An Intelligence IG-30 (Alea Technologies) eye-tracker was 
used to control eye movements with a sampling rate of 50 Hz.  

32)  Center Speller: 
Center Speller dataset [46] was provided with the goal to 

develop a visual speller named Center Speller that does not 
require eye movements. The data was recorded online from 13 
healthy subjects, 8 males 5 females aged 16 years to 45 years 
with mean age of 27 years. The EEG data was recorded with 
Brain Products (Munich, Germany) actiCAP using 64 
electrodes with a sampling rate of 1000 Hz. A band pass filter 
was used at a frequency range of 0.016-250 Hz.  

33)  SSVEP-based BCI with LED: 
SSVEP-Based BCI with LED dataset [39] was recorded 

from 5 male and female subjects having age between 22 years 
to 30 years by using 8 EEG channels with g.Mobilab+ device 
with a sampling frequency of 256 Hz. 

34)  Global datasets for autism disorder: 
Global Datasets for Autism Disorder [47] was collected 

from 18 boys, 10 normal and 8 abnormal having age between 
10 years to 16 years. To record the EEG signals, a recording 
system from BCI2000 with active electrodes and the Active 
digital EEG amplifier was used. The recording system 
contained 16 Ag/AgCl, g.tec EEG cap, electrodes, g.tec 
GAMMAbox, g.tec USBamp and BCI2000 with a sampling 
frequency of 256 Hz. The data were band-pass filtered at a 
frequency between 0.1 Hz to 60 Hz and notch filtered at 60 
Hz. 

35)  Event-related potential datasets based on a three-

stimulus paradigm: 
The dataset for Event-Related Potential Datasets Based On 

a Three-Stimulus Paradigm[48] was provided with the goal to 
introduce three-stimulus paradigm for the P300 component 
and provide datasets for three-stimulus paradigm EEG/ERP 
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freely available to the researcher. This dataset was collected 
from 25 healthy subjects, 9 males and 11 females having age 
between 20 to 26 years and 19 of them were right-handed. The 
EEG data was recorded of event-related potentials (ERP) of 
20 subjects by using BrainVision Recorder 1.2 and data was 
stored in BrainVision format. The data of other 5 subjects 
were discarded due to excessive eye blinking. The data was 
sampled at 100 Hz and low-pass filtered with a cut-off 
frequency of 250 Hz. 

III. CLASSIFICATION 

In this section, we present the classification background 
and the proposed classification scheme under which various 
datasets can be classified. 

A. Classification Background 

The datasets can be classified based on the cognitive 
behavior of human or functional atlases of the brain. The 
classification helps us understand which part of the brain is 
being activated and which brain processes are generated in 
response to a particular cognitive action. We present a 
classification scheme for datasets that cover various aspects of 
human behavior, cognitive states, and abilities. 

Behavioral neuroscience [49] is the study of physiology, 
genetics, behavioral evolution, and development mechanism 
in animals and humans under the principles of biological 
sciences. It mainly deals with brain functions and components, 
neural activity, neurotransmitters, hormonal changes, 
behavioral evolution and their effects on behavioral changes. 
It is also termed as biological psychology or psychobiology 
[50].  

Studies in the field of behavioral neuroscience are mainly 
directed towards animals and humans to better understand the 
human pathology and mental processes. Due to the 
technological advancements and development of non-invasive 
methods, behavioral neuroscience now also deals with 
linguistics, philosophy, and psychology [51]. The datasets can 
be broadly divided into following categories: 

 Sensation and Perception  

 Motivated Behavior 

 Control of movement 

 Learning and memory 

 Sleep and biological rhythms 

 Emotion 

 Language 

 Reasoning and decision making 

 Consciousness 

1) Sensation and Perception: 
Human is considered to have five basic senses as proposed 

by Aristotle [52]. The sensation is the body's way of detecting 
some external or internal stimulation. Particular brain regions 

generate, receive and interpret specific signals based on 
sensation. The various senses are as follows [53]: 

 Sight: This sense to see something. There are two 
distinct receptors present related to sight, one for color 
(cones) and one for brightness (rods) [54]. 

 Taste: sweet, salty, sour, bitter, and umami (umami 
receptors detect the amino acid glutamate, which is a 
taste of meat and some artificial flavoring) [55]. 

 Touch: This has been found to be distinct from 
pressure, temperature, pain, and even itch sensors [56]. 

 Pressure: It is a type of skin pressure which results 
from persisting pressure on the skin. 

 Itch: This is a distinct sensor system from other touch-
related senses. 

 Thermoception: This is the ability to sense heat and 
cold. There are different types of thermoreceptors for 
detecting heat or cold in the brain.  These 
thermoreceptors in the brain are used for monitoring 
internal body temperature. 

 Sound: Detecting vibrations along some medium, such 
as air or water that is in contact with your ear drums 
[57]. 

 Smell: This sense is due to sensors that work off of a 
chemical reaction.  This sense combines with taste to 
produce flavors. 

 Proprioception: This sense gives you the ability to tell 
where your body parts are, relative to other body parts.  
This sense is one of the things police officers test when 
they pull over someone who they think is driving 
drunk.  The close your eyes and touch your nose test is 
testing this sense.  This sense is used all the time in 
little ways, such as when you scratch an itch on your 
foot, but never once look at your foot to see where your 
hand is relative to your foot [56]. 

 Tension Sensors: These are found in such places as 
your muscles and allow the brain the ability to monitor 
muscle tension. 

 Nociception: In a word, pain.  This was once thought 
to simply be the result of overloading other senses, 
such as touch, but this has been found not to be the 
case and instead, it is its own unique sensory system.  
There are three distinct types of pain receptors: 
cutaneous (skin), somatic (bones and joints), and 
visceral (body organs) [58]. 

 Equilibrioception: The sense that allows you to keep 
your balance and sense body movement in terms of 
acceleration and directional changes.  This sense also 
allows for perceiving gravity.  The sensory system for 
this is found in your inner ears and is called the 
vestibular labyrinthine system.   
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 Stretch Receptors: These are found in such places as 
the lungs, bladder, stomach, and the gastrointestinal 
tract.  A type of stretch receptor, that senses dilation of 
blood vessels, is also often involved in headaches. 

 Chemoreceptors: These trigger an area of the medulla 
in the brain that is involved in detecting blood born 
hormones and drugs.  It also is involved in the 
vomiting reflex. 

 Thirst: This system more or less allows your body to 
monitor its hydration level and so your body knows 
when it should tell you to drink. 

 Hunger: This system allows your body to detect when 
you need to eat something [59]. 

 Magnetoception: This is the ability to detect magnetic 
fields, which is principally useful in providing a sense 
of direction when detecting the Earth’s magnetic field. 
Humans do not have a strong magnetoception, 
however, experiments have demonstrated that we do 
tend to have some sense of magnetic fields. It is 
theorized that this has something to do with deposits of 
ferric iron in our noses [60].   

 Chronoception: This refers to how the passage of time 
is perceived and experienced. Humans have a startling 
accurate sense of time, particularly when younger. 
Long term time keeping seems to be monitored by the 
superchiasmatic nuclei (responsible for the circadian 
rhythm).  Short term time keeping is handled by other 
cell systems [61]. 

 Electroreception: Electroreception (or electroception) 
is the ability to detect electric fields.  

 Hygroreception: This is the ability to detect changes 
in the moisture content of the environment. 

 Equilibrioception: Balance, equilibrioception, or 
vestibular sense is the sense that allows an organism to 
sense body movement, direction, and acceleration, and 
to attain and maintain postural equilibrium and 
balance.  

B. Proposed Datasets Classification Scheme 

By analyzing different components of the brain and their 
associated functions they perform, we can classify the datasets 
on the basis of our classification scheme as shown in Table I, 
which shows that there is a wide range of mental tasks that 
need to be considered for BCI research. But there are some 
potential problems in recording many brain activities. Dataset 
column in Table II, show the category of each of the dataset. 

 

Fig. 1. Comparison chart of datasets. 

TABLE. II. CLASSIFICATION OF DATASETS BASED ON DIFFERENT 

CATEGORIES 

Category Subcategory Dataset 

Sensation and 

Perception 

Sense, Sight, Taste, Touch, Pressure, 

Itch, Thermoception, Sound, Smell, 

Proprioception, Tension Sensors, 

Nociception, Equilibrioception, Stretch 

Receptors, Chemoreceptors (vomiting 

reflex), Thirst, Hunger, 

Magnetoception, Chronoception 

(Time), Electroreception, 

Hygroreception 

7), 12) 

Motor Skills Imaginary, Physical 1), 2),3), 4), 

5),6), 7), 8), 

14), 15), 16), 

18),19), 20), 

21), 22), 23), 

26), 28), 29), 

31), 32), 33) 

,34) 

Attention and 

Concentration 

Attention, Concentration 6), 14), 35) 

Memory and 

Language 

Short-term memory, Long-term 

memory, Working memory, 

Communication 

6), 8), 9), 11), 

13), 17), 20), 

28), 29), 30) 

,35) 

Biological 

Rhythms 

Breathing, Heartbeat, Blood Pressure, 

Sleep, Dreams 

25, 26 

Goal Oriented 

Behaviours 

Anticipation, Problem-solving, 

Decision making, Emotions, 

Sequencing, Inhibition 

5, 9, 17, 20, 21, 

23 

IV. DISCUSSION 

The brain contains about 100 billion neurons and each 
neuron is constantly sending and receiving signals through a 
complex mechanism. During certain activity performed by the 
human brain, neurons make thousands of connections through 
these processes which are difficult for EEG electrodes so the 
signals need to be disentangled. Our thoughts, movements, 
actions, learning, and decision are the result of complex 
electro-chemical processes in the brain. The BCI datasets 
target a limited number of mental tasks as it is very complex 
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to map brain signals into human actual intentions. Brain 
signals corresponding to certain activities such as sneezing is 
quite difficult to capture. 

 
Fig. 2. Comparison of different datasets based on sampling. 

It requires specific environment parameters and settings to 
get better results. Also, the cost of devices used for recording 
signals is reasonably high and complexity of brain structure is 
a hindrance in the way of recording, analyzing and mapping 
brain signals to certain human activities. These may be the 
reasons why such datasets available online are limited to 
simple activities. Comparing the sampling frequency of these 
datasets shows that most of the datasets lie in the range of 200 
Hz to 1000 Hz but we found only one dataset with a high 
sampling rate of 2048 Hz. The bar chart in Fig. 2 shows the 
datasets with a specific frequency.  

By looking at the dataset from another perspective, the 
Fig. 1 shows that 47% of the datasets are related to motor 
skills - either imagery or physical. 21% datasets are related to 
attention and concentration, 14% related to memory and 
language, 12% related to goal-oriented behavior, 4% related to 
biological rhythms and only 2% related to perception and 
concentration. This comparison reveals that brain activities 
corresponding to human senses and biological rhythms such as 
dreams and sleep are difficult to capture. Special equipment, 
environmental and experimental setup is required which is 
either costly or hard to achieve. Datasets are collected by 
many institutes, research groups who are continuously 
working and struggling to achieve accurate results. Many 
researcher groups have worked to collect different datasets.  

Table III illustrates which paper make use of the datasets 
and which feature extractor and classifier used in the research. 
While a datasets references are also presented which includes 
references to research papers in which these datasets have 
been described and elaborated. The references to the papers 
that used or cited these datasets for their research work is also 
shown in Table III. 

As the datasets contain records of the subject’s specific 
activity for a limited period of time which contain noise ratio 
that creates a problem when getting output. Some of the 
researcher groups and institutions used a hybrid system for 
EEG signals acquisition where they used EEG, EOG, ECOG, 
MEG, and FNRI to get the precise outcome. It is also well 
known that EEG signals capturing devices are non-invasive, 

low-cost, and modest. It was the reason that most datasets 
were collected using EEG method as shown in Fig. 3.  

The datasets are recorded for brain activities using 
different devices, mapped to some mathematical form and 
stored using different formats. Some formats in which datasets 
are stored are .edf (European Data Format), .dgf (General Data 
Format), .mat, .txt, .bdf (Glyph Bit Distribution Format), .dat, 
.vhdr, .vmrk, .set, .avg, .eeg, .cnt etc. As there is a wide range 
of data formats, the processing of the datasets is rather a 
complex task. Also, the software available for brain signal 
processing, support a limited number of data formats. There is 
a lack of standard formats and structures in which datasets are 
recorded. 

The datasets presented here have been used by many 
researchers over time. Understanding and recognizing human 
intentions via brain signals is an important step and needs 
complex data analysis and processing. Various softwares are 
available for analyzing brain activity with limited techniques. 
Therefore, some standards and tools are required to make 
research easy in the field of brain-computer interface. 
Software tools can be helpful in determining a comparison 
between different methods of data processing, determining 
hyper-parameters required for particular algorithms and 
defining compatibility of certain concepts. BCI datasets are 
mostly goal oriented. Researchers working on specific BCI 
application prefer to generate their own datasets that are 
mostly not available publicly. 

 
Fig. 1.Comparison of different datasets based on various numbers of 

channels used in EEG, EMG, ECOG, MEG, EOG and FNRI. 

V. CONCLUSION 

We have explored and discussed different datasets of the 
BCI research in which most of them are based on EEG. We 
presented a comparison of datasets with respect to the 
frequency of different datasets which shows that most of the 
datasets are collected in a frequency range from about 200-
1000 Hz. A classification scheme – with six categories - was 
proposed for the datasets categorization. A comparison of 
datasets with respect to their respective categories shows that 
most of the datasets are related to brain activity during motor 
skills. Mostly, SVM and LDA classifiers were used to process 
and classify these datasets.  



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 2, 2018 

406 | P a g e  

www.ijacsa.thesai.org 

REFERENCES 

[1] I. Wood, ―Neuroscience: Exploring the brain,‖ 1996. 

[2] J. Kaufman and D. Charney, ―Effects of early stress on brain structure 
and function: implications for understanding the relationship between 
child maltreatment and depression,‖ Dev. Psychopathol., 2001. 

[3] S. MacDonald, L. Nyberg, and L. Bäckman, ―Intra-individual variability 
in behavior: links to brain structure, neurotransmission and neuronal 
activity,‖ Trends Neurosci., 2006. 

[4] C. Olsson and L. Nyberg, ―Brain simulation of action may be grounded 
in physical experience,‖ Neurocase, 2011. 

[5] M. M. Waldrop, ―Brain in a box,‖ Nature, vol. 482, no. 7386, p. 456, 
2012. 

[6] R. Palaniappan, ―Electroencephalogram-based Brain–Computer 
Interface: An Introduction,‖ Guid. to Brain-Computer Music Interfacing, 
2014. 

[7] A. Gevins and A. Rémond, ―Methods of analysis of brain electrical and 
magnetic signals,‖ 1987. 

[8] P. Jahankhani and K. Revett, ―Data mining an EEG dataset with an 
emphasis on dimensionality reduction,‖ Intell. Data  …, 2007. 

[9] A. M. Baldini et al., ―Search for the lepton flavor violating decay$\$ 
mu^+$\$ rightarrow$\$ mathrm ${$e$}$^+$\$ gamma with the full 
dataset of the MEG experiment,‖ Eur. Phys. J. C, vol. 76, no. 8, p. 434, 
2016. 

[10] H. Anupama and N. Cauvery, ―Brain computer interface and its types-a 
study,‖ Int. J., 2012. 

[11] R. Ramadan, S. Refat, M. Elshahed, and R. Ali, ―Basics of Brain 
Computer Interface,‖ Brain-Computer Interfaces, 2015. 

[12] B. Blankertz, G. Dornhege, M. Krauledat, and K. Müller, ―The non-
invasive Berlin brain–computer interface: fast acquisition of effective 
performance in untrained subjects,‖ Neuroimage, 2007. 

[13] M. Fatourechi, A. Bashashati, R. Ward, and G. Birch, ―EMG and EOG 
artifacts in brain computer interface systems: A survey,‖ Clin. 
Neurophysiol., 2007. 

[14] S. Waldert, H. Preissl, E. Demandt, and C. Braun, ―Hand movement 
direction decoded from MEG and EEG,‖ J., 2008. 

[15] G. Schalk, D. McFarland, and T. Hinterberger, ―BCI2000: a general-
purpose brain-computer interface (BCI) system,‖ IEEE Trans., 2004. 

[16] M. Spüler and C. Niethammer, ―Error-related potentials during 
continuous feedback: using EEG to detect errors of different type and 
severity,‖ Front. Hum. Neurosci., vol. 9, p. 155, 2015. 

[17] M. Witkowski and M. Cortese, ―Enhancing brain-machine interface 
(BMI) control of a hand exoskeleton using electrooculography (EOG),‖ 
J., 2014. 

[18] E. C. Leuthardt, G. Schalk, J. R. Wolpaw, J. G. Ojemann, and D. W. 
Moran, ―A brain--computer interface using electrocorticographic signals 
in humansThe authors declare that they have no competing financial 
interests.,‖ J. Neural Eng., vol. 1, no. 2, p. 63, 2004. 

[19] L. Farwell and E. Donchin, ―Talking off the top of your head: toward a 
mental prosthesis utilizing event-related brain potentials,‖ 
Electroencephalogr. Clin., 1988. 

[20] F. Aloise, P. Aricò, F. Schettini, A. Riccio, and S. Salinari, ―A covert 
attention P300-based brain–computer interface: Geospell,‖ Ergonomics, 
2012. 

[21] R. Scherer et al., ―Individually adapted imagery improves brain-
computer interface performance in end-users with disability,‖ PLoS 
One, vol. 10, no. 5, p. e0123727, 2015. 

[22] M. Vansteensel, D. Hermes, and E. Aarnoutse, ―Brain–computer 
interfacing based on cognitive control,‖ Ann., 2010. 

[23] B. Blankertz, S. Lemm, M. Treder, S. Haufe, and K.-R. Müller, ―Single-
trial analysis and classification of ERP components—a tutorial,‖ 
Neuroimage, vol. 56, no. 2, pp. 814–825, 2011. 

[24] G. Pfurtscheller and G. Bauernfeind, ―Focal frontal (de) oxyhemoglobin 
responses during simple arithmetic,‖ Int. J., 2010. 

[25] J. R. Millan, ―On the need for on-line learning in brain-computer 
interfaces,‖ in Neural Networks, 2004. Proceedings. 2004 IEEE 
International Joint Conference on, 2004, vol. 4, pp. 2877–2882. 

[26] G. Dornhege, B. Blankertz, and G. Curio, ―Boosting bit rates in 
noninvasive EEG single-trial classifications by feature combination and 
multiclass paradigms,‖ IEEE Trans., 2004. 

[27] R. Chavarriaga and J. Millán, ―Learning from EEG error-related 
potentials in noninvasive brain-computer interfaces,‖ IEEE Trans. 
neural, 2010. 

[28] W. Zheng and B. Lu, ―Investigating critical frequency bands and 
channels for EEG-based emotion recognition with deep neural 
networks,‖ IEEE Trans. Auton. Ment., 2015. 

[29] N. Li, F. Niefind, S. Wang, W. Sommer, and O. Dimigen, ―Parafoveal 
processing in reading Chinese sentences: Evidence from event-related 
brain potentials,‖ Psychophysiology, vol. 52, no. 10, pp. 1361–1374, 
2015. 

[30] O. Dimigen, R. Kliegl, and W. Sommer, ―Trans-saccadic parafoveal 
preview benefits in fluent reading: A study with fixation-related brain 
potentials,‖ Neuroimage, 2012. 

[31] R. Andrzejak, K. Lehnertz, F. Mormann, and C. Rieke, ―Indications of 
nonlinear deterministic and finite-dimensional structures in time series 
of brain electrical activity: Dependence on recording region and brain 
state,‖ Phys. Rev. E, 2001. 

[32] N. Birbaumer, N. Ghanayim, T. Hinterberger, and I. Iversen, ―A spelling 
device for the paralysed,‖ Nature, 1999. 

[33] B. Blankertz, G. Curio, and K. Müller, ―Classifying single trial EEG: 
Towards brain computer interfacing,‖ Adv. neural Inf., 2002. 

[34] P. PhysioBank, ―PhysioNet: components of a new research resource for 
complex physiologic signals,‖ Circ. v101 i23. e215-e220. 

[35] S. Devuyst, T. Dutoit, P. Stenuit, M. Kerkhofs, and E. Stanus, 
―Cancelling ECG artifacts in EEG using a modified independent 
component analysis approach,‖ EURASIP J. Adv. Signal Process., vol. 
2008, no. 1, pp. 1–13, 2008. 

[36] A. Rechtschaffen and A. Kales, ―A manual of standardized terminology, 
techniques and scoring system for sleep stages of human subjects,‖ 
1968. 

[37] E. Olson, B. Boeve, and M. Silber, ―Rapid eye movement sleep 
behaviour disorder: demographic, clinical and laboratory findings in 93 
cases,‖ Brain, 2000. 

[38] C. Vidaurre, T. Sander, and A. Schlögl, ―BioSig: the free and open 
source software library for biomedical signal processing,‖ Comput. 
Intell., 2011. 

[39] A. Schlögl, O. Filz, H. Ramoser, and G. Pfurtscheller, ―GDF-a general 
dataformat for biosignals version 1.25,‖ 2005. 

[40] T. N. Lal et al., ―Methods towards invasive human brain computer 
interfaces,‖ in Advances in neural information processing systems, 
2004, pp. 737–744. 

[41] L. Citi, R. Poli, and C. Cinel, ―Documenting, modelling and exploiting 
P300 amplitude changes due to variable target delays in Donchin’s 
speller,‖ J. Neural Eng., 2010. 

[42] A. L. Goldberger et al., ―Physiobank, physiotoolkit, and physionet 
components of a new research resource for complex physiologic 
signals,‖ Circulation, vol. 101, no. 23, pp. e215--e220, 2000. 

[43] I. Allen and J. Seaman, Going the distance: Online education in the 
United States, 2011. 2011. 

[44] H. Wang, Y. Li, X. Hu, Y. Yang, Z. Meng, and K. Chang, ―Using EEG 
to Improve Massive Open Online Courses Feedback Interaction.,‖ AIED 
Work., 2013. 

[45] J. Wolpaw, ―Brain–computer interfaces as new brain output pathways,‖ 
J. Physiol., 2007. 

[46] M. Treder and N. Schmidt, ―Gaze-independent brain–computer 
interfaces based on covert attention and feature attention,‖ J. neural, 
2011. 

[47] E. Alsaggaf, ―DISCOVERING AUTISM DISORDER BY ANALYSIS 
EEG SIGNALS USING DIFFERENT CLASSIFICATION 
ALGORITHMS,‖ 2013. 

[48] J. Polich, ―Updating P300: an integrative theory of P3a and P3b,‖ Clin. 
Neurophysiol., 2007. 

[49] M. Mesulam, Principles of behavioral and cognitive neurology. 2000. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 2, 2018 

407 | P a g e  

www.ijacsa.thesai.org 

[50] [50]  undefined Merriam-Webster, Merriam-Webster’s collegiate 
dictionary. 2004. 

[51] M. Breedlove, M. Rosenzweig, and V. Neil, ―An Introduction to 
Behavioral and Cognitive Neuroscience,‖ Biol. Psychol. Watson, 2007. 

[52] D. Howes, Empire of the Senses. 2005. 

[53] D. Hiskey, ―HUMANS HAVE A LOT MORE THAN FIVE SENSES.‖ 
2010. 

[54] S. Hecht, ―Rods, cones, and the chemical basis of vision,‖ Physiol. Rev., 
1937. 

[55] R. Mattes, ―Is there a fatty acid taste?,‖ Annu. Rev. Nutr., 2009. 

[56] G. Robles-De-La-Torre, ―The importance of the sense of touch in virtual 
and real environments,‖ Ieee Multimed., 2006. 

[57] A. Davis, C. McMahon, and K. Pichora-Fuller, ―Aging and hearing 
health: the life-course approach,‖ Gerontologist, 2016. 

[58] R. Fulbright, C. Troche, and P. Skudlarski, ―Functional MR imaging of 
regional brain activation associated with the affective experience of 
pain,‖ Am. J., 2001. 

[59] O. Farr, R. Chiang-shan, and C. Mantzoros, ―Central nervous system 
regulation of eating: Insights from human brain imaging,‖ Metabolism, 
2016. 

[60] A. Voustianiouk and H. Kaufmann, ―Magnetic fields and the central 
nervous system,‖ 2000. 

[61] A. Hirsch, ―Method of Altering Perception of Time,‖ US Pat. App. 
13/734,106, 2013. 

[62] P. Kindermans, P. Buteneers, … D. V.-… M. L. for, and  undefined 
2010, ―An uncued brain-computer interface using reservoir computing,‖ 
biblio.ugent.be. 

[63] G. Dornhege, B. Blankertz, … M. K.-I. transactions on, and  undefined 
2006, ―Combined optimization of spatial and temporal filters for 
improving brain-computer interfacing,‖ ieeexplore.ieee.org. 

[64] S. Waldert et al., ―Hand movement direction decoded from MEG and 
EEG,‖ J. Neurosci., vol. 28, no. 4, pp. 1000–1008, 2008. 

[65] S. Hajipour Sardouie and M. B. Shamsollahi, ―Selection of Efficient 
Features for Discrimination of Hand Movements from MEG Using a 
BCI Competition IV Data Set,‖ Front. Neurosci., vol. 6, 2012. 

[66] R. Flamary and A. Rakotomamonjy, ―Decoding Finger Movements from 
ECoG Signals Using Switching Linear Models,‖ Front. Neurosci., vol. 
6, 2012. 

[67] N. Liang and L. Bougrain, ―Decoding Finger Flexion from Band-
Specific ECoG Signals in Humans,‖ Front. Neurosci., vol. 6, 2012. 

[68] A. Nijholt, D. P.-O. Bos, and B. Reuderink, ―Turning shortcomings into 
challenges: Brain--computer interfaces for games,‖ Entertain. Comput., 
vol. 1, no. 2, pp. 85–94, 2009. 

[69] F. Aloise et al., ―A covert attention P300-based brain--computer 
interface: Geospell,‖ Ergonomics, vol. 55, no. 5, pp. 538–551, 2012. 

[70] [70] M. Witkowski, M. Cortese, M. Cempini, J. Mellinger, N. Vitiello, 
and S. R. Soekadar, ―Enhancing brain-machine interface (BMI) control 
of a hand exoskeleton using electrooculography (EOG),‖ J. Neuroeng. 
Rehabil., vol. 11, no. 1, p. 1, 2014. 

[71] M. J. Vansteensel et al., ―Brain--computer interfacing based on 
cognitive control,‖ Ann. Neurol., vol. 67, no. 6, pp. 809–816, 2010. 

[72] Y. Wang, Z. Zhang, Y. Li, X. Gao, … S. G.-I. T. on, and  undefined 
2004, ―BCI competition 2003-data set IV: an algorithm based on CSSD 
and FDA for classifying single-trial EEG,‖ ieeexplore.ieee.org. 

[73] H. Yoon, K. Yang, C. S.-I. transactions on knowledge, and  undefined 
2005, ―Feature subset selection and feature ranking for multivariate time 
series,‖ ieeexplore.ieee.org. 

[74] R. Chavarriaga and J. del R. Millán, ―Learning from EEG error-related 
potentials in noninvasive brain-computer interfaces,‖ IEEE Trans. neural 
Syst. Rehabil. Eng., vol. 18, no. 4, pp. 381–388, 2010. 

[75] D. Nie, X. Wang, L. Shi, B. L.-N. E. (NER), and  undefined 2011, 
―EEG-based emotion recognition during watching movies,‖ 
ieeexplore.ieee.org. 

[76] W.-L. Zheng and B.-L. Lu, ―Investigating critical frequency bands and 
channels for EEG-based emotion recognition with deep neural 

networks,‖ IEEE Trans. Auton. Ment. Dev., vol. 7, no. 3, pp. 162–175, 
2015. 

[77] R. B. Bhatt and M. Gopal, ―FRCT: fuzzy-rough classification trees,‖ 
Pattern Anal. Appl., vol. 11, no. 1, pp. 73–88, Jan. 2008. 

[78] Y. Kerimbekov, H. Ş. Bilge, and H. H. Uğurlu, ―The use of Lorentzian 
distance metric in classification problems,‖ Pattern Recognit. Lett., vol. 
84, pp. 170–176, Dec. 2016. 

[79] Z. Yang, Y. Wang, and G. Ouyang, ―Adaptive neuro-fuzzy inference 
system for classification of background EEG signals from ESES patients 
and controls.,‖ ScientificWorldJournal., vol. 2014, p. 140863, Mar. 
2014. 

[80] G. Chen, W. Xie, @bullet Tien, D. Bui, and A. Krzy_ Zak, ―Automatic 
Epileptic Seizure Detection in EEG Using Nonsubsampled Wavelet–
Fourier Features,‖ J. Med. Biol. Eng., vol. 37. 

[81] G. Dornhege, B. Blankertz, … G. C.-… in N. I., and  undefined 2003, 
―Combining features for BCI,‖ papers.nips.cc. 

[82] B. Blankertz, G. Curio, and K.-R. Muller, ―Classifying single trial EEG: 
Towards brain computer interfacing,‖ Adv. Neural Inf. Process. Syst., 
vol. 1, pp. 157–164, 2002. 

[83] J. Sleight, P. Pillai, S. M.-A. A. U. of Michigan, and  undefined 2009, 
―Classification of executed and imagined motor movement EEG 
signals,‖ shiwali.me. 

[84] M. Tolić, F. J.-K. I. journal of fundamental and, and  undefined 2013, 
―Classification of wavelet transformed EEG signals with neural network 
for imagined mental and motor tasks,‖ hrcak.srce.hr. 

[85] E. J. Olson, B. F. Boeve, and M. H. Silber, ―Rapid eye movement sleep 
behaviour disorder: demographic, clinical and laboratory findings in 93 
cases,‖ Brain, vol. 123, no. 2, pp. 331–339, 2000. 

[86] S. Ge, R. Wang, D. Y.-P. one, and  undefined 2014, ―Classification of 
four-class motor imagery employing single-channel 
electroencephalography,‖ journals.plos.org. 

[87] Z. Chin, K. Ang, C. Wang, … C. G.-… in M. and, and  undefined 2009, 
―Multi-class filter bank common spatial pattern for four-class motor 
imagery BCI,‖ ieeexplore.ieee.org. 

[88] W. Jakuczun, ―Constructing discriminative biorthogonal bases for 
classification,‖ 2004. 

[89] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew, ―Extreme 
learning machine: a new learning scheme of feedforward neural 
networks,‖ in 2004 IEEE International Joint Conference on Neural 
Networks (IEEE Cat. No.04CH37541), vol. 2, pp. 985–990. 

[90] M. Kaper, P. Meinicke, … U. G.-I. T., and  undefined 2004, ―BCI 
competition 2003-data set IIb: support vector machines for the P300 
speller paradigm,‖ ieeexplore.ieee.org. 

[91] R. Fazel-Rezai, ―Human Error in P300 Speller Paradigm for Brain-
Computer Interface,‖ in 2007 29th Annual International Conference of 
the IEEE Engineering in Medicine and Biology Society, 2007, pp. 
2516–2519. 

[92] N. J. Hill et al., ―Classifying EEG and ECoG signals without subject 
training for fast BCI implementation: comparison of nonparalyzed and 
completely paralyzed subjects,‖ IEEE Trans. neural Syst. Rehabil. Eng., 
vol. 14, no. 2, pp. 183–186, 2006. 

[93] H. Wang, Y. Li, X. Hu, Y. Yang, Z. Meng, and K. Chang, ―Using EEG 
to Improve Massive Open Online Courses Feedback Interaction.,‖ in 
AIED Workshops, 2013. 

[94] S. Schaeff, M. S. Treder, B. Venthur, and B. Blankertz, ―Exploring 
motion VEPs for gaze-independent communication,‖ J. Neural Eng., 
vol. 9, no. 4, p. 45006, Aug. 2012. 

[95] C. Guger et al., ―How many people are able to control a P300-based 
brain–computer interface (BCI)?,‖ Neurosci. Lett., vol. 462, no. 1, pp. 
94–98, Sep. 2009. 

[96] M. S. Treder, N. M. Schmidt, and B. Blankertz, ―Gaze-independent 
brain--computer interfaces based on covert attention and feature 
attention,‖ J. Neural Eng., vol. 8, no. 6, p. 66003, 2011. 

[97] H. Hwang, J. Lim, Y. Jung, H. Choi, … S. L.-J. of neuroscience, and  
undefined 2012, ―Development of an SSVEP-based BCI spelling system 
adopting a QWERTY-style LED keyboard,‖ Elsevier. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 2, 2018 

408 | P a g e  

www.ijacsa.thesai.org 

[98] E. Kalunga, K. Djouani, Y. Hamam, S. Chevallier, and E. Monacelli, 
―SSVEP enhancement based on Canonical Correlation Analysis to 
improve BCI performances,‖ in 2013 Africon, 2013, pp. 1–5. 

[99] R. Djemal, K. AlSharabi, … S. I.-B. research, and  undefined 2017, 
―EEG-Based Computer Aided Diagnosis of Autism Spectrum Disorder 
Using Wavelet, Entropy, and ANN,‖ hindawi.com. 

[100] L. Vareka, P. Bruha, and R. Moucek, ―Event-related potential datasets 
based on a three-stimulus paradigm,‖ Gigascience, vol. 3, no. 1, p. 1, 
2014. 

[101] F. Barceló, J. A. Periáñez, and E. Nyhus, ―An information theoretical 
approach to task-switching: evidence from cognitive brain potentials in 
humans,‖ Front. Hum. Neurosci., vol. 1, 2007. 

TABLE. III. DATASETS USED IN DIFFERENT RESEARCH  

Dataset Ref Feature Extractor Classifier 

 

1 

FBCSP [62] Reservoir Computing 

Common Spatial Patterns (CSP) & CSSP [63] LDA 

2 
RLDA [64]  

Time domain & frequency domain [65]  Support Vector Machine (SVM) and LDA  

3  

Smoothed Auto-Regressive (AR) [66] time sample classification scheme 

Ridge Regression and Sparse Linear Regression [67]  

4 Time domain & frequency domain[16] Support Vector Machine (SVM) 

5 ERD and LRP[68] Support Vector Machine (SVM) 

6 Stepwise Linear Discriminant Analysis (SWLDA) [69] Linear Support Vector Machine (SVM) 

7 Autoregression Model [70] 
Discriminability based on true and false positive 

classifications  

8 Common Spatial Patterns [21]  Fisher’s LDA 

9 Autoregressive [71]  --- 

14 --- [25] Gaussian classifier 

15 
CSP & Fisher Discriminant Analysis [72] Neural network 

Feature Subset Selection (FSS) [73] Support Vector Machine (SVM) 

16 [74] Gaussian classifier 

17 
Principal Component Analysis [75] Linear Support Vector Machine (SVM) 

Differential Entropy [76] KNN, LR, Support Vector Machine (SVM), DBN 

19 
--- [77] Fuzzy-rough classification tree (FRCT) 

Two-Dimensional Lorentzian Space [78] Classification via Lorentzian Metric (CLM) 

20 
wavelet coefficients [79] Adaptive Neuro-Fuzzy Inference System (ANFIS)  

Fourier Transform [80] Nearest Neighbour  

21 

Autoregressive models(AR) & Common Spatial Patterns (CSP) 

[81] 

 

linear & Non-Linear Classifiers 

22 
Common Spatial Subspace decomposition and FD Fisher 

Discrimination [82] 
Fisher Discriminant Analysis and SVMs 

23   
Principal Component Analysis [83] Support Vector Machine (SVM) 

Discrete Wavelet Transform [84] Bayes Quadratic Classifier 

24 --- [35] EAS, AF-EA, and ICA-EA 

25 --- [85] --- 

26 
Common Spatial Pattern (CSP) [86] Support Vector Machine (SVM) 

Filter Bank Common Spatial Pattern (FBCSP) [87]  

27 

Decision-Tree Induction (Local-Feature Extractor) [88] Support Vector Machine (SVM) 

Auto-Regression Model [89] 
Single Hidden Layer Feedforward Neural 

Networks (SLFN) 

28 

[90]  Continuous Wavelet Transform (CWT) & Student's t-

Statistic 
Support Vector Machine (SVM) 

[91] Averaged Mexican Hat Wavelet Coefficients Custom classification method 

29 Automatic Feature Selection Technique [92] 
Event related desynchronization (ERD) based 

classification 

30 Custom Feature Extract [93] Different classifier used 

31 
Heuristic Search Temporal [94] linear discriminant analysis (LDA) 

Custom features [95] linear discriminant analysis (LDA) 

32 Custom Spatial Features[96] Linear Discriminant Analysis (LDA 

33 
--- [97] Custom classification algorithm 

Canonical Correlation Analysis [98] Support Vector Machine (SVM) 

35 Entropy [99] Artificial Neural Network (ANN) 

36 
Spatial, Temporal, and Spatio-Temporal [100] Linear Discriminant Analysis (LDA 

---  [101] Rules Based Classification 

 


