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Summary: The mechanisms underlying secondary cell death
after traumatic brain injury (TBI) are poorly understood. Ani-
mal models of TBI recapitulate many clinical and pathologic
aspects of human head injury, and the development of geneti-
cally engineered animals has offered the opportunity to inves-
tigate the specific molecular and cellular mechanisms associ-
ated with cell dysfunction and death after TBI, allowing for the
evaluation of specific cause-effect relations and mechanistic

hypotheses. This article represents a compendium of the current
literature using genetically engineered mice in studies designed
to better understand the posttraumatic inflammatory response,
the mechanisms underlying DNA damage, repair, and cell
death, and the link between TBI and neurodegenerative dis-
eases. Key Words: Cell death—Head injury—Inflammation—
Neurodegeneration—Pathophysiology—Secondary brain dam-
age—Transgenic mice.

Traumatic brain injury (TBI) is a major cause of mor-

tality and disability in Europe and the United States, with

more than 2.5 million individuals in the U.S. alone living

with the devastating emotional and economic costs (NIH

Consensus Development Panel on Rehabilitation of Per-

sons With Traumatic Brain Injury, 1999). During the

past decade, the elucidation of “primary” (mechanical)

injury and “secondary” insults after head injury, im-

provement in pre-hospital care, classification of injury

severity, refinement of radiologic imaging, prompt

evacuation of surgical masses, and advances in critical

care and rehabilitation have led to a proficient level of

care that has been summarized in guidelines for the ad-

vanced treatment of head-injured patients (The Brain

Trauma Foundation, 2000). Despite these advances,

many head-injured patients die or survive with signifi-

cant brain damage and behavioral impairment, even after

mild or moderate head injury (Jennett, 1997; Graham et

al., 2000a). Currently, no treatment is available to re-

verse the pathogenic cellular cascade underlying pro-

gression of cell death. A better understanding of the mo-

lecular and cellular mechanisms leading to posttraumatic

cell death and their relation to behavioral impairment

remains an important goal of experimental TBI research.

The pathobiologic processes that occur after brain in-

jury are known to be associated with primary injury

(caused by physical or biomechanical effects of trauma)

and secondary or delayed events initiated minutes after

trauma and lasting for weeks, months, or possibly years.

These pathologic injury cascades are believed to be as-

sociated with alterations in gene expression and the up-

regulation and release of a number of potentially dam-

aging or restorative neurochemical factors that interact in
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a complex network leading to delayed cellular dysfunc-

tion, death, or both. The extended nature of these cas-

cades offers the possibility for therapeutic interventions

(alone or in combination) aimed at blocking degenera-

tion or improving repair and regeneration (McIntosh et

al., 1998; Graham et al., 2000a).

Animal models of TBI have been developed to reca-

pitulate many clinical and pathologic aspects of head

injury and have provided the basis for the dramatic in-

crease in the understanding of the pathophysiology of

brain damage after trauma (Povlishock et al., 1994; Lau-

rer and McIntosh, 1999). Experimental models of TBI

typically use rodents because of the many advantages—

including small size, low cost, and the extensive amount

of normative data available (Povlishock et al., 1994).

Clinically relevant rodent models of TBI represent a re-

liable means to permit the use of sophisticated neuro-

chemical, histopathologic, and molecular techniques, and

genomic manipulation to help clarify the pathogenic

mechanisms underlying trauma-associated cell death.

Properties of genetically engineered animals and

rationale for their use

The use of genetically engineered mice typically in-

volves the artificial overexpression or targeted deletion

(knockout) of a specific gene. The development of this

technology has revolutionized the investigation of the

specific molecular and cellular mechanisms associated

with cell dysfunction and death after TBI. Currently,

mice are the preferred species for these studies because

the murine genome has been extensively mapped and is

suitable for embryonic cell technology. Different ap-

proaches with genetically engineered animals include

studies of naturally occurring genetic variability or mu-

tations and the creation of animals with targeted gene

deletions or with newly introduced transgenes (Steward

et al., 1999). This article summarizes the significant post-

traumatic pathways investigated to date using genetically

engineered mice, including inflammation and cytokines,

nitric oxide and oxidative damage, and DNA damage/re-

pair and apoptosis. In addition, we will overview the

studies that have been performed using transgenic mouse

technology to understand the epidemiologic link between

TBI and neurodegenerative diseases.

INFLAMMATION AND CYTOKINES

Traumatic brain injury results in an acute blood–brain

barrier (BBB) opening that allows the entry of leuko-

cytes into the injured brain (Holmin et al., 1995; Soares

et al., 1995). These cells (neutrophils and activated mac-

rophages) may release oxygen free radicals causing cel-

lular damage and inflammatory cytokines that have been

implicated in posttraumatic neuropathologic damage.

Posttraumatic inflammation also is associated with an

increase in expression of intercellular adhesion mol-

ecules (ICAM) such as ICAM-1, which is involved in

vascular adhesion, transendothelial migration of leuko-

cytes, and the release of cytokines such as tumor necrosis

factor-� (TNF-�), various interleukins, and various tro-

phic factors (Morganti-Kossman et al., 1997). Initially,

the mediators and cytokines involved in this cascade

were considered to be pathogenic factors. However, it is

now clear that posttraumatic inflammation also may con-

tribute to reparative and regenerative processes after TBI

(McIntosh et al., 1998; Shohami et al., 1999; Lenzlinger

et al., 2001). Macrophage activation results in removal of

dead tissue and debris by phagocytosis, lipid recycling,

and secretion of the above-mentioned spectrum of cyto-

kines possessing trophic, mitogenic, and chemotactic

properties that may contribute to healing, plasticity, and

regeneration (Lotan and Schwartz, 1994).

Intercellular adhesion molecules

Intercellular adhesion molecule-1 is a member of the

immunoglobulin family that is responsible for the re-

cruitment of leukocytes to inflammatory foci. The in-

crease in expression of ICAM-1 reported after clinical

and experimental brain trauma has been hypothesized to

be involved in secondary inflammatory damage (Carlos

et al., 1997; Whalen et al., 1997, 1998). Intercellular

adhesion molecule-1 knockout mice have been generated

by disruption of the fifth exon of the ICAM-1 locus in

129/Sv embryonic stem (ES) cells (Sligh et al., 1993).

These mice do not demonstrate any susceptibility to in-

fection, but do exhibit prominent abnormalities of the

peripheral inflammatory response, including impaired

neutrophil migration in response to chemical peritonitis

(Sligh et al., 1993).

Platelet (P)-selectin, a member of the selectin family,

mediates platelet and leukocyte rolling on endothelium

and platelet–neutrophil adhesion. Generation of P-

selectin knockout mice is obtained through the deletion

of exons 3–5. Although dual ICAM-1 and P-selectin

(−/−) mice completely lack neutrophil migration during

peritoneal inflammation, they develop normally, are fer-

tile, and appear to be healthy (Bullard et al., 1995). To

clarify the role of ICAM-1 and P-selectin after TBI,

ICAM-1 (−/−) and dual ICAM-1 and P-selectin (−/−)

mice were subjected to controlled cortical impact (CCI)

brain injury and were compared with wild type (WT)

mice. Surprisingly, these studies failed to reveal any dif-

ferences in brain neutrophil accumulation at 24 hours

postinjury, memory and motor function, or contusion

volume at 3 weeks after injury (Whalen et al., 1999a,

2000). These data suggest that after TBI, brain neutrophil

accumulation may be stimulus-specific and not depen-

dent on ICAM-1, or that these knockout mice may de-

velop a compensatory adhesion pathway. Further studies

are warranted to understand the difference between re-

sults obtained with genetically engineered mice and
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pharmacologic agents such as antibodies directed to

ICAM-1 that reduce by almost 40% the invasion of neu-

trophils into the injured brain during the first 24 hours

after injury (Carlos et al., 1997). However, brain edema

was observed to be decreased at 24 hours after TBI in

dual P-selectin and ICAM-1 (−/−) mice, suggesting a

possible role for adhesion molecules (particularly P-

selectin) in the pathogenesis of acute brain edema inde-

pendent of leukocyte accumulation (Whalen et al., 2000).

Because posttraumatic brain edema may be responsible

for a considerable increase in brain volume and intracra-

nial pressure, this pathway may be an important thera-

peutic target in clinical head injury. Additional studies

are needed to further define the role of ICAM-1 and

P-selectin in posttraumatic brain edema.

Tumor necrosis factor-�

Brain injury induces a dramatic increase in the expres-

sion of TNF-� but the exact role of this cytokine in

mediating posttraumatic damage is unclear (Shohami et

al., 1994; Fan et al., 1996). Tumor necrosis factor-�

binds two different receptors (TNFR): p75 and p55. Ac-

tivation of the p55 receptor results in activation of the

nuclear factor �B, which induces genes for manganese

superoxide dismutase (MnSOD) and calbindin (Das et

al., 1995; Mattson et al., 1995).

To understand the role of TNF in the postinjury cas-

cade, TNF (−/−) mice were generated using a replace-

ment-type targeting vector containing a phosphoglycer-

ate kinase (PGK)-neomycin (neo) expression cassette to

replace the TNF gene. Scherbel et al. (1999) subjected

TNF (−/−) mice and their WT littermates to CCI brain

injury of mild severity and observed that the brain-

injured TNF (−/−) mice exhibited attenuated cognitive

deficits and motor dysfunction during the first week after

injury when compared with WT littermates. However,

WT mice subjected to mild TBI showed a marked re-

covery with time, whereas TNF (−/−) mice displayed

persistent motor deficits up to 4 weeks after injury (Fig.

1). A significantly larger injury cavity also was observed

in TNF (−/−) mice at 2 and 4 weeks after injury, sug-

gesting that although this cytokine may play a deleteri-

ous role during the acute postinjury period, it may have

a beneficial role in long-term behavioral recovery and

tissue repair in the more chronic period after brain injury.

These data are partially in agreement with the results

obtained using pharmacologic agents aimed to reduce

TNF production, such as pentoxifylline and the synthetic

cannabinoid Dexanabinol (Jackson Laboratory, Bar Har-

bor, ME, U.S.A.), or its activity, such as TNF-binding

protein, suggesting that TNF antagonism in the acute

postinjury phase may be therapeutic (Shohami et al.,

1996, 1997b).

Because the lymphotoxin (LT) may compensate for

the absence of TNF by acting on the same receptors,

TNF/LT double-deficient mice have been produced by

inactivating both genes. These animals show splenic mi-

croarchitecture disorganization, immunoglobulin reduc-

tion, and impaired B and T cell function (Eugster et al.,

1996). When TNF/LT (−/−) mice were subjected to a

weight drop brain injury and were compared with brain-

injured WT mice, no differences were observed in neu-

rologic motor function (during the first 7 days), BBB

permeability at 4 hours after injury, neutrophil infiltra-

tion at 24 hours after injury, or cell death. However,

TNF/LT (−/−) mice have been reported to show an in-

creased mortality at 1 week after injury, suggesting a

protective role for these cytokines (Stahel et al., 2000).

Although these data differ from those obtained from Sch-

erbel et al. (1999), in which the deletion of TNF gene was

suggestive of an acute detrimental effect of TNF, these

differences may be caused by the effects of deletion of

different genes and the use of different strains of mice

and models of central nervous system (CNS) injury.

In addition to the deletion of the TNF gene, mice lack-

ing either p75 or p55 receptors have been generated by

the disruption of the TNFR genes and replacement with

a neomycin (neo) resistance gene. Homozygous p75 and

p55 knockout mice were subsequently mated to obtain

mice that are deficient in both receptors. These knockout

mice show altered response of lymphocytes to infectious

agents (Zheng et al., 1995; Bruce et al., 1996), but re-

produce normally, appear to be healthy, and fail to show

any behavioral deficits or overt brain structural alter-

ations compared with naïve WT littermates. After CCI

brain injury, TNFR knockout mice, lacking p75 and p55

receptors, showed a greater lesion volume (7 days after

injury) and alteration in BBB permeability, delayed NF-

�B activation, and reduced MnSOD expression in the

acute posttraumatic period compared with WT litter-

mates (Sullivan et al., 1999). Moreover, because Mn-

SOD overexpressing mice showed a reduced posttrau-

FIG. 1. Comparison of posttraumatic recovery of neurologic mo-
tor function evaluated by composite neuroscore in tumor necrosis
factor (TNF) (−/−) mice and their wild type (WT) littermates after
controlled cortical impact brain injury. Reprinted with permission
from Scherbel et al., 1999. Copyright ©1999 National Academy of
Sciences, U.S.A.
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matic lesion volume at 7 days compared with WT con-

trols, it was suggested that TNFR-mediated NF-�B

activation may initiate neuroprotective pathways early in

the postinjury cascade through MnSOD induction, which

exerts antioxidative and antiapoptotic activity (Sullivan

et al., 1999). The results obtained using TNFR (−/−)

mice suggest that TNF may be neuroprotective even in

the acute posttraumatic period, creating a more complex

picture of the role of this cytokine in TBI. Taken to-

gether, these studies prompt the reevaluation of thera-

peutic strategies aimed at suppressing TNF-� production

or blocking its activity and serve as a reminder that the

timing of manipulation of specific cellular and molecular

pathways through pharmacologic intervention is critical.

Interleukins and metallothioneins

Interleukin-1� converting enzyme (ICE or caspase-1)

was the first identified member of the caspase family

responsible for cleavage of pro–IL-1� into biologically

active IL-1� that may play a role during cell death.

Transgenic mice expressing a dominant negative inhibi-

tor of caspase-1 have been generated by inserting cyste-

ine in substitution for glycine at the active site

(ICEC285G), under the control of a neuron-specific eno-

lase promoter (NSE-M17Z). The embryonic develop-

ment of these TG mice is normal, and although they

appear neurologically normal postnatally, dorsal root

ganglial neurons isolated from this strain are resistant to

trophic factor withdrawal-induced apoptosis (Friedlander

et al., 1997). Moreover, the neurons isolated from new-

born caspase-1 knockout mice are similarly resistant to

trophic factor withdrawal-induced apoptosis (Friedlander

et al., 1997). Transgenic mice expressing the mutant

gene of caspase-1 (ICEC285G) when subjected to CCI

brain injury showed lower levels of caspase-1, reduced

motor deficits, and smaller lesion volume compared with

brain-injured WT mice. This neuroprotection was asso-

ciated with a decrease in oxygen free radical release and

was replicated by pharmacologic inhibition of caspase-1

using the selective peptide inhibitor AcYVAD-cmk and

the nonselective pan-caspase inhibitor zVAD-fmk (Fink

et al., 1999).

Interleukin-6 is a proinflammatory cytokine, known to

protect cultured mesencephalic, catecholaminergic, and

septal neurons from the toxic effect of glutamate (Hama

et al., 1991; Toulmond et al., 1992). Interleukin-6 mRNA

expression and protein levels are increased in the rat

brain after a weight drop TBI and in cerebrospinal fluid

after human head injury (Kossmann et al., 1996; Hans et

al., 1999). Moreover, IL-6 induces expression of acute-

phase proteins called metallothioneins (MT), which may

have antioxidant properties and may regulate zinc and

copper metabolism. These proteins also modulate cat-

echolaminergic, glutamatergic, and GABAergic trans-

mission, and their expression is altered in different

pathophysiologic conditions, including neurodegenera-

tive diseases and cortical freeze injury (Penkowa and

Moos, 1995; Aschner et al., 1997).

Generation of IL-6–deficient mice has been achieved

by the disruption of the IL-6 gene in 129 Sv ES cells by

the insertion of neomycin into the first coding exon of

IL-6. Homozygous IL-6 knockout mice develop nor-

mally, but show a compromised inflammatory acute-

phase response after tissue damage (Kopf et al., 1994).

After cortical freeze injury in IL-6 (−/−) knockout mice,

the number of activated glial cells and brain macro-

phages was reduced by 3 days after injury. A reduction in

MT isoforms I and II and an increase of isoform III

expression with a greater neuronal cell loss in the fronto-

parietal cortex was observed compared with WT litter-

mates (Penkowa et al., 1999b). These authors suggested

that IL-6 is essential for activation of microglia and re-

cruitment of monocytes and astrocytes after brain injury

(Penkowa et al., 1999b).

Metallothionein production is induced by IL-6, and to

understand the role of these proteins in the response to

CNS injury, MT I and II knockout mice have been gen-

erated, inactivating the genes by homologous recombi-

nation using clones lacking in MT I and II alleles. Naïve

metallothionein-deficient mice do not show any ana-

tomic or histologic difference when compared with their

WT littermates (Penkowa et al., 1999a). In a model of

cortical freeze injury, MT I–II knockout mice, compared

with WT-injured mice, showed a more pronounced in-

filtration of microglia and macrophages, a prolonged,

abnormal inflammatory response up to 90 days, an in-

crease in neuronal cell loss and apoptosis, and a reduc-

tion in wound healing and tissue regeneration due to

altered angiogenesis (Penkowa et al., 1999a, 2000).

These studies suggest that these proteins may be impor-

tant for the proper control of the inflammatory response,

oxidative homeostasis, and apoptosis (caused by greater

oxidative stress and alterations in zinc concentration) af-

ter brain injury.

Astrocytes and tissue repair

Astrocytes play an important role in maintaining meta-

bolic homeostasis in the CNS. The biologic significance

of reactive astrocytosis after TBI is of great interest be-

cause this can lead to a glial scar formation, which may

putatively impede CNS regeneration, or to the release of

trophic factors that support regeneration. Steward and

Trimmer (1997), using a substrain of C57BL/6 mice that

contains the Ola mutation and is characterized by mark-

edly delayed Wallerian degeneration (Wlds), studied as-

trocyte activation in a model of denervation and showed

that reactive changes in astrocytes are triggered by fac-

tors released by activated microglia. The delayed glial

response to injury is believed to have detrimental con-

sequences, including the inhibition of regeneration of the

L. LONGHI ET AL.1244

J Cereb Blood Flow Metab, Vol. 21, No. 11, 2001



injured neurons. Fox and Faden (1998) compared the

temporal course of the behavioral alterations caused by

CCI brain injury in C57BL/6 and C57BL/6/Wlds mice

and showed that behavioral impairment is delayed in

Wlds mice. To further clarify the role of astrocytes after

CNS injury, mice genetically engineered to be deficient

in glial fibrillary acidic protein (GFAP)-positive astro-

cytes have been generated by expressing herpes simplex

virus thymidine kinase from a mouse GFAP promoter.

Subsequent treatment for 1 week with Ganciclovir then

ablates all transgene-expressing, GFAP-positive astro-

cytes from the injured CNS (Bush et al., 1998). When

subjected to forebrain penetrating stab injury and subse-

quent ablation of GFAP positive astrocytes, these mice

show prolonged leukocyte infiltration, failure of BBB

repair with associated brain edema, neuronal degenera-

tion, and increased outgrowth of nerves fibers compared

with injured WT mice (Bush et al., 1999). These data

implicate a protective role for reactive or activated as-

trocytes in the postinjury period.

Insulinlike growth factors (IGF) I and II are peptides

related to the hormone insulin. They are present in serum

and tissue and are usually bound to IGF binding proteins

(IGFBP), which can increase or inhibit IGF action. In the

CNS, IGF-1 receptors are present in neurons, astrocytes,

and oligodendrocytes during development (Garcia-

Segura et al., 1991). In adult life, IGF-1 expression in

astrocytes is reactivated in response to injury (Garcia-

Estrada et al., 1992). To generate transgenic mice over-

expressing IGFBP-1, the entire coding region of the rat

IGFBP-1 gene was inserted downstream of the mouse

phosphoglycerate kinase (PGK-I) promoter. The IGFBP-

1/PGK-I fragment then was inserted into fertilized

C57BL/6JXCBA/JF1 zygotes. These IGFBP-1 overex-

pressing mice are characterized by reduced body weight,

hyperglycemia, and reduced brain size (Rajkumar et al.,

1995). To clarify the potential role of IGF-1 in activating

astrocytes during the postinjury process, a knife lesion

was stereotaxically placed in the right cerebral hemi-

sphere in both WT and transgenic mice overexpressing

IGFBP-1. The response of astrocytes to the injury was

reduced in the TG mice, suggesting an IGF-1–mediated

astrocyte response to this type of injury (Ni et al., 1997).

Matrix metalloproteinases

Gelatinase (MMP 9), a member of the metalloprotein-

ase family, is not constitutively expressed in the brain but

is induced after cerebral ischemia and trauma (Wang et

al., 2000; Sharp et al., 2000). After CCI brain injury in

C57BL/6 mice, MMP 9 levels increase by 3 hours after

injury and remain elevated for at least 1 week (Wang et

al., 2000). To evaluate the role of MMP 9 in brain injury,

MMP 9 knockout mice were generated by replacing part

of the gene with a cassette containing the neomycin

phosphotransferase cDNA (neor) driven by the PGK pro-

moter. Matrix metalloproteinase 9 (−/−) mice exhibit an

abnormal pattern of skeletal growth plate vascularization

and ossification in the long bones and show a lower

motor endurance compared with WT mice (Vu et al.,

1998). Matrix metalloproteinases 9 (−/−) mice subjected

to CCI brain injury show decreased motor deficits and

smaller lesion volumes compared with brain-injured WT

mice, suggesting that MMP 9 may play a deleterious role

during the secondary cascade after trauma (Fig. 2)

(Wang et al., 2000). Additional work is necessary to

confirm whether MMP 9 may be a future target for phar-

macologic intervention after TBI.

Nitric oxide

Nitric oxide (NO) has been suggested to play a role in

damage, recovery, or both after brain injury (Huang et

al., 1994; Mesenge et al., 1996; Holscher, 1997). Three

different systems are reportedly involved in NO synthe-

sis. Nitric oxide production by endothelial NO synthase

(eNOS) appears to provide beneficial effects in models

of TBI by preventing blood flow reduction (DeWitt et

al., 1997), whereas neuronal NOS (nNOS)-related NO

production has been suggested to exacerbate neuronal

damage in models of cerebral ischemia (Huang et al.,

1994). The final pathway involves inducible NOS

(iNOS) which is activated in response to inflammation

after experimental TBI with marked increases in expres-

sion 24 and 48 hours after injury (Clark et al., 1996).

To clarify the beneficial or detrimental effects of

iNOS-related NO production, mice deficient in iNOS

have been produced by targeted disruption of both the

iNOS promoter and the iNOS gene (MacMicking et al.,

1995). These homozygous knockout mice are healthy

and perform normally on motor and spatial memory ac-

quisition tasks when compared with WT mice. However,

mice deficient in iNOS showed greater latencies, com-

pared with WT littermates, to find a submerged platform

15 to 18 days after CCI brain injury, indicating impaired

learning performance in this strain and suggesting a pro-

tective role of iNOS, although the exact mechanism re-

mains unclear (Sinz et al., 1999). In the same study, the

protective role of iNOS was confirmed in a rat model of

CCI brain injury; administration of iNOS inhibitors ami-

noguanidine and L-N-iminoethyl-lysine resulted in re-

duced learning capacity and greater hippocampal cells

loss at 3 weeks after injury. Because these data are con-

trary to those obtained in the acute posttraumatic period

using the NO inhibitor aminoguanidine after lateral fluid

percussion (FP) brain injury in rats (Wada et al., 1998),

iNOS activity may exert detrimental effects in the acute

postinjury period but show beneficial effects in the

chronic phase. Further studies with knockout mice at

different time points are warranted to clarify the role of

NO after TBI. Figure 3 summarizes the main pathways

GENETICALLY ENGINEERED MICE AND TBI 1245

J Cereb Blood Flow Metab, Vol. 21, No. 11, 2001



related to the posttraumatic inflammatory response in-

vestigated using genetically engineered mice. Table 1

summarizes the results of the studies previously de-

scribed in the text with the main findings in relation to

the genotype used and the model of injury.

OXIDATIVE DAMAGE

The formation of reactive oxygen species (ROS) is

one of several major events in a biochemical cascade

leading to delayed neuronal death after TBI. Oxygen free

radicals are responsible for peroxidative damage to the

cell membrane, oxidation of proteins, and DNA leading

to cell damage and death through apoptotic and necrotic

pathways (Shohami et al., 1997a; Love, 1999). Under

physiologic conditions, ROS are continunously produced

during cellular respiration and are subsequently removed

by endogenous scavengers including superoxide dismu-

tases (SOD), glutathione peroxidase, and catalase. Su-

peroxide dismutase includes three isoforms: copper zinc

FIG. 2. (A) Representative Nissl-stained brain sections at 7 days after controlled cortical impact brain injury. (B) Matrix metalloprotein-
ase-9 knockout (KO) mice show smaller lesion volume compared with their wild type (WT) littermates (in cubic millimeters; mean ± SEM;
*P < 0.05). Reprinted with permission from Wang et al., 2000. Copyright ©2001 The Society of Neuroscience.

FIG. 3. Overview of the main pathways
involved in the posttraumatic inflamma-
tory cascade investigated using geneti-
cally engineered mice. ICAM, inter-
cellular adhesion molecules; ICE, In-
terleukin-1� converting enzyme; iNOS,
inducible nitric oxide synthase; LT, lym-
photoxin; MnSOD, manganese super-
oxide dismutase; ROS, reactive
oxygen species; TNF, tumor necrosis
factor.
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(CuZn)-SOD in the cytosol, MnSOD in mitochondria,

and high molecular weight extracellular (E)-SOD (Chan

et al., 1995; Love, 1999).

Transgenic CuZn-SOD overexpressing mice have

been generated through insertion of the human CuZn-

SOD 14.5 Kb gene, which includes the promoter se-

quence. These mice express 3- to 10-fold greater than

normal values of CuZn-SOD in the CNS and other tis-

sues (Shi et al., 1994). Typically, no phenotypic differ-

ences are observed between these mice and their WT

littermates, although some investigators have reported

certain morphologic abnormalities of the neuromuscular

junction in the tongue muscle (Avraham et al., 1988).

Studies involving cold (freeze lesion) injury or weight

drop brain injury have demonstrated that BBB perme-

ability, brain edema, and lesion volume are significantly

reduced and neurologic deficits are attenuated in CuZn-

SOD TG mice (Chan et al., 1991; Mikawa et al., 1996;

Murakami et al., 1999).

Manganese superoxide dismutase overexpressing

mice have been generated by inserting the human

MnSOD gene through microinjection into the pronuclei

of mouse fertilized eggs. Overexpression of MnSOD in

transgenic mice is associated with smaller cortical con-

tusion volume 7 days after CCI brain injury compared

with brain-injured WT controls (Sullivan et al., 1999).

Although the results of these laboratory studies using TG

mice have been replicated using pharmacologic treat-

ment to inhibit ROS in the experimental setting, clinical

trials with the free radical scavenger polyethylene gly-

col–conjugated SOD or tirilazad mesylate, a 21-

aminosteroid inhibitor of free radical–mediated lipid per-

oxidation, have not yet produced significant benefits in

patients with head injuries (Young et al., 1996; Marshall

et al., 1998).

DNA DAMAGE AND REPAIR

Clinical and experimental TBI are characterized by

progressive cell death. Two morphologic phenotypes of

cell death have been described: necrotic and apoptotic.

Both share DNA fragmentation, detectable by the (TdT)-

mediated deoxyuridine triphosphate (dUTP) nick end la-

beling (TUNEL) technique (Gavrieli et al., 1992). Be-

cause morphologic features of necrosis and apoptosis

have been documented in the same neural cells, it has

been hypothesized that a continuum exists between ap-

optosis and necrosis (Portera-Cailliau et al., 1997). The

intracellular pathways leading to these two forms of cell

death may coexist and/or overlap sequentially, and the

prevalence of apoptotic or necrotic features at any single

time may be related to the intensity of the insult, energy

production by the mitochondria, intracellular level of cal-

cium, and reparative mechanisms (Raghupathi et al.,

2000).

TABLE 1. Summary of studies performed with genetically engineered mice to investigate specific molecules involved in the
inflammatory posttraumatic response

Genotype
Model of

injury
Behavioral
outcome*

Histologic
outcome*

Main result of
the study† Reference Vendor‡

ICAM-1 (−/−) CCI Unaffected Unaffected Equal brain neutrophil
accumulation

Whalen, 1999a Jackson

ICAM-1/P-selectin
(−/−)

CCI Unaffected Unaffected ↓ brain edema Whalen, 2000 Jackson

TNF (−/−) CCI Acute phase: improved
Chronic phase:
worsened

Worsened Biphasic trend in outcome Scherbel, 1999 Jackson

TNF/lymphotoxin
(−/−)

WD Unaffected Unaffected ↑ mortality Stahel, 2000 NA

TNF receptor (−/−) CCI NA Worsened ↑ lesion volume
↑ edema

Sullivan, 1999 NA

Caspase-1 (−/−) CCI Improved Improved ↓ lesion volume Fink, 1999 NA
IL-6 (−/−) CFI NA Worsened ↑ neuronal loss Penkowa, 1999b Jackson
MT I-II (−/−) CFI NA Worsened Abnormal

Inflammatory response
Penkowa, 1999a

Penkowa, 2000
Jackson

C57BL/6 WldS CCI Delayed effects of injury Fox, 1998 Jackson
GFAP-positive

astrocytes deletion
Stab injury NA Worsened ↑ edema failure in repair

neuronal degeneration
Bush, 1999 Jackson

IGFBP
overexpressing

Dissecting lesion NA NA Reduce astrocyte activation Ni, 1997 NA

MMP 9 (−/−) CCI Improved Improved ↓ lesion volume Wang, 2000 NA
iNOS (−/−) CCI Worsened NA ↑ cognitive deficit Sinz, 1999 Jackson

ICAM-1, intercellular adhesion molecule 1; CCI, controlled cortical impact; TNF-�, tumor necrosis factor-�; WD, weight drop; CFI, cortical freeze
injury; GFAP, glial fibrillary acidic protein; IGFBP, insulinlike growth factor binding proteins; MMP 9, gelatinase; iNOS, inducible nitric oxide
synthase; NA, not applicable.

* Results of genetic manipulation on the response to traumatic brain injury (TBI) compared with the response of their related wild type (WT)
littermates.

† Description of the main effect of TBI in genetically engineered mice compared with related WT littermates.
‡ Source where these genetically modified mice are commercially available.
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As previously described, ROS that are released after

TBI can induce DNA strand breaks (Love, 1999). The

tumor suppressor gene p53 is up-regulated after DNA

damage and can lead to DNA repair, cell growth arrest,

or apoptosis (Evan and Littlewood, 1998). Napieralski et

al. (1999) reported that p53 mRNA is up-regulated after

lateral FP brain injury in rats, suggesting that p53 may

play a role in the molecular response to TBI leading to

cell death. To further evaluate the role of p53 after TBI,

p53 knockout mice were generated through homologous

recombination using a target vector containing 3.7 kilo-

bases of the genomic p53 gene, interrupted in exon 5 by

a PolII-neo expression cassette. Mice deficient in p53

appear healthy at birth but are prone to the spontaneous

development of neoplasms by 6 months of age (Done-

hower et al., 1992). Because mice deficient in p53 show

less histologic damage in models of excitotoxicity (sub-

cutaneous kainic acid injection) and focal ischemia

(middle cerebral artery occlusion) (Crumrine et al., 1994;

Morrison et al., 1996), Tomasevic et al. (1999) compared

the effects of CCI brain injury in p53 knockout mice and

their WT littermates. At 7 days after injury, p53 (−/−)

mice exhibited attenuated motor function deficits com-

pared with their WT littermates, but no differences were

found in cortical lesion volume or cell loss in the hippo-

campus and thalamus between WT and p53-deficient

mice. These results may be explained, in part, by the fact

that DNA damage-induced up-regulation of p53 gene

may activate different pathways, such as induction of the

proapoptotic bax gene family, leading to cell death (Mi-

yashita and Reed, 1995), or induction of the wild type

p53-activated fragment (WAF/p21) and the growth arrest

and DNA damage-inducible gene GADD45, leading to

cell survival (Artuso et al., 1995).

Poly (ADP-ribose) polymerase (PARP) is a nuclear

enzyme that has been proposed to play a role in the repair

of DNA damage. Normally, DNA strand breaks activate

PARP, which then binds to the nicked DNA and uses

NAD+ as a substrate to form Poly (ADP-ribose) (PAR).

This process continues until a critical PAR chain length

is reached and then PARP is released from DNA and

other repair enzymes complete the repair process. Al-

though lateral FP brain injury in the rat initially activates

PARP by 30 minutes after injury, evidence suggests that

the PARP molecule is subsequently degraded by

caspase-3–mediated cleavage, leading to significant

DNA fragmentation (LaPlaca et al., 1999). However, it

has been hypothesized that excessive activation of PARP

also may lead to consumption of NAD, ATP reduction,

cell dysfunction, and death associated with energy failure

(Berger, 1985). Poly (ADP-ribose) polymerase (−/−)

mice, produced by deleting part of exon 2, develop nor-

mally and are fertile. Analysis of tissues isolated from

these mice confirmed absence of PARP activity, but re-

vealed that these mice are able to repair DNA damage

induced by UV and alkylating agents (Wang et al.,

1995). Genetically engineered mice deficient in PARP

show attenuated functional deficits but equivalent histo-

logic outcome after CCI brain injury, suggestive of a

protective mechanism through the inhibition of posttrau-

matic energy failure (Whalen et al., 1999b). Further stud-

ies are warranted to elucidate the mechanisms underlying

these results and to evaluate whether pharmacologic in-

hibition of PARP might represent a therapeutic strategy

for reducing neurologic injury after TBI, as recently

shown by LaPlaca et al. (2001) in a model of lateral

FP brain injury in rats. Figure 4 summarizes the path-

ways related to oxidative brain damage and DNA dam-

FIG. 4. Overview of the pathways involved in the oxidative brain damage, physiologic endogenous scavenger, and DNA damage- and
repair-related mechanisms evaluated using genetically engineered mice. NO, nitric oxide; CuZn SOD, copper zinc superoxide dismutase;
MnSOD, manganese superoxide dismutase; PARP, poly (ADP-ribose) polymerase; TBI, traumatic brain injury.
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age investigated, to date, using genetically engineered

mice.

APOPTOSIS

Apoptotic cell death has been reported to occur in the

acute and the chronic posttraumatic period after lateral

FP and CCI brain injury in rats and more recently in

tissue from patients with head injuries (Rink et al., 1995;

Colicos and Dash, 1996; Conti et al., 1998; Newcomb et

al., 1999; Smith et al., 2000). Apoptosis is triggered by

intracellular or extracellular signals that converge to ac-

tivate a specific group of cysteine proteases called

caspases. Caspase activation occurs through 2 different

pathways. The first (extrinsic) pathway involves TNF-�

and Fas receptors at the cell surface leading to activation

of caspase-8, which then activates downstream caspases

such as caspase-3, -6, and -7. The second (intrinsic) path-

way involves the release of cytochrome c from the mi-

tochondria. It is generally believed that cytochrome c

binds to Apaf-1 and this complex recruits and activates

procaspase-9, which finally activates the downstream

caspases-3, -6, and -7 (Hengartner, 2000; Yuan and

Yankner, 2000).

Apoptosis is controlled by the bcl-2 family of genes

including proapoptotic factors such as bak, bim, bad, and

bax and antiapoptotic factors bcl-2 and bcl-xl, whose

activity is related to cytochrome c and caspase activation.

An imbalance in the expression of one of these groups of

genes may exacerbate or reduce the extent of cell death

after neuronal injury (Graham et al., 2000b). The bcl-2

gene family may play an important role in controlling

cell survival after CNS injury, and an increase in bcl-2

mRNA and bcl-2 protein has been observed after experi-

mental and clinical TBI (Clark et al., 1997, 1999, 2000).

In contrast, Raghupathi et al. (unpublished data, 2000)

recently evaluated the ratio between proapoptotic and

antiapoptotic members of the bcl-2 family and observed

that bcl-2 immunoreactivity was decreased in the injured

cortex and injured hippocampus by 2 hours after lateral

FP injury. At 24 hours after injury, the authors also ob-

served an increase in bax mRNA and proteins in the

perilesion area. These data suggest that the resulting

changes in the bax/bcl-2 ratio could participate in the

posttraumatic pattern of apoptosis in the injured cortex

and hippocampus.

Mice overexpressing human bcl-2 have been gener-

ated by transfecting the human bcl-2 gene under the con-

trol of synapsin I promoter fragment. Raghupathi et al.

(1998) subjected these bcl-2 overexpressing mice to CCI

brain injury, then compared them with WT littermates.

Transgenic mice overexpressing bcl-2 demonstrated in-

creased human bcl-2 expression in the cortex, hippocam-

pus, and midbrain and reduced cortical lesion volume by

1 week after injury when compared with WT littermates.

Surprisingly, no differences in neurologic motor function

were observed between transgenic and WT mice. Naka-

mura et al. (1999a) studied mice overexpressing human

bcl-2 controlled by the neurofilament light-chain pro-

moter. These mice (overexpressing human bcl-2 protein

in the cortex, hippocampus, and thalamus) were sub-

jected to CCI brain injury and then were compared with

their WT littermates. Human bcl-2 overexpression was

associated with smaller cortical lesion volume and hip-

pocampal cell loss, confirming a protective role of the

bcl-2 protein. Despite histologic protection, TG mice

were as impaired as their WT littermates with respect to

posttraumatic cognitive function.

Several mechanisms can explain a protective role for

bcl-2, including the capacity to reduce ROS generation,

an increased capacity to buffer posttraumatic intracellu-

lar calcium increases, and the blockade of cytochrome c

release from the mitochondria preventing subsequent ac-

tivation of caspases. Recently, the protective effect of

bcl-2 was confirmed by the manipulation of its expres-

sion in a rat model of middle cerebral artery occlusion

with the use of antisense oligodeoxynucleotides, which

suppressed endogenous expression and exacerbated isch-

emic neuronal death (Chen et al., 2000).

Among the proapoptotic factors of the bcl-2 family of

genes, bax has been shown to induce apoptosis by acti-

vating caspase-3 (Cregan et al., 1999). After CCI brain

injury in rats, a translocation of bax into the nuclei of

neurons destined to die of apoptosis was observed at 48

hours postinjury (Kaya et al., 1999). Knockout of the bax

gene has been produced in bax (−/−) mice by homolo-

gous recombination substituting exons 2, 4, and part of 5

with a target vector (PGK-Neo). These mice are viable

and show thymocyte hyperplasia and infertility in the

males. In addition, the knockout of bax leads to a reduc-

tion in the magnitude of naturally occurring programmed

cell death in sympathetic and facial motor neurons

(Knudson et al., 1995). Cultures of neurons from bax

(−/−) mice are resistant to excitoxicity produced by ad-

ministration of glutamate or kainate and DNA damage

induced by camptothecin, suggesting that bax is involved

in different pathways of cell death (Xiang et al., 1998).

Carbonell et al. (1999) tested the hypothesis that this

proapoptotic factor is involved in the acute cortical and

hippocampal damage after lateral FP brain injury by

comparing the response of bax (−/−) mice and their WT

littermates to TBI. As early as 10 minutes after lateral FP

brain injury, bax (−/−) mice showed fewer damaged neu-

rons than the WT-injured mice in the hippocampus but

not in the cortex, suggesting that bax is involved in me-

diating acute posttraumatic hippocampal neuronal dam-

age. Because the hippocampus contains a high concen-

tration of excitatory amino acid receptors, these results

might be explained by an increased resistance to excito-

toxicity caused by the suppression of bax.
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Downstream from caspase activation, DNA fragmen-

tation is mediated by a heterodimeric protein composed

of 40- and 45-kDa subunits. These subunits have been

named DNA fragmentation factor (DFF)-40 (or caspase

activated DNAase (CAD)) and DFF-45 (or inhibitor of

CAD, ICAD). During apoptosis, caspase-3 is believed to

cleave DFF-45, dissociating it from DFF-40 and induc-

ing a transformation of DFF-40 into a large protein com-

plex with DNAase activity. The proteolytic activity of

DFF-40 requires DFF-45 to be reactivated, suggesting

that DFF-45 is a chaperone molecule that is essential for

DFF-40 synthesis and activation (Liu et al., 1997, 1998;

Enari et al., 1998). Regional changes of DFF-40 and 45

have been documented in lateral FP brain injury, where

a decrease in DFF-45–like proteins in rat cortex was

observed in the cytosolic and nuclear fraction during the

first 24 hours after injury (Zhang et al., 1999). In the

hippocampus, DFF-40 was found to be reduced in the

cytosolic fraction and increased in the nuclear fraction at

2 and 24 hours after brain injury, suggesting that a trans-

location from cytoplasm to nucleus occurs during post-

traumatic apoptosis (Zhang et al., 1999).

The generation of DFF-45 mutant mice has been

achieved through the deletion of 1–3 exons through ho-

mologous recombination (Zhang et al., 1998). DFF-45

(−/−) mice contain normal levels of DFF-40 (which is

not functional) and caspase-3, are healthy and fertile, and

grow without obvious abnormalities. No spontaneous

DNA fragmentation has been observed in neurons iso-

lated from these mice. Moreover, cells isolated from the

spleen and thymus are resistant to DNA fragmentation

and chromatin condensation in response to apoptotic

stimuli, suggesting that DFF-45 plays a critical role dur-

ing apoptosis (Zhang et al., 1998). These DFF 45 (−/−)

mice were found to have a smaller lesion volume than

WT mice at 1 and 4 days after CCI brain injury, sug-

gesting a neuroprotective role of DFF 45 deletion in the

acute posttraumatic period (Zhang et al., 2000).

Despite the progress that has been made during the

past few years in understanding the molecular mecha-

nisms associated with posttraumatic cell death, the com-

plexity of these pathways and whether apoptosis also

may have a beneficial or protective role—by which the

brain removes injured cells with minimal damage to sur-

rounding tissue—in the setting of CNS injury remains

unclear. Further investigations with genetically engi-

neered mice are warranted to clarify the potential targets

for a rational approach to the design of new pharmaco-

logic therapies to prevent this type of cell death. Figure

5 summarizes the apoptotic pathways investigated with

genetically engineered mice. Table 2 summarizes the re-

sults of the studies related to oxidative damage, DNA

damage, repair, and apoptosis described in the text with

the main findings in relation to the genotype used and the

model of injury.

TRAUMATIC BRAIN INJURY

AND NEURODEGENERATION

Alzheimer disease

Although TBI is a known epidemiologic risk factor

for Alzheimer disease (AD), the mechanistic link is not

yet fully understood (Plassman et al., 2000). After a

single severe head injury or a series of repetitive mild

head injuries (in boxers), a cohort of TBI patients share

many pathologic features with patients suffering from

FIG. 5. Extrinsic and intrinsic pathways
of apoptosis and molecules investi-
gated using genetically engineered
mice after traumatic brain injury. DFF,
DNA fragmentation factor; TNF, tumor
necrosis factor.
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AD—including deposition of plaques containing �-amy-

loid (A�) derived from the proteolysis of amyloid pre-

cursor protein (APP) and composed of fibrils formed by

39–43 amino acid peptides, and the presence of neuro-

fibrillary tangles in which paired helical filaments are

composed of abnormally phosphorylated tau (Tokuda et

al., 1991; Roberts et al., 1994). Alzheimer disease is

believed to be profoundly influenced by genotype. In

kindreds of familial AD patients, mutations are known to

occur in genes encoding for APP and presenilin 1 and 2,

which result in an increase in the A� peptides levels

(Borchelt et al., 1998). Moreover, genetic studies have

found a correlation between the common form of AD

and the allele � 4 of the apolipoprotein E (APOE) gene on

chromosome 19 (Strittmatter et al., 1993). Recently, pa-

tients expressing the � 4 allele of apoE have been re-

ported to have an increased vulnerability and worse out-

come after brain trauma (Teasdale et al., 1997; Lichtman

et al., 2000). Because head injury is epidemiologically

linked to AD, this relation recently has been studied in

experimental transgenic mouse models to reveal novel

and relevant pathogenetic mechanisms.

Amyloid precursor protein

Amyloid precursor protein is subjected to proteolytic

degradation leading to generation and secretion of the

A� peptide. Approximately 90% of secreted �-amyloid

peptide is in the form of A�1–40 and 10% are A�1-(42–

43). The A�1-(42–43) contains amino acids that are

highly fibrillogenic, readily aggregated, and deposited

early and selectively in amyloid plaques (Borchelt et al.,

1998). Traumatic brain injury in humans and rodents

induces accumulation of APP in perikarya of neurons

and in damaged axons (Pierce et al., 1996; Bramlett et

al., 1997; Sheriff et al., 1994). Despite this increase in

APP, experimental models of TBI in rodents currently

have not been associated with A�-plaque development,

probably because of differences in amino acid composi-

tion between different species (Pierce et al., 1996).

Transgenic yeast artificial chromosome (YAC) mice

have been generated by introducing the human APP gene

into embryonic stem cells (lipofection of a 650-Kb YAC

containing the APP gene). The CNS of these APP-YAC

mice overexpresses APP twofold when compared with

normal mice (Pearson and Choi, 1993). Murai et al.

(1998) subjected APP-YAC mice to CCI brain injury and

failed to observe any differences in posttraumatic cogni-

tive function, neurologic motor deficits, APP expression,

reactive astrocytosis, or cell loss between brain-injured

TG mice and injured WT littermates. Moreover, no AD-

like plaque deposition was observed in either brain-

injured WT or APP overexpressing mice.

A second strain of mice that has been used in TBI

research overexpresses a mutant APP minigene (contain-

ing the familial AD mutation Phe for Val in position 717)

driven by a platelet-derived growth factor promoter

(PDAPP). These mice overexpress mutant APP 10-fold

when compared with normal mouse APP and develop

plaques at 6 months of age (Games et al., 1995). Naïve

(uninjured) PDAPP mice exhibit impaired memory func-

tion when compared with their WT littermates. However,

CCI brain injury exacerbated these cognitive impair-

ments and produced a concomitant increase in hippo-

campal A�1–40 and 1–42 that was associated with a near

complete cell loss (>80%) in the CA3 region in the in-

jured hemisphere (Smith et al., 1998). This study led the

authors to develop a “two-hit hypothesis,” whereby a

first “hit” or insult is represented by genetic vulnerability

(that is, high concentration of amyloidogenic species of

A�) that becomes manifest only after a second epige-

netic insult or “hit” such as TBI. The resulting increase in

cell loss may depend on the combination of direct neu-

rotoxic activity of �-amyloid protein, abnormalities of

TABLE 2. Summary of studies performed with genetically engineered mice to investigate the pathways related to posttraumatic
oxidative damage, DNA damage/repair, and apoptosis

Genotype
Model of

injury
Behavioral
outcome*

Histologic
outcome*

Main result of
the study† Reference Vendor‡

CuZn SOD overexpressing CFI NA Improved ↓ edema and infarction Chan, 1991 Jackson
CuZn SOD overexpressing WD Improved Improved ↓ edema and lesion volume Mikawa, 1996 Jackson
CuZn SOD overexpressing CFI NA Improved ↓ edema Murakami, 1999 Jackson
Mn-SOD overexpressing CCI NA Improved ↓ lesion volume Sullivan, 1999 NA
p53 (−/−) CCI Improved Unaffected Same histologic damage Tomasevic, 1999 NA
PARP (−/−) CCI Improved Unaffected ↑ functional outcome Whalen, 1999 NA
Bcl-2 overexpressing CCI Unaffected Improved ↓ lesion volume Raghupathi, 1998 Jackson
Bcl-2 overexpressing CCI Unaffected Improved ↓ lesion volume and hippocampal cell loss Nakamura, 1999 Jackson
Bax (−/−) LFP NA Improved ↓ hippocampal cell loss Carbonnell, 1999 Jackson
DFF 45 (−/−) CCI NA Improved ↓ lesion volume Zhang, 2000 NA

CuZn SOD, copper zinc superoxide dismutase; CCI, controlled cortical impact; WD, weight drop; CFI, cortical freeze injury; PARP, Poly
(ADP-ribose) polymerase; LFP, lateral fluid percussion; DFF, DNA fragmentation factor; NA, not applicable.

* Results of genetic manipulation on the response to traumatic brain injury (TBI) compared with the response of their related wild type (WT)
littermates.

† Description of the main effect of TBI in genetically engineered mice, compared with related WT littermates.
‡ Source where these genetically modified mice are commercially available.
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the endosomal-lysosomal system, excitoxicity, activation

of proteases, and/or apoptotic pathways (Borchelt et al.,

1998). Using the identical strain of PDAPP mice, Nak-

agawa et al. (1999) observed that CCI brain injury at the

same age (4 months) actually reduced plaque deposition

with time (follow up at 2, 5, and 8 months after TBI).

These authors hypothesized that this reduction in A�

plaques may depend on decreased secretion of A� as a

consequence of cell death observed in hippocampus and

cingulate cortex, resulting from the combination of the

previously described two insults. Subsequently, Nak-

agawa et al. (2000) subjected 2-year-old PDAPP mice to

CCI brain injury. By 16 weeks after injury, brain-injured

aged transgenic mice showed a remarkable decrease in

A� deposits in the ipsilateral atrophic hippocampus, re-

flecting the massive hippocampal neuronal loss in these

mice. The widespread neuronal cell loss associated with

the moderate severity CCI brain injury may have offset

the A� production preventing plaques formation.

Laurer et al. (personal communication) have recently

investigated the effect of repetitive mild brain injury in a

different strain of mutant APP TG mice. These mice

express a human APP gene containing the double muta-

tion Lys670 → Asn and Met671 → Leu, found in a large

Swedish family with the early onset of AD (Hsiao et al.,

1996). The hallmark of these TG mice is the association

of elevated concentrations of A�, plaque formation, and

neurobehavioral impairment beginning at 9 to 10 months

of age (Hsiao et al., 1996). These TG mice had preinjury

learning deficits by 7 months of age compared with WT

littermates. A single episode of concussive brain injury,

induced before plaque development, led to an acute cog-

nitive impairment but failed to exacerbate histologic

damage in this strain. However, repetitive, mild head

injury induced both delayed cognitive alteration and bi-

lateral increases in plaque deposition, suggesting that

mild repetitive head injury may be a risk factor associ-

ated with an accelerated neurodegenerative process in a

genetically vulnerable population (Laurer, personal com-

munication). The results of this study encourage further

evaluation of selectively vulnerable genotypes exposed

to repetitive mild head injury.

Apolipoprotein E

In humans, apoE is a polymorphic protein (E2, E3, E4)

in which isoforms differ from each other by 1 amino acid

(Mahley, 1988). Recent epidemiologic studies have iden-

tified the �4 allele of apoE as a major risk factor for

sporadic and late-onset familial AD (Strittmatter et al.,

1993). Apolipoprotein E is an important apolipoprotein

constituent of cerebrospinal fluid and brain, where it is

produced by glial cells. This specific apolipoprotein is

involved in nervous system growth and repair through

the coordination of the mobilization and redistribution of

cholesterol during neuronal development. However, pa-

tients carrying apoE4 genotype have been reported to

show a poorer outcome after TBI (Teasdale et al., 1997;

Lichtman et al., 2000).

Genetically engineered mice have been produced and

used to clarify the mechanisms by which this genotype

influences posttraumatic brain damage. It has been hy-

pothesized that apoE4 induces a loss of function of the

E3 isoform; therefore, the biologic abnormalities during

aging or after injury associated with the apoE4 genotype

should be evident in apoE knockout mice. The deletion

of the APOE gene has been achieved by replacing exon

2 of the APOE gene with a neomycin resistance gene.

Apolipoprotein E (−/−) mice appear healthy at 4 to 6

weeks of age and do not have abnormalities in the septo-

hippocampal system (Piedrahita et al., 1992). Homozy-

gous apoE- deficient mice subjected to enthorinal cortex

lesions exhibited persistent degeneration products (cho-

lesterol-derived) in the deafferented hippocampus, com-

pared with WT mice, suggesting that apoE may play a

role in the clearance of cholesterol-laden neurodegenera-

tion products after injury (Fagan et al., 1998). Moreover,

apoE knockout mice subjected to weight drop brain in-

jury showed significantly exacerbated memory impair-

ment and motor deficits when compared with brain-

injured WT controls for at least 40 days (Chen et al.,

1997). Histopathologic examination revealed overt neu-

ronal cell death bilaterally in the hippocampus of the

injured apoE (−/−) mice. One possible explanation for

the enhanced vulnerability of apoE (−/−) mice to TBI is

the partial loss of oxidative homeostasis causing an in-

crease in lipid peroxidation products, chronic oxidative

stress, and reduction in low molecular weight antioxi-

dants (Lomnitski et al., 1999).

One of the additional pathologic features of AD is the

presence of neurofibrillary tangles composed of hyper-

phosphorylated tau, leading to cytoskeletal abnormalities

that contribute to neuronal degeneration. Apolipoprotein

E (−/−) mice typically show increased tau phosphoryla-

tion compared with WT mice. After weight drop brain

injury, a transient increase in tau hyperphosphorylation

has been observed in WT and apoE (−/−) mice, although

the extent and time course in the two mouse groups

varied markedly (Genis et al., 2000). In brain-injured

WT mice, hyperphosphorylation was maximal by 4

hours after injury and reverted to basal levels by 24

hours, whereas brain-injured apoE (−/−) mice showed

hyperphosphorylation of “hot spot” epitopes of the tau

protein for a longer duration after TBI, even if it was

reduced in its extent (Genis et al., 2000). The authors

suggest that the greater hyperphosphorylation of these

“hot spot” epitopes of tau protein might reflect repair

mechanisms associated with an acute insult such as TBI.

Although the exact pathogenic link between apoE, TBI,

and AD is unclear, these studies reveal that apoE geno-

type may be related to the maintenance of oxidative ho-
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meostasis and repair mechanisms after injury to the CNS.

Further studies with genetically engineered animals are

warranted to help clarify the link between TBI, apoE

genotype, and Alzheimer disease.

OTHER NEURODEGENERATIVE DISEASES

LINKED TO TBI

Several neurodegenerative diseases including Parkin-

son disease, diffuse Lewy-body dementia, and fronto-

temporal dementia with Parkinsonism are characterized

by intracellular neurofilament (NF)-rich filamentous in-

clusions in neurons. Tau protein and �-synuclein are the

major building block proteins of neurofibrillary tangles

and Lewy bodies, respectively, which are observed in

several neurodegenerative diseases (tauopathies and

synucleinopathies). These disorders share many patho-

genic mechanisms and may cause neuronal toxicity

through common pathways (Lee et al., 2001; Tro-

janowski and Lee, 2001). Because TBI can cause or ac-

celerate latent and progressive neurodegenerative events,

it appears reasonable to investigate this relation in trans-

genic animals showing NF inclusions.

Transgenic mice expressing a construct composed of

the mouse polypeptide NF-heavy (NFH) subunit linked

to the LacZ gene (NFH/LacZ) develop NF-rich inclu-

sions in virtually all neurons of the CNS. The phenotypic

features of these mice—such as tremor, ataxia, and mus-

cular weakness—become evident by 1 year (Tu et al.,

1997). Nakamura et al. (1999b) subjected NFH/LacZ

mice to CCI brain injury before the onset of behavioral

signs and observed a significant and prolonged deficit in

motor function up to 3 weeks after injury that was asso-

ciated with increased lesion volume when compared with

brain-injured WT mice. A subsequent study comparing

the histologic damage between NFH/LacZ and WT

brain-injured mice revealed a greater lesion cavity, in-

creased apoptotic cell death, more pronounced hippo-

campal cell loss in the CA3 region and dentate gyrus,

increased reactive gliosis, and greater cytoskeletal dam-

age, as assessed by changes in immunoreactivity for

MAP2, beta tubulin, and synaptophysin in NFH/LacZ

mice (Galvin et al., 2000). Intracellular NF-rich inclu-

sions may lead to increased vulnerability caused by al-

terations in axonal transport or impaired function of in-

tracellular organelles entrapped in the inclusions.

Taken together, these studies suggest that TBI may be

a strong risk factor for neurodegenerative disorders. It

appears likely that genetic factors—such as mutations in

genes for APP, presenilins, APOE4 genotype, or in genes

encoding for cytoskeletal proteins—may confer a vul-

nerability that becomes evident after exposure to epige-

netic insults. Figure 6 summarizes the relevant pathoge-

netic mechanisms related to the epidemiologic link be-

tween TBI and neurodegenerative diseases investigated

with genetically engineered mice. Table 3 summarizes

the results of the related studies described in the text with

the main findings in relation to the genotype used and the

model of injury.

FUTURE DIRECTIONS

Traumatic brain injury activates a prolonged patho-

physiologic cascade directly influencing the complex

network associated with neurodegeneration and

repair/regeneration pathways in the CNS. The need to

explore the molecular basis of cellular dysfunction and

death after injury to the CNS has led researchers to

transgenic technology. Genetically engineered animals,

obtained by artificial overexpression or deletion of a spe-

cific gene, offer the unique opportunity to test mecha-

nistic hypotheses concerning cause and effect relations

and to provide a mechanistic basis for the evaluation of

potentially effective therapeutic agents targeted at selec-

tive secondary pathways activated after TBI. When com-

pared with the use of pharmacologic agents to antagonize

or enhance specific pathways, this technology offers sev-

eral advantages, such as the possibility of overcoming

FIG. 6. Relation between traumatic
brain injury (TBI) and neurodegenera-
tive diseases. Relevant pathogenetic
mechanisms evaluated with genetically
engineered mice. apoE, apolipoprotein
E; APP, amyloid precursor protein;
NFH, neurofilament-heavy.
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obstacles related to optimal time window for treatment,

cerebral tissue penetration, sex differences in metabo-

lism, and toxicity. However, developmental compensa-

tory mechanisms caused by a chronic alteration of the

target gene may cause responses to TBI that are different

from those in the WT littermates in which a molecule-

mediated effect is blocked by a pharmacologic agent.

Additional caveats must be acknowledged with respect

to the use of genetically modified animals in TBI re-

search. Various strains of mice (C57BL/6, C57BL/10,

C57SJL, 129/SvEMS, FVB/N) have shown different and

highly specific cognitive, behavioral, and histologic out-

comes after excitotoxic cell death or the induction of

stroke or trauma (Steward et al., 1999). For example,

three background strains of mice (C57BL/6, FVB/N, and

129/SvEMS) have been reported to exhibit significantly

different behavioral responses when subjected to CCI

brain injury (Fox et al., 1999). These results suggest that

the background strain should be carefully considered

when experiments involve genetically altered mice, es-

pecially when the studies use behavioral outcome mea-

sures after CNS injury (Steward et al., 1999).

The polymorphism inherent in the genetic background

of genetically engineered mouse strains can potentially

make the result of gene-targeting studies difficult to in-

terpret. A phenotypic change observed in a mutant

mouse, therefore, may be related to the genetic back-

ground rather than the mutation itself. In fact, most gene

targeting is performed in embryonic stem cells derived

from strain 129/Sv. These cells are introduced into a

blastocyst, and the derived chimeric adult mice then are

mated to WT mice. If the WT mice are C57BL/6, the first

derived generation will be heterozygous for the mutant

allele but also will have a set of chromosomes derived

from 129/Sv and C57BL/6. The mating of these hetero-

zygous mice will produce a second generation composed

of homozygous mutant, heterozygous mutant, and WT,

all of whom have different loci for the targeted mutated

gene. Consequently, one associated risk of these studies

is the presence of false positive or negative results de-

pending on the genetic background itself and not on the

targeted mutation (Gerlai, 1996). Solutions for these po-

tential pitfalls include increasing the number of animals,

thereby increasing the power of statistical comparison

and reducing the possibility of sampling error associated

with differences among background strains, and care-

fully analyzing both genotype and phenotype of the ani-

mals to confirm that the phenotype maps consistently to

the genotype at the targeted locus (Steward et al., 1999).

In spite of these potential pitfalls, the successful pro-

duction of genetically modified mice lacking or overex-

pressing specific mediators and receptors has made it

possible to investigate the cellular and molecular role of

inflammation, ROS, DNA damage and repair, and cell

death mediators in TBI. Several inflammatory factors—

such as intercellular adhesion molecules, cytokines, and

their receptors—have been investigated using this new

technology, although many questions remain unresolved.

Degenerative and regenerative processes associated with

posttraumatic inflammation may represent a duality of

inflammatory processes, which interact in a complex

way during a prolonged posttraumatic time course. The

goal of antagonizing (or enhancing) a specific pathway

to obtain a therapeutic benefit therefore may be too sim-

plistic, because the same molecule may exert beneficial

(neuroprotective) or deleterious (neurotoxic) effects at

different time points in the postinjury cascade. More

work needs to be performed to clarify the role of specific

pathogenic cascades such as inflammation and apoptosis

in mediating cell death, to design targeted therapies that

can be sequentially combined in the acute and chronic

postinjury periods to reduce damage and stimulate re-

parative processes. Genetically engineered mice also

have stimulated the exploration of the molecular basis

underlying the relation between head injury and neuro-

degenerative diseases, including such diverse pathways

TABLE 3. Summary of studies performed to clarify the epidemiological relation between TBI and neurodegenerative diseases

Genotype
Model of

injury
Behavioral
outcome*

Histologic
outcome*

Main result of
the study† Reference Vendor‡

APP-YAC CCI Unaffected Unaffected No differences with WT Murai, 1998 NA
PDAPP CCI Worsened Worsened ↑ hippocampal cell loss Smith, 1998 NA
PDAPP CCI NA Worsened No A� plaques Nakagawa, 1999, 2000 NA
APP Swe RHI Worsened Worsened ↑ A� plaques Laurer (unpublished) NA
apoE (−/−) ECL NA Worsened Persistency of neuronal degeneration products Fagan, 1998 Jackson
apoE (−/−) WD Worsened Worsened No recovery Chen, 1997 Jackson
apoE (−/−) WD NA NA Prolonged tau hyperphosphorylation Genis, 2000 Jackson
NFH-LacZ CCI Worsened Worsened No functional recovery Nakamura, 1999 NA
NFH-LacZ CCI NA Worsened ↑ neuronal cell loss Galvin, 2000 NA

TBI, traumatic brain injury; APP, amyloid precursor protein; YAC, yeast artificial chromosome; CCI, controlled cortical impact; PDAPP,
platelet-derived growth factor promoter-APP; A� plaques, those containing �-amyloid; apoE, apolipoprotein E; WD, weight drop; RHI, repetitive
closed head injury; ECL, entorhinal cortex lesion; NA, not applicable; NFH, neurofilament-heavy.

* Results of genetic manipulation on the response to TBI compared with the response of their related wild type (WT) littermates.
† Description of the main effect of TBI in genetically engineered mice, compared with related WT littermates.
‡ Source where these genetically modified mice are commercially available.
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as abnormalities in APP, �-amyloid, apoE genotype, and

cytoskeletal proteins. Further studies are warranted to

help clarify how specific genotypes and the pathways

mentioned above may interact at different time points in

the postinjury period and to promote the evaluation of

new therapeutic strategies in well-characterized models

of TBI.
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