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Abstract-In this review, signal-to-noise ratios are discussed in a tutorial fashion for the case of multiplicative 
noise. Multiplicative noise is introduced simultaneously with the analyte signal and is therefore much more 
difficult to reduce than additive noise. The sources of noise, the mathematical representation of noise, and the 
major types of noises in emission and luminescence spectrometry are discussed. If the limiting source of noise 
is multiplicative white noise, the signal-to-noise ratio for optimal sampling time 7. increases as the square 
root of the response or integration time of the readout and is independent of the rate.at which sample and 
reference are measured. The variation of multiplicative flicker noise with variation in sampling time, 7,, time 
interval between sample and reference measurements, T, and response (7,) or integration (TV) time is 
discussed in some detail. The optimal system for the case of multiplicative noise is a dual channel approach in 
which the sample and reference are measured simultaneously and a ratio of signals is taken. Although the 
best reference in most cases of interest to analytical chemists is a calibration standard, it is often impossible to 
measure a sample and a calibration standard simultaneously and so an internal standard, a detector 
monitoring the source intensity, etc., may be useful. 
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NOMENCLATURE 

time 
“input” signal of the analytical sample 
“input” signal of reference parameter 
sampling time 
time interval between sample and reference measurements 
analyte sample concentration 
reference parameter value 
“multiplication factor” containing a stationary Gaussian noise process dG(t) = G(t)- d 

average multiplication factor 
=G(t)-e 
“multiplied” signal [A(t) = G(t)i(t)] 
RC time constant 
meter deflection 
variance of the analyte sample concentration 
autocorrelation function of noise dG(t) 
spectral noise power of noise dG(t) 
correlation time of noise dG(t) 
response time (7, = 25-r,) 
total measurement time 
2rrr,lr, 
TITS. 

1. INTRODUCTION 

IN PARTS I [l] and II [2], a tutorial discussion of signal-to-noise ratios and general 
signal-to-noise (S/N) ratio expressions were given for emission and luminescence 
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spectrometric systems considering only additive noises, i.e. noises which are indepen- 
dent of the presence of a signal. The signal was considered to be constant, and all 
fluctuations when taking a meter or integrator reading of signal plus background were 
caused by fluctuations of the background. In Part II, a term due to analyte flicker noise 
was given in an approximate fashion so that eventually the S/N ratio would reach a 
constant value with increasing signal level, as is the case in real spectrometric systems. 
Other discussions of S/N ratios have used this same approach [3-51. In this paper, we 
will treat multiplicative noise on a more general, mathematical basis, again using paired 
measurements. 

In the discussion of additive noise, it was assumed that fluctuations in the meter 
deflection due to a fluctuating quantity in the spectrometric system constituted a 
stationary fluctuation process. The background current, ib, was assumed to have been 
applied to the meter for a long time before a reading was taken. In the case of 
multiplicative noise, noise is introduced simultaneously with a signal due to the analyte. 
The noise is dependent upon the signal level, which may vary with time, and, in the 
reading, also upon the frequency characteristic of the measuring device (meter of 
integrator). We consider paired measurements, that is the measurement of a reference 
signal followed by the measurement of an analyte signal. Since these signals are read 
after a finite sampling time T,, which may be shorter than the response time T,, a 
stationary fluctuation process. The background current, i,, was assumed to have been 
nor for the fluctuations inherent in the signal. It is therefore necessary to deal with the 
temporal response of the meter to a non-stationary fluctuation process. 

2. ASSUMPTIONS 

The assumptions used in this model of multiplicative noise (see Fig. 1) are 

6) the input signal, i,(t), of the analytical sample and the reference signal, i,(t), 
(i.e. the signals at the “input” of the whole analytical measuring system) are 
noise-free; 

G(t) 

i(t) 
0 

Fig. 1. Representation of analyte signal and reference signal measured with a d.c. meter. 

r,(r) = meter deflection due to reference as a function of time t; x,(t) = meter deflection due to 

analyte sample; i,(t) = reference “input” signal; i,(t) = analyte “input” signal; TV = sampling 
time; rc = time constant of meter damped by RC-filter; T = time interval between analyte and 

reference measurements; G(t) = multiplication factor; 15 = average multiplication factor; 

dG(t) = deviation of G(t) from G. 

[3] J. D. WINEFORDNER, R. AVNI, T. L. CHESTER, J. J. FITZGERALD, L. P. HART, D. J. JOHNSON, and F. W. 

PLANKEY, Spectrochim. Actn 3lJ3, 1 (1976). 

[4] G. D. BOUTILIE R, J. D. BRADSHAW, S. J. WEEKS, and J. D. WINEFORDNER, Appl. Spectrosc. 31, 307 

(1977). 
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(ii) the time-dependence of the input signals is a step function: 

C(t)= i, for O< t<7,, 

i,(t)= i, for T<KT+T, 

and i, (t) = 1, (t) = 0 for r outside the given intervals; we assume T L 7s and call 7s 
the sampling time; 

(iii) at t = 0 and t = T, the meter deflection caused by the preceding signal has 
decayed or been reset to zero; 

(iv) no additive noises are present; 
(v) i, is proportional to the analyte sample concentration (C,) and i, is proportional 

to a reference parameter (C,) which may be a calibration standard, an excit- 
ation source intensity in luminescence spectrometry, etc; 

(vi) a “multiplication factor,” G(t), contains a stationary, Gaussian noise process 

(vii) 

(viii) 

which produces multiplicative noise, and is given- by G(t) = G + d&t); c 
contains any constant parameter that may occur in the conversion of “input 
signal” to “meter deflection” (apart from the time constant; see below); G(t) is, 
in general, not dimensionless; 
after “multiplication,” the input signal i(t) is transformed into the “multiplied” 
signal A(t) = G(t)i(t); dA(t) = i(t)dG(t) is the noise in the multiplied signal; 
the meter deflection x(t) and the multiplied signal A(t) are related by 

A(t)=%+;, 
c 

where rc is the time constant of the (linear) meter with exponential 
time-response; 

(ix) the estimate of the analyte concentration, C,, is given by 

Several points should be carefully noted. The noise in the multiplicative factor, G(t), is 
itself a stationary noise process, but the noise in x(t) is not a stationary noise process. 
Examples of a fluctuating multiplication factor in atomic emission spectrometry may be 
the thermal excitation factor in the presence of temperature fluctuations, the rate of 
sample supply, the internal amplification factor of the photomultiplier tube, and the 
electronic amplification factor. The reference signal, i,., and the reference parameter, C, 
have been defined in a completely general way. The most common case in analytical 
spectrometry is that the reference is a standard of known analyte concentration. It is 
possible that other references may be used, such as an internal standard. 

3. GENERAL EXPRESSION FOR THE RELATIW VARIANCE 

From equation (2), the differential of C, may be written as 

dC, dx,(T+ 7,) MT,) -= 
C, x,(T+ 7,) a ’ 

(3) 

where the bar denotes an ensemble average, and the variance of C,, a&,, is given by 

The relative variance of C, may be written as 

(4) 

(5) 

where use has been made of the fact that m = (d&/K)*. The S/N ratio is given by 
CJ%!s. We wish to find how the S/N ratio depends on 7,, T,, and T (see Fig. 1 for 
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definition of all terms) for given statistical properties of dG(t) and what the optimum 
measurement conditions are. 

From the definition of A(t) and G(t) and integration of equation (l), the expression 
for x(7,) is 

x(7,) = i&[l -exp (--I-,/T,)], (6) 

where x(7,) is either xJr,) or x,(T+r,) and i is either t, or is, respectively. When A(t) 
is an arbitrary function of t for t > 0 and zero for t < 0, the general solution of equation 
(1) is 

X(T,)=X(O)eXp (-T,/T,)+eXp (-7,/T,) 
d 

Texp(u/rC)A(u) du, (7) 

where u is a dummy integration variable [6]. Treating the meter deflection from the 
reference signal, ~JT,), and using the definitions of A(t) and G(t) with x(0)=0, it 
follows from equation (7) that 

Xr(%) = t&1-p (-T,/T,)]+ i, eXp (--7,h,) ” exp (u/q)dG(u) du (8) 

or [see equation (6)] 

X,(T) = %(Ts) + dxr(%) (9) 

and dq(T,) is given by 

TX 
d&(7,) = i, exp (-r,/r,) 

d 
exp (uh,)dG(u) du. (10) 

In an analogous way we find that the expression for the meter deflection due to the 
analyte signal is 

where 

X,(T+T,)= X,(~+T,)+dX,(~+7,), (11) 

x,(T+ 7,) = i,r,G[l-exp (-T,/T,)] Wa) 
and 

I 

T+T% 

dx,(T+T,) = is exp (--7,/T,) exp [(v - T)/T,]dG(u) du, 
T 

Wb) 

where u is also a dummy variable for integration. 
To find the expression for dq(l-,)dx,(T+ T,), equations (10) and (12b) are multiplied 

and ensemble averaged (cf. [6], equation (60a)). It is found that 

7. T+r$ 

dq(T,)dx,(T+7,) = iris exp (-27,/q) 
b I 

du exp [(u + r~ - T)/T,]dG(u)dG(v) dv. 

(13) 

The ensemble average over a double integral may be replaced by a double integral over 
an ensemble average. Equation (13) can be rewritten as 

7. T-+7% 
dx,(Ts)dxs(T+Ts) = &is exp (-27,/T,) 

d I 
dux dv exp [(u + v - T)/T=]dG(u)dG(v). 

(14) 

Because dG(t) has been defined as a stationary noise process, it is possible to define 
the time-independent auto-correlation function of dG(t) by 

&(t’) = dG(t)dG(t+ t’). (15) 

[6] D. K. C. MCDONALD, Noise and Fluctuations, An Introduction. Wiley, New York (1962). 
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The factor dG(u)dG(u) is therefore equal to I,&(Z) - u). Rearranging equation (14) and 
replacing the integration variable u by TV = y + u for given u results in 

dq(T,)dx,(T+ 7,) = iris exp (-27,/7,) du exp[(2u- T)/T,I 

X ew (YI~,)~(Y) dy, (16) 

with 0 5 u I rs < T. This is the general expression for 

&(rJdx,(T+ 7,). 

In an entirely analogous fashion to that in which the expression for dx,(T,)dx,(T+ 7,) 
was obtained, the expression for d&(7,)’ is found to be 

7. 

d I 
-u+rs 

d&(7,)2 = i: exp (-247,) du exp (2u/7,) ew(~k)JIG(~)dy 
-I4 

(17) 

and similarly for dx, (T + T,)~. 
Substituting equations (6), (16) and (17) into equation (5) and putting x.Jr,) = 

x,(T+ 7,) and i, = is (for convenience only) the expression for the relative variance C, is 

ok_ 2 exp (-27,/r,) 
z-r:G2[1-exp (-T,/T,)]' 

2. -U+T* 
X 

11 
du exp (2u/r,) 

I 
exp (Y’I~,M~(Y’) dy’ 

--u 

- 
d 

7’ du exp [(2u - T)/r,] 
1 

TIU+’ dy exp (yk)k(y)]. (18) 

The substitution y = y’ + T and combination of the integrals over y’ yields 

I* --u+7, 

&= 
2 exp (-27,/7,) du exp (2~47,) I dy’ew (Y’/~,)[~~(Y’)-~G(Y’+ 731 

ct r~G2[11-uexp (-T,/T,)]~ * (19) 

From the Wiener-Khinchine theorem, 

where S,(j) is the spectral noise power, we deduce 

&(y’)-JIG(y’+T)=2 mSG(f)sin?rf(2y’+T)sin(?rfr)df. 
$ 

(21) 

Substituting equation (21) into (19) gives the final, general expression for the relative 
variance of C, 

aZ,_ 
cg - 
4 exp (-27,/r,) T’du exp (2u/r,) 

I 

--u+7* 
dy’exp (y’k) mdfs,(f) sin{mf(2y’+ T)}sin (+I’) 

--u d 
@-“[ 1 - exp (-T,/T,)]' 

(22) 

with OIU~T,<T and -u<y’s-u+r,. 
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For the purpose of evaluation of equation (22), the order of integration may be 
changed. Equation (22) may be rewritten as 

4 exp (--27,/r,) mdfSc(f) sin rfl 
d 

*‘du exp (2u/T,) 
I 

--u+78 
dy’exp (y’/~,) sin wf(2y’+ ‘T) 

7zG2[1 - exp (-7,/7ij2 

(23) 

With the use of 

I 
exp (aw) sin bo do = 

exp (ao)[a sin bo - b cos bw] 

a2+b2 , 

the integral over y’ may be evaluated and is given by 

J 
-U+T* 

dy’ exp (y’/~,) sin {7rf(2y’+ T)} 
--u 

= 7c exp (-U/T,) 
1+ (27&)2 

{eXp (T,/T,)[Sin {7rf(-2u + 27, -I- T)}- 2nfrc cos {mf(-22~ + 27, + T)}] 

-[sin {9~f(-2~4 + T)}- 2’rrf7, cos {nf(-2u + T)}n. (24) 

The integral over u may be evaluated in four parts using the same solution as applied 
to the integral over y’ twice along with 

5 
exp (aw) cos bo do = 

exp (aw)[a cos bo + b sin bw] 

a2+b2 

Applying these solutions, the expression for the relative variance of C, becomes 

& 4 m -= 
d 

dfS, (f) sin2 (tit) 

CP G2[1 - exp (-T,/T,)]~ 1+ (2?Tf# 

x [eXp (--27,/T,) + 1 - 2 eXp (-Ts/Tc) COS (hfT&]. (25) 

Up to this point, the derivation for the relative variance of C, is general for arbitrary 
S,(f), T,, TV and T, subject to the constraints of the assumptions. The divergency of 
flicker noise as f + 0 is neutralized by the squared sine function of frequency, f, in 
equation (25). Because equation (25) cannot be evaluated for arbitrary S,(f), T,, T= and 
T, specific assumptions will be made for certain cases. 

4. SIGNAL-TO-NOISE RATIO EXPRESSIONS FOR VARIOUS CASES 

4.1 Direct current measurement with a current meter for white noise 

A case of interest is the case of a white noise spectrum. It is possible to define a 
correlation time, TV, of noise dG(t) by 

J o- k(y) dy 1 J_; h(y) dy 
76 = 

&3(O) =s h(O) ’ 
(26) 

where q&(O) = dG(t)‘. The value of I+&(Y) differs noticeably from zero only for ) y 16 76, 

and TV << T,, T= and T, For this case, S,(f) is a constant over the relevant frequency 
range and falls off at very high frequencies 2n-fZ TG’. Starting from equation (19), 
&(y’+ T)=O because (y’+ T) >>T~. Because JIG(y’) exists only for ~‘“0, the integral 
over y’ can be approximated by JZZ &(y’) dy’. It is a valid approximation as for 
0 5 u < TV the integration limits of y’, viz. -u and -u + T,, are negative and positive, 
respectively. From equation (26), the definition of $G(y’), and the approximation of the 
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integral over y’, equation (19) becomes 

7. 

& 
4 exp (-27,/r,) 

I 
exp (2&J dust, 

c: @*[lOexp (--7,/r,)]* . 

Making the substitution z = 2u/7, and evaluating equation (27) gives 

(27) 

a$ -= 2dG*r,Jl -exp (-~T,/T,)] 

c: G*r,[l -exp (-T,/T,)]* * 
(28) 

From the definition, dG2 = qG(0), the inverse Wiener-Khinchine theorem, and equa- 
tion (26) we have 

dG* = ~5, (0)/4T~. (29) 

Substituting equation (29) into (28) yields 

‘& _ s.s(0)[1- ‘=P (-2dTc)l 
z- 2G*r,[l-exp (-T,/T,)]*’ 

(30) 

This result can also be obtained by solving equation (25), for S(j) = constant, directly 
with the use of the integrals 

and 
I 

m cos (ax) cos (bx)dx 

0 p*+x* 

=$[exp{-la-b]P}+exp{-(a-b)}p]. 

The S/N ratio becomes 

s _ (34273 -eXP (-+-,)I 
i - J{s,(o)[l-eXp (-27,/7,)-j)' 

(31) 

The S/N ratio is found to be independent of T, or in other words, the S/N ratio is 
unaffected by the time between measurement of the reference signal and the analyte 
signal. The S/N ratio is maximum when TV +w. In actual measurements, the maximum 
S/N ratio is practically attained when TV = 2mc where HTTP is defined as the response 
time, TV; in terms of the response time, the maximum signal-to-noise is given by 

(32) 

When this equation is compared with the expression for the case of additive back- 
ground shot noise, it is seen that the S/N ratio increases in both cases with J(T,). It is 
noted that the expression for shot noise should not be substituted here for S,(O) 
because So(O) does not represent shot noise but is of different, multiplicative origin. All 
that can be specified is that for the white noise case S,(O) is constant. The S/N ratio 
will also increase as J[S,(O)] decreases. 

4.2 Direct current measurement with an integrator for white noise 

Equation (31) was derived for a current meter damped by an RC filter. If, as in the 
treatment of additive noise [l], the integrator is considered as a limiting case of a 
current meter with a very large response time by assuming TV << TV and identifying TV by 
the integration time TV, eqUatiOn (31) becomes in the limit of T,(=T,/~T) + CQ 

S _ G-J(2T,j ri/rc GJ(7,) 
N-J[S~(0)]‘~(2Ti/T~)=~/[S~(O)Iy 

(33) 

which differs by a factor & from the expression in equation (32), as was also found in 
the case of additive noise [l]. Note that S/N increases m& and is independent of T. 
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D.C. METER 

0.01 I ! 

0.1 1 10 100 

pc= W Tc) 

Fig. 2. Plot of S/N.K,/d[ =f(a, p)] vs p for d.c. meter system with (u( = T/T,) = 1, 10 and 100 
in the case of flicker noise. 

4.3 Direct current measurement with a current meter for flicker noise 

Starting with equation (25) and making the following substitutions 

S,(f) = ICE/f; /3 = 2m,/r, = 7,/r, ; z = 2mfTs ; a = T/r, (ff 2 I), 

gives 

4 -= 4K; 
Cp d2rl_exp(_P)Y z(l+z21p2) [exp(-2@+1-2exp(-P)cos 21, (34) 

or 

where 

(35) 

exp (-2/3) + 1 - 2 exp (-p) cos z -1’2 

Cl - ed-P)l” I . (36) 

The S/N ratio for this case is plotted in Figs. 2 and 3. The function f(a, p) was evaluated 
by numerical integration for several cases of constant (Y and constant /3, respectively. At 

0.6 

0.5. 

0.4 

c;,.; 0.3. 

0.2. 

0.1 . 

0.0 1 I I I 

10 100 1000 10,000 

a(= T It, 1 

Fig. 3. Plot of S/N* K,/&=f(cx, p)] vs a for d.c. meter system with @( = T~/T,) = 1 in the case of 
flicker noise. 
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constant (Y = T/T,, the S/N ratio remains approximately constant for p < 1, but de- 
creases for p > 1. From the definition of p and 7,, 7s is optimum when 7s 6 T=. The S/N 
ratio decreases rapidly with increasing (Y (note that the lowest possible value of (Y is 1). 
The maximum S/N ratio possible, for cy = 1 and 7s 5 7,, for a paired measurement is 
found from Figs. 2 and 3 

S 

0 

0.6 G 

N _=Kg. (37) 

4.4 Direct current measurement with an integrator for flicker noise 

Using similar approximations as in the case for an integrator with white noise and 
identifying again 7s (T, << 7,) with the integration time Ti, choosing the lowest possible 
value of T= 7i, noting the limit of rz/l+ (27$r,)’ as T= + 03 is 1/4*f2, the expression 
for the relative variance of C, [equation (25)] becomes, after substituting S,cf) = Kz/f 
and z’ = mfri, 

The solution to this integral is In 2, so the signal-to-noise ratio becomes 

S G 
N= 2K,J(ln 2)’ 

(38) 

(39) 

for the limiting case of T= To and T,( = 271r,) + 03. Note that this result is independent 
of integration time. 

An alternative method of solving for the relative variance of C, is to return to 
equation (22) and make several approximations to get a solution which is general for 
T-->T~. We identify again 7i = 7,, and assume 7i K T,, as in the case of an integrator with 
white noise. Starting from equation (22), setting S,(j’) = K!$f for flicker noise, and 
approximating exp (~u/T,), exp (-27,/q), and exp (Y’/T,) by unity and l-exp (-~JT,) by 
7,/r, for T= + c0 gives 

‘ln(T+Ti)- 
(3 
- ‘lnT-lnTi . (40) 
Ti 

It can be shown that the expression between braces in equation (40) depends only on 
the ratio T/ri. 

With a fixed integration time TV, the minimum value of T is given by T,i, = 7i (see 
assumptions). Solving for the S/N ratio gives 

which is the same result as that obtained in equation (39). 
If T >> TV, the S/N ratio as a function of T/7i is asymptotically given by 

(41) 

As T/T~ increases, the S/N ratio decreases, but slowly. 
Since the S/N ratio does not depend on T and 7i separately but only on their ratio, 

we can improve the S/N for a fixed total measurement time, T,,,, by making n repeated, 
paired measurements of reference and sample with T = 7i and n = TJ2Tip and averaging 
the results. This increases the S/N ratio as given by equation (39) by a factor of Jn. 
This conclusion has been reached by SNELLEMAN [7] and LI?GER et al. [8] for the case of 
additive flicker noise. In practice, there is a fundamental limit to the amount of 

[7] W. SNELLEXM, Ph.D. Thesis, University of Utrecht (1965). 
[8] A. UGER, B. DELMAFX, J. KLEIN and S. DECHEVEIGNE, Reu. Phys. Appl. 11,309 (1976). 
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improvement that may be achieved by this procedure. In the model for multiplicative 
noise, only multiplicative noise sources have been treated. All signals in analytical 
spectrometry will also have shot noise, and if the integration time becomes short 
enough, the shot noise may become the dominant noise source. In this case, there will 
be no further improvement in S/N ratio as n is increased for given 7,. (For the case of 
multiplicative white noise, there will be no difference between making one set of paired 
measurements of sample and reference or rt sets during the same total measurement 
time.) The general conclusion is that the optimum S/N ratio will be achieved when 
the sample and reference pair are measured so rapidly in alternate succession during 
the measurement time, that shot noise becomes the prevailing noise source. 

5. CONCLUSIONS 

The major conclusions which can be drawn from our theoretical treatment of S/N 
ratios are as follows. 

(i) For the cases of white noise, whether additive or multiplicative, the S/N ratio 
increases as the square root of the response time, 7,, or the integration time, 7i, 
for current meters and integrators respectively. 

(ii) For additive background shot noise limited cases, modulation techniques will 
give S/N ratios J2 time poorer; sample- and wavelength-modulation are an 
exception, because it is necessary to measure the blank regardless. 

(iii) For the cases of white noise, whether additive or multiplicative, the S/N ratio is 
independent of the rate at which sample and background or sample and 
reference are measured. 

(iv) For the case of multiplicative flicker noise measured with a meter system and 
fixed p = 277r,/r,, the S/N ratio decreases as a! = T/r, increases above the 
minimum value of (Y = 1. 

(v) For the case of multiplicative flicker noise measured with a meter system and 
fixed CY = T/r,, the S/N ratio is approximately constant for 0.1 I fi I 1 
(p = 27~7,/7,) and decreases for p > 1. 

(vi) For the case of multiplicative flicker noise measured with a meter system, the 
optimum S/N ratio is achieved with (Y = T/T, = 1 and p 3 27r~,/r, I 1. 

(vii) For the case of multiplicative flicker noise measured with an integration system 
and 7s = TV, the S/N ratio is optimum for the minimum value of T = 7i (i.e. (Y = 1) 
and decreases for (Y > 1. 

(viii) For the case of multiplicative flicker noise measured with an integration system 
and 7s = TV, the S/N ratio in the limit of T >>T~ is proportional to 
l/(3 + 2 In (T/7i)}l”. 

(ix) For the cases of multiplicative flicker noise measured with either a meter or 
integration system it is optimum for (Y = 1 to make the integration or response 
time, for fixed r,/~,, as short as practical and repeat the pair of measurements y1 
times for fixed total measuring time 7,. 

(x) The optimal system in most cases of multiplicative flicker noise is to use a dual 
channel approach to measure sample and reference simultaneously and to take 
their ratio; this approach is necessary in some experiments such as those using 
pulsed lasers for spectroscopy because the noise caused by effects such as spatial 
variation in the beam profile will be unrelated from pulse to pulse; in such a 
case where sample and reference are measured simultaneously (i.e., T = O), 
multiplicative noise will be minimized and additive noise will become dominant. 

(xi) The best reference in many cases is a calibration standard, but it is often 
impossible to measure a sample and standard simultaneously; in these situations 
an internal standard, an excitation source intensity, etc. can be measured simul- 
taneously with the sample and the S/N ratio will be improved if the source of 
multiplicative noise affects both in the same manner and is a significant source of 
noise. 


