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Abstract 

Cardiovascular disease is a very serious disease which results in about 30% of all global mortality. Atrial fibrillation 

(AF) causes rapid and irregular contractions resulting in stroke and cardiac arrest. AF is caused by abnormality of the 

heartbeat controlling electrical signal. Catheter ablation (CA) is often used to treat and remove the abnormal electrical 

source from the heart but it has limitations in sensing capability and spatial coverage. To overcome the limitations of 

the CA, new devices for improving the spatial capability have been reported. One of the most impressive methods is 

wrapping the heart surface with a flexible/stretchable film with an array of high-density multifunctional micro-sensors 

and actuators. With this technique, the overall heart surface may be diagnosed in real time and the AF may be treated 

much more effectively. The data acquisition from the array of multifunctional sensors is also very important for mak-

ing the new devices useful. To operate the implanted device system, a battery is mostly used and it should be avoided 

to replace the battery by surgery. Therefore, various energy harvesting techniques or wireless energy transfer tech-

niques to continuously feed the power to the system are under investigation. The development of these technologies 

was reviewed, and the current level of technology was reviewed and summarized.
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Background
Arrhythmia describes an irregular heartbeat and the 

arrhythmia may make heartbeat rate too fast, too slow, or 

with an irregular rhythm [1]. �ere are four main types 

of arrhythmia: premature (extra) beats, supraventricular 

arrhythmias, ventricular arrhythmias, and bradyarrhyth-

mia. Among them, the supraventricular arrhythmias are 

tachycardia (fast heart rates) that start in the atria or 

atrioventricular (AV) node and this includes atrial fibril-

lation, which is the most typical type of serious arrhyth-

mia, which causes rapid and irregular atrial contractions 

resulting in stroke and cardiac arrest. �is atrial fibril-

lation is caused by abnormality of the electrical signals 

that control the heartbeat in normal conditions [2]. By 

the nineteenth century, physicians had little knowledge 

of coronary artery disease, valvular heart disease, car-

diac arrhythmias, and cardiomyopathy, although the 

deaths from cardiovascular disease, including arrhyth-

mia, accounted for about 30% of all global mortality [3, 

4]. In the twentieth century, they were able to diagnose 

and treat heart disease using new techniques including 

the radiograph, electrocardiograph (ECG), and cardiac 

catheter, etc. [3].

With better understanding of the mechanisms of 

AF, the cardiac ablation (CA) treatment has been more 

popular for the treatment of various types of AF [5]. CA 

removes arrhythmogenic tissue by either RF (radiofre-

quency) heating or cryothermy cooling with treatment 

by other energy sources such as laser energy, which is 

under clinical trials [5–15]. CA procedures mostly rely 

on a point ablation and, while it is good for treating sim-

ple arrhythmias, it is not suitable for treating complex 

arrhythmias that occur continuously at multiple sites 

due to limited sensing functionalities and single point 
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ablation source [16]. Also, since arrhythmias can occur 

in all component structures and 3D regions of the heart, 

it is quite challenging to diagnose and treat the precise 

anatomic locations, especially when you want to cover a 

large area [6, 9]. In order to overcome this limited sens-

ing functionality or limited spatial coverage, the catheter 

was designed to be inflated like a balloon as shown in 

Fig. 1. An advanced balloon catheter design with multiple 

sensors on the outside surface was reported for enabling 

the catheter to obtain temperature, flow characteristics, 

tactile, optical, and electrophysiological data from the 

tissue-balloon interface [17–28]. While the CA is con-

sidered as one of the best methods for diagnosing and 

treating AF, there is a higher risk of procedural compli-

cations due to the complexity of technique and the loca-

tion of ablation sites [5]. It is reported that approximately 

50,000 AF ablation procedures are being performed every 

year in the United States and a major complication rate of 

approximately 5% have been reported after CA treatment 

in USA [5, 29–31]. In order to reduce the major compli-

cations associated with the CA while increasing the sens-

ing functionalities and spatial coverage, various novel 

devices that can be attached on the outer wall of the heart 

have been reported in order to replace the catheter for 

the diagnosis and treatment of the CA. One of the most 

impressive devices is a flexible and stretchable mem-

brane-type device which has multifunctional sensors and 

actuators that can provide electrical stimulation, enabling 

real-time mapping of many cardiac characteristics.

�is paper briefly reviews a recent trend in the devel-

opment of flexible, stretchable multifunctional sensors 

and actuators for heart arrhythmia therapy that can over-

come various limitations of the traditional single-point 

source CA technique. �is new technology becomes pos-

sible by achieving improvement in the following fields—

realization of flexible and stretchable substrate, successful 

multifunction sensors and actuators on the flexible and 

stretchable substrate, energy harvesting method to avoid 

battery replacement surgery, and information and com-

munication technology (ICT) for exchanging the data 

between the sensors and other systems. Each of these 

subjects will be addressed with some of the recent devel-

opment reports.

Next generation devices for heart arrhythmia 
therapy
�e next generation device was aimed to diagnose and 

treat the complex heart arrhythmias that occur continu-

ously at multiple sites. �is complex arrhythmia can-

not be treated with a single-point source catheter, even 

though it is an approved and one of the most widely 

accepted methods for treating a single point cardiac 

ablation due to its limited sensing functionality or lim-

ited spatial coverage. �erefore, in over to overcome 

these limitations various new technologies have been 

developed and reported. �is paper introduces a part 

of those technologies to inform the readers what have 

been developed recently in the heart arrhythmia therapy 

field. First, in order to improve the spatial coverage of 

the sensors, the sensors should be fabricated on a flex-

ible and stretchable substrate which can then be tightly 

and conformally attached to the curvy organ surface, in 

this case the heart. By fabricating small sized, high den-

sity sensors on this flexible and stretchable substrate, the 

device multifunctionality for collecting various cardiac 

characteristics can be achieved. In addition to them, 

the ICT capability should be included into the device 

for data communication and finally the power should be 

provided or generated without the surgery for replacing 

the battery.

Fig. 1 Multifunctional inflatable balloon catheters. a Image of 

inflatable catheter (130% inflation) with contraction and (upper right) 

inflated state. b An enlarged image of an inflated balloon catheter 

(green dotted area in a) (Reproduced with permission from Ref. [16], 

Copyright © 2011, Rights Managed by Nature Publishing Group)
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Flexibility and stretchability
Implantable devices quite often either cause a damage 

to the organs or plays a source of infection by the tissue 

immune reaction. �e implantable devices usually need 

to be attached tightly to the organs as long as there is no 

immune reaction from the organ. It is particularly criti-

cal to attach the sensors or actuators very tightly on the 

heart surface because the heart expands and contracts 

as it beats, resulting in detaching of any sensors from the 

surface. �is will cause the failure of the sensors and with 

rigid sensor body it is almost impossible to have a good 

contact with the curvy heart surface. Even if the soft sen-

sor body makes a good contact with the heart surface, it 

will be detached from the heart surface after some heart-

beats because the movement of the heart is quite strong. 

�erefore, it is necessary to make the sensor body with a 

flexible and stretchable material so that the sensor body 

may be able to follow the shape change of the heart when 

the heart beats. Polydimethylsiloxane (PDMS) is one of 

the polymers, which Whitesides et al. reported to deform 

up to 200% when heating and cooling it as a stretchable 

structure shown in Fig.  2 [17, 32–35]. �erefore, when 

the sensors are fabricated on the PDMS body, they can be 

stretched and deformed following the heart shape with-

out being detached.

Multifunctional device
It is tendency to develop an array of sensors in the medi-

cal devices so that many physiological parameters can 

be examined at the same time from one location of the 

body. For example, the balloon catheter reported by 

Kim et  al. is a multifunctional device that can measure 

various properties such as electrical properties, ther-

mal properties, pH, temperature, and mechanical strain 

[36]. �is device’s electrodes consist of a fractal struc-

ture, which allows high density sensing over a large area 

and low impedance without compromising elasticity and 

compliance [37]. Xu et  al. [36] demonstrated a cardiac 

model with a 3D printer and created an elastic mem-

brane called 3D multifunctional integumentary mem-

branes (3D-MIM) as shown in Fig. 3. �is device is able 

to diagnose various diseases of heart such as arrhyth-

mia, ischemia, and heart failure spatially [36]. As shown 

in Fig. 4, Xu et al. [37] also reported an actuator capable 

of not only sensing but also electrical stimulation. �is 

device has an array of 8 electrodes located around the 

heart circumference and it was able to deliver spatially 

and temporality programmed electrical stimulation onto 

the heart outside membrane [37].

Generator
In recent years, the importance of these medical implant 

devices has increased dramatically and the field of appli-

cation has also expanded rapidly. However, most of 

these devices rely on internal batteries and the lifetime 

of the devices is limited by the battery life [38–40]. �e 

implantable medical device usually employs a small 

high-capacity battery with low-power devices in order 

to increase the lifetime of the medical device to avoid 

the surgery for replacing the battery or medical device. 

However, with the current technology, the lifetime of 

battery-operated pacemakers, for example, is reported to 

be about 5–15 years and the device replacement must be 

done, normally by surgery [38, 41]. Research is underway 

to overcome these drawbacks by considering a generator 

with an energy harvesting method instead of a battery 

[38]. Energy harvesting may be done by various methods 

and all kinds of energy harvesting principles are studies 

by researchers. Some people are trying to obtain energy 

using a fuel cell by a chemical reaction between glucose 

and oxygen, and many people are trying to harvest sub-

stantial amount of energy from various mechanical body 

movements including a knee, body movement, and even 

a heart wall movement from the heartbeats [38, 42–48]. 

Fig. 2 a Gold was evaporated on PDMS at 110 °C and then cooled at room temperature to form a wave pattern. b A schematic diagram of deposit-

ing Au on PDMS and obtaining a wave pattern through heating and cooling (Reproduced with permission from Ref. [35], Copyright © 1998, Rights 

Managed by Nature Publishing Group)
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Figure 5 shows an example of obtaining energy by attach-

ing mass imbalance oscillation generator (MIOG) to the 

left ventricle wall of Swiss alpine sheep. From this experi-

ment, the heart was beating at an average of 90 bpm and 

the experiment lasted for a total of 18 min and 45 s, pro-

ducing 11.1 μJ per heartbeat [38]. However, attaching the 

energy harvesting device directly on the heart may cause 

impairment or even damage to the heart chronically. �e 

possibility of causing cardiac damage, such as bleeding, 

has been raised because of heart’s vigorous contrac-

tion and vulnerability [49]. Figure 6 shows a flexible and 

implanted PVDF piezoelectric energy harvesting genera-

tor film wrapped on an ascending aorta for harvesting 

energy from the pulsation of the aorta to avoid the car-

diac damage. Figure 6 shows before and after of PG injec-

tion in the pig’s aorta. Figure 7 shows that the schematic 

illustration of the piezoelectric generator (PG) wrapped 

around the latex tube, its cross-sectional SEM image, and 

the photograph of the fabricated the PG by depositing Al 

on both sides of the PVDF. �e reported results showed 

Fig. 3 3D-MIMs a 3D-MIM attached to the outer wall of the heart (white arrows indicate the positions of the sensors with different functions). Scale 

bars 6 mm. b An enlarged image of sensors with each function. Scale bars 500 mm (Reproduced with permission from Ref. [36], Copyright © 2014, 

Rights Managed by Nature Publishing Group)

Fig. 4 An image attached to the outer wall of the rabbit heart with 

an elastic membrane containing a multifunctional sensor capable 

of providing electrical stimulation (the white arrows indicate the 

electrodes of the sensor and the fractal structure) (Reproduced with 

permission from Ref. [37], © 2015 WILEY VCH Verlag GmbH & Co. 

KGaA, Weinheim)
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that the average heart rate of pigs was 120 bpm and the 

aorta had a strain rate of about 10% due to heartbeat [49–

51]. �e instantaneous output of the PG was 30 nW and 

lasted for 700 ms and was charged to 1.0 V for 40 s for a 

1 μF capacitor in the charge test [49].

Information and communication technology
Even if there is a sensor that can map every part of the 

heart spatially and a generator that can operate the sen-

sor indefinitely, it is meaningless if it cannot send the 

collected information to the outside. In order to moni-

tor heart information in real time, the collected informa-

tion should be transmitted to an information processing 

device outside the body [52]. Hammond et al. developed 

a device that transmits heart pressure data wirelessly 

and can monitor the information in real time in 2012 

[53]. �e device, as shown in Figs. 8 and 9, encapsulates 

pressure sensors made with MEMS technology and elec-

tronic components that provide signal conditioning, 

power management, and radio frequency transmission 

into glass capsules, which are then implanted into the left 

ventricular apex. Data from this device is passed through 

a proprietary transceiver unit and a handheld antenna. 

�e transceiver can provide power to the device through 

electromagnetic induction, detect and process radio 

Fig. 5 Attachment of mass imbalance oscillation generator (MIOG) 

to the left ventricle of Swiss alpine (sheep Reproduced with permis-

sion from Ref. [38], © Biomedical Engineering Society 2012)

Fig. 6 a PG picture wrapped in PI tape. b PG implanted in the aorta (Reproduced with permission from Ref. [49], Copyright © 2015 Elsevier Ltd. All 

rights reserved)

Fig. 7 a A schematic diagram of a piezoelectric generator (PG) surrounding the aorta. b cross-sectional SEM image of PG. c PG structure diagram 

(Reproduced with permission from Ref. [49], Copyright © 2015 Elsevier Ltd. All rights reserved)
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frequency signals emitted by the device, and store the 

data in a computer via USB [53]. However, until now, the 

transmittable distance is short and only the data about 

the pressure can be collected and encoded and transmit-

ted. �erefore, it is necessary to secure the data of the 

multi-function sensor to be able to process. Also, the 

connection to the sensor should be considered to process 

the data in the membrane type sensor which surrounds 

the whole heart.

Conclusions
Compared to a single point source CA, which is cur-

rently used to treat cardiac arrhythmia, a new implant-

able, flexible and stretchable membrane-type device 

with multifunctional sensors and actuators has been 

developed and reported in order to map in real-time, 

and large-area spatial cardiac characteristics. In order 

to operate such devices by attaching it on an organ in a 

live body for a long time, the battery replacement surgery 

Fig. 8 a Proprietary transceiver unit and a handheld antenna. b Diagram implanted in apex of left ventricle. c Pressure sensors made with MEMS 

technology and electronic components providing signal conditioning, power management and radio frequency transmission are encapsulated in 

glass encapsulation devices (Reproduced with permission from Ref. [53], Copyright © 2012 by the American Society for Artificial Internal Organs)

Fig. 9 a Pictures of devices implanted in the left ventricular apex. b Implant site (Reproduced with permission from Ref. [53], Copyright © 2012 by 

the American Society for Artificial Internal Organs)
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should be avoided. To overcome this difficulty, vari-

ous energy generation/harvesting techniques have been 

reported, including a fuel cell using a chemical reaction 

between glucose and oxygen, energy harvesting from 

various mechanical body movements including a heart 

wall movement from the heartbeats. One of the energy 

harvesting experiment results is that 11.1  μJ energy per 

heartbeat was harvested from the 90  bpm heartbeats 

for 18  min and 45  s by attaching the generator to the 

heart outside wall of the sheep. In addition, there must 

be a communication device capable of sending the data 

collected by the sensors to an external device enabling 

real-time monitoring outside the body. Transmitting an 

electrical signal through a human body suffers significant 

signal, limiting a real-time data transmission only for a 

short distance. �erefore, some of the developments in 

those important issues were reviewed and reported in 

this paper to address what needs to be developed further 

to make successful flexible, stretchable multifunctional 

sensors and actuators for heart arrhythmia therapy.
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