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Abstract: Thin-film transistors (TFTs) have grown into a huge industry due to their broad applications

in display, radio-frequency identification tags (RFID), logical calculation, etc. In order to bridge the

gap between the fabrication process and the circuit design, compact model plays an indispensable

role in the development and application of TFTs. The purpose of this review is to provide a

theoretical description of compact models of TFTs with different active layers, such as polysilicon,

amorphous silicon, organic and In-Ga-Zn-O (IGZO) semiconductors. Special attention is paid to the

surface-potential-based compact models of silicon-based TFTs. With the understanding of both the

charge transport characteristics and the requirement of TFTs in organic and IGZO TFTs, we have

proposed the surface-potential-based compact models and the parameter extraction techniques.

The proposed models can provide accurate circuit-level performance prediction and RFID circuit

design, and pass the Gummel symmetry test (GST). Finally; the outlook on the compact models of

TFTs is briefly discussed.

Keywords: thin-film transistors (TFTs); compact model; surface potential

1. Introduction

A thin-film transistors (TFTs) is a special kind of field-effect transistor (FET) fabricated by

depositing thin films of an active semiconductor layer, as well as the dielectric layer and metallic

contacts over a supporting (but non-conducting) substrate [1,2]. In the past 15 years, TFTs has grown

into a huge industry based on display, memory, E-paper applications, and so on [3–6]. Generally,

a common substrate in TFTs is glass, which differs from the conventional transistor, where the

semiconductor material typically is the substrate, such as a silicon wafer. TFTs include three basic

elements: (1) a thin semiconductor film; (2) an insulating layer; and (3) three electrodes (gate, source

and drain) [7–9]. Three basic elements for configuration of TFT have been illustrated clearly in Figure 1.

The source and drain, are in contact with the semiconductor film at a short distance from one another.

The gate is separated from the semiconductor film by the insulating layer [10].
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Figure 1. Schematic structure of a generalized thin-film transistor.

The history of TFT really began with the work of P. K. Weimer at Radio Corporation of America

(RCA) Laboratories in 1962 [11]. At that time Weimer fabricated the first TFT based on thin films

of polycrystalline cadmium sulfide as the semiconductor materials. In the 1970s, the realization of

crystalline silicon as the active materials with low cost dramatically changed the prospects of TFTs [12].

In 1979, amorphous silicon as a new active material was introduced by LeComber et al. [13], which had

profound implications for TFTs. In 1980, Depp et al. reported polysilicon TFT which achieved good

mobility and TFT characteristics [14]. In 1986, the first transistor based on organic semiconductor was

reported [15]. As compared with conventional Si TFTs, organic TFT (OTFT) displays much less complex

in fabrication processes and can be naturally compatible with plastic substrates for lightweight and

foldable products [16]. To develop large-scale TFTs, processing temperatures must be getting lower

and lower. In 2004, Nomura et al. used a complex In-Ga-Zn-O (IGZO) semiconductor layer in a TFT,

which achieved the room-temperature processing of the semiconductor layer [17]. Looking back into

the past half-century, TFTs moved endlessly forward from the initial requirement of performance to

today’s application of large area and low cost.

During the development of TFTs, the semiconductor device model represents an essential bridge

between the semiconductor manufactures and the circuit design. Integrated circuit (IC) designers

usually utilize various kinds of software (such as Cadence, SPICE, PHILIPAC) for design circuit [18–20].

The core of the corresponding software is the model of each unit device. Because the IC is consisted of

several transistors, if all unit devices would need to run the complicated model of transistor, the system

level simulation will beyond computer ability and hence causes non-convergence in calculation.

Otherwise, for ensuring the reliability of the simulation, the device model should also be able to

accurately describe the physical properties [21]. Compact model is a critical step in the design cycle of

modern IC products [22]. It refers to the development of models for integrated semiconductor devices

for use in circuit simulations. Compact model is usually used to reproduce device terminal behaviors

with accuracy, computational efficiency, ease of parameter extraction, and relative model simplicity for

a circuit or system-level simulation, for future technology nodes [23].

Accurate and physical compact models are essential for digital and analog circuits. Generally

speaking, an excellent compact model should include the following requirements [21,24]:(i)

Representing consistently the behavior; (ii) Being symmetrical to reflect the symmetry of TFT

structure; (iii) Being analytical, without differentials or integrals; (iv) Being simple and easily derivable;

(v) Parameters that can be characterized easily, or even guessed; (vi) Being upgradable and reducible;

(vii) Relations can be physically justified; (viii) Being similar form and correspondence to compact

models for other TFTs; (ix) Being tunable to inaccurate (or uncertain) experimental data.

The first compact model could date back to 1983, in which Kacprzak et al. proposed a compact DC

model of GaAs FETs for large-signal computer calculation [25]. In 1986, based on one-dimensional (1-D)
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solution of Poisson’s equation, Ahmed et al. reported a compact model for accumulation mode poly-Si

devices [26]. Later, plenty of methods, such charge sheet model, effective medium approach (EMA),

semi-empirical approach, generation-recombination model, and surface-potential based model, have

been introduced for the compact models of the silicon-based TFTs [27–32]. Then, with the emergence

of new TFTs, e.g., OTFT and IGZO TFTs, some excellent compact models based on interesting methods

have been developed [33–37]. Strictly speaking, all of the proposed compact models can be divided

into two categories. One is charge-based and another is surface-potential-based. As compared with the

charge-based model, the surface-potential-based compact model is believed to have high accuracy and

strong physical property, and be easily simplified into the charge-based and threshold-voltage-based

model [21]. It can also describe the operation of transistor more accurately without any smooth

functions [38].

Over the past two decades, although some excellent reviews have been published [39–42],

a completed review for the compact models of TFTs based on different active materials is still

lacking. In this review, we will provide an updated review of surface-potential-based compact

model of TFTs with different active materials, such as polysilicon, amorphous silicon, organic and

IGZO semiconductors. In Section 2, the charge transport property of different active materials is

discussed. In Section 3, we discuss the surface-potential-based compact models for silicon-based TFTs

and presented our surface-potential-based compact models for organic and IGZO TFTs, respectively.

In Section 4, the comparison of various compact models will be summarized. Finally, the future outlook

for this field is briefly discussed in Section 5.

2. Charge Transport Property

In order to achieve an accurate compact model for TFTs, the key is to correctly describe the charge

transport characteristics. For TFTs with different active materials, the charge transport has displayed

various properties. This section will, in detail, introduce the charge transport properties of TFTs for

different active materials.

2.1. Grain-Boundary Trapping Theory

Based on its structure characteristics, the charge transport property of polysilicon has been

described in terms of two distinct models: segregation theory and grain-boundary trapping theory [43].

In the segregation theory, impurity atoms tend to segregate at the grain boundary where they are

electrically inactive. While the grain boundary trapping theory assumed that the presence of a large

amount of trapping states at the grain boundary able to capture, and therefore immobilize, free carriers.

The basic limitation of segregation theory is that it does not explain the temperature dependence

of the film resistivity which is thermally activated and exhibits a negative temperature coefficient.

The grain-boundary trapping theory can explain most of electrical properties in polysilicon.

In the grain-boundary trapping theory, a polysilicon is assumed to be composed of small

crystallites joined together by the grain boundaries usually consisted of a few atomic layers of

disordered atoms [43]. Inside each crystallite the atoms are arranged in a periodic manner so that

it can be considered as a small single crystal. Atoms in the grain boundary represent a transitional

region between the different orientations of neighboring crystallites. Although polysilicon is a

three-dimensional substance, it is sufficient to treat the problem in one dimension to calculate the

transport properties. The traps are assumed to be initially neutral and become charged by trapping

a carrier. Figure 2 shows the schematic diagram of crystal structure, charge distribution and energy

band structure of polysilicon films.
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Figure 2. Schematic diagram of (a) crystal structure; (b) charge distribution; and (c) energy band

structure of polysilicon films.

The grain-boundary trapping theory considers just the resistance of the grain-boundary region,

which includes two important contributions to the current: thermionic emission and tunneling (field

emission) [44]. Thermionic emission results from those carriers possessing high enough energy to

surmount the potential barrier at the grain boundary. The tunneling current arises from carriers with

energy less than the barrier height. When the barrier is narrow and high, the tunneling current can

become comparable to or larger than the thermionic emission current. In the polysilicon the potential

barrier is the highest when the barrier width is the widest. Because of this, tunneling current may

be neglected. Then, for an applied voltage the thermionic emission current density across a grain

boundary following Bethe is expressed as the following [44]:

Jth = qpa

(

kBT

2m∗π

)1/2

exp

(

− qVB

kBT

)[

exp

(

− qVa

kBT

)

− 1

]

(1)

where q is the elemental charge, pa is the average carrier concentration, m∗ is the effective mass of

the carrier, kB is the Boltzmann constant, VB is the potential barrier height, and Va is the applied

voltage. Equation (1) neglects collisions within the depletion region and the carrier concentration

in the crystallite was assumed to be independent of the current flow, so that it is applicable only if

the number of carriers taking part in the current transport is small compared to the total number of

carriers in the crystallite. This condition restricts the barrier height to be larger than or comparable to

kBT. If Va is small, qVa ≪ kBT, Equation (1) can be expanded to give the following:

Jth = q2 pa

(

1

2πm∗kBT

)1/2

exp

(

− qVB

kBT

)

Va (2)

which is a linear current–voltage relationship. Based on Equation (2), the conductivity of a polysilicon

film with a grain size L is written as:

σ = Lq2 pa

(

1

2πm∗kBT

)1/2

exp

(

− qVB

kBT

)

(3)

Then, the effective mobility is expressed as:

µe f f = Lq

(

1

2πm∗kBT

)1/2

exp

(

− Eb

kBT

)

(4)

here Eb is the energy barrier.
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2.2. Hopping Transport

Differing from crystalline materials, such as polysilicon, the charge transport in amorphous

materials exhibits very different properties. Amorphous semiconductor materials, including inorganic

and organic, have in common, that their atomic or molecular structure is completely disordered.

For inorganic amorphous semiconductors, such as, pure and hydrogenated amorphous silicon (a-Si,

a-Si:H), a band structure similar to the one of crystalline materials still exists [45,46]. The electronic

states in the conduction and valence bands are therefore delocalized. Thus some of the concepts from

crystalline semiconductor physics are still suitable for the inorganic amorphous materials. However,

in the band gap between valence and conduction band, some localized states exist in which charge

carriers can be trapped. For organic amorphous semiconductors, the intermolecular bonds are due

to relatively weak van der Waals interactions, the electronic wave functions usually do not extend

over the entire volume of the organic solid, but rather, are localized to a finite number of molecules,

or even to individual molecules [47,48]. Due to the spatial and energetic disorder, the charge transport

in amorphous semiconductor materials is limited by trapping in the localized states. This means that

the charge carrier mobility is expected to be thermally activated, that is, the charge transport always

happens to jump from one localized site to another. This type of transport mechanism is called hopping

transport. The transition of hopping between two sites depends on the overlap of the electronic wave

functions of these two sites [49]. Whenever a charge carrier hops to a site with a higher (lower) site

energy than the site that it came from, the difference in energy is accommodated for by the absorption

(emission) of a phonon. Figure 3 is a schematic diagram of carrier hopping transport with the density

of states [50].

 

= ( , − ) =< (1 − )	 >
	

= −2 − ( − )
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Figure 3. Schematic diagram of hopping transport with the density of states.

The intrinsic transition rate for a carrier hopping from an initial site i to an empty site j is expressed

by γij = γ
(

Rij, Ei − Ej

)

. The average transition rate from site i to site j is then [51]:

νij = < mi

(

1 − mj

)

γij > (5)

where mi and mj are the occupation numbers for sites i and j, respectively. The energy dependence of

γij is then a good approximation to take the Miller–Abrahams form to write as [52]:

γij = v0exp

(

−2ϕRij −
θ
(

Ej − Ei

)

kBT

)

(6)

where v0 is the attempt-to-jump frequency, ϕ is the inverse localized length of the inverse wave function,

Rij is the distance between site i and site j, Ei and Ej are the energies of sites i and j, respectively,

and θ(x) = xε(x) with ε(x) being the step function.
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2.3. Multiple Trapping and Release Theory

For some special materials, such as the small-molecule organic semiconductor and the

IGZO semiconductor, which have a strong tendency to form polycrystalline films [50,53,54].

These semiconductors display the regular arrangement, and the delocalized orbitals partially overlap,

thereby facilitating more efficient charge transfer and carrier mobility that is much larger than

in amorphous films. The charge transport properties of these materials cannot be explained by

the grain-boundary trapping theory and hopping transport. In contrast to the grain-boundary

trapping theory or hopping theory, the multiple trapping and release (MTR) theory is adapted for the

materials [55,56]. MTR theory assumes that the charge transport occurs in extended states, and that

most of the charge carriers are trapped in localized states [57]. Energy of localized state is separated

from mobility edge energy. When the energy of localized state is slightly lower mobility edge, then the

extended states acts as shallow trap, from which the charge carrier can be released (emitted) by the

thermal excitations. But, if that energy is far below mobility edge energy, then charge carriers cannot be

thermally excited (emitted). The number of carriers available for transport depends on the difference

in energy between the trap level and the extended-state band. Figure 4 is a transport diagram of

MTR theory.

 

= + ( ) ( ) ( )( ) = 1 + ( )( )
= ( ) ( )( ) + ( )( )( )

Figure 4. Transport diagram of multiple trapping and release (MTR) theory. The charge carrier (orange

balls) is trapped and released into and from localized states (black lines). Conduction happens above

the mobility-edge (gray area).

In the MTR theory, total charge carriers’ densities, ntotal , is equal to sum of density in extended

states, ne, and in localized states, as in Ref. [57]:

ntotal = ne +
∫ 0

−∞

g(E) f (E)dE (7)

where the upper limit of integral E = 0 corresponds to the mobility edge, g(E) is the trap density

of states (DOS) energy distribution. f (E) =
(

1 + exp
(

E−E f (x)

kBT

))−1
is the Fermi–Dirac distribution,

E f (x) is the quasi-Fermi level. Two methods within the MTR theory usually describe the effect of

trapping [58]. One is that, all carrier fields induced can contribute to the current flow at any moment

of time, but the effective mobility is reduced in comparison with its intrinsic, trap-free value:

µe f f = µ0(T)
τ(T)

τ(T) + τtr(T)
(8)

here, µ0 is the carrier mobility in extended state, τtr(T) is the average trapping time on shallow traps,

and τ(T) is the average time that a polaron spends diffusively traveling between the consecutive
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trapping events. Another is that only a fraction of the carrier field induced is moving at any given

moment of time:

ne f f = ntotal
τ(T)

τ(T) + τtr(T)
(9)

3. Surface-Potential-Based Compact Models

In spite of the fact that the transport characteristics in TFTs is very different for different active

materials, the current–voltage characteristics can, to first order, be described with the same formalism

as [53]:

Ids =







µCiW
L

(

(

Vg − Vth

)

Vds −
V2

ds
2

)

f or
∣

∣Vg − Vth

∣

∣ > |Vds| (linear regime)

µCiW
2L

(

Vg − Vth

)2
f or |Vds| >

∣

∣Vg − Vth

∣

∣ > 0 (saturation regime)
(10)

where Equation (10) describes the relationship between the drain current Ids, the gate-source voltage

Vg and the drain-source voltage Vds in linear and saturation regimes, respectively. Ci is the gate

dielectric capacitance per unit area, µ is the carrier mobility in the semiconductor, W and L is the

channel width and length of the transistor, respectively. For silicon TFTs, the threshold voltage Vth is

defined as the minimum gate-source voltage required to induce strong inversion [59]. However OTFTs

and IGZO TFTs usually operate in accumulation region, thus strictly speaking the threshold voltage

cannot be defined for OTFTs and IGZO TFTs. Since the threshold voltage concept is nonetheless useful,

the compact models will show very different for TFTs with different active materials. Otherwise,

the central aim of compact models is to accurately and physically describe the current–voltage

characteristics of TFTs in Equation (10). As mentioned above, the surface-potential-based compact

model is believed to have high accuracy and strong physical properties. The following will review the

surface-potential-based compact models for polysilicon and amorphous silicon TFTs, and then present

our compact models for OTFTs and IGZO TFTs based on surface-potential-based.

3.1. Polysilicon TFT Compact Models

Polysilicon TFTs have gotten considerable applications, especially in active matrix liquid

crystal displays (AMLCDs), printers, scanners, Static Random-Access Memories (SRAMs) and

three-dimensional large scale integration (LSI) circuits [60]. In early time, researchers usually built the

polysilicon TFT models based on the one-dimensional solution of Poisson’s equation and the effects of

grain-boundary traps [26,61]. However, these earlier models were unclear for inversion mode devices

due to the “reverse” charge shielding concept defined in its derivation [62]. Later, some authors

adopted the EMA method to well address the question of non-uniform polysilicon sample with the

grain boundaries [29,63]. In 1999, Benjamín et al. also adopted EMA to develop a unified model

for long and short-channel polysilicon TFTs [28]. This method is attractive because it accounts for

field effect mobility enhancement in the moderate inversion regime and for mobility degradation at

high gate voltages, for drain-induced barrier lowering (DIBL) effect, kink effect, off-state current and

channel-length modulation. A few years later, Wu et al. proposed a compact model by approximating

the generation rate for poly Si TFTs in the leakage region [50]. Although several models for poly-Si TFTs

have been proposed so far, based on different equations for the subthreshold, linear, and saturation

regions [64,65], these methods always lead to a significant error in evaluating derivatives such as

transconductance [66].

To capture more accurate features of poly-Si TFTs, Shimizu et al. developed a compact model

based on a new surface-potential-based [67]. Firstly, in the model the states are approximated by the

sum of exponential distributions for the deep and tail states as:

g(E) = gdeexp

(

E − Ec

Ede

)

+ gtaexp

(

E − Ec

Eta

)

(11)
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where Ede and Eta are the inverse slope of deep states and tail states, respectively, gde and gta are the

density of deep state and tail state at bottom of conduction band Ec, respectively.

By integrating the 1-D Poisson equation, the surface potentials at the source side as a function of

gate voltage can be calculated numerically as the following [68]:

Ci

(

Vg − Vf b − ϕs0

)

=
√

2qεs Nsub
β [exp(−βϕs0)− exp(−βϕb0) + β(ϕs0 − ϕb0)

+
(

ni
Nsub

)2
[exp(βϕs0)− exp(βϕb0)] +

(

βNdeep

γNsub

)

[exp(γϕs0)− exp(γϕb0)]

+
(

Ntail
Nsub

)

[exp(βϕs0)− exp(βϕb0)]
]

1
2

(12)

where γ = q/Ede, β is the inverse of thermal voltage, εs is the dielectric constant, Nsub is the dopant

concentration, ni is the intrinsic carrier concentration, ϕs0 and ϕb0 are the front and back surface

potentials at the source side, respectively, Ndeep and Ntail are the densities of trapped electrons in deep

states and tail states under a flat band condition, respectively.

Then, the inversion layer charge density at the source (x = 0) or drain (x = L) side can be written

as [69] the following:

Qi(x) = −Ci

(

Vg − Vf b − ϕs0

)

+
√

2qεs Nsub
β [exp(−βϕsx)− exp(−βϕbx) + β(ϕsx − ϕbx)

+
(

βNdeep

γNsub

)

[exp(γϕsx)− exp(γϕbx)] +
(

Ntail
Nsub

)

[exp(βϕsx)− exp(βϕbx)]
]

1
2

(13)

Obviously, Equations (12) and (13) could be only solved by iteration. To determine the surface

potentials at the source side or at the drain side, the authors used a method from the literature [70].

In Equation (13), the charge densities of inversion layer are derived based on the charge-sheet

approximation. Figure 5 shows a comparison of the front surface potentials obtained from Equation (12)

and the exact numerical calculations.

− − = (− ) − (− ) + ( − ) +( ) − ( ) + ( ) − ( ) + ( ) −( )= /

( ) = − − − + (− ) − (− ) + ( − ) +
	 ( ) − ( ) + ( ) − ( )

 

= − + 1 ( − ) − ( − ) − (0) +( ) ( − ) − (0) − ( )
( ) = ( ) + − −

Figure 5. Comparison of calculated front surface potential obtained using Equation (12) (lines) and the

exact numerical calculations (circles) with and without traps as a function of gate voltage.

After obtaining the surface potentials, based on the drift-diffusion approximation [71], the authors

calculated the drain current as:

Ids =
Wµ
Lβ

[

Ci

(

β
(

Vg − Vf b

)

+ 1
)

(ϕsL − ϕs0)− β
2 Ci

(

ϕ2
sL − ϕ2

s0

)

− β
2 (qi(0) + (L))

(ϕsL − ϕs0)− (qi(0)− qi(L))]
(14)

where ϕsL and ϕbL are the front and back surface potentials at the drain side, respectively,

qi(x) = Qi(x) + Ci

(

Vg − Vf b − ϕsx

)

. Note, Equation (14) can describe the drain current in all
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the regions of operation using the unified equation. At the same time, the model did not include the

threshold voltage.

Figure 6 shows a comparison of simulated and measured drain current characteristics as a function

of gate voltage for an n-channel poly-Si TFT in the subthreshold and above-threshold regions. In the

linear and saturation regions, a comparison of simulated and measured drain current characteristics is

shown in Figure 7.

 

μ μ μ μ

μ μ
μ μ

− − = 1 + + − ln(1 + )= 2 / L
= 0.5

− = + ∆ exp( ) += / = − /= / ∆ = exp / 1 + = − ( )

Figure 6. Comparison of measured (circles) and simulated (lines) drain current characteristics as a

function of gate voltage on logarithmic (left axis) and linear (right axis) scales for an n-channel poly-Si

thin-film transistors (TFT) with (a) W/L = 2 µm/2 µm and (b) W/L = 2 µm/1 µm.
μ μ μ μ

 

μ μ
μ μ

− − = 1 + + − ln(1 + )= 2 / L
= 0.5

− = + ∆ exp( ) += / = − /= / ∆ = exp / 1 + = − ( )

Figure 7. Comparison of measured (circles) and simulated (lines) drain current characteristics as a

function of drain voltage for an n channel poly-Si TFT with (a) W/L = 2 µm/2 µm and (b) W/L = 2

µm/1 µm. The parameters used in the simulation are the same as those used in Figure 6.

Differing from iterative solution of the surface potential in Shimizu et al.’s model, Chen et al.

have developed an analytical solution to the surface potential of poly-Si TFTs by using the Lambert W

function [72]. In Chen et al.’s model, the surface potential of poly-Si TFTs can be expressed as,

(

Vg − Vf b − ϕs

)2
= γ2

[(

1 +
NT

LgNA

)

ϕs + ϕtexp

(

ϕs − ϕn − 2ϕ f

ϕt

)]

− NT

LgNA
ϕt ln(1 + Km) (15)

where ϕs is the surface potential, γ denotes a body factor: γ =
√

2εsqNA/Ci, Lg is the grain size,

NT and NA are located traps and acceptor density, respectively, ϕt is the thermal voltage, ϕ f is the Fermi

potential, ϕn is the channel voltage, Km = 0.5exp
(

Et+qϕt

kBT

)

. To derive an analytical and non-iterative

evaluation, the normalized form of Equation (15) can be written as the following:

(

vg − xW

)2
= G2

TFT [xW + ∆TFT exp(xW) + A] (16)
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where xW = ϕs/ϕt is the normalized surface potential, vg =
(

Vg − Vf b

)

/ϕt the normalized effective

gate voltage, GTFT = γ
√

1+NT/Lg NA

ϕt
, ∆TFT = exp

(−ϕt−2ϕ f

ϕt

)

/
(

1 + NT
Lg NA

)

, and A = −NT ln(1+Km)
NT+Lg NA

.

Then, with a simple mathematical procedure and using the principal branch of the Lambert W

function [73], the authors obtained the physics-based analytical solution of the normalized surface

potential as follows:

xW = −W0[ f × ∆TFTexp(vG − f × A)] + vG − f × A (17)

where vG =

(

vg +
G2

TFT
2

)

− GFET

√

vg + G2
TFT/4 and f = GFET/2

√

vg + G2
TFT/4.

In order to improve the accuracy, some corrections by using the Schroder series in the surface

potential expression have been provided for Equation (17). Finally, the complete solution to the

physics-based surface potential of poly-Si TFTs with absolute error only in nanovolt range can be

expressed as:

ϕs =
[

xW + ω
(

yW , y′W , y
′′
W

)

+ ε
]

ϕt (18)

Based on Equation (18), the surface potential derivative with respect to the gate voltage has been

calculated [72], as shown in Figure 8. Figure 8 shows that no splits and peaks exist near the flatband

regions, which suggests that the analytical solution to the surface potential is better than the algorithm

in the Penn State Philips (PSP) model [74].

= − × ∆ ( − × ) + − ×= + − + /4 = /2 + /4

= + ( , , ) +

 

Figure 8. The characteristics of the surface potential derivative with respect to the gate voltage for

different channel potential ϕn.

Based on the formulas of surface potential from Chen et al., subsequently some researchers

presented a complete modeling for surface potential in partially depleted poly-Si TFTs with undoped

or lightly doped body by including both monoenergetic and exponential trap distributions [32].

The proposed closed-form algorithm is able to accurately calculate the surface potential and has the

advantage of both accuracy and computational efficiency, which is useful for compact modeling and

CAD applications.

3.2. Amorphous Silicon TFTs

Amorphous Silicon, especially hydrogenated amorphous-silicon (a-Si:H), has been considered

as the most well-studied materials for TFTs. Generally speaking, the most important features

of amorphous silicon TFT characteristics can be described by analyzing the device behavior

in two regimes: below-threshold, when the electron quasi-Fermi level is in the deep states;

and above-threshold, when the Fermi level enters the tail states [75]. A current model for the
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below- and above-threshold regimes had been proposed by considering the sheet carrier density

as a function of Fermi lever position by Shur et al. [76]. In 1997, Shur et al. again developed a

physically based analytical model for n-channel amorphous silicon thin film transistors and for n-

and p-channel polysilicon thin film transistors, which covered all regimes of transistor operation:

leakage, subthreshold, above-threshold conduction, and the kink regime in polysilicon thin film

transistors [63]. Only in the last few years several models have been built, based on the description

of below-threshold and above-threshold, respectively [77–79]. However, with gradual accumulation

of the requirements imposed on the compact models and simultaneous realization of the limitations

associated with the traditional modeling techniques, new physical phenomena become essential for

the accurate reproduction of the device characteristics. On the other hand, due to these drawbacks in

the regional approach, analytical models based on surface potential have been paid more attentions in

the development of device models [40].

In terms of the consideration above, in 2008, Liu et al. presented an analytical a-Si:H TFTs model

based on the surface potential [80]. In the model, when TFT is biased, the majority of the induced

charges in the channel are trapped in the acceptor-like states, which divided into two groups: deep

states and tail states. The distribution of localized acceptor states can be expressed as Equation (11).

The localized trapped charge density is expressed as:

ntrapped =
∫ Ec

−∞

g(E)

1 + 1
g exp

(

E−E f

kBT

) (19)

here g is the degenerescence factor of localized states. When the density of trapped charges in the tail

states are considered, the integral (Equation (19)) can be rewritten as [68] the following:

ntail = gtg
T/T0

kBT

q
f (T, Tt)exp

qϕ − qVch(y)− E f 0

kBT0
(20)

where gt is the tail states density at Ec, Tt is the tail state characteristic temperature, Vch stands for the

channel quasi-Fermi level which is the channel voltage equal to 0 at the source and Vds at the drain.

To obtain the potential, the authors then solved the Poisson’s equation:

∂2 ϕ

ϕx2
= −dF

dx
=

q

εs

(

ndeep + ntail + n f ree

)

(21)

where ndeep, ntail and n f ree are the densities for deep trap, free, tail trap charges, respectively,

n f ree = Ncexp
(

qϕs−qVch (y)−E f 0

kBT

)

. According to Gauss’ law, and introducing electrical field effect,

the relationship between the gate-source voltage and the surface potential can be found as follows

Ci

(

Vg − Vf b − ϕs

)

= rtεsexp
(

qϕs−qVch (y)−E f 0

kBT0

)

+ rdεsexp
(

qϕs−qVch (y)−E f 0

kBTd

)

+r f εsexp
(

qϕs−qVch (y)−E f 0

kBT

) (22)

here rt =

√

2kBT0gtgT/T0 f (T,Tt)kBT
qεs

, rd =

√

2kBTdgdgT/Td πkBT

qεssin
(

πT
Td

) and r f =
√

2kBTNc
εs

.

To derive analytical and noniterative evaluation from Equation (22), the normalized form of

Equation (22) can be written as follows:

(xg − x) = Gtexp(x − xn) + Gd[exp(x − xn)]T0/Td + G f [exp(x − xn)]T0/T (23)

where xg = −Vg−Vf b

2Vto
, x = ϕs

2Vto
, xn =

E f 0
q +Vch (y)

2Vto
, Gt =

rtεs
2CiVto

, Gd = rdεs
2CiVto

, G f =
r f εs

2CiVto
, and Vto =

kBTo
q .
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Then, by using the two-order Taylor expansion, the solution for the surface potential of amorphous

silicon TFTs is expressed by:

ϕs = x·2Vto. (24)

Based on the solution for the surface potential of amorphous silicon TFTs, the authors compared

the analytical results with the numerical results, as shown in Figure 9a. And the absolute errors of the

new analytical approximation were shown in Figure 9b. The absolute errors introduced by analytical

approximation are less than 0.02 V in all cases.

= ∆ − ∆ +2 ∆ − ∆

= ∆ − ∆ +2 ∆ − ∆

Figure 9. (a) Comparison of analytical results with the numerical results; and (b) absolute error of the

new analytical approximation for the surface potential.

After the surface potential is solved precisely, the authors then discussed the drain current

by dividing the new derivation of the DC model into the below threshold region and the above

threshold region.

Below threshold region, the static current of amorphous TFTs is written as:

Idsd = µn
W
L Ncεs

2kBTdkBT
2kBTd−kBT

(

1
rdεs

)

2Td
T

C
2Td

T −1

i

[

T
2Td

(

∆ϕ
2Td

T
ss − ∆ϕ

2Td
T

sd

)

+2Vtd
T

2Td−T

(

∆ϕ
2Td

T −1
ss − ∆ϕ

2Td
T −1

sd

)] (25)

Above threshold region, similarly, the expression of drain current in the above threshold regime

can be obtained as:

Idst = µn
W
L Ncεs

2kBT0kBT
2kBT0−kBT

(

1
rtεs

)

2T0
T

C
2T0

T −1

i

[

T
2T0

(

∆ϕ
2T0

T
ss − ∆ϕ

2T0
T

sd

)

+2Vt0
T

2T0−T

(

∆ϕ
2T0

T −1
ss − ∆ϕ

2T0
T −1

sd

)] (26)

According to the expression of drain current, the calculated transfer characteristics for a-Si:H

TFT is shown in Figure 10a. It is noted that a smooth transition is achieved in the below- and

above-threshold regions without any use of smooth functions. Furthermore, the threshold voltage

is not required in the whole calculations. Figure 10b displays the measured characteristics and the

calculated current–voltage characteristics of an a-Si:H TFT. It is demonstrated that the model exhibits a

reasonable agreement in both the linear region and the saturation region.
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Figure 10. (a) Calculated transfer characteristics and (b) calculated output characteristics for a-Si:H

TFT, with the measured data for comparison.

To calculate the surface potential, other methods have been used. For example, very recently,

Qin et al. developed a novel scheme for surface potential of amorphous silicon TFTs by taking deep

Gaussian and tail exponential distribution of the density of states into account [81]. In Qin et al.’s

model, the authors adopted Taylor expansion below threshold regime, and the principle of Lamber W

function and Schroder series above threshold regime, as well as Chen et al.’s model in Section 3.1.

3.3. OTFT Compact Models

In OTFTs, the energy disorder is usually described by Gaussian DOS as [82]:

g(E) =
Nt√
2πσ

exp

(

− E2

2σ2

)

(27)

where Nt is the total localized states, and σ indicates the width of the DOS. By connecting Gauss law

Ci

(

Vg − Vf b − ϕs

)

= εsF(0), one can obtain the following:

Ci

(

Vg − Vf b − ϕs

)

=

√

√

√

√

2qεsNt√
2πσ

∫ ϕs

0

∫

∞

−∞

exp(−E2/2σ2)

1 + exp
(

E−E f 0−q(ϕ−V)

kBT

)dEdϕ (28)

where F(0) is the electric field perpendicular to the interface at the interface, V is the channel voltage,

and Ef0 is the Fermi level far from the semiconductor-insulator interface.

By approximating the Fermi–Dirac distribution with the Boltzmann distribution, Equation (28)

can be rewritten as:

Ci

(

Vg − Vf b − ϕs

)

=

√

2qεsNt√
2πσ

∫ ϕs

0

∫

∞

−∞

exp

(

− E2

2σ2
−

E − E f 0 − q(ϕ − V)

kBT

)

dEdϕ (29)

Since the localized states mainly lie in the higher energy of Gaussian DOS, E − E f 0 > 2kBT is

usually achieved. As the carrier density varies over a narrow range, then the Fermi–Dirac distribution

can be approximated by the Boltzmann distribution. According to Equation (29), the surface potential

can be calculated as:
(

Vg − Vf b − ϕs

)2
= kexp

(

− V

ϕt

)(

exp

(

ϕs

ϕt

)

− 1

)

(30)
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where k = ε0εskB Nt

Ci
2 exp

(

−0.5σ2
)

. The solution of Equation (30) actually is numerical. However,

under low gate voltage OTFTs operate in weak accumulation mode, that is, ϕs ≪ ϕt. In this situation,

the surface potential ϕsw is small and can be obtained as

φsw = Vg − Vf b +
kexp

(

− V
ϕt

)

2ϕt
−
√

(

Vg − Vf b +
kexp(−v/ϕt)

2ϕt

)2

−
(

Vg − Vf b

)

(31)

Under high gate voltage, OTFTs operate in a strong accumulation mode, that is, Vg − Vf b ≫ ϕs ≫
ϕt. In this case, the surface potential ϕss reads as

φss = 2ϕtln

(

Vg − Vf b√
k

)

+ V (32)

Connecting Equations (31) and (32), the unified surface potential of OTFTs is expressed as

ϕs =

√

ϕsw
γ·ϕss

γ

ϕsw
γ + ϕss

γ
(33)

Figure 11a shows the comparison between the surface potential calculated using the Boltzmann

distribution and Fermi–Dirac distribution functions under different channel voltages, respectively [83].

One can see that a good agreement is observed. Figure 11b shows the absolute and relative error of the

Boltzmann function approximation from Figure 11a, revealing that the maximum of relative error is less

than 0.6%, as shown by the maximum peak in Figure 11b. This approximation displays good accuracy

for weak, moderate and strong accumulation at various channel voltages. Otherwise, the absolute

error of the surface potential introduced by the Boltzmann function approximation decreases with

channel voltage and is always lower than 0.035 V.

 

= ( (2 / ) )	 = 0.5( − ) = 2 	( 	( ))= (− − )	 σ 	
→

= = ⁄ ( ) ( )( ) × ( )( ) ≈
											 ( )( ) − −

( ) = ( ) 1 + ( )

= − − ≈ √ ( − )2 − 1
= 2√ − −2 + 1 + 1 = 2 + 1

= − = − 2 + 1

Figure 11. (a) Comparison between the surface potential calculated using Boltzmann distribution

and Fermi–Dirac distribution functions for different channel voltages and (b) absolute error of the

Boltzmann approximation from (a).

For OTFTs, the field-effect mobility can be written as [84]:

µ = µ0exp
(

C1(2n/Nt)
C2

)

(34)

here C1 and C2 are given as C1 = 0.5
(

S2 − S
)

and C2 = 2
ln(S2−S)−ln(ln(4))

S2 , which only depend on the

disorder, n is the carrier concentration, µ0 = µ00exp
(

−aS − bS2
)

, S = σ/kBT, and µ00 is the mobility in

the limit n → 0.
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Using the same method in the literature [85], the field-effect mobility µe f f is calculated with

the following:

µe f f =
L

CiWVds

∂Ids
∂Vg

=

√
εsε0/2q

Ci

n(ϕs)µ(n(ϕs))
√

∫ ϕ
0

∫

∞

−∞
g(E)dEdϕ

× 2Ci

√

∫ ϕs
0

∫

∞

−∞
g(E)dEdϕ

√
εsqn(ϕs)

≈ µ0exp

(

C1
(2Ci)

2C2

(2εskBTNt)
C2

(

Vg − Vf b − γVds

)2C2
)

(35)

where n(ϕs) =
∫

∞

−∞
g(E)

(

1 + exp
(

E−E f 0−q(ϕ−V)

kBT

))−1
dE, γ is a parameter that accounts for

channel-length modulation.

Then, according to Gauss’s law, the sheet density of total induced charges in the channel is given

by:

Qi = Ci

(

Vg − Vf b − φs

)

≈ Ci

√
Kexp

(

(ϕs − V)

2ϕt
− 1

)

(36)

By differentiating Equation (36) with respect to ϕs, we then obtain:

dV

dϕs
=

2ϕt√
K

exp

(

− ϕs − V

2ϕt
+ 1

)

+ 1 = 2ϕt
Ci

Qi
+ 1 (37)

Using the gradual channel approximation, Ids is given by:

Ids = −µe f f WQi
dV

dy
= −µe f f WQi

(

2ϕt
Ci

Qi
+ 1

)

dϕ

dy
(38)

By integrating Equation (38) from ϕs = ϕss to ϕs = ϕsd, the static current of OTFTs becomes:

Ids0 =
µe f f W

L

(

2ϕtCi(ϕsd − ϕss)−
Ci

2

(

(

Vg − Vf b − ϕsd

)2
−
(

Vg − Vf b − ϕss

)2
))

(39)

where ϕss and ϕsd are the surface potentials at the source and drain side, respectively. Both of them

can be analytically calculated by Equation (33). When OTFTs are biased to the saturation region,

channel-length modulation becomes significant in short channel devices. In this case, the expression of

Ids can be rewritten as:

Ids = Ids0(1 + λVds) (40)

Based on Equation (40), the OTFT characteristics can be described by a new formula that does not

contain the threshold voltage.

Figure 12 shows the measured characteristics from pentacene transistors and the calculated

current–voltage characteristics of OTFT. The model agrees well with the experimental results in both

the linear and saturation regions [83].
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Figure 12. (a) Simulated and experimental results for transfer characteristics of organic Thin-film

transistors (OTFT); and (b) comparison between the simulated and experimental results for output

characteristics of OTFT for different gate voltages.

We also verified our proposed model by comparing it to measurements of OTFTs with channel

lengths from 25 µm to 5 µm (W = 1000 µm), as shown in Figure 13 [83]. The extracted λ values are 0.55

and 0.27 for L = 5 µm and L = 10 µm, respectively.

= == 2 ( − )− 2 − − − − −

= (1 + )

μ μ μ λ
μ μ

 

μ μ
μ μ

Figure 13. Simulated and experimental results of output characteristics of OTFT: (a) for W/L = 1000 µm

/5 µm and (b) for W/L = 1000 µm/10 µm.

3.4. a-IGZO TFTs

As mentioned in Section 2.3, the MTR theory is responsible for the charge transport of a-IGZO TFTs.

We have combined the MTR theory with the surface potential to develop the compact model of IGZO

TFTs [86,87]. Generally speaking, in TFTs, due to the accumulated carriers in semiconductor-insulator

interface under the gate voltage, the gate-induced potential ϕ(x) shifts the difference between the

mobility edge and the Fermi level. The quasi-Fermi level Ef(x) is

E f (x) = E f 0 + qϕ(x) (41)

The variation of ϕ(x) with respect to the distance x is determined by the Poisson equation as [57]:

F(x)2 =
2q

εs
ntotal =

2q

εs






Ntv0τ0exp

(

E f (x)

kBT

)

+

ϕ(x)
∫

0

0
∫

−∞

g(E)

1 + exp
(

E−E f (x)

kBT

)dEdϕ(x)






(42)
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where F(x) is the electric field perpendicular to the interface. At the interface, the electric field F(0) can

be expressed through Gauss’s law as:

εsF(0) = Ci

(

Vg − Vf b − ϕs

)

=

√

√

√

√

√
2qεs



Ntv0τ0exp
(

E f (x)

kBT

)

+
∫ ϕ(x)

0

∫ 0
−∞

g(E)

1+exp

(

E−E f (x)

kBT

)dEdϕ(x)



 (43)

where TTA is the characteristic temperature of the exponential DOS, τ0 is the lifetime of carriers, and v0

is the attempt-to-escape frequency. Then, the field effect mobility could be written as [88]:

µe f f =
µe

1 +
(

1
v0τ0

Γ(1 + T/TTA)Γ(1 − T/TTA)exp
(

E f 0+qϕs

kBTTA

(

T
TTA

− 1
)))−1

(44)

where µe is the band mobility and Γ(z) = πz/ sinπz. Under the low gate voltage, Fermi level lies

in the deep states and hence free carriers above the mobility edge can be neglected, and carriers of

localized states will dominate the transport of IGZO TFTs (corresponding to the sub-threshold regime

of transistor). Thus, the total carrier concentration is reasonably written as

n(x) ≈
∫ 0

−∞

g(E, x)

1 + exp
(

E−E f (x)

kBT

)dE = NtΓ

(

1 +
T

TTA

)

Γ

(

1 − T

TTA

)

exp

(

E f 0 + qϕs

kBTTA

)

(45)

Substituting Equations (45) into (43), one can get the following expression:

Ci

(

Vg − Vf b − ϕs

)

=

√

qεs

[

Ntv0τ0exp
(

E f (x)

kBT

)

+ NtΓ

(

1 + T
TTA

)

Γ

(

1 − T
TTA

)

exp
(

E f 0+qϕs

kBTTA

)]

(46)

To achieve the analytic solution of the surface potential, we transformed Equation (46) as:

Vg − Vf b − ϕs = GTexp

(

qϕs − qVch

2kBT

)

+ GTAexp

(

qϕs − qVch

2kBTTA

)

(47)

GT and GTA can be expressed as:















GT = 1
Ci

√

qεsv0τ0Ntexp
(

E f 0

kBT

)

GTA = 1
Ci

√

qεsNtΓ

(

1 + T
TTA

)

Γ

(

1 − T
TTA

)

exp
(

E f 0

kBTTA

)

(48)

Through estimating the order of magnitudes, in Equation (47) the first term is much smaller than

the second term. Thus, we only consider the second term and ignore the first term. By using two-order

Taylor expansion, one can get:

xi = xg

{

[

(xg + 1)2 + 2xn + 2log

(

xg

GT

)]1/2

− xg − 1

}

(49)

However, if one considers only the second term in Equation (47), some errors in the surface

potential calculation maybe occur. In order to improve the accuracy, we add some corrections by

using the Schroder series method to cover the influence of the first term in Equation (47). Finally,

the analytical solution of the surface potential can be written as:







ϕs = 2 kBTTA
q

[

xi − f
∂ f

(

1 + ∂2 f
2∂ f

f
∂ f

)]

f = (xg − x)− GTAexp(x − xn)− GT(exp(x − xn))
TTA

T

(50)
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Figure 14 shows a comparison of calculated surface potential between analytic solution and

numerical result [86,87]. The percentage error between the numerical and analytical solutions is always

below 0.2%. The parameters are T = 300 K, TTA = 405 K, ν0τ0 = 1, Vfb = 0.5 V, Ci = 8.85 × 10−8 F/cm2,

and µe = 19.7 cm2/Vs.

= ( + 1) + 2 + 2 / − − 1

= 2 − 1 + 2 																																															
= ( − ) − ( − ) − ( − )

ν τ −

μ

 

= − = − 2 + 1= =
= 2 ( − ) − 12 − − − − −

Figure 14. Comparison of the calculated surface potential between analytic solution and the numerical

results for different channel voltages.

Using the gradual channel approximation, the current equation is given as:

Ids = −µe f f WQi
dV

dy
= −µe f f WQi

(

2ϕt
Ci

Qi
+ 1

)

dϕ

dy
(51)

By integrating Equation (51) from ϕs = ϕss to ϕs = ϕsd, the static current of a-IGZO TFTs is

expressed as:

Ids0 = µe f f
W

L

[

2ϕtCi(ϕsd − ϕss)−
1

2

(

(

Vg − Vf b − ϕsd

)2
−
(

Vg − Vf b − ϕss

)2
)]

(52)

where ϕss and ϕsd are the surface potential at source and drain side, respectively. Both of them can be

analytically calculated from Equation (50).

Figure 15 shows the output and transfer characteristics curve. The good agreement between our

modeling results and the experimental data has been observed [86,87]. Figure 16 shows the drain

conductance and trans-conductance curves [86,87]. Our model well agrees with the measured results.

−

−

−

Figure 15. Comparison between the calculation and experimental data; (a) for output characteristics

of In-Ga-Zn-O (IGZO) under different gate voltages; and (b) transfer characteristics of IGZO under

different drain-source voltages.
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 −

−
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Figure 16. Model gds − Vds curves (a) and trans-conductance curves (b).

4. Comparison of Various Compact Models

As mentioned above, the most difference between silicon-based TFTs and TFTs with new active

material (e.g., OTFTs and IGZO TFTs) derived from the fact that whether the threshold voltage can

be defined in TFT device. Since OTFTs and IGZO TFTs usually operate in accumulation region,

the formulation of compact model should discard the influence of the threshold voltage. The following

will give a comparison for different compact models.

4.1. Comparison of Model Accuracy

For the compact models, the central aim is to accurately and physically describe the

current–voltage characteristics of TFTs. Here, we will discuss various compact models and their

accuracies verified for TFTs. For polysilicon TFTs, we firstly compare Vds − Ids characteristics based

on the surface-potential-based by Chen et al. [72] and the EMA method by Iñiguez et al. [28],

respectively, as shown in Figure 17. It is obvious that the surface-potential-based model agrees

well with experimental data. However, the simulated results from Iñiguez et al. show a well consistent

between model and experiment under low drain voltage, with increasing the drain voltage, the model

seriously deviated from the experiment. Similar errors of model accuracy have also been found in

the OTFT compact models. Figure 18 shows a comparison of Vds − Ids characteristics based on the

surface potential and the generic model, respectively [24,83]. For the surface-potential-based model

in Figure 18a, the accuracy is good in all regions, but for the generic model in Figure 18b the errors

increase with the gate voltage increasing.

 −

−

Figure 17. Comparison of Vds − Ids of polysilicon TFTs based on the surface-potential from

Chen et al. (a), and the effective medium approximation from Iñiguez et al. (b).
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 −Figure 18. Comparison of Vds − Ids of OTFTs based on the surface-potential (a), and the generic

model (b), respectively.

Strictly speaking, the errors derive from the transformation from the numerical equation to the

analytical solution. To obtain analytical solution, the authors usually transferred the numerical model

to analytical expression by using some reasonable assumption. Intuitively, various assumptions will

generate different error values, which finally affect the model accuracy. Thus, the analysis of the error is

essential to transfer the numerical equation to the analytical expression. For the surface-potential-based

compact models, reducing the errors of the calculated surface potential has become an important

criterion. However, as compared with surface-potential-based models, the errors for the charge-based

models are always ignored, which thus results in the lower accuracy.

4.2. Parameter Comparison and Extraction

Apart from the accuracy and comprehensive nature, an excellent compact model should include

as few parameters as possible fitting the TFT characteristics. Tables 1 and 2 give a summary of the

parameter comparison for the surface-potential-based compact models and OTFT compact models

based on different approaches, respectively. It is found that the researchers always aspired for as

few parameter numbers as possible during developing compact models. Actually, for the compact

model, the fewer the non-physical parameters (fitting parameters), the better the model is considered.

From Tables 1 and 2, one can see that the parameter numbers in our model is just 12, which is superior,

compared with other models.

Table 1. Comparison of fitting parameter numbers for the surface-potential-based compact models.

Types Parameter Numbers Authors Years

Polysilicon TFTs
15 [67] Y. Shimizu, et al. 2006
14 [72] R. S. Chen, et al. 2007
11 [32] W. L. Deng, et al. 2011

Amorphous TFTs
16 [80] Y. Liu, et al. 2008
22 [89] Y. Liu, et al. 2009
14 [81] J. Qin, et al. 2014

Organic TFTs 12 [83] Our work 2015

IGZO TFTs
14 [90] A. Tsormpatzoglou, et al. 2013
12 [86] Our work 2014
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Table 2. Comparison of fitting parameter numbers for OTFT compact model based different approaches.

Years Parameter Numbers Authors Method

1995 14 [39] M. S. Shur, et al. Effective medium approach
1999 28 [27] B. Iñiguez, et al. Effective medium approximation
1999 14 [29] M. D. Jacunski, et al. Semi-empirical approach
2006 15 [67] Y. Shimizu, et al. Surface potential
2007 14 [72] R. S. Chen, et al. Surface potential
2007 12 [30] W. J. Wu, et al. Generation-recombination model
2011 11 [32] W. L. Deng, et al. Surface potential
2015 12 [83] Our work Surface potential

In addition to using as few parameters as possible, parameter extraction also plays an important

role in understanding TFT characteristics. Generally speaking, parameter extraction aims at being

physical. To achieve higher level, the parameter sequence should introduce physical effect [21].

However, considering the continuity and accuracy of compact model, the fitting parameters will be

used for smoothing the output curves and reducing the error. It is anticipated that the compact models

of TFTs with the parameter setting will be suitable to circuit design and can provide accurate insight

into the performance. The main criterion for a good set of parameters is the balance of error, efficiency

and continuity. For IGZO TFTs, we have developed an extraction flow of the key physical parameters of

the surface-potential-based compact model, as shown in Figure 19 [86,87]. Based on the corresponding

equations shown in Figure 19, four key parameters can be extracted, that is, the maximum mobility µ0,

the characteristic temperature TTA, the product of the escape frequency v0 and carrier lifetime τ0.

 

= 0

Figure 19. Extraction flow of key physical parameters of the model.

4.3. Criterion and Continuous Test of Compact Models

A compact model must satisfy several rather restrictive requirements imposed by their use in

advanced circuit simulators. From the mathematical point of view, the equations of the models should

meet three classes at least [40], that is, “class 1” in order to be compatible with Newton–Raphson-based

circuit simulators, with “class 2” or better preferred in order to achieve faster convergence, and

“class 3” required for circuit simulation of active-matrix organic light-emitting diode (AMOLED)

displays or distortion modeling in RF circuits. Currently, the most compact models are satisfied to the

“class 1”. A small numbers of compact models can meet the requirements of “class 2” and “class 3”

together. For the “class 3” requirement, the application is completely based on the active layers of TFTs.
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For example, silicon-based TFTs (poly-Si and a-Si:H) are mainly used in AMOLED displays. OTFTs can

be applied to logic circuit design and flat-panel display. IGZO TFTs can be used in constructing RFID

tags or inverter. Thus, the compact model of TFTs should be established according to their application.

In addition, it would be specially mentioned that, in order to meet the requirement of “class 2”, the

compact model must fulfill one of the benchmark tests, i.e., Gummel symmetry test (GST) [21,91,92].

Based on our surface-potential-based compact model for IGZO TFTs, the GST has been provided [86,87],

as shown in Figure 20. Figure 20a shows a GST circuit for IGZO TFTs. Generally, the higher-order

derivatives in TFT compact models are obtained as a function of Vx, which is symmetry for Vx = 0.

This symmetry roots in the symmetry device structure and channel. Figure 20b shows the GST for

the 1, 2, 3-order derivative of the drain current of IGZO TFTs, which display a good continuity and

symmetry. Thus, our compact model in IGZO TFTs can pass the GST.

 

Figure 20. (a) Gummel symmetry test circuit for IGZO TFTs; and (b) Gummel symmetry test for the 1,

2, 3-order derivative of the drain current under different gate voltages.

5. Conclusions and Outlook

Compact models form a critical link between the manufacturing teams and the chip design teams

by mathematically capturing the properties of devices. We have reviewed the concept, development

and application of compact model of TFTs. Based on different active materials in TFTs, the charge

transport characteristics has also been discussed in detail. Based on the different approaches, especially

the surface-potential-based, the merits and shortcomings for current compact models have discussed.

We also proposed our surface-potential-based compact models for organic and IGZO TFTs and

parameter extraction technology. The comparison of various compact models has been summarized.

Currently, the compact model is still open and evolving. To achieve the excellent compact model,

the following should be considered: accurate in all regions of operation and types, suitable for all

simulation modes, excellent convergence, and intuitive and easy to extract parameters. In addition,

to keep pace with the increase of circuit operating frequencies and device tolerances scale down,

the compact model of TFTs should account for the bias dependent contact resistances, gate tunneling,

interface effect and scaling effect. The dynamic behavior, aging and hysteresis of TFTs also should be

considered in developing the compact model to pursue the future circuit design.
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