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Recently, the greatest statistical computational challenge in genetic epidemiology is to identify and characterize the genes that
interact with other genes and environment factors that bring the e�ect on complex multifactorial disease. 
ese gene-gene
interactions are also denoted as epitasis in which this phenomenon cannot be solved by traditional statistical method due to the
high dimensionality of the data and the occurrence of multiple polymorphism. Hence, there are several machine learning methods
to solve such problems by identifying such susceptibility gene which are neural networks (NNs), support vector machine (SVM),
and random forests (RFs) in such common and multifactorial disease.
is paper gives an overview on machine learning methods,
describing the methodology of each machine learning methods and its application in detecting gene-gene and gene-environment
interactions. Lastly, this paper discussed eachmachine learningmethod and presents the strengths andweaknesses of eachmachine
learning method in detecting gene-gene interactions in complex human disease.

1. Introduction

Genome-wide association studies (GWAS) had o�ered var-
ious kinds of techniques to study DNA variations that are
associated with human diseases. As a result, single nucleotide
polymorphisms (SNPs) had been widely used in GWAS to
unravel genetic basis by testing individual variants that are
associated with complex human diseases. 
e knowledge
of SNPs in GWAS is particularly important because genes
can in�uence human disease, and many genetic landscape
of human disease is still unknown and uncharacterized.

us, the knowledge on the e�ect of SNPs on common
disease is needed in order to understand the variation of
genetic underlying human diseases that rises through gene-
gene and gene-environment factors. Hence, the interactions
between gene-gene and gene-environment are particularly
important to discover the genetic architecture underlying
genetic disease.


e termgene-gene interactions is also known as epistasis
and genetic interactions. It also can be de
ned as a logical
interaction between two or more genes that a�ects the
phenotype of organisms. 
e ultimate goals of gene-gene

interactions are to recognize gene functions, identify path-
ways and discover potential drug targets. Moreover, there are
various types of gene-gene interactions which are synthetic-
interaction, epistatic interaction, and suppressive-interaction
which are shown in Figure 1. 
ese interactions are partic-
ularly important due to the e�ect of a gene on individual
phenotype is depending on more than one additional genes.

As shown in Figure 1, there are various types of gene-gene
interactions. For instances, synthetic-interaction between
two genes is that genes A and B are on di�erent parallel
pathways that can obtain the purple phenotype C. If either
of the genes is knockout, the purple phenotype C still can
be viewed. However, if both of the genes are knockout, it
will result in a nonpurple phenotype. Next, the example of
epistatic-interaction that is thewild type holds amixed purple
and green phenotype of genes C and D. A gene knockout
of gene B cannot obtain a purple phenotype of gene C, but
green phenotype of geneD still can be seen. A gene knockout
of gene A cannot obtain the green and purple phenotypes.
Furthermore, the example of suppressive-interaction is wild
type phenotype showing a purple phenotype since gene A
suppresses gene B and gene C is active. A gene knockout of
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Figure 1: Types of gene-gene interactions [1].

gene B has no e�ect for result purple phenotype. A knockout
of gene A results in a nonpurple phenotype since gene B is
still suppressing gene C and if both of the genes A and B are
knockout will result in wild type phenotype.

Moreover, there are various challenges that are associated
with gene-gene interactions and needed to be addressed.

e greatest challenge is the increasing volume of data that
needed to be analysed. 
e number of potential interactions
increases as the number of SNPs increases. 
is leads to high
computational complexity because it needs to enumerate
all possible SNP combinations in multilocus associations
at genome wide scale. Hence, jointly analysing such SNP
combinations by high throughput genotyping technologies is
also one of the challenges faced in genome wide association
studies. Besides, the existence of high dimensionality of data
and multiple polymorphisms has also increases the com-
putational complexity of traditional statistical approaches
to analyse large scale genetic data. Hence, the existence of
machine learning methods can overcome these challenges
becausemachine learningmethods are �exible in recognizing
the gene-gene interactions that can contribute to individual’s
disease status.

According to [2], learning can be de
ned as “to gain
knowledge, or understanding of, or skill in, by study, instruc-
tion, or experience” and “modi
cation of a behavioral ten-
dency by experience.”
us, machine learning can be de
ned
as a computer learns from experience through algorithms.
In this review, we focus on supervised machine learning in
which the machine undergoes learning process and predicts
the type of gene interactions based on the given inputs.
Hence, the goal of supervised machine learning is based on
given input variables and then predicts the output variables
[3].
emethods of machine learning that we focus on in this
review are neural networks (NNs), support vector machine
(SVM), and random forests (RFs).

2. Neural Networks

According to [4], neural networks (also known as arti
cial
neural networks) were established based on imitation of
the neurons on how they work in the brain. Basically, the
neuron receives responses from the environment, and once
the input exceeds critical level, the neuron transmits the
signal to another neuron through the axons. Figure 2 shows
the structure of biological neuron.
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Figure 2: Structure of biological neuron.
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Figure 3: Basic neural model.

According to [5], the corresponding arti
cial features
from the structure of the biological neurons are as follows.

(a) Dendrites represent inputs in the neural network.

(b) Soma (cell body) represents arti
cial neuron which is
the summation and thresholding part of the model.

(c) Axon represents weighted inputs of arti
cial neuron.

According to [4], neural networks are suitable for mod-
elling human genetics studies due to the ability of handling
large quantities of data with reasonable computation time
as the scalability of data increases exponentially. Moreover,
neural networks are able to approximate any type of genetic
etiology that underlies phenotypic values because neural
networks are universal approximators. Neural networks are
model free so no assumptions should be made about genetic
architecture that produce in a particular phenotype. 
is
property is particularly important when mining the high
dimensional data.

2.1. Methodology of Neural Networks. Single neuron model
(also known as perceptron) is basic neural model in neural
network. In this model, it can consist of multiple input
and single output. In Figure 3, there are multiple inputs,� = (�1, �2, . . . , ��) that sent through connections that carry
weight, � = (�1,1, . . . , �1,�).
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Figure 4: Classi
cation of input generated by perceptron.

According to [6], weighted sumof input is then calculated
by following

⟨�, �⟩ = �∑
�=1

�� ⋅ ��. (1)

Weighted sum of input is then compared to threshold. In
this case, weighted sum of input is compare to an activation
function which is Heaviside function, and it is de
ned as

�(	) = {1 for 	 > 00 for 	 ≤ 0. (2)

Hence, the overall formula is given by

� = 
 [⟨�, �⟩] = 
( �∑
�=1

�� ⋅ ��) . (3)

From Figure 4, the inputs are belonging to di�erent
classes A and B that are separate by the decision boundary.
Decision boundary is generated by the perceptron by using
the weights. If the boundary does not give correct classi
ca-
tion, the weight changes until it gets correct classi
cation.

In addition, multilayer perceptron generally consists of
more than three layers which are comprise of input layer,
output layer, and more than one hidden layer. In Figure 5,
the hidden layer is located between input layer and output
layer. Each node in one layer connects with weight ��� to
every node in the following layer. In multilayer perceptron, it
utilized feed forward network with sigmoid transfer function
(activation function). 
e input connection directly goes to
hidden layer, but no output layer and the information go in
one direction (feed forward).

According to [6], in Figure 5, there are multiple inputs,	 = (	1, 	2, . . . , 	3) and outputs� = (�1, �2, . . . , �3).
Weighted sum of input should be calculated by � = 
(V ⋅ 	)
and de
ned as

(�1�2��) = 
((V01 V02 . . . V0�
V11 V12 . . . V1�
V�1 V�2 . . . V��

) ⋅ ( 1	1	�)) . (4)
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Figure 5: Neural network with one hidden layer of neurons.

Next, the result is used to compute the output by this
formula � = 
(� ⋅ �) and de
ned as

(�1�2��) = 
((�01 �02 . . . �0��11 �12 . . . �1���1 ��2 . . . ���) ⋅ ( 1	1	�)) . (5)

Note that V = (V01, V02, . . . , V��) and � = (�01, �02,. . . ,���) are weight that used to calculate the output of �.
Hence, the input-output mapping can be summarise as
(	) = 
(� ⋅ �) = 
(� ⋅ 
(V ⋅ 	)) with one hidden layer.


ere are two types of neural network methods used
to identify disease susceptibility genes which are linkage
analysis and association analysis [7]. In linkage analysis, the
main focus is to detect linkage between a disease locus and a
marker. 
e testing hypothesis is testing whether a region of
gene contains disease susceptibility gene. Generally, the input
of neural network is genotypes, whereas the output of neural
network is phenotype values (for instance, disease status
and quantitative clinical variable such as levels of insulin).

ere are various types of encoding strategies for inputs and
outputs of neural network. For instance, the inputs can be the
presence or absence ofmarker allele inwhich value 1 indicates
the presence of allele and value 0 indicates the absent of
allele for each marker in dataset. Besides, the most common
encoding strategy for the input of neural network is by using
identify-by-descent (IBD). In IBD, variable 	 = 1 is for
sharing an allele, 	 = −1 is for not sharing allele and 	 = 0
for uninformative. In contrast, the outputs of neural network
also have various encoding strategy. For instance, the output
is the disease status in which value 1 = a�ected whereas value
0 = una�ected.

For association analysis, it has been used to detect
linkage disequilibrium between disease locus and marker.

e collected data are comprised of genotypes for multiple
markers in the sample which is case-control data or cases
with family-based controls. Curtis [8] andCurtis et al. [9] had
utilized association analysis in their study in which there are
four input nodes which is four markers coded as genotypes
0, 1, and 2, whereas the target output is value 1 for cases and
value 1 for controls. Hence, the architecture of neural network
varies and it should depend on the types of analysis.

2.2. Application of Neural Network Method for Detecting
Gene-Gene Interactions. Neural network which is pattern
recognition method that is used to address the challenges for
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human geneticists and the explosion of genetic information
which eventually leads to exhaustive search of multilocus
computationally infeasible. However, the architecture of neu-
ral networks is the key of success for detecting gene-gene
interactions. Hence, neural networks should evolve the best
neural network architecture for particular method. As a
result, genetic programming neural network (GPNN) is an
evolved methods of optimizing the architecture of a neural
network which enhance the identi
cation of genetic combi-
nation (or gene-gene interactions) with disease risk [10].

Ritchie et al. [11] had utilized genetic programming to
optimize the architecture of neural network (GPNN) and
back propagation neural network (BPNN) to model gene-
gene interactions. Both of the methods had used simulated
data from a set of di�erent model which possess the inter-
action between genes (can be denoted as epistasis) with
the presence of functional single nucleotide polymorphisms
(SNPs) and nonfunctional SNPs. First of all, Ritchie et al.
[11] construct BPNN by using feed-forward network which
consists of one input layer with zero until two hidden
layers and one output layer. In addition, GPNN had been
used to optimize the variables, weights, and connectivity
of the network. 
e result had showed that GPNN had
outperformed BPNN when these two methods are applied to
themodel which contains both functional and nonfunctional
SNPs.
is is due toGPNNpossess 100%prediction power for
all model with greater than 0.026 heritability whereas BPNN
only had 80% power for model which had greater than 0.051
heritability value. Noted that the higher the heritability value
indicates the stronger genetic e�ect. Furthermore,GPNNhad
lower prediction error than BPNN, whereas BPNNhad lower
classi
cation error. Hence, the authors have concluded that
GPNN had improved prediction error and possessed higher
power than BPNN.

In 2004, Tomita et al. [12] had used arti
cial neural
network to predict the development of childhood allergic
asthma. To achieve this, arti
cial neural network was imple-
mented along with parameter decreasing method. 
is is
used to analyse 25 SNPs of 17 genes and select 10 susceptible
SNPs among the Japanese people. 
e result had showed
that total 97.7% accuracy was predicted for learning data and
total accuracy of 74.4% for evaluation data in 10 SNPs. 
e
authors had concluded that arti
cial neural network is the
most suitable methods to select SNP combinations that are
associated with childhood allergic asthma.

In the year of 2005, a method which utilized genetic
algorithms combined with neural network components was
developed to determine gene interactions in temporal gene
expression data sets [13]. 
is method was able to 
nd the
gene network that 
t the gene expression data and that is
e�ective on both arti
cial and real-world expression data
on a per-gene basis. Moreover, this method can 
nd gene
network in reasonable computational time. 
is method
utilizes genetic algorithms and supervised single-layer arti-

cial neural network in which one individual chromosome
of the genetic algorithm can be used to represent a small
number of genes from the dataset. Next, arti
cial neural
network is used to determine how well of the input (for e.g.,
expression values of these genes) at one time points that

a�ect output (for e.g., another gene’s expression values) at
the subsequent time points over a temporal data points. 
is
method discovers the sets of genes that have the greatest
e�ect in the dataset by selecting the most suitable mutation
and crossover operators. 
e result had shown that this
methoddiscovers gene network that can accurately 
t on both
arti
cial and real world gene expression data. Furthermore, it
also found models from a number of training examples, and
this method produces good accuracy by reproducing the test
data examples. 
e authors had concluded that this method
found gene network, and it is a multipurpose tool for the
application of analysing gene expression data.

GPNN was applied in the studies of human disease
to detect gene-gene and gene-environment interactions as
pattern recognition method [14]. GPNN was able to select
the optimal architecture for feed-forward back propagation
neural network, and it is able to improve trial and error
process. A GPNN algorithm was able to produce optimal
neural network architecture for a given dataset. It does this
by optimizing the inputs from a large number of variables,
weights, and connectivity of network (e.g., number of hidden
layers and the nodes of hidden layers). Hence, GPNN out-
performed traditional back propagation neural network due
to traditional method only the weights are optimized with
prespeci
ed inputs and architecture of neural network. 
e
result showed that GPNN can detect even relatively small
genetic e�ects with 2% to 3% heritability in simulated data
model that involve two and three locus interactions. GPNN
also reached limit of detections with less than 1% heritability
when interactions are more than three loci. 
e authors have
concluded that GPNN is a powerful method in the human
disease 
elds in detecting gene-gene interactions and gene-
environment interactions.

Furthermore, research carried out by Ritchie et al. [15]
also showed that GPNN has 100% power for heritability esti-
mates of 5% compared with most common disease that have
overall heritability estimates greater than 20%. 
ese results
show that GPNN has outperformed traditional back prop-
agation neural network, stepwise logistic regression (SLR),
and classi
cation and regression trees (CART) to detect
gene-gene interactions in models with very small heritability
values. Furthermore, GPNN can be used to study complex
nonlinear interactions with binary endpoints in any number
of disciplines as LR and CART had previously applied.

Grammatical evolution neural network (GENN) was
introduced to detecting gene-gene or gene-environment
interactions in high dimensional genetic epidemiological
data [16]. It has been used in detect interactions in the
presence of noise. Noise occurs are o�en caused by genetic
heterogeneity, genotyping error, phenocopy, and missing
data. GENN has shown highly success in the range of
simulated data.
is research had shown that GENN is highly
robust towards genotyping error andmissing data. Moreover,
GENN has higher success than multifactor dimensionality
reduction (MDR)whenGENN is present to detect functional
loci in the presence of genetic heterogeneity. GENN had out-
performed that MDR may be because it utilizes evolutionary
search strategy and Boolean operator is used in the grammar.
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However, the power of GENN reduces due to the presence in
phenocopy in dataset.

Günther et al. [17] had used neural network to model
various types of two-locus disease model. To achieve this,
six neural networks (feed-forward multilayer perceptron)
with 
ve hidden neurons were carried out with 100 datasets
that are generated for each of six two-locus disease models.

ese models are considered in both high and low risk
scenario. Moreover, there are two kinds of models which are
multiplicative and epistasis model. 
e result had showed
that neural networks outperformed logistic regression and
multifactor dimensionality reduction in modelling the bio-
logical interaction of the disease model. Neural network
generally had lower mean absolute di�erences between the
estimated penetrancematrices and the theoretical penetrance
matrices if compared with logistic regression and multifactor
dimensionality reduction.
e authors had demonstrated that
neural networks are the promising tool to handle the complex
disease data.

Turner et al. [18] had proposed a stochastic method to
discover genetic mechanisms that can a�ect human trait for
the disease processes by detecting and modelling gene-gene
and gene-environment interactions. Generally, ATHENA is
denoted as the analysis tool for heritable and environment
network associations. 
is method had utilized alternative
tree based crossover, back propagation for locally 
tting
neural networkweights. In addition, thismethod also obtains
the domain knowledge from biological databases and incor-
porates it into the method so that the search for gene-gene
interactionwas initialized. By applying simulated dataset, this
method had shown the modest increase in the sensitivity.
Furthermore, it also found the highly statically signi
cant
increase when back propagation was used to 
t the neural
network weights locally when the search space is larger than
search coverage. At last, authors had concluded that this
hybrid optimization method can increase the sensitivity and
performance for detecting and modelling gene-gene interac-
tions that can bring huge impact on the complex human trait.

Hardison and Motsinger-Reif [4] had apply GENN to
quantitative traits (QTGENN) to a range of simulated genetic
models due to the increasing use of GENN in a range of
simulated real case control studies. QTGENN is used to
detect quantitative trait association with a broad range of
e�ect sizes. As mentioned above, GENN allows grammar
modi
cation which contains symbols for arithmetic opera-
tors and it allows QTGENN to evaluate quantitative traits
with GENN. QTGENN also have the input variables that can
read input data for each sample that consists of genotypes and
potential environmental covariates. 
e results had shown
thatQTGENNmethod has high power than traditional linear
regression analysis methods to detect single-locus model and
completely epistatic two-locus models. Table 1 summarizes
the researches that used neural networkmethod to detect and
model the gene-gene interactions.

3. Support Vector Machine

According to [19], support vector machine (SVM) is machine
learning algorithm that is utilizing hyperplanes in high

dimensional plane and is o�en used in classi
cation and
regression tasks. SVM does its task by analyses data and
recognizes that data’s patterns.

3.1. Methodology of Support Vector Machine. According to
[20], linear SVM classi
ed the training vector for linearly
separable data. Let us assume the training vector, which is
de
ned by

� = {(	�, ��) | 	� ∈ R
�, �� ∈ {−1, 1}}��=1. (6)

In this case, 	� is denoted as �-dimensional vector that
is waiting to be classi
ed into �� implies that there are two
classes (for −1 and 1).

In Figure 6, a hyperplane separates two classes of input
that satisfying points 	 is given by � ⋅ 	 − � = 0 where �
is the normal vector, � is the bias, and “⋅” is the dot product.
According to [20], there are additional two hyperplane that
separate the data from the previous hyperplane (de
ned by� ⋅ 	� − � = 0) where there is no data between them. 
e
additional hyperplane consists of maximum distance to the
hyperplane (known as margin) that can prevent data points
from falling into the margin and is de
ned by � ⋅ 	� − � ≥ 1
for all 	� that classi
ed in 
rst class and � ⋅ 	� − � ≤ 1 for all	� that classi
ed in second class.

Furthermore, in Figure 6, the distance between two
hyperplane is calculated by 2/‖�‖, and the o�set of the
hyperplane from the origin along the normal vector � is
determine by �/‖�‖. Overall equation for the additional
hyperplane can be written as

�� (� ⋅ 	� − �) ≥ 1, ∀1 ≤ " ≤ #. (7)


ere are some data that are di�cult to separate because
the data are too “noisy.” Hence, the input vector data are
mapped into higher dimensional space which is feature space
so that the linear separation is achieved.

Missiuro [21] had made an assumption that input argu-
ment (	�, 	�) is expressed into inner product ($(	�), $(	�))
where kernel is a function that is de
ned as

%(	�, 	�) = [$ (	�) , $ (	�)] , (8)

where $ is kernel function that map input space into feature
space.

Kernel 
rstlymaps the data into a feature space.A�er that,
Kernel performs linear classi
cation in the feature space. In
Figure 7, linear separation is achieved when input space are
mapping in feature space by using kernelsmethod. According
to [22], the examples of kernels are linear, polynomial, and
radial basis function.

According to [21], SVM can be used to predict which
genes are genetically interacting with each other by learning
from the features which are known genetically interacting
pairs. To achieve this, the training data of SVM are the two
sets of feature vectors which are label as positive (indicates
presence of genetic interaction) and negative (lack of genetic
interaction). For each features vector, it characterizes a pair
of genes. 
ese features are mapped into high dimensional
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Table 1: Summary of detect gene-gene interaction using neural network method.

No. Author Dataset Description

(1) Ritchie et al. [11] Epistasis model.

GPNN and BPNN were used to model gene-gene
interactions by using simulated data. 
e simulated
data contains functional SNPs and nonfunctional SNPs
which model the interaction between genes.

(2) Tomita et al. [12]
Childhood allergic asthma
(CAA).

Arti
cial neural network was utilized with parameter
decreasing method in order to analyse susceptible SNPs
among the Japanese people.

(3)
Keedwell and
Narayanan [13]

Arti
cial data experiments,
rat spinal cord and yeast
Saccharomyces Cerevisiae
cell cycle.

Genetic algorithm which was implemented along with
neural networks discovers gene-gene interactions in
temporal gene expression dataset by elucidating the
information between regulatory connections and
interactions between genes, proteins, and other gene
products.

(4)
Motsinger et al.
[14]

Parkinson’s disease.

GPNN had been used to optimize the architecture of
neural network. 
is method can be used to enhance
the identi
cation of gene combinations associated with
Parkinson’s disease.

(5) Ritchie et al. [15]
Alzheimer’s disease, breast’s
disease, colorectal disease,
and prostate’s disease.

GPNN had been used to detect gene-gene interactions
and gene-environment interaction in studies of human
disease to optimize the architecture of Neural Network
by using simulated dataset.

(6)
Motsinger-Reif
et al. [16]

Epitasis model.

GENN was utilized to discover gene-gene interactions
that caused are by noise (for instance, genotyping error,
missing data, phenocopy, and genetic heterogeneity) in
high dimensional genetic epidemiological data.

(7)
Günther et al.
[17]

Two-locus disease models,
multiplicative and epistasis
model.

NN had been used in simulation study to model the
di�erent kind of two-locus disease model by
constructing six neural networks.

(8) Turner et al. [18] Simulated human.

ATHENA had been used to discover the gene-gene
interactions that in�uence complex human traits by
integrating alternative tree-based crossover, back
propagation, and domain knowledge in ATHENA.

(9)
Hardison and
Motsinger-Reif
[4]

Genetic models.

QTGENN had applied GENNmethods to quantitative
traits in various types of simulated genetic models. 
is
method had been successfully applied in single-locus
models and two-locus models.

space by separating into genetically interacting pairs andnon-
genetically pairs using hyperplane that possesses maximum
margin. 
is mapping is done by using kernel function such
as polynomial or radial basis function kernel.

3.2. Application of Support Vector Machine Method for
Detecting Gene-Gene Interactions. Matchenko-Shimko and
Dubé [23] had utilized both SVM and arti
cial neural net-
work (ANN) to investigate gene-gene and gene-environment
interactions as determinants in complex disease. 
ey had
extended the SVM and ANN regression models with pre-
selection of SNP-SNP combination and this is to test the
important of potential interactions between genes.
e results
had shown that both preselection strategies performed well
in various types of parameters and models except for those
dataset with low marginal e�ects and combination of low
disease allele frequencies. In addition, there exist some
parameters to determine the power of ANN and SVM in
detecting interacting SNPs. 
e parameters are included

marginal e�ect size of disease loci, allele frequency of the
disease loci and linkage disequilibrium between disease and
marker loci, and the sample size. At last, the authors con-
cluded that larger sample sizes are needed to determine gene-
gene interaction involving SNPswith lowmarginal e�ect sizes
compared with interaction with moderate marginal gene
e�ect sizes. Furthermore, both machine learning methods
had well performed in increasing allele frequency with low
linkage disequilibrium and/or low marginal gene e�ects.

Chen et al. [19] had apply SVM in various kinds of
combinatorial optimization methods (for e.g., local search
and genetic algorithm) which is recursive feature addition
(SVM-RFA), recursive feature elimination (SVM-RFE), local
search (SVM-Local), and genetic algorithm (SVM-GA) to
detect gene-gene interactions. 
is paper tends to review the
data mining approach that deals with binary trait outcomes
(for e.g., disease status) that have been accepted to detect
interactions between genes. 
e result had showed that
both SVM-Local and SVM-GA able to achieve good results
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Figure 6: Linear SVM with maximum-margin hyperplane.

when dealing with unbalanced data except in dealing with

ve single-nucleotide polymorphisms (SNPs) combinations.
However, MDR outperformed SVM in dealing with balanced
data. In addition, SVM methods had achieve better results
by considered all case, control, and average accuracies. 
e
methods are able to maximize the average accuracy and
it also can balance the case-control accuracy. 
e author
concluded that SVM methods were able to discover the
best candidate models, and it is more reliable compared
with MDR. Furthermore, the methods suggest by the author
had less concentration on over
tting, being able to handle
unbalanced data and discover more stable models.

Özgür et al. [24] had proposed an automatic method that
utilized automatic literature mining and network analysis to
extract known and infer unknown gene-disease association.
Firstly, initial set of known disease related genes are collected,
and interaction network was built by automatic literature
mining based ondependency parsing and SVM.
is research
assumes that central genes are likely to be related to the
disease.
e criteria such as degree, eigenvector, betweenness,
and closeness centrality metrics are considered to rank the
genes in the network. 
is method was evaluated by using
prostate cancer, and it achieved high accuracy for eigenvector
and degree centrality. 
e result of this research showed
that the total of 95% of top 20 genes ranked are con
rmed
to be related to prostate cancer. However, betweenness and
closeness centrality metrics predicted more genes which
are related to the disease that is currently unknown and
that candidates for future experimental study. 
e authors
concluded that the proposed method was an approach that
can be utilized to extract known gene-disease associations
from the literature, and it is also able to infer unknown genes
to be a candidate for future experimental analysis.

Shen et al. [25] had proposed two stage methods to
detect gene-gene interactions. Firstly, SVM with L1 penalty
(a model selection method) was used to identify the most

promising SNPs and interactions.
e second stage was to the
application of logistics regression and ensuring a valid type 1
error was achieved by excluding non-signi
cant candidates
a�er Bonferroni correction. 
e result had shown that SVM
with L1 penalty was useful in practical methods for case-
control association studies in which multiple logistic regres-
sion perform is better than traditional logistic regression for
each identi
ed SNP or interaction.

In Ban et al. [26], SVMmethod had been applied to anal-
yse the interactions between genes in type 2 diabetes mellitus
(T2D) by examining 408 SNPs in 87 genes are that involved in
major T2D related pathway. 
e pathways involved 426 T2D
patients and 456 healthy controls from the studies of Korean
cohort. 
e results of the studies show that SVM with radial
basis function (RBF) was applied in combination of 14 SNPs
in 12 genes had achieved 65.3% prediction rate. Moreover,
this method also had been achieved the prediction accuracy
with 70.9% and 70.6% when being applied in subpopulation
datasets of men and women and identi
ed di�erent SNP
combination.
e authors had drawn conclusion that a novel
association between combinations of SNPs and T2D in a
Korean population can be achieved by using support vector
machine based feature selection method.

Missiuro [21] had used SVM to detect genetic interactions
in kinase families of genes in Caenorhabditis elegans. Firstly,
collaborative 
ltering (CF) is used to 
ll the missing entries
input data matrix for SVM. In addition, individual gene
features or CF-reduced form of gene features are merged
together as the input for SVM. Next, various kinds of kernels
include linear, polynomial of degree two until 
ve, and radial
basis function was implemented along with SVM. 
e cross
validation result showed that RBF kernel was more e�ective
in predicting genetic interaction if compared to CF. 
e
predictive accuracy can also increase when the author narrow
down the genes to speci
c functional categorywhich is kinase
families of genes.

Fang and Chiu [27] had proposed extended SVM and
SVM based pedigree-based generalized multifactor dimen-
sionality (PGMDR) to study the interactions between genes.

is study was using limited samples of families to study the
interactions in the presence (or absence) of main e�ects of
genes with an adjustment of covariates. 
e result showed
that proposed extended SVM and SVM-based PGMDR have
high accuracy compared to PGMDRandFAM-MDR (family-
based multifactor dimensionality reduction). Moreover, the
extended SVM method has the highest prediction accuracy,
but it possesses low consistencies if compared to SVM-
based PGMDRmethod.
e results indicated proposed SVM
method can be used for prediction for both simulation study
and data example. Furthermore, SVM-based PGMDR can be
used to discover the genetic model. 
e authors concluded
the proposed methods are particularly useful in detecting
gene-gene and gene-covariate interactions in limited samples
of families.

Zhang et al. [28] had implement SVM along with binary
matrix shu�ing 
lter (BMSF) to classify cancer tissue sam-
ples from gene expression data by taken account the possible
interactions among genes. By integrating BMSF in SVM,
it solves the problem associated with search schemes of
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Figure 7: Input space are mapping into feature space by using kernels method.

traditional wrapper method and over
tting. In addition, it
also selects potential gene interaction during gene selection.
To achieve this, the set of genes are kept into SVM model
which was recursively re
ned and updated. It depends on
the e�ect of a gene contributing to the other genes to
refer the usefulness of the genes during cancer classi
cation.

e result from the research had shown that the average
accuracy of 91.19% and 97.69% was achieved across nine
dataset. Furthermore, BMSF also had been applied in Linear
DiscriminantAnalysis (BMSF-LDA) andQuadraticDiscrim-
inant Analysis (BMSF-QDA) with average accuracy which
is 94.82% and 94.67%, respectively across nine dataset. 
e
authors had concluded that e�cient search scheme (BMSF)
in SVM can increase the e�ciency search by including
possible interactions of many genes.

Marvel and Motsinger-Reif [29] had used SVM with
grammatical evolution (GE) as a method to select features
and parameters (GESVM). GE is particularly important to
select features, parameters or kernels that should be included
in SVM. 
e combination of GE with SVM was used to
identify gene-gene and gene-environment interactions in
complex human disease especially on large dataset. GE was
particularly important to select feature in large dataset as
many traditional methods had failed to be applied.
e result
of the studied had shown that the SVM is able to discover
SNP1 and SNP2 for disease model M1 with 73.3% expected
accuracy. Moreover, the method is able to identify SNP2 for
disease model M2 with 58.3% expected accuracy.
e authors
also stated that the future work should focus on performing
parameter sweeps for GE and SVM parameters for di�erent
dataset to discover the true potential of GESVM. Table 2
summarizes the researches that used SVM method to detect
and model the gene-gene interactions.

4. Random Forest

According to [30], random forest (RF) is a collection of
individual decision-tree classi
ers. A bootstrap sample of

instances from the data is used to train each tree in the forest.

en, choose each split attribute in the tree from a random
subset of attributes. Classi
cation of instances is based upon
aggregate voting over all trees in the forest.

4.1. Methodology of Random Forest. All trees of RF are frown
to their full extent without pruning because each tree of a RF
is grown using random feature selection to select a training
set (bootstrap sample) from the original data [31]. Based on
[32], a classi
ers decision tree of RF is grown as follows.

(1) Select two-third of original data for training. 
e
selected training data is de
ned as size - which is
a total number of trees to grow (ntree) bootstrap
samples.

(2) 
e le� data from original data are called the “out-of-
bag” (OOB).

(3) Grow an unpruned classi
cation or regression tree
(CART) for each bootstrap sample as below.

(a) At each node in the tree, the total � predictor
variables are randomly select variables of pern-
ode (mtry).

(b) Maximize some measure of node purity from
among the mtry variables, such as Gini index to
choose the best split at each node.

(c) Use the OOB individuals to obtain an estimate
of prediction error for each tree.

(4) 
e OOB is observed to determine the 
nal predic-
tion/classi
cation over all trees. Accuracy of the OOB
prediction over all subjects is calculated to consider
the OOB prediction error and prediction accuracy of
the RF.

4.2. Application of Random Forest Method for Detecting Gene-
Gene Interactions. 
e RF method was used by Lunetta
et al. [33] as a screening procedure to identify a set of
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Table 2: Summary of detect gene-gene interaction using support vector machine method.

No. Author Dataset Description

(1)
Matchenko-
Shimko and Dubé
[23]

Simulated disease.

Both SVM and arti
cial neural network (ANN) were
used to preselect the combination of SNP to test the
importance of potential interactions between genes in
complex disease.

(2) Chen et al. [19]
Real prostate cancer
genotyping.

SVM was applied in di�erent kinds of combinatorial
optimization methods which were recursive feature
addition, recursive feature elimination, local search,
and genetic algorithm.

(3) Özgür et al. [24] Prostate cancer.

Automatic method that was proposed to extract known
genes-disease and infer unknown gene-disease
association by using automatic literature mining based
on dependency parsing and support vector machines.

(4) Shen et al. [25] Parkinson disease.
Authors had employ two-stage method by using SVM
with L1 penalty to detect gene-gene interactions for
human complex disease.

(5) Ban et al. [26]
Type 2 diabetes
mellitus-related genes.

SVM was used to predict the importance of gene-gene
interactions in T2D in the studies of Korean cohort
studies.

(6) Missiuro [21] Caenorhabditis elegans.
SVM was utilized in this research to detect interactions
between gene in kinase families for Caenorhabditis
elegans organism.

(7) Fang and Chiu [27]
COGA (genetics of
alcoholism).

SVM-based PGMDR was introduced to study the
interactions of gene-gene and gene-covariate in the
presence or absence of main e�ects of genes.

(8) Zhang et al. [28] Human cancer.
Binary matrix shu�ing 
lter (BMSF) as an e�cient
SVM search schemes was integrated with SVM to
classify cancer tissue samples.

(9)
Marvel and
Motsinger-Reif
[29]

Disease model, M1 and
M2.

GESVM was applied in large dataset to select important
features, parameters, or kernel in SVM.

risk-associated single nucleotide polymorphisms (SNPs)
from the large number of unassociated SNPs of complex
disease models. 
e result had shown that the improvement
on performance of RF analysis relative to Fisher exact test
for screening is exponential to the number of interacting
SNPs also is increase. 
e authors had concluded that the
RF analyses are better than standard univariate screening
methods. 
is is due to the fact that RF analyses can signif-
icantly reduce the number of SNPs from large-scale genetic
association. 
e large-scale genetic association consists of
unknown interactions that exist among true risk-associated
SNPs or SNPs and environmental covariates.


e RF method used by Jiang et al. [34] is to convert
epistatic interactions from a large number of all possible
combinations of genetics variants into a manageable set
of candidates by reducing the search space for epistatic
interactions. 
e result had shown that SNP markers as
categorical features and adopting the RF to discriminate cases
against controls are more precisely. 
e authors concluded
that the Gini importance of RF was o�ering another measure
for the associations between SNPs and complex diseases.

is complement the existing statistical measures used to
understand the epistasis in the pathogenesis of complex
diseases and identify the epistatic interactions.

A new method of RF which is random jungle (RJ) which
has been proposed by Schwarz et al. [35] using permutation
importance measures to detect important single nucleotide
polymorphisms. RJ is able simultaneously to perform RF
by using parallel techniques which are multicomputer and
multithreading. 
us, RJ is better than RF. From the result,
RJ can maintain all options in other programs and had a
new function which is backward elimination method. RJ is
also able to compute up to 159 times faster than the fastest
alternative implementation. 
e authors illustrate the most
important SNPs validate recent 
ndings in the literature and
reveal potential interactions by the application of RJ to a
genome-wide association of Crohn’s disease.


e method of RF used by Liu et al. [36] is to identify
rheumatoid arthritis (RA) susceptibility by contributed gene-
gene interactions and to identify SNPs which can distinguish
who were anticyclic citrullinated protein positive and healthy
controls among RA patients. 
e result showed that RF
had distinguish RA cases from controls with 70% accuracy
when applied to a set of SNPs selected from single-SNP and
pairwise interaction tests identi
ed 93 SNPs. 
e authors
concluded that the most classi
cation information pro-
vided by HLA SNPs nevertheless non-HLA SNPs improved
classi
cation. A stepwise method of combining association
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Table 3: Summary of detect gene-gene interaction using random forest method.

No. Author Dataset Description

(1) Lunetta et al. [33]
H2M2, H4M2, H8M2,
H16M2, H4M4, and
H8M4.

RF as a screening procedure to identify top-ranked
true-associated SNPs which can cause disease without
losing any interactions.

(2) Jiang et al. [34]

ree simulated disease
model.

RF is used to recognize the cases that were against
controls and to obtain the Gini importance which is
used to measure the contribution of each SNP to the
classi
cation performance.

(3) Schwarz et al. [35] Crohn’s disease.

A new method of RJ based on basis RF knowledge was
developed to facilitate a fast processing in the
high-dimensional of genome-wide analysis data of
gene-gene interactions.

(4) Liu et al. [36] NARAC1 and NARAC2.

RF is used to detect contributed gene-gene interactions
for identi
ng RA susceptibility and to identify SNPs of
RA patients to classify them into anticyclic citrullinated
protein positive and healthy controls.

(5) Winham et al. [32]
Five models.

Focus on identi
ng rarely gene-gene interactions and
detecting gene-gene interaction e�ects and their
potential e�ectiveness on high-dimensional data using
RF.

(6) Pan et al. [37] Bladder cancer.

e proposed method of MINGRF is proposed to
improve the performance of RF such as accuracy and
computational time.

(7) Staiano et al. [38]
Familial combined
hyperlipidemia (FCH).

RF is used to identify gene-gene interactions that are
involved in FCH. FCH increase the plasma triglycerides
and/or total cholesterol level of patients and hence
increase the risk of coronary heart disease.

(8)
Chen and Ishwaran
[39]

Colon cancer and
ovarian cancer.

RSF as new hunting pathway to detect gene correlation
and genomic interactions from a high-dimensional
genomic data.

and classi
cation methods is needed. 
is is able to distin-
guish RA cases from healthy controls by identi
ng candidate
interacting SNPs. Hence, this new method can overcome
the di�culty to validate speci
c gene-gene interactions using
genome-wide SNP data.


e RF method used by Winham et al. [32] is to
identify gene-gene interactions that have not been thoroughly
explored and used to detect high-dimensional gene-gene
interaction e�ects and their potential e�ectiveness.
e result
shows that RF is e�ectively in lowdimensional data to identify
gene-gene interactions. 
e authors concluded RF is still
considered as a promising data-mining technique. 
is is
because RF can simultaneously extend univariate methods to
multiple variables condition. Besides, RF might not suitable
as a 
lter technique because RF variable importancemeasures
fall to detect interaction e�ects in high-dimensional data in
the absence of a strong marginal component.


e mutual information network (MIN) integrated with
RF method is called mutual information network guided
random forest (MINGRF). 
is proposed method proposed
by Pan et al. [37] is to reduce bias of RF towards the marginal
main e�ects and to avoid random sampling for variables.
e
authors concluded that MINRF was better than RF since the
result showed that the MINGRF is more accurate and has
shorter computational time.


emethod of RF used by Staiano et al. [38] is to identify
the polymorphisms of gene that causes familial combined
hyperlipidemia (FCH). 
e result of the role that identi
ed
gene in the development of FCH phenotype is promising and
encouraging for further investigation. 
e authors suggested
to characterize patients and to identify high-risk subjects
with better using the combined study of di�erent genetic
variations.


e proposed new hunting pathway using random sur-
vival forests (RSF) method was used by Chen and Ishwaran
[39] to account for important pathway of gene correlation
and genomic interactions.
e result indicates that signalling
pathways can be identi
ed in a relatively small sample size
using the RSF pathway hunting algorithm. 
e authors con-
cluded that the proposed algorithm is an e�cient and pow-
erful framework to model pathway from a high-dimensional
genomic data. Table 3 summarizes the researches that used
random forest methods to detect and model the gene-gene
interactions.

5. Discussion and Conclusion


is paper had presented the machine learning methods
that is used to detect gene-gene and gene-environment
interactions in common and complex human multifactorial
disease. 
ose methods are neural networks (NNs), support
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Table 4: Strengths and weaknesses of neural networks, support vector machine, and random forests methods for detect gene-gene
interactions.

Methods Author Strengths Weaknesses

Neural network
Musani et al. [40]
Upstill-Goddard et al.
[31]

(i) NN is able to model the relationship
between disease and single nucleotide
polymorphism (SNP)
(ii) NN can make prediction on data
where the disease outcome is unknown by
learning the outcome given on a dataset
(iii) NN is a method that can deal with
large volumes of data
(iv) NN is suitable for genetic
heterogeneity, high phenocopy rates,
polygenic inheritance, and incomplete
penetrance.
(v) GPNN and GENN are able to
optimize the architecture of NN and
possess high power to discover the
presence of nonfunctional SNPs.
(vi) GPNN does not over
tting the data
(vii) GPNN possesses high power in
dealing with epitasis model with weak
marginal e�ect
(viii) GENN outperform GPNN by
optimiz NN in fewer generations
(ix) GENN possesses high power to
detect high risk loci in complex disease

(i) Presence of black box
(ii) Di�cult to list out all possible NN
architecture and it causes the di�culty to

nd the optimal architecture
(iii) GPNN needed parallel processing
environment
(iv) GPNN causes the high false positive
rate to occur in three locus models
(v) 
e output of GPNN is binary
expression, and it can be hard to interpret
(for instance, up to 500 nodes)
(vi) Result of NN was hard to interpret
due to the dimensionality problem
(vii) NN needs comprehensive
cross-validation to con
rm validity

Support vector
machine
(SVM)

Chen et al. [19]
Wasan et al. [41]
Upstill-Goddard et al.
[31]

(i) SVM can deal with high dimension
data set
(ii) SVM can be utilized to classify
complex biological gene expression data
(iii) Does not trap at local minima
(iv) Not prone to over
tting
(v) SVM is robust to noise
(vi) 
e output of SVM is more
interpretable if compared to MDR
(vii) Does not require user-de
ned
decisions for classi
cation
(viii) SVM is ready to be generalized to
new structures

(i) Presence of black box
(ii) SVM is restricted to pairwise
classi
cation
(iii) SVM cannot be directly used for
feature selection
(iv) Result produced may be a�ected by
the presence of missing data
(v) 
e power of SVMmight reduce with
the presence of genetic heterogeneity
(vi) Additional training maybe needed to
correct the bias of prediction accuracy.
However, it could be computationally
expensive for the proposed procedure
(vii) Accuracy produced by SVMmight
be suboptimal due to the SVM parameter
C is forced to be one constant. Hence, a
grid search for the parameter is needed
by utilizing some promising SNP
combinations in order to re
ne the
results.

Random forest
(RF)

Upstill-Goddard et al.
[31]

(i) RF does not exhibit strong main e�ects
which uncover interactions among genes.
(ii) RF does not “over
t” the data.
(iii) SNPs predictive of a phenotype are
identifying by RF.

(i) Presence of black box
(ii) RF does not succeed in GWAS data.
(iii) Sometimes RF is underestimating
important scores of SNPs without
marginal e�ects.
(iv) RF only detects interactions with
large e�ect size.

Random jungle
(RJ)

(i) RJ is able to analyze data on a
genome-wide scale.
(ii) RJ has more computationally e�cient
than RF.

If the main e�ects are weak, RJ fails to
detect interactions.
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vector machine (SVM), and random forests (RFs). Each
method has its own strengths and weakness in dealing with
such epitasis model. Table 4 summarizes the strengths and
weaknesses of neural networks, support vector machine, and
random forestsmethods for detecting gene-gene interactions.

As previously mentioned, the greatest challenges in
detecting gene-gene interactions is the increasing volume
of data due to the increasing number of SNPs that will
increase the potential interactions among genes. 
e advent
of machine learning methods can address these challenges.
Among this methods, neural networks are able to address
the problem found in gene-gene interactions especially on
the case focusing on genetic heterogeneity, polygenic inheri-
tance, high phenocopy rates, and incomplete penetrance [31].
Moreover, the ability of neural network in unraveling the
pattern on given dataset and hidden potential rules does not
over
tting the data and had make neural network e�ciently
detecting more complex interactions among genes. 
e opti-
mal architecture of neural network can also be optimized
by using evolutionary algorithm in 
nding nonfunctional
SNPs. For example, GPNN and GENN are capable to show
their robustness on examining high dimensional and noise
datasets.

Support vector machine is a powerful method in detect-
ing gene-gene interactions in both real and simulated dataset.
It is due to its capability on classifying the samples by using
linear and nonlinear separators. Linear separator is able to
classify the data into two classes, whereas nonlinear separator
such as quadratic kernel can be used to classify the sample by
modi
ng the input space. Moreover, this method is similar
with neural network in which it also does not over
tting the
data and robust to noise.

Besides, random forests is a natural method to detect
interactions among genes. 
is method is particularly useful
in solving the case of genetic heterogeneity because the
subset of the model are separated in the early stage. 
us, it
showed high performance in detecting gene-gene interaction
in diverse tree model. It does not over
tting the data, and
hence it does not need to prune the tree structure. Random
forests is also readily to be used in attribute interaction that
motivates it as a competitive method to discover the gene-
gene interactions.

Currently, there are no best machine learning methods
that can be best in detecting gene-gene interactions by
involving various types of dataset and problems found in
detecting gene-gene interactions. To address this challenges,
several machine learning methods can be integrate to form
a framework that can e�ciently detect interactions among
genes. For instances, two-stage model can be constructed
from the machine learning methods in order to exhaustively
detect the gene-gene interactions.
e resulted model may be
easy to interpret and take the shortest time to detect gene-
gene interaction.

Furthermore, data mining methods such as multifactor
dimensionality reduction (MDR) can be introduced to exam-
ine the gene-gene interactions in human disease because it
can taking account every possible combinations of variables
in a given order. It will eventually solve the problems that
the imbalance between experimental output and theoretical

understanding in unexplained experimental data in genetics
case study. In addition, MDR also possesses the ability on
analysing the quantitative traits that makes it as a favour
method to detect interactions among genes. Hence, future
research can focus on data mining methods in order to
understand the biological mechanism of the human disease.

In conclusion, future research on producing more pow-
erful machine learning methods is required to handle the
enormous data in order to understand the genetic epidemi-
ology of human disease. 
us, the output of this machine
learning methods can enhance the understanding of the
biological mechanism of human disease, and this knowledge
can contribute in predicting the clinical disease.
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