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Abstract: With the significant progress of urbanization, cities and towns are suffering from air
pollution, heat island effects, and other environmental problems. Urban vegetation, especially
trees, plays a significant role in solving these ecological problems. To maximize services provided
by vegetation, urban tree species should be properly selected and optimally arranged. Therefore,
accurate classification of tree species in urban environments has become a major issue. In this paper,
we reviewed the potential of light detection and ranging (LiDAR) data to improve the accuracy of
urban tree species classification. In detail, we reviewed the studies using LiDAR data in urban tree
species mapping, especially studies where LiDAR data was fused with optical imagery, through
classification accuracy comparison, general workflow extraction, and discussion and summarizing of
the specific contribution of LiDAR. It is concluded that combining LiDAR data in urban tree species
identification could achieve better classification accuracy than using either dataset individually, and
that such improvements are mainly due to finer segmentation, shadowing effect reduction, and
refinement of classification rules based on LiDAR. Furthermore, some suggestions are given to
improve the classification accuracy on a finer and larger species level, while also aiming to maintain
classification costs.
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1. Introduction

Rapid urbanization has become one of the most characteristic phenomena of modern times
worldwide and has led to important social, economic and environmental consequences [1]. By 2011,
over 50% of the world population lived in cities. The United Nations predicted that by 2050 about 86%
of the developed world and 64% of the developing world will be urbanized [2]. With huge populations
and dense artificial structures, urban areas have been suffering from air pollution, heat island effects,
increased peak flow of rainwater runoff, and other environmental problems [3].

Trees, being an important component in urban ecosystems, act as a sustainable and unique
solution to these problems. A healthy, properly-arranged and well-managed urban forest can provide
both aesthetic views and many ecological benefits, but the magnitude of these services depends on the
species composition, growth situation, and location context of urban vegetation [3–5]. For example,
many studies have noted that trees can reduce air pollutants in direct and indirect ways [6,7]. Directly,
trees absorb gaseous pollutants through leaf stoma and tree canopies intercept particulate pollutants
in the air [7]. Indirectly, by shading while transpiring, trees can reduce the atmospheric temperature,
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thus lowering the rate of chemical reactions that produce secondary air pollutants [8]. However, the
extent of the reduction in air pollutants is significantly related to tree species. Yang et al. examined the
influence of urban trees on air quality in Beijing, China, using the Urban Forest Effects Model [9]. In
their conclusion, the current tree species composition in Beijing is not ideal for air pollutant removal,
since the dominant tree genera, including Populus, Robinia, and Salix, have high biogenic volatile
organic compound (BVOC) emission rates. More specifically, Beckett et al. compared the ability to
capture particulate pollutants of five urban tree species in Brighton, UK, and found that coniferous
species captured more particles than broad-leaved species [10].

In brief, urban vegetation, particularly trees, plays important roles in adsorbing air pollutants such
as ozone and sulfur dioxide, mitigating carbon dioxide, lowering urban temperature, and dampening
peak flows [11,12]. To maximize these benefits, suitable urban tree species should be carefully selected
and optimally arranged.

Urban tree species classification can provide fundamental information not only for subsequent
urban vegetation biomass and carbon storage estimation [13,14], but also for further urban ecosystem
assessment and future city planning and management. Conventionally, urban tree species composition
information was collected by field surveys, which were highly time and labor consuming, and
limited to the sample plot level [15]. With the rapid development of remote sensing technology
and the appearance of classification algorithms for computers, dominant species identification at
plot level and urban tree species composition prediction have been extensively undertaken based
on optical imagery with excellent accuracy [16]. As the spatial and spectral resolutions of optical
imagery have improved, separation and delineation of individual trees has become possible. Then,
with the constant improvements of semi-automatic and automatic classifiers, individual tree species
classification research have been conducted to meet the requirements for finer urban forest inventories.
Recently, light detection and ranging (LiDAR) techniques have been identified to improve classification
accuracy, because of their unique capability to detect the three-dimensional structure information
of individual trees [17]. In brief, individual urban tree species classification has evolved with the
developments of statistical methodology, computational capacities of hardware and software, and
remote sensing technologies including LiDAR [18].

In this review, we first summarize the basic achievements and limitations of urban tree species
classification research using optical remote sensing imagery, and then review the studies where LiDAR
data was combined in classification to achieve better results. Furthermore, we compare the classification
results in these studies using two accuracy indices and summarize a general workflow. In addition, we
discuss the specific contribution of LiDAR data to improve the classification quality in every step of the
workflow. Finally, we provide some future considerations for improving the classification accuracies
in larger species groups or at finer species levels, hopefully to provide a reference for more accurate
and finer urban tree species classification in China and other cities worldwide, to promote urban forest
management and urban ecological assessments.

2. Urban Tree Species Classification from Optical Remote Sensing Imagery

Over the past several decades, remote sensing has become one of the most widely used geological
observation technologies. It is a kind of long-distance and no-direct contact observation technology
using sensors based on modern carrying systems to detect the electromagnetic waves emitted or
reflected by ground objects, and then recording and storing the information for subsequent extraction,
processing, analysis and application [19]. It has advanced abilities, such as large-scale synchronous
observation, easy cycle repeatability, and good data quality, all of which have led to it being increasingly
applied in forest resource monitoring and management [20]. The first applications of remote sensing
technology in tree species classification was to manually interpret aerial photographs, but it was
slow, expensive and highly dependent on researchers’ knowledge of tree species [21]. Then, with the
significant developments in computer science, more algorithms have been devised and implemented
to classify tree species from remote sensing imagery with higher efficiency.
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2.1. Pixel-Based vs. Object-Based Classification

“Classification” relates to methods used to identify objects (such as tree species). In classification,
features presenting the highest separability of the targeted objects are used to differentiate individual
objects from others [22,23]. The most fundamental and commonly used feature is spectral information.
Specifically, vegetation has unique spectral reflectance characteristics with strong absorption in red
wavelengths and strong reflectance in near-infrared wavelengths [24], making it separable from other
ground objects. Moreover, different tree species have different canopy structures (such as leaf shape,
leaf and branch surface roughness, and leaf area density) that lead to finer interspecies differences in
spectra reflectance [24], also known as spectral signature.

The pixel is the fundamental unit of remote sensing imagery, therefore traditional classification
methods using remote sensing imagery are mostly pixel-based. Pixel-based classification analyzes the
spectral signature of every pixel in remotely sensed imagery taken from targeted areas [25]. However,
with the improvement in spatial resolution of remotely sensed imagery, the size of a single pixel has
become gradually smaller than that of the target. This means the spectral data from an individual
pixel cannot represent the characteristics of a whole target (such as a single tree) any more [26].
Moreover, problems also appear because the spectral resolution of remote sensors is getting finer.
Many studies indicate that traditional pixel-based classification can produce salt-and-pepper noise in
the classification output when using hyperspectral imagery, which contributes to inaccuracy [27,28].
Therefore, some researchers have tried to incorporate texture features into pixel-based classification
to improve accuracy, resulting in some better results [29,30]. However, it is noted that improved
classification based on texture features requires a predefined neighboring layout [31].

To overcome these problems, object-based classification has been proposed. Its basic units
are image objects (or segments), rather than the single pixels of pixel-based classification [32].
With the recent development of software such as eCognition Professional and Feature Analyst [33],
object-based classification has become more accessible and more generally used. In a general workflow,
image objects are first generated through a segmentation procedure. Every object is composed of
several spatially adjacent pixels. This segmentation based on homogeneity criteria is similar to the
conceptual way in which humans organize and interpret the landscape, which is one of the strengths
of object-based classification [34]. The segments are then classified using not only spectral signatures
but also spatial, textural and contextual features. Environmental features such as elevation, slope
and aspect are also used [35]. All these features can potentially improve classification accuracy.
Many studies have confirmed the advantages mentioned above of object-based classification over
pixel-based classification [33,36,37]. For example, Weih and Riggan compared the ability of both
classification techniques to classify land-cover (13 categories in total, eight of which were major
vegetation categories) in Garland County, Arkansas, USA, based on multi-temporal aerial images with
high spatial resolution [37]. In their results, the overall accuracy (OA) of object-based classification
was 82.0%, which was significantly better than pixel-based classification (OA 66.9%).

2.2. Development and Limitations

Over the past several decades, optical remote sensing imagery, with the abilities and advantages
mentioned above, has been generally applied in mapping vegetation, land-cover and land-use in many
areas. Using remote sensing data to classify tree species was initially attempted in natural forests
based on moderate-resolution satellite images (such as Landsat TM and later ETM+) [38]. However,
the low spatial resolution of these images limits the classification to group/cluster level with relatively
low accuracy [39,40]. With the increase in spatial resolution of remote sensors, single trees have
become visible in remotely sensed imagery, thus advancing tree species classification to individual
tree level. Since the end of last century, many studies have used multispectral satellite images with
high spatial resolution (such as IKONOS) in forest classification [41–43]. For example, Carleer and
Wolff used IKONOS image to identify seven tree species groups in a forest in Brussels, Belgium, and
achieved an OA of 82% [41]. While using the same IKONOS imagery to classify 21 tree species in



Forests 2019, 10, 1 4 of 18

a mixed forest in Hokkaido, Japan, Katoh only obtained an average accuracy of 62% [43]. In both
studies, the pixel-based supervised maximum likelihood (ML) classifier was utilized, but different
improvements were made: Carleer and Wolff collected remotely sensed imagery from summer and
autumn to enrich spectral characteristics, while Katoh’s research referred to the tree crown projection
map to strengthen the training process. In these studies, however, the relatively low spectral resolution
could not satisfy a more detailed classification. Subsequently, optical remote sensing imagery with both
high spatial and spectral resolution has been developed (such as AVIRIS) [44]. The dense sampling
and narrow band measures of hyperspectral sensors to tree spectra provide valuable data for tree
species classification [45]. For example, Clark et al. used hyperspectral imagery to classify seven
tree species in a forest in California, USA, and a highest OA of 86% was achieved by an object-based
linear discriminant analysis (LDA) classifier [46]. However, it is noted that, in this research, such high
accuracy resulted from the fact that only seven canopy-emergent species were selected from the total
of 21 species in the study area to better delineate crown objects.

Nevertheless, the unique urban environments pose specific challenges for tree species classification
based on remotely sensed imagery. Compared to the trees in natural forests, trees in urban
environments often exist as single trees or isolated groups, thus requiring finer spatial resolution
to differentiate them as individual objects. Moreover, urban trees are gradually planted with the
progress of urbanization and are strongly influenced by surrounding environmental settings such as
streets, communities and factories. Consequently, different individual trees of the same species can
have different ages, growing conditions, sizes and shapes, leading to severe within-species variability
of tree spectral characteristics [47]. The biggest challenge is that urban areas are a mosaic of many
vegetation types and man-made structures. Therefore, the obscuring and shadowing effects caused
by nearby background features, such as imperious surfaces, roads and buildings, makes the precise
segmentation and identification of urban tree species even more difficult [48].

Some studies have tested classification approaches based on optical remote sensing imagery to
map urban tree species but have only achieved moderate results because of the challenges mentioned
above. Sugumaran et al. made very early attempts using three sets of multispectral imagery with very
high spatial resolution (4 m, 1 m and 25 cm) to roughly recognize oak trees from the whole urban
climax forest in Columbia, USA [49]. They achieved a highest oak tree identification accuracy of 87.2%
with 1 m resolution using a pixel-based ML classifier, and concluded that imagery with 1 m resolution
is optimal to differentiate tree species and minimize shadowing effects. Then, in later research, Pu and
Landry compared the ability of two sets of satellite multispectral imagery, IKONOS (4 m resolution)
and WorldView-2 (2 m resolution), to classify six urban tree species in Florida, USA [50]. In their
results, the highest OA was 62.39% (Kappa 0.506) using an object-based LDA classifier with all eight
bands of the WorldView-2 imagery. Similar attempts have also been made using hyperspectral imagery.
Xiao et al. used AVIRIS imagery in mapping of 16 common urban tree species in California, USA, and
achieved an overall accuracy of 70% at the tree species level [24], while the species-specific results
showed that classification accuracy of small-size tree species was relatively low due to the shadowing
effect. Alonzo et al. also used AVIRIS imagery to discriminate 15 common urban tree species in
California, USA, and achieved a higher OA of 86% (Kappa 0.85) with an object-based canonical
discriminant analysis (CDA) classifier [51]. Similarly, they indicated that the accuracy results varied
greatly with tree species, i.e., species with the lowest accuracies are those with smallest crown areas.

In general, remote sensing imagery has been gradually used to classify tree species in urban
ecosystems, but the results are not as robust as those in natural forests. The limitation of optical remote
sensing imagery to accurately map urban tree species is attributable to three major reasons: (1) the
various surroundings of urban trees create a complicated background, thus increasing the complexity
of classification; (2) overlapping and shadowing effects restrict the segmentation of individual trees
or crowns, especially for small-size species; and, (3) the Hughes phenomenon [52], or the curse of
dimensionality, that is, given a fixed sample size, the identification accuracy first increases then declines
with the increase in spectral resolution due to increasing within-species spectral variation [53]. To meet
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the requirement for a finer and more accurate urban tree species classification, the spectral information
from optical imagery is insufficient, and some other features, such as structural information, should be
taken into consideration.

3. Urban Tree Species Classification from LiDAR Data

3.1. Introduction to LiDAR

LiDAR, or laser altimetry, is an advanced active remote sensing technology. It uses laser
scanning to measure physical attributes such as height and elevation of the landscape, and obtains the
three-dimensional geological coordinates of targeted objects, associated with the Global Positioning
System (GPS) and the Inertial Navigation System (INS) [54]. The most basic data acquired by LiDAR
systems is the distance between laser sensors and targets (Figure 1). Furthermore, LiDAR devices can
record reflected energy of the targeted surface, and obtain features of the reflectance spectra such as
amplitude, frequency and phase [17].
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Figure 1. Graphic depicting an airborne light detection and ranging (LiDAR) system. Figure adapted
and modified from [55].

According to the carrying platforms, LiDAR systems are generally divided into the three major
categories of space-borne, airborne and ground-based LiDAR [56]. With scanning from different
heights based on different carriers, LiDAR systems can achieve all scales of geological observation and
detection, and fulfill different levels of resolution requirements. Specifically, there are two major types
of LiDAR data, which are point cloud data and waveform data. In forestry research, point cloud data
are commonly used to generate forest structure parameters, such as tree height, diameter at breast
height (DBH), and canopy volume calculated based on single-tree extraction and delineation [57]. In
contrast, waveform LiDAR system collects the whole return signal and generates a complete waveform
profile [58]. Waveform data can be applied not only to obtain distance information, but also to analyze
the vertical distribution of targets, and deduce the structure and physical properties.

In general, LiDAR technology has the most prominent advantages of both high-resolution
and large-scale detection, and measurement of three-dimensional geological data. Thus, it has
become increasingly popular in ecological applications, such as remote sensing and mapping ground
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topography, measurement of 3D structures and functional parameters of forest canopies, classification
of forest tree species, and prediction of aboveground biomass and other forest vertical attributes [59–62].

3.2. LiDAR in Urban Tree Species Classification

Given the limitations inherent in optical remote sensing imagery and the difficulties posed by
unique urban environments, LiDAR has been valued for providing important complementary types of
information, such as elevation data and structural features, that have the potential to improve tree
species classification accuracy [63]. The initial attempts using LiDAR to classify tree species were
in natural forest at the cluster/plot level with low point density [64]. With an increase in the point
density, trees can be scanned and recognized by LiDAR at the individual tree level, which is crucial
for classification of urban forests with sparse distribution and high spatial heterogeneity. However,
LiDAR systems only emit laser pulses with very narrow bands, therefore, the spectral data collected is
clearly insufficient for species identification [65]. For example, Brandtberg introduced an individual
tree species classification using small footprint LiDAR data to identify three deciduous tree species in
Virginia, USA, but only achieved a highest OA of 64% [65]. In a further attempt to classify 29 urban
tree species, Alonzo et al. only achieved an OA of 32.9% using LiDAR data alone [66], which was
even much lower than using hyperspectral imagery solely (OA 79.2%). To overcome such limitations
on spectral information of LiDAR data, an increasing number of studies have been conducted on the
fusion of LiDAR data and high-resolution optical imagery for urban tree species identification.

3.2.1. Urban Tree Species Classification through Image Fusion

“Fusion” is a common term in remote sensing research that refers to the combination of remote
sensing data from multiple sources on different levels [67]. In the early stages of tree species
classification studies, LiDAR data were only utilized through combination in very simple ways.
The capability of LiDAR to “penetrate” through tree canopies (not actually through solid objects
but through openings on the surfaces of each layer [17]) was noted for the precise elevation/height
information it provides. It was extensively used to generate digital surface models (DSM) and
digital terrain models (DTM) with high accuracy, and, then, to produce absolute height data for
segmentations and classifications by subtracting DSM from DTM [63]. For example, in an urban
tree species classification, Tigges et al. used two sets of LiDAR height models, DSM and DTM, to
generate the absolute height distribution, which was then applied as a height threshold in optical image
segmentation to separate canopy pixels from non-canopy pixels [68]. Similarly, in two urban forests
of Washington, USA, Zhang et al. introduced LiDAR-derived height models into an object-based
classification at the segmentation level [69]. Individual tree crown objects were segmented from
the LiDAR-derived canopy height models (CHM) with auxiliary hyperspatial aerial imagery, and
then projected onto the hyperspectral imagery to extract spectral features. In brief, LiDAR-extracted
CHMs can be applied, independently or with the aid of passive optical imagery, to the segmentation
procedure, thereby improving the subsequent classification of objects.

Gradually, LiDAR data have been combined with both multispectral and hyperspectral imagery
in deeper ways to map tree species. Attempts were firstly made in natural forests. Holmgren et al.
introduced airborne LiDAR data in an individual tree classification approach. Tree crown segments
were generated from LiDAR point cloud data and then projected onto the multispectral imagery.
In final classification, LiDAR-derived features (structural and intensity features) and multispectral
features were combined to achieve the best OA of 96% [70]. Species-specific results also showed
that LiDAR data was most efficient in identifying different coniferous tree species, e.g., pine and
spruce trees. Ke et al. made further efforts by examining the influences of data fusion (LiDAR and
multispectral data) on each procedure of classification [26]. It was confirmed in this research that the
best results in terms of both segmentation quality and classification accuracy were achieved when
integrated datasets were applied. It was also confirmed that segmentation quality has a direct influence
on the final classification accuracy, therefore, the highest OA was acquired when airborne LiDAR data
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were combined in every step. Integrating LiDAR point cloud data into segmentations can exclude the
pixels outside of the real crowns, thereby improving the spectral characteristics from crown objects and
reducing the within-species spectral variations. Similar conclusions were achieved in Dalponte et al.’s
research where airborne LiDAR data were respectively combined with two sets of optical imagery to
classify eight tree groups in the Southern Alps, Italy [63]. The integration of LiDAR-extracted height
features improved OA of classification based solely on hyperspectral and multispectral imagery by
8.9% and 10.5%, respectively.

With the great improvement in natural forest tree species classification based on combination with
LiDAR data, similar attempts have begun to be conducted in urban environments. In a study to identify
nine common urban tree classes in Iowa, Sugumaran and Voss firstly compared the segmentation
quality with and without the aid of LiDAR data and confirmed that the LiDAR-derived elevation
data notably helps to differentiate crown segments with nearby shadows, thus greatly improving the
segmentation quality in urban contexts [71]. For the final classification, the combination of LiDAR
data increased classification accuracy by 12% based on hyperspectral imagery alone. Such accuracy
improvement based on the aid of LiDAR data was especially evident in smaller-size tree species such
as saplings and shrubbery. In a following study, they made a further exploration to examine the
seasonal effect of optical imagery on classification [72]. In their results, although the seasonal effects
on the classification accuracy was not as significant as expected, LiDAR data still improved the OA by
19% for classification in both summer and autumn. However, it is worth noting that, in this research,
the best classification accuracy was only 57% for seven tree species on a more specific species level,
which means finer classification with higher accuracy is remains a challenge.

To fill this gap of classifying the enlarged species group, Zhang and Qiu developed a neuro-fuzzy
approach, namely, adaptive Gaussian fuzzy learning vector quantization (AGFLVQ), to identify 40
main urban tree species in Texas, USA [73]. Despite of the large number of tree species, they still
achieved an excellent OA of 68.8% due to the unique innovation of using individual treetops rather than
crowns as objects to avoid occlusion and shading. Given that airborne LiDAR data were only utilized
in DTM generation and individual tree detection for object segmentation, the classification results
could be further improved if LiDAR-extracted features were incorporated in the future. Similarly,
Alonzo et al. proposed a canonical discriminant analysis to map 29 common urban tree species in
California [66]. The combination with LiDAR data (waveform data transferred into point cloud data)
improved the OA from 79.2% using hyperspectral image alone to 83.4%. Moreover, they introduced a
unique LiDAR-extracted structural feature, crown porosity, into the classification rules, and found this
feature could improve the identification of tree species with larger but sparser crowns. In summary,
most research proved that integration of optical remote sensing imagery and LiDAR data resulted
in more accurate urban tree species mapping than using either of the data sources independently.
This improvement in classification accuracies is particularly distinct for tree species with unique
morphology or small crown sizes, for which LiDAR-derived structural data are helpful by delineating
crown objects and enriching the classification hierarchy.

Combining LiDAR data with optical remote sensing imagery is the most common but definitely
not the only fusion type in urban tree species classification. In a recent study, two sets of airborne
LiDAR data were integrated to identify three main tree species groups in a forest in Finland [74]. It was
determined that a smaller footprint may improve the signal-to-noise ratio of intensity measurement.
Therefore, ALS50 data with a smaller footprint (17–18 cm) was combined with ALTM3100 data
(25–28 cm) to enrich the data density of crown modeling and to refine the intensity feature extraction.
Compared with classification using either LiDAR dataset independently, the fusion of two LiDAR
datasets performed the best with an OA of 89.4%. Moreover, in a further comparison of individual
LiDAR-extracted features, several rare but ecologically important species, such as Salix caprea, showed
significantly high upper-intensity values, suggesting they could potentially be differentiated based on
LiDAR-derived intensity features.
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3.2.2. Accuracy Comparison of Urban Tree Species Classification

In the urban tree species classification studies reviewed above, each study proposed a specifically
new approach and tested it in a particular urban environment. To quantify the classification ability of
a proposed approach for comparison, a very intuitive index is overall accuracy, which is calculated
from the number of trees correctly tagged relative to the total number of trees. Overall accuracy is easy
to calculate and understand, however, it can be influenced by the number of species discriminated,
seasons when data were collected, and sample sizes. It has been indicated in some research that overall
accuracy declines with increase in classification complexity [72], e.g., the negative relationship between
the number of tree classes classified and overall accuracy is shown in Figure 2, based on Mathew and
Ramanathan’s study [72].

 

328 
329 
330 
331 

332 
333 
334 

335 
336 
337 
338 
339 K ൌ ே ∑ ௑೔೔೘೔సభ ି∑ ௑೔శ௑శ೔೘೔సభேమି∑ ௑೔శ௑శ೔೘೔సభ340 

341 
342 
343 
344 
345 
346 
347 
348 
349 
350 
351 
352 
353 NOCAI value ൌ overall accuracy ൈ ଵ௞ ൈ 100%354 

355 
356 
357 
358 
359 

Figure 2. Relationship between number of species/groups and overall accuracy in two seasons. Figure
adapted and modified from [72].

Kappa analysis has been believed to be a better statistical approach to represent the general
classification ability. This discrete multivariate analysis utilizes every element in the confusion matrix
and excludes accidental consistence and the influence of sample sizes, and thus is more suitable for the
comparison of different classification approaches under similar sampling situations [75,76]. The kappa
coefficient is calculated by Equation (1) [77].

K =
N ∑

m
i=1 Xii − ∑

m
i=1 Xi+X+i

N2
− ∑

m
i=1 Xi+X+i

(1)

where N is the total number of samples; Xii is value on the diagonal of the confusion matrix; m is
the number of classes/species; and Xi+ and X+i are the sum of values on the ith row and ith column
respectively. Logically, the kappa coefficient ranges from −1 to 1 and higher values mean a better fit.
There is a set of universally accepted guidelines for the kappa coefficient [78]: a kappa coefficient less
than 0 indicates no agreement; 0–0.20 indicates slight agreement; 0.21–0.40, fair; 0.41–0.60, moderate;
0.61–0.80, substantial; and 0.81–1 indicates an almost perfect agreement. Generally, a classification
approach with good overall accuracy also generates a high kappa coefficient. However, kappa values
may be significantly lower than overall accuracy when the number of species to be classified is too
small or when a dominant species with a huge sample size exists [79,80].

Another index proposed to quantify classification quality is the number of categories adjusted
index (NOCAI). It excludes the influence of the number of tree species classified in the individual
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classification approach, and is thus suggested to be a more reasonable comparison index than overall
accuracy. Specifically, NOCAI is calculated by Equation (2) [73].

NOCAI value = overall accuracy ×

1
k
× 100% (2)

where k is the number of tree species identified and 1/k is an expected accuracy that would be achieved
when trees were all assigned to a random species [69]. Logically, the higher the NOCAI value, the
better a classifier performs. In Figure 3, the kappa coefficient and NOCAI values are used to compare
the classification quality of several of the typical urban tree species mapping approaches reviewed
above based on the different remote sensing datasets (mainly LiDAR data).
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Figure 3. Comparison of classification accuracy using the kappa coefficient and number of categories
adjusted index (NOCAI) value, where the form of “A+B” represents the combination of different
datasets; H, M and L represent hyperspectral, multispectral and LiDAR data, respectively; the studies
of methods of data combination and classification results are cited in the square brackets.

According to the kappa coefficient comparison in Figure 3, most classification approaches
combining passive optical imagery and LiDAR data achieved substantial identification quality, except
for the approach proposed by Zhang and Qiu [73], while, according to the NOCAI values comparison,
this approach performed the best because it classified a largest number of 40 urban tree species
with a moderate overall accuracy. Moreover, NOCAI value comparison indicated that classification
approaches combing multiple datasets generally performed better than using a single dataset, which is
consistent with the perspective provided by many studies with overall accuracy and kappa results. It
is worth noting that the comparison here was made to try showing the classification ability of methods
proposed in different studies in a simple but quantitative way. However, such comparisons should be
made carefully because classification results are not only related to the methods, but also influenced by
many factors, including study sites and sampling situations, tree species selected, remote-sensed data
quality, and sample information quality [69].

3.2.3. A General Workflow of Urban Tree Species Classification by Combining LiDAR Data

In the studies of urban tree species classification reviewed above, although the specific analysis
principles or algorithm differs, the basic ideas and workflows are similar. Here summarizes a general



Forests 2019, 10, 1 10 of 18

workflow of urban tree species identification based on combination of multiple remotely sensed
datasets, especially LiDAR data (Figure 4).
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Figure 4. An illustration of the general urban tree species classification workflow.

An object-based classification commonly consists of three steps: objects segmentation, features
extraction, and species classification. Segmentation is to divide the whole image/layer into individual
objects (such as single tree crowns or treetops in Zhang and Qiu’s study [73]) using information
from different input datasets [26], such as LiDAR-derived height models, and spectral signatures
from passive optical imagery. In the segmentation procedure, LiDAR point cloud data can either
be used as height thresholds for optical imagery, or be independently used to delineate canopy
areas and then projected onto the passive optical imagery for crown pixel selections and spectral
signature extractions. Generally, crown segmentation is performed manually or with automated or
semi-automatic algorithms. Then, from each segment/object, different types of features are extracted.
Typical features from passive optical imagery includes vegetation indices, derivations of spectral
characteristics, and textural features. LiDAR-extracted variables are usually statistically designed to
describe the structures of tree crowns and even branches and leaves, including height distributions and
intensity features related to the crown porosity [81]. With the development of remote sensing data and
statistical methodologies, an increasing number of new and refined variables are being extracted and
applied. However, some failures occurred when the number of parameters was too large compared to
the size of the training sample dataset, which is known as the curse of dimensionality or the Hughes
phenomenon. Therefore, feature reduction algorithms have been proposed. There are two kinds of
feature reduction algorithms: feature extraction methods selecting a subset of original variables, and
feature selection methods summarizing new variables from groups of related original variables [82].
After feature reduction, some features are selected and then integrated to build up a set of classification
rules. Based on the identification rules/hierarchy and field sample data, a specific classifier will be
selected to label every object with one of the pre-selected tree species. In the early stage, parametric
classifiers are mostly used, such as linear discriminant analysis (LDA) [83], canonical discriminant
analysis (CDA) [51], maximum likelihood (ML) [46] and spectral angle mapper (SAM) [44]. These
classifiers are convenient and efficient, but they only allow a certain number of predictor variables and
assume the input data fits certain distributions [18]. From the beginning of this century, non-parametric
classifiers based on machine learning and decision trees have appeared as powerful alternatives. These
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classifiers, including support vector machine (SVM) [63], random forest (RF) [63], k-nearest neighbor
(k-NN) [74], and neural networks, have no prior assumption for inputs and can adjust the number of
variables with the size of training samples, and hence are more flexible and have become more popular.

3.3. Potential Contributions of LiDAR to Urban Tree Species Classification

Although LiDAR data have been indicated as being not suitable to accurately classify urban tree
species when solely used, they have been proven to be capable of significantly improving the tree
species classification quality when fused with optical remote sensing imagery, especially in urban
forests with diverse species and high spatial heterogeneity. The ways in which LiDAR data have been
combined, i.e., the contributions of LiDAR, in the reviewed approaches are summarized in Table 1.

Table 1. Summary of contributions of LiDAR in tree species classification.

Contribution of LiDAR Data Overall Accuracy
Citation

Image Segmentation Feature Extraction with LiDAR without LiDAR

LiDAR-derived height models as
threshold for image segmentation - 85.5% - [68]

LiDAR-derived CHM to delineate
tree crowns - 88.9% - [69]

Crown segments derived from LiDAR
point cloud data

Height distribution
Canopy shape

Proportion of pulse types
Intensity of returns

96% 91% [70]

Segmentation based on
LiDAR-derived layers: DEM, DSM,

height and intensity

Topography
Height

Intensity
94% 89% [26]

- Height features 83% 74.1% [63]

Segments created using LiDAR layers:
elevation and intensity;

LiDAR-derived DEM as reference for
geometrical correction

Classification rules based on elevation 81% 93% [71]

Individual segments isolated on the
LiDAR-derived CHM then overlay on

AVIRIS image

Structural features: crown heights,
crown widths, intensity, crown

porosity
83.4% 79.2% [66]

DTM derivation;
Individual tree detection;

Crown delineation
- 68.8% - [73]

Treetop positioning;
Crown segments based on LiDAR

point cloud data
Structural features: heights, intensity 90.8% - [74]

Non-tree area mask derived based on
vertical structure from LiDAR;
Crown outlining and treetop

positioning from LiDAR CHM

Crown shape
Laser point distribution
Laser return intensity

51.1% 70% [84]

To conclude, the contributions of LiDAR data to urban tree species classification are as follows.
(1) In the very early stage of using LiDAR data to improve tree species classification, LiDAR data were
only used as axillary information for spectral imagery. The ability of LiDAR to obtain high-resolution
elevation data were valued to generate height models such as DEMs, DTMs, and digital height models
(DHMs) that were used (as height masks or in other ways) in subsequent segmentation. (2) With
increased point density, LiDAR sensors are able to detect small and discrete targets, thus improving
the segmentation and classification of smaller-size and less-common tree species. (3) In the image
segmentation step, structural, topographic, and intensity information derived from LiDAR data helps
to separate overlapped objects and remove shadowing effects. For example, in Ke et al.’s research [26],
based on profile/structural information derived from LiDAR data, the contrast between coniferous
trees and neighboring deciduous trees is enhanced, thus improving the segmentation results. (4) In
some studies [70], LiDAR data were used alone to produce segments that were then projected to
optical images to extract spectral metrics. Based on unique structural characteristics (such as height
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distribution and crown width), LiDAR data can precisely delineate tree crowns and generate accurate
objects. (5) With additional structural and intensity features, LiDAR data can greatly refine the
classification hierarchy. For example, some researchers have pointed out that height metrics derived
from LiDAR data helped enhance the interspecies variation because different tree species have different
height attributes [26]. In addition, it is indicated that LiDAR intensity data extend the spectrum slightly
into the infrared, because the wave length of the laser emitted by LiDAR is approximately 1050 nm [72].
(6) Some studies also showed that some large tree crowns with high porosity were classified more
accurately using fused LiDAR data than with spectral images [66]. Higher porosity in crowns leads to
higher within-species spectral variation, while the ability of a laser to pass through the openings in
layers helps to distinguish objects from ground surfaces, thus reducing the variation within an object.

3.4. Future Considerations for LiDAR

It has been proved that LiDAR data can significantly improve the urban tree species classification
accuracy when combined with optical remote sensing imagery. Although some specific approaches
have been proposed and investigated in small sample sites, they still need to be validated in more and
larger areas of urban forests before being put into practice. Moreover, so far, high classification OA has
only been achieved when relatively small numbers of tree species are selected or the urban forests are
roughly pre-defined into several classes/groups. However, in some megacities, such as New York and
Beijing, the number of common tree species is generally over 30 [85].

To allow a finer tree species classification for these cities, approaches able to identify larger
numbers of species at more detailed levels and with the same high accuracies should be developed. A
potential research direction is to integrate different datasets in deeper and more complex ways. For
example, seasonal effects can be taken into consideration. For now, the seasonal factor has mostly been
studied for its influence on the data quality of LiDAR data or passive optical imagery, which thus
influence the classification performance. Some researches indicated that spectral imagery taken in
September before leaves change was most beneficial for tree species identification [49], while some
indicated that October with “peak autumn colors” was the most ideal time to collect images [86]. Some
studies, in which integrated hyperspectral imagery was taken in different seasons with LiDAR data,
also concluded that, although there was little difference between the classification in summer and fall,
results from the fall were more consistent [72]. However, identifying urban tree species with seasonal
variations in the tree crown structure as a unique feature is still a brand-new research direction. In fact,
seasonal changes of tree morphological characteristics reflect the inherent phenological attributes of
different tree species. Moreover, these seasonal changes in tree structure can be accurately detected
and differentiated by LiDAR sensors. Consequently, combining different datasets, especially LiDAR
data, collected from different seasons to enrich the classification rules of phenological features appears
a promising way to improve identification accuracy. For example, Kim et al. attempted to combine
LiDAR data from both leaf-on and leaf-off seasons to classify 15 tree species in a natural forest [87].
The results proved that the highest accuracy was achieved using seasonally-combined data, but until
now very few similar efforts have been made in complex urban environments.

Another factor worth noting in the practical application of urban tree species classification is
the cost. It is generally realized that the higher the spatial and spectral resolutions and the denser
the laser pulses, the more accurate the classification, while the more it will cost. In some studies [63],
it is estimated that the approximate acquisition costs of data per hectare are USD 0.60 for GeoEye-1
satellite multispectral imagery (2 m), USD 11.50 for AISA Eagle hyperspectral imagery (1 m), USD 1.90
for low point density LiDAR data (0.48 points per m2), and USD 11.50 for high point density LiDAR
data (8.6 points per m2). Therefore, maintaining high classification accuracy while reducing the cost
as much as possible is an inevitable consideration in future research. A potential solution includes
simultaneous collecting of high-resolution spectral imagery and LiDAR data during a single flight [88].
However, since the aerial spectral measurements depend on sunlight illumination, they require two to
four times the time of LiDAR measurements [89]. Moreover, accurate co-registration of two different
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sets of data is hard to achieve. Therefore, a more feasible single-sensor option is multispectral airborne
laser scanning (ALS), because it can provide point cloud data and spectral data at the same time, which
can also simplify data processing [90]. Another example to control costs is to take full advantage
of the remote sensing data that is freely available, e.g., data acquired by local administrations for
other purposes, such as low point-density LiDAR terrain models for urban land-cover surveys. In
addition, a newly-emerged robust tool to provide massive open data, and thus reduce data fees
greatly, is the Global Ecosystem Dynamics Investigation (GEDI) LiDAR [91]. This was launched in
December, 2018, by the National Aeronautics and Space Administration (NASA). It was installed
on the International Space Station as the first space-borne LiDAR sensor to detect the 3D structures
of the earth’s surface for forest management, carbon and water cycling processes, biodiversity and
habitat research [92]. The GEDI LiDAR system consists of three lasers, each of which fires 242 times
per second with 25 m footprints [93]. Although the footprint size of GEDI LiDAR is too large for urban
tree species classification at the single-tree level, its importance for freely providing massive waveform
LiDAR data, and especially information about vegetation canopy and the topography underneath,
cannot be underestimated. With the possible breakthrough of fusing low-resolution GEDI LiDAR data
with other remotely sensed datasets in the future, the target of mapping urban tree species with high
accuracy and relatively low costs will be achieved. Furthermore, based on the globally collected GEDI
LiDAR data, cities and towns can be combined or compared with neighboring rural areas to promote
urban ecological studies.

When it comes to urban ecological research using (fused) LiDAR data in China, a non-negligible
factor is relatively strict air traffic control. Under such restraints, on the one hand, Chinese
high-resolution remote sensing satellites should be noted, such as Gaofen-1 with 2 m spatial
resolution [94], and SuperView-101/102 with 0.5 m resolution [95]. To the best of our knowledge, there
are few studies using remote sensing data from Chinese satellites in urban ecosystems. On the other
hand, a promising alternative to aircraft-borne LiDAR systems is an unmanned aerial vehicle (UAV)
LiDAR system that is easier to operate with lower costs and lower flying heights [96], and is thus more
suitable for research in cities in China. However, it is noted that in some flight-restricted areas such as
residential and commercial areas, UAV flights for scientific research purposes still need to be approved
by local military and civil aviation departments. Recently, UAV LiDAR has been used to map forest
canopies in natural forests and to classify land-cover in urban environments [97,98]. However, very
little research has been conducted using UAV LiDAR to identify tree species. In summary, it is expected
that more and more Chinese high-resolution satellites should be utilized and combined with LiDAR
data, especially that acquired by UAVs, for urban ecological research in China.

4. Conclusions

With rapid urbanization worldwide, urban areas are facing with more and more environmental
problems. Urban forests and trees have great potential to prevent or mitigate these problems to
some extent. To maximize their ecological benefits, suitable tree species should be selected with
proper distribution patterns. Therefore, studies of classification of urban tree species, especially to
improve classification accuracy, have been conducted over the past several decades. Recently, LiDAR
technology has been valued for its unique abilities to detect 3D structural information, which is a potent
supplement to traditional classification based on optical remote-sensed imagery. LiDAR data have been
proven in many studies to be capable of significantly improving tree species classification accuracy
when fused with optical remote-sensed imagery, especially in urban forests with diverse species
and high spatial heterogeneity. Specifically, a general workflow using LiDAR data to identify tree
species includes three major steps: image segmentation, feature extraction, and species classification.
In each step, LiDAR data have provided significant contributions, including removing shadowing
effects, enhancing classification rules, and delineating less-common species and trees with unique
morphologies. Considering practical applications in the future, research into tree species classification
should improve accuracy with larger and finer species compositions, while controlling cost. To fulfill
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these requirements, approaches and algorithms fusing different remote sensing datasets in deeper
ways should be developed, and multiple sources of remote-sensed data, e.g., GEDI LiDAR data,
multispectral ALS data, and UAV-based LiDAR data, should be integrated into classification attempts.
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