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Abstract—In recent years, electrical impedance tomography (EIT) has attracted intensive interests
due to its noninvasive, ionizing radiation-free, and low-cost advantages, which is promising for both
biomedical imaging and industry nondestructive tests. The purpose of this paper is to review state-of-
the-art methods including both algorithms and hardware implementations in EIT. More specifically,
for the advanced reconstruction algorithms in mainstream, we offer some insights on classification
and comparison. As for the measurement equipment, the structure, configuration modes, and typical
systems are reviewed. Furthermore, we discuss the limitations and challenges in EIT technique, such
as low-spatial resolution and nonlinear-inversion problems, where future directions, such as solving EIT
problems with deep learning, have also been addressed.

1. INTRODUCTION

Since electrical impedance tomography (EIT) was proposed, far-reaching developments have taken place
in EIT system from algorithm optimizations to hardware designs. Compared with other tomography
technologies [1], such as computed tomography (CT), gamma ray tomography, X-ray tomography,
ultrasonic imaging, and magnetic resonance imaging (MRI), EIT is a real-time, noninvasive, low-cost,
and portable technology which can reflect the internal structures and functions of tissues and organs [2].
Furthermore, it has shown the ability of long-term monitoring of diseases in clinical practice, such as
lung function imaging [3, 4], cerebral hemorrhage [5], early detection of breast cancer [6, 7], and gastric
emptying detection [8]. Especially during the novel coronavirus (COVID-19), Tomasino and others
used EIT technology to evaluate the distribution of ventilation in the different pulmonary regions before,
during, and after pronation in COVID-19 respiratory failure in real time [9]. In addition, EIT technology
has been under intensive investigations in the fields of industrial process [10], chemical engineering [11],
semiconductor manufacturing [12], biotechnology [13, 14], materials [15, 16], artificial sensitive skin [17],
hand gesture recognition [18], etc.

Nevertheless, EIT problem, regarded as an inverse problem to restore the unknown impedance of
the domain of interest (DOI), is challenging due to its nonlinear and highly ill-posed properties [19–
27]. Furthermore, EIT suffers from low spatial resolution, which means that it is challenging for EIT
to image an anatomic structure like CT or MRI. A workable proposal is to combine the advantages
of EIT and other tomography technologies with high spatial resolution to preserve the morphological
structures of the objects and avoid blurring of the solution. For example, Schullcke et al. presented
an approach based on discrete cosine transformation (DCT) for EIT image reconstruction, using
morphologic information obtained from CT [3]. The results showed that the CT-EIT method improved
the accuracy of reconstruction images. Other methods focus on the challenges of mathematical principle
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behind the EIT problem to find the approximate solution which is as close to the real solution as possible
by optimization modelings and algorithms. In recent decades, a large number of researchers have focused
on it where a surging number of state-of-art reconstruction algorithms have been proposed along with
the improvements of hardware from generation to generation.

In this paper, we present a review focusing on the reconstruction algorithms and the designs of
existing measurement systems in EIT. The text is structured as follows. Section 2 describes the EIT
problem with forward problem and inverse problem: the basic concepts of definition and solver. In
Section 3, we classify the reconstruction algorithms and review some algorithms proposed in recent
years. Section 4 presents the necessary components designed in EIT hardware system and reviews some
systems already used in production, living or laboratory. Some conclusions are drawn in Section 5.

2. EIT PROBLEM

A typical schematic of EIT problem is shown in Fig. 1. In the figure, Ω is the area that requires
tomography. A total number of Nr electrodes are stuck on the boundary ∂Ω, playing the role of
conducting the excitation current j and measuring the boundary voltage V n (n = 1, 2, ..., Nr). The edge
of domain of interest (DOI) is marked by the dashed line, where the interested electrical impedance σ
to be reconstructed is located [20].

Figure 1. A typical schematic of EIT problem with two dimensional region.

In a certain excitation-measurement mode, the boundary voltages of the body are sampled by
EIT hardware system, and then processed in EIT software system to output impedance information of
interest. In order to obtain a better understanding of the principle behind this diagram, the concepts
of forward and inverse problem are proposed in the rest of the section.

It is noted that electrical impedance can also be expressed by complex admittance γ [26, 27] as

γ = σ + iωε (1)

where ω is the angular frequency, σ the electrical conductivity, and ε the electric permittivity.
Theoretically, EIT is a combination of electrical conductivity tomography (ECT) and electrical
permittivity tomography (EPT). However, in many areas applying EIT (i.e., lung imaging), the real part
or the static state (ω = 0) of the admittance is more important than others due to additional pathological
information [28]. In order to simplify the problem, only the real part needs to be reconstructed.
Therefore, in a lot of literatures, the electrical impedance is simplified as electrical conductivity. We
also use this simplification in this paper to describe problems more easily.

2.1. Forward Problem

• Definition. Calculate the boundary voltage V at the measurement electrodes, when the the spatial
distribution of conductivity σ(r) of the objects and boundary conditions are known.
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• Analysis. The problem is equal to finding a unique solution of Laplace equation under Newman
boundary condition. Specially, based on Maxwell equation, Ohm law, and charge conservation, a Laplace
equation can be obtained as:

∇ · [σ(r)∇ϕ(r)] = 0, r ∈ Ω (2)
where ϕ is the electric potential, and Ω is the domain of interest. The boundary condition on electrodes
is

σ(r)
∂ϕ(r)
∂n

= j, r ∈ ∂Ω (3)

where j is the current density at the electrodes, and ∂Ω is the the boundary of the body Ω. In addition,
the current conservation equation

∫
∂Ω j = 0 needs to be satisfied from Gauss theorem, and zero potential

needs to be defined [20, 29, 30]. Due to the irregular boundary shape ∂Ω, it is difficult to get an analytical
solution to the above differential equation. Actually, the relationship among excitation, system reaction,
and measurement can be represented easily as

V = F(σ(r))|j (4)

where σ(r) is the conductivity distribution; V represents the theoretical boundary voltage; F is a
nonlinear function mapping from the conductivity distribution space to measurement space.
• Solver. Based on the modeling of electrodes, EIT solver can be classified into continuum model,
gap model, shunt model, and complete model [29, 31]. Regardless of the models used, F is always a
nonlinear function which is hard to express analytically. For this reason, some methods use Taylor’s
formula for linearization approximation [32–35], such as

V = V 0 + ΔV ≈ F(σ0)|j +
∂F(σ)|j

∂σ
|σ0 · Δσ = F(σ0)|j + J · (σ(r) − σ0) (5)

where σ0 is the background materials referred to as inclusions, the sensitivity matrix J, also frequently
referred to as the Jacobian matrix, and maps the conductivity distribution to measurement distribution.
When the electrode positions and current injection/measurement protocol are determined, J can be
computed with the finite element method (FEM) [32]. In addition to the above linear approximation
solver, another typical solver of the nonlinear function F is as follows [20, 36, 37], given through Green’s
Theorem and Method of Moments (MOM):

Current State Equation : J = ξ ·
(
Ei + GD · J

)
(6)

V oltage Data Equation : V = GS · J (7)

where ξ is defined as the contrast inclusion to represent σ(r) − σ0; Ei is the electric field when there
is no inclusion presented in the domain Ω; GD and GS are the linear transformation from induced
contrast current J space to induced contrast electric field space in Ω and scattering voltage space at
∂Ω, respectively, both of which can be computed with numerical software.

2.2. Inverse Problem

• Definition. Find the the spatial distribution of conductivity σ(r) of the objects if the boundary
conditions and the voltage V n at the measurement points are known.
• Analysis. From the perspective of Eq. (4), the inverse problem can be expressed as

σ(r) = F−1(V n)|j (8)

where V n is the measurement boundary voltage with noise different from the forward problem solver
V . According to Eq. (8), two major challenges are proposed.

Firstly, the mapping F is nonlinear, and it is difficult to find the inverse mapping F−1 analytically.
Secondly, the theoretical boundary voltage V regarded as the forward problem solver satisfies

an elliptic equation with Cauchy data [26], which means that the problem is ill-posed, and a small
perturbation (i.e., noise) in the measurement data V n will have a great impact on the solution σ(r).
• Solver. In recent years, a large number of scholars focus on inverse solver of EIT, and a lot of
state-of-art algorithms have been proposed. In the next section, we will review typical inverse solvers.



62 Zong, Wang, and Wei

3. ALGORITHM IMPLEMENTS

In the past decades, the EIT topic has been reviewed in some literatures [19, 26, 27, 38–40]. With the
development of both algorithms and hardware implementations, intensive progresses have been achieved
in EIT technique. For example, the learning algorithm becomes more and more attractive in the inverse
problem, where stunning success has been shown in reconstructed image quality, robustness, and speed
of solving EIT problems [20, 36, 41–46]. In this section, we will review and classify some classical
reconstruction algorithms and discuss possible improved methods.

3.1. Model-Based Approach

To date, two major models of EIT problem exist in model-based approach, pixel/voxel-based image
reconstruction and shape-based image reconstruction. The former is essentially the estimation of the
unknown conductivity distribution, while the latter is geometrical representation of scatters [47]. For
both kinds of modeling methods, expressing the inverse map F−1(V n) is laborious and even impossible,
thus an optimization criterion is typically chosen [38] such as minimizing a l2 norm loss functions,
minimizing a variational function, and maximum posteriori, usually derived from the forward problem.
Once a reasonable criterion is established, the remaining work is just to find a suitable algorithm to
solve the equation. The iterative algorithms are very suitable for solving the nonlinear inverse problem,
such as some Newton-type algorithms [23, 47], nonlinear conjugate gradient algorithms [20], and ADMM
optimization algorithm [48]. In addition, some non-iterative algorithms are also used to solve the model
of inverse problem, such as D-bar method [49] and factorization method [50]. It is noted that no matter
what kind of algorithm is used, the convergence of the objective function and the uniqueness of the
regularized solution should be warranted [26, 48].

According to whether the unknown σ is regarded as a random variable, we divide the model-based
approach into the deterministic method and stochastic method.
• Deterministic method
In this method, the unknown σ is regarded as the deterministic result of the electrodynamics principle.
Some classes of optimization criterion are proposed to obtain the unknown σ [26, 70]:
One is called Output Least squares methods, and the idea is to minimize the function of some l2 norm
with a regularizer that imposes a prior information into the solution, such as

σ̂(r) = arg min
σ

N∑
e=1

∥∥F (σ(r)) − V n,e

∥∥2 + R(σ(r)) (9)

where l2 norm term is the appellation of data-fidelity that penalizes the mismatch between the
forward solver V and the measurement value V n, and R(σ) is the regularizer that incorporates a prior
knowledge into the objective function. Some kinds of regularization term have been applied in EIT,
such as smoothing l2 norm regularization [51], total variation (TV) regularization that preserves the
edges [20, 52], sparsity regularization (SR) with sharp boundaries [53], and multiplicative regularization
(MR) which does not require to set an artificial parameter [23], where the regularization term always
plays a crucial role in the deterministic method. It is noted that there are several optimization criteria
using the Output Least Square method more than the form in Eq. (9), such as ROI constrained linear
difference reconstruction and nonlinear difference imaging approach [21].

Besides the Output Least squares methods, the Variational method, derived from variational
principles [54], is also regarded as an popular optimization criterion for deterministic method. This
algorithm reconstructs σ by minimizing

σ̂ = arg min
σ

N∑
e=1

∫
Ω

∣∣∣σ 1
2 (r)∇V n,e + σ− 1

2 (r)je

∣∣∣2 dr (10)

where Vn,e(x) and je are the e-th measurement and excitation value at ∂Ω.
In addition, an original optimization criterion called level set methods has been applied in EIT

algorithms recently, where numerous techniques such as shape derivatives and topological derivatives
have been included in it to analyse problems referring to shape optimization [70, 71].
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• Stochastic method
In this method, all unknowns are regarded as random quantities which follow the maximum likelihood
method, maximum a posteriori method or Bayesian method [38]. For example, optimization in Eq. (9)
is interpreted in a Bayes perspective to maximize the posterior [32]:

arg max
σ

p (σ | V n) � arg min
σ

[− log p (V n | σ) − λ log p(σ)
]

(11)

where the prior knowledge is clearly introduced into the formula with a specific probability p(σ) (for
example, Gaussian or Dirichlet distribution or flat distribution), and the probability p(V n | σ) is
generated from the forward solver with V n = V +n, in which n is the Gaussian noise vector. Eq. (11) is
used to give a description of the probabilistic distribution instead of deterministic values of the unknown
σ.

Deterministic method contains a clearer physical meaning, while stochastic method allows to
quantify the uncertainty in restoration and the statistical properties of data and noise. To contextualize
a clearer framework among model-based approaches, Table 1 summarizes the algorithms in the last
three years.

Table 1. A summary of algorithms applied in EIT in the last three years.

 Name Model Dimension 
Optimization 

criterion 
Optimization method Regularization Innovation 

D
et

er
m

in
is

ti
c 

m
et

ho
d 

Bases-Expansion Subspace 

Optimization Method (BE-

SOM) [20] 

Pixel/voxel-based 2D Least squares 
Polak-Ribière-Polyak (PRP) 

conjugate gradient 
total variation (TV) 

1.Introduce the concept of ICC 

2.Use Fourier bases to represent noise vector 

Discrete Exterior Calculus 

(DEC) method [23] 
Pixel/voxel-based 3D Least squares Gauss-Newton method 

multiplicative 

regularization (MR) 

1.Provides a unified formulation for the discrete operators in different dimensions. 

2.Compute efficiently, good reconstruction accuracy and anti-noise performance. 

Variational Space-Variant 

Model [48] 
Pixel/voxel-based 2D Variational 

ADMM-Based Numerical 

Optimization 
η-map 

1.Introduce non-convex penalty to promote sparsity 

2.Deal with the conductivity distributions of sharp and inhomogeneous variations 

size projection algorithm 

(SPA) [55] 
Pixel/voxel-based 2D Least squares 

Golden-section search (GS) 

method 
- 

1.Propose the concept of projection error 

2.The quantitative information of boundary is extracted by computing thresholding. 

Boolean operation [47] Shape-based 2D Least squares Gauss-Newton method Cholesky factorization 
1.The sharp features were better preserved than STDFs-based approach. 

2.Be tolerant to modeling errors caused by background inhomogeneity. 

Topological Derivative 

Method [71] 
Shape-based 2D Level set Topological Derivative method - 

1. Ensure stability and greater accuracy of reconstruction results compared to an 

algorithm based solely on deterministic methods. 

Real-time Dynamic 

Imaging Method for 

Flexible Boundary Sensor 

in Wearable EIT [35] 

Pixel/voxel-based 2D 
- 

(linear model) 
Back Projection (LBP) regularization matrix 

1. Consider the real-time changes of boundary in EIT. 

2. Provides a quantitative method to describe boundary changes. 

St
oc

ha
st

ic
 m

et
ho

d 

Structure-Aware 

Sparse Bayesian Learning 

(SA-SBL) [34] 

Pixel/voxel-based 2D MAP estimation SA-SBL algorithm prior p(σ)
1. Exploit the structured sparsity in the conductivity distribution. 

2. Achieve a higher spatial resolution. 

Multi-Task Structure-Aware 

Sparse 

Bayesian Learning (MT-

SA-SBL) [33] 

Pixel/voxel-based 2D MAP estimation MT-SA-SBL algorithm prior p(σ)

1. Frequency-difference EIT is addressed in the MMV SBL framework for the first 

time. 

2.Reduce the computational complexity compared with SA-SBL. 

 

Frequency Constrained 

Sparse Bayesian Learning 

(FC-SBL) [32] 

Pixel/voxel-based 2D MAP estimation FC-SBL algorithm prior p(σ)
1.Tackle the challenge of early diagnosis of acute stroke. 

2.Strong regularizing and parameter-free properties. 

3.2. Learning-Based Approach

An alternative approach for solving the EIT problem, which is always regarded as a regression problem,
is deep learning (DL). Although DL has not yet had a wise impression on EIT as it has had for computer
version field [40] that many researches have recently carried out. A brief review will be done in this
section, and more detailed literatures on this topic can be found in [38–40].

Different from the model-based approach that uses the objective function to express the inverse
mapping �

−1 in Eq. (3) implicitly, the goal of learning-based method is to write an explicit expression
of inverse mapping F−1 [38, 39] through the training stage, where the training strategy can be expressed
as

θ̂ = arg min
θ

∑
i

f
(
σi, Rθ

{
V n,i

})
+ g(θ) (12)

where Rθ is the neural network structure, and the parameter θ of the neural network framework can be
learned by Eq. (12).
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Once the parameters are determined, the inverse mapping F−1 can be expressed as Rθ

parametrically. After the training (learning) stage, the result σ(r) can be quickly predicted in the
test stage.

Although DNN can potentially be used to approximate the inverse mapping F−1 due to its
elasticity in representing high nonlinear functions as well as a data-driven regularization prior taken out
automatically from the data [41], the direct learning approach actually works weakly if the input of the
NN is set to the measured value, and the output is the value to be reconstructed as shown in Eq. (10).
In that case, the tasks for DNN are very weighty; the accuracy of prediction is highly dependent on the
training data, and only very simple impedance images are able to reconstruct [39]. In fact, in order to
combine the good aspects of both approaches, researchers have used the amalgamation of model-based
and learning-based approaches to solve the EIT problem. The emerging hybrid approach falls into two
categories as follows:

Firstly, the scheme is still based on established model-based approach, but exerts NNs to learn a
few components which are sometimes inflexible to deal with in the traditional framework. For example,
CNNs, which have a strong learning capability and high representational capacity [38, 40], have been
used to learn the noise-subspace components of contrast source in the subspace optimization method
(SOM) [20]. In [56], the supervised descent method (SDM) is used to learn the sensitive matrix J
as shown in Eq. (5). Compared with the traditional iterative method in model-based approach, SDM
lessens the time and memory cost notably, and the priori knowledge is assimilated in a more pliable
manner. Moreover, in [24], DL is used to optimize electrode positions for 2D EIT sensors.

Secondly, the physical knowledge and its mathematical realization are combined into the learning-
based framework, where the input of neural network or the internal architecture of neural network is
modified to avoid a black-box way. For example, in 2018, Dominant-Current Deep Learning Scheme
(DC-DLS) inspired by BE-SOM [20] was proposed, where a well-suited U-net architecture was chosen
and modified to solve EIT problems. The inputs are computed from induced contrast current (ICC),
rather than the measured voltage, and the output is a single image of conductivity contribution. As
a result, the reconstructed results by DC-DLS are capable of faster speed, higher quality of image
and stability. Moreover, in 2019, a fully-convolutional neural network for electrical impedance maps
(CNN-EIM) was presented [57], which brought the information of the symmetrical geometrical structure
of tomographic sensors to learning-based image reconstruction. The results show that it can achieve
higher quality for reconstruction and better generalization ability with a smaller number of learnable
parameters than the direct learning approaches. Further, Wei and Chen [36] proposed an induced-
current learning method (ICLM) to incorporate physical information into the deep learning method,
which was inspired from nonlinear inverse scattering solvers [58, 59]. More specifically, ICLM learns a
secondary source, i.e., induced contrast current (ICC), from the major part of ICC and the updated
electrical field that are different with prevailing deep learning schemes.

3.3. Other Approaches

In the above, the EIT problem is described as a regression problem to reconstruct the conductivity
distribution image. However, in some applications, a clear image is unnecessary, and it only requires to
classify the reconstructional results. In 2020, Agnelli et al. proposed a machine learning method in EIT
to classify stroke into either ischemic or hemorrhagic [25]. It is expected that in the future, there will
be further researches of algorithm to be explored, and the application fields of EIT technology may be
far more than what we see now.

4. HARDWARE IMPLEMENTS

Hardware system design is as fundamental as image reconstruction algorithm in EIT technology. More
precisely, it plays a crucial role in exciting and contacting the object under test directly. Also,
it is essential to both collecting and transmitting data. Due to the nonlinear and highly ill-posed
property in inverse problem, the image reconstruction quality is very sensitive to the error measured
by the physical instrument. Therefore, multifarious high-accuracy automatic measurement devices and
advanced measurement methods have been proposed in recent decades to reduce the measurement noise
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and inherent systematic errors. Meanwhile, the mode and speed of data transmission, convenience,
power consumption, and cost are also the key indicators in medical imaging, where EIT system is
always required to monitor the impedance changes of physiological and pathological states in real time.

This section will introduce the EIT system architecture and review the EIT systems built in recent
years.

4.1. Electrode

Electrodes, located at the front end of the high-sensitivity detection system, contact human body
directly. Any signals on the electrodes, including useful information, noise, artifact, contact impedance,
polarization voltage, etc., will be amplified and processed in the subsequent circuit and affect the image
reconstruction results finally [29]. Consequently, the design of electrode parameters is particularly
important. The main principles to select suitable electrodes are summarized as follows:
• Number. Too few electrodes will reduce the measurement sensitivity, and too many electrodes will
lessen the test speed. 16 electrodes are used in most systems.
• Position. It determines the amount of “high quality” information comprised in measurement
processes, the conditioning of the EIT inverse problem, and the reliability of EIT measurements [24].
As a whole, the position of electrodes will influence the quality of reconstruction further.
• Width. For most EIT system, the excitation points and measurement areas are shared on the same
electrodes. Therefore, the measuring “point” information may not be reflected by rule and line if the
size is large, and excessive contact impedance would be lead if too narrow.
• Material. The conductivity of the electrode material must be much higher than that of the measured
medium to ensure that the electrode surface is an equipotential surface.

Table 2. Four different types of excitation with superiority and inferiority.
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4.2. Excitation and Measurement

EIT is the inverse problem of determining the impedance in the interior of Ω, where it measures the
ratio between the electric field and electric current. Spontaneously, there are two methods to obtain the
electrical impedance. One method is to set stable voltage in the surface of object and then estimate the
impedance distribution by the current obtained through the object. The mainstream method in EIT
is to inject stable current into the object and estimate the impedance distribution by measuring the
boundary voltage, which is discussed in this brief. In any case, we need excitation part and measurement
part in EIT system.
• Excitation mode. We summarize four current injection modes [10, 17, 22, 60] in Table 2 with
advantages and disadvantages, respectively.
• Measurement mode. The measurement strategies are usually divided into the two-electrode and
four-electrode approaches. The current injection and voltage measurement are carried out from the
same pair of electrodes in the former approach, where the strategy can be easily carried out, but
the measurement values are always not accurate due to the contact impedance. As a comparison,
four-electrode measurement strategy can effectively reduce the influence of contact impedance. More
detailed researches on this topic can be found in [61, 62].

4.3. System Structure

According to different application fields, EIT systems have a single-source or multiple-source
architecture. The former can present the advantage of less hardware, which means small size, low
power consumption and cost, while the latter has fewer effects of stray capacitance [27] since it does not
require multiplexers to switch channels of source and also reduces measurement time as measurements
can be done in parallel.

Regardless of the difference, the basic block of an EIT system can be illustrated by Fig. 2. In
brief, an embedded controller (i.e., FPGA) is needed to control the current source to produce steady
current injected into object under test and A/D to sample the boundary voltage, and to send the data
to a remote computing device (i.e., personal computer) for imaging reconstruction. In addition, some
peripheral circuits need to be designed specially to adapt to different application fields. For example, in
the medical imaging field, the amplitude of current source (i.e., VCCS) is less than ±5mA (the safety
current of human body), and the center frequency is near low frequency (even a DC source, obtaining
conductance information only). Correspondingly, the cut-off frequency of amplifier and filter is also
needed to lay out reasonably.

Table 3. Some typical EIT systems in the recent decades.

System OXBACT-5 KIT4 EIT Soc EIT DAQ Wireless EIT Portable EIT SWEIT 3D EIT

Publication [64] [66] [4] [65] [68] [67] [63] [18]

Year 2008 2008 2014 2015 2016 2018 2019 2020

Geometry 2D/3D 2D/3D 2D 2D 2D 2D 2D 2D/3D

Number of

Electrodes
64 80 32 16 16 8 16 16

Source Multiple Multiple Single Single Single Single Single Single

Wearable × × √ × √ × × √

Controller FPGA
NI

PXI-8916
ASICs

NI

CompactRIO-

9024

TI

MSP430

Red

Pitaya

STEMlab

FPGA FPGA

Frequency

Range

1 kHz to

100 kHz
1 kHz–120 kHz

10, 50,

100, 200Hz
DC

10 kHz to

200 kHz
0–100 kHz

1 kHz to 1.1MHz

(support chirp)

Set at

125 kHz

Interface WLAN PXI-bus USB-OTG

10/100

base-t

Ethernet LAN

Bluetooth

v2.0

+ EDR

LAN/SCPI PCI-bus UART

Resolution

of ADC
14 bit 14 bit - 24 bit 12 bit - - 12 bit

Major

application

Distress and

chronic heart

failure (CHF)

Laboratory

Real-time lung

ventilation

monitoring

near-real-time

spatial

sensing

Human

thorax

image

Biomedical

applications

Bioimpedance

spectrum

(BIS)

Hand

Gesture

Recognition
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Figure 2. General block diagram of an EIT system.

Numerous EIT hardware systems have been applied in various fields or laboratories, and more
detailed information about EIT hardware could be found in the monograph by Rymarczyk [69]. We
summarize the characteristics of some typical EIT systems proposed recently in Table 3, where it can
be seen that EIT system has the trend of light weight, wearability, and low power consumption.

5. CONCLUSIONS

This paper reviews the innovation and improvement of EIT technology in algorithms and hardware
designs in recent years.
• Algorithm. Since EIT was proposed, the model-based approaches have been studied. Their
implementation highly depends on a certain optimization criterion and needs to use certain prior
knowledge for regularization. Usually, the reconstruction quality of non-iterative algorithm is poor, while
the iterative algorithm has a large cost of calculation. With the development of deep learning methods,
researchers have considered to apply the deep learning method in EIT image reconstruction algorithms,
transferring the computational burden to the learning stage. Once the neural network is well trained,
they can quickly and effectively generate accurate prediction. However, the learning method based on
black-box is not ideal for EIT problems. One idea is to use deep learning to solve some highly nonlinear
components under the framework of the model-based approach, which is always hard to deal with in
traditional methods. The other one is to design the input, output, and neural network architecture to
reduce the learning difficulty by utilizing some conclusions or techniques in model-based approaches.
Therefore, future researches in algorithms may focus more on how to combine the advantages of both
approaches to improve the quality of reconstruction. Further, different from model-based approaches,
the reliability of learning approaches is limited. Thus, the uncertainty quantification [72] of the deep
learning method in inversion will also be a future direction.
• Hardware. EIT equipments have tended to have higher precision, faster speed, more wearability,
and lower power consumptio. At the same time, more and more design details have been considered
by researchers, such as the influence of electrodes and excitation-measurement modes. For different
application areas, the structures of EIT hardware may be different.

In the future, besides biomedical imaging and industry non-destructive fields, it is expected that
EIT technology will find its applications in more fields, such as human-machine interaction.
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