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Zakia Hammouch

Received: 21 July 2022

Accepted: 9 September 2022

Published: 13 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Mathematical 

and Computational 

Applications

Review

A Review of Artificial Intelligence and Machine Learning for
Incident Detectors in Road Transport Systems
Samuel Olugbade 1, Stephen Ojo 2 , Agbotiname Lucky Imoize 3,4,* , Joseph Isabona 5 and Mathew O. Alaba 6

1 Department of Tourism and Hotel Management, Faculty of Social Sciences, Near East University,
Nicosia 99138, Northern Cyprus, Turkey

2 Department of Electrical and Computer Engineering, College of Engineering, Anderson University,
Anderson, SC 29621, USA

3 Department of Electrical and Electronics Engineering, Faculty of Engineering, University of Lagos,
Lagos 100213, Nigeria

4 Department of Electrical Engineering and Information Technology, Institute of Digital Communication,
Ruhr University, 44801 Bochum, Germany

5 Department of Physics, Federal University Lokoja, Lokoja 260101, Nigeria
6 Department of Biomedical Engineering, University of South Dakota, Sioux, SD 57069, USA
* Correspondence: aimoize@unilag.edu.ng

Abstract: Road transport is the most prone to accidents, resulting in significant fatalities and injuries.
It also faces a plethora of never-ending problems, such as the frequent loss of lives and valuables
during an accident. Appropriate actions need to be taken to address these problems, such as the
establishment of an automatic incident detection system using artificial intelligence and machine
learning. This article explores the overview of artificial intelligence and machine learning in facilitat-
ing automatic incident detector systems to decrease road accidents. The study examines the critical
problems and potential remedies for reducing road traffic accidents and the application of artificial
intelligence and machine learning in road transportation systems. More, new, and emerging trends
that reduce frequent accidents in the transportation sector are discussed extensively. Specifically, the
study organized the following sub-topics: an incident detector with machine learning and artificial
intelligence and road management with machine learning and artificial intelligence. Additionally,
safety is the primary concern of road transport; the internet of vehicles and vehicle ad hoc networks,
including the use of wireless communication technologies such as 5G wireless networks and the
use of machine learning and artificial intelligence for road transportation systems planning, are
elaborated. Key findings from the review indicate that route optimization, cargo volume forecast-
ing, predictive fleet maintenance, real-time vehicle tracking, and traffic management are critical to
safeguarding road transportation systems. Finally, the paper summarizes the challenges facing the
application of artificial intelligence in road transport systems, highlights the research trends, identifies
the unresolved questions, and highlights the essential research takeaways. The work can serve as
reference material for road transport system planning and management.

Keywords: artificial intelligence; machine learning; incident detector; road transport systems; traffic
management; automatic incident detection

1. Introduction

One of the most efficient methods for predicting what will happen on the road is
the implementation of an automatic incident detection (AID) system, which obtains its
feed from the CCTV installed throughout road networks to monitor traffic flow and detect
incidents or traffic bottlenecks. In the monitoring room, the system supports the human
operator. Modern signal controllers and creative applications of video-based vehicle
identification have been the main focuses of ITS implementation on arterial highways. As
technology advances quickly, arterial ITS components are becoming more frequently used
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and less expensive [1]. Continuously scanning the highway network for issues and acting
swiftly to lessen their effects are necessary for maintaining traffic flow. This procedure
can become more effective and efficient because of recent developments in computational
intelligence, embedded systems, and wireless communication technologies [2].

Typically, automatic or non-automatic approaches are used by traffic management sys-
tems to detect incidents. Automatic incident detection (AID) techniques are more frequently
used; they use a range of sensors and procedures such as image processing. In addition,
detector/sensor-based event detection algorithms and vehicle probes which evaluate traffic
data to identify incidents quickly are studied [3]. It takes time to integrate new technol-
ogy. The transportation industry is one area where disruption is already occurring due
to artificial intelligence and other emerging technologies. In his book Innovators Dilemma,
Harvard management professor Clayton Christensen introduced the concept of disruptive
technology. Technology disruption creates new product opportunity windows. It may
make a piece of technology available to low-income markets that would not otherwise
have it. Disruptive technologies can affect the education and healthcare sectors [4]. In
other words, understanding the process from inspiration to AI/ML technology may be
conducted by looking at the route for an AMI initiative. Establishing a structure and plat-
form for bottom-up, cross-functional intent evaluations is essential to choosing which new
AI/ML technology to develop. An innovative AI/ML technology can require a disruptive
approach, which frequently stresses characteristics that are complimentary to those of
existing AI/ML technologies. A new AI/ML technology will frequently perform better
than an old one; as a result, the existing AI/ML technology will be disrupted [5].

Analyzing traffic patterns to decrease road accidents and optimizing sailing routes
to cut emissions are two examples of how artificial intelligence (AI) opens up the choices
for making transportation safer, more dependable, more efficient, and cleaner [6]. This
technology helps in the obtaining of pertinent information on their effects and of new
measures to illustrate this procedure and validate the benefits of new technologies in
transportation [7].

According to results from previous studies, incident detection algorithms can be di-
vided into five main categories based on how they analyze data throughout their operations.
They are the following: comparative algorithms, statistical algorithms, time series- and
filtering-based algorithms, and traffic theory-based algorithms [8,9]. Traffic issues such
as parking, speeding, and congestion are examined based on the spatiotemporal map’s
dispersion and the creation state of the trajectory. According to experimental findings, the
proposed method significantly speeds up vehicle detection and tracking and produces
high MAP, MOTA, and MOTP indicators [10]. This paper presents an overview of inci-
dent detector applications in road transportation systems, utilizing machine learning and
artificial intelligence.

Artificial intelligence and machine learning play a significant role in predicting road
system incidents. The study aims to address the constant cause of road accidents and the
application of AI and ML to curb the cause of this growing menace.

The primary motivations of this study are listed below:

• To better understand the various applications of artificial intelligence and machine
learning as related to the incident detectors in the road system.

• Despite various research concerns with incident detectors by researchers, various
challenges and concerns about road transport systems still need to be investigated.

• The need to study the impacts of 5G and emerging 6G technologies on road transport
systems is of the utmost importance.

• A wide range of wireless communication with the internet of vehicles (IOV) and
different underlying networks, such as real-time vehicle tracking, traffic management,
and other networks, needs to be investigated in order to be properly deployed for
effective road management.

The significance of artificial intelligence and machine learning to evaluate the incident
detector by applying it to road systems is crucial to avoid death and injuries. Therefore,
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conducting this study to address the issue is of the utmost importance as it will enhance
the knowledge of the underlying mechanisms in the application AI and ML and will not
forget the challenges that may occur. The layout of the paper is given in Figure 1.
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The contribution of this paper is as follows:

• The study contributed by extensively reviewing the literature to search for the effect
of ML and AI on the incident detector in road transport systems.

• The study investigates the key areas of the usability of artificial intelligence and
machine learning in road transport systems, such as the internet of vehicles, the ad
hoc vehicle network, and wireless communication with the internet of vehicles, 5th
generation and 6th generation.

• The study examines real-time vehicle tracking, which is vital in incident detector
systems in road systems. This paper further summarizes the challenges facing the
application of artificial intelligence in road transport systems.

The remaining sections of this article are structured as follows: Section 1 presents
the study’s introduction, Section 2 presents an overview of the artificial intelligence and
machine learning in the road transport system, and Section 3 provides examples of how
these technologies are used in actual road transport systems. We outline current trends,
potential paths for future research, and key takeaways in Section 4. Finally, Section 5
provides the conclusion of the paper.

2. Overview of Artificial Intelligence and Machine Learning in Road Transport Systems

Artificial intelligence was effectively integrated to continuously monitor the orbital
environment as deep space exploration developed; it was utterly reliant on human inter-
action for decisions relating to road transportation [11]. The reliability and effectiveness
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of artificial intelligence (AI) systems, such as the artificial neural network (ANN), for re-
ducing or eliminating traffic volume in non-autonomous vehicles has been considered [12].
Researchers studying artificial intelligence look at effective tactics to achieve intelligent
behavior. However, if a program or technique for artificial intelligence is widely utilized,
it is no longer considered artificial intelligence. Examples include time sharing, graphi-
cal user interfaces, computer games, object-oriented programming, personal computers,
email, hypertext, and even software agents. Symbolic programming languages (such as
Lisp, Prolog, and Scheme) and symbolic math systems (such as Mathematical) are also
examples [13]. It has been noted that academic research on robotics and the applications of
artificial intelligence are growing daily, but the studies examine the position and importance
of robotic and artificial intelligence technologies in the future [14]. Machines have long
since largely replaced human labor in ways that customers can understand [15].

The goal of human computing, as promoted and demonstrated, is to turn smart
surroundings and computing equipment into social companions for those using them or
living in them [16]; consequently, the following means of sorting the road transport system
were specifically taken into account: automobiles that have been rented; automobiles owned
by friends or family; caravans and motor homes; motorcycles, scooters, and mopeds; and
other vehicles (vans, lorries, trucks, etc.). Coaches and buses are publicly used, and so,
they do not fall into the private road transportation used by tourists on their own. At
the same time, the “other” group primarily relates to worker business travel and similar
means of transport [17]. Machine learning is a science that is expanding quickly and
significantly impacts daily life. A framework must be established for machine learning
to be rapidly incorporated into the road transportation system [18]. Depending on the
training data, machine learning techniques are determined by various training data and
can be classified as supervised classification or unsupervised clustering. Unsupervised
machine learning algorithms evaluate the similarity of data to determine whether or not
they should be classified collectively. Using their qualities, supervised machine learning
systems categorize input data and link them to the intended outputs [19,20]. The limitations
of some of the associated reviews and the contributions of the current paper are highlighted
in Table 1.

Table 1. Limitations of some associated reviews and contributions.

Ref. Study Focus Limitations Contributions

[21]

The authors examine, compare,
contrast, and assess deep learning
and machine learning techniques
for predicting traffic flow for
autonomous vehicles and how to
carry out traffic flow planning
using these methods.

Who dealt with the issue that
would develop when the prediction
timescales widened? The current
approaches are still inadequate as
simulating stochastic traffic flow
aspects is challenging.

This study will highlight the numerous
applications for structure optimization,
machine learning, and artificial
intelligence.
This study proves the efficacy of the
journey time prediction model-specific
gradient-boosting decision tree (GBDT).

[22]

The article discusses how the
internet of things (IoT) is being
utilized to produce SMART
vehicles; it advances transportation
technology and reduces the
frequency of road incidents caused
by microsleep that result in serious
accidents.

In order to correct this and make it
better, research must be integrated
with IoT due to the distinctive
properties of internet protocol that
IoT employs, such as recognition,
control, and data transfer to people
and databases.

Additionally, this study uses ground
truth as its classification model and
may use a driver monitoring system
(DMS) to determine an automobile’s
manufacturing capacity.

[23]
Creates accurate intrusion detection
system models using artificial
intelligence techniques.

The task can be expanded by
considering the classifiers for
multiclass classification and solely
considering the crucial qualities for
intrusion detection.

In F1 score and accuracy, the results
show that the random forest classifier
outperforms other classifiers for the
parameters and dataset under
consideration. The NSL-KDD dataset is
used to test algorithms.
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Table 1. Cont.

Ref. Study Focus Limitations Contributions

[24]

The author comprehensively
analyzes cutting-edge technology
for constructing a three-tier solution
classification in machine learning to
study the planning and distribution
based on real-time traffic density.

The ITS applications were limited.
The future research is not addressed
in depth.

The first tier has numerous
technologies and techniques for
gathering traffic statistics. The second
tier concerns how accurate the machine
learning algorithms are as they form. In
the third tier, numerous traffic planning
strategies are explored.

[25]

In this study, traffic behavior is
analyzed, and any vehicles that
travel differently from the flow of
traffic are considered for potential
accidents.

Due to roadway layout,
intersections, speed restrictions,
and vehicle size, there is a limited
mobility pattern.

The results demonstrated that accident
detection using clustering techniques is
successful.
Accident detection will help prevent
additional collisions and assist the
authorities in reopening a road segment
to traffic.

[26]

The internet of vehicles (IoV) is a
method for intervehicle
communication used in intelligent
transportation. It enhances traffic
management programs and services
to ensure road safety.

When building applications and
services, it is important to consider
cost, performance, implementation
complexity, and timing. A major
difficulty is the raising of QoS
standards for IoV services.

The control and development of smart
cities will benefit from the current
study. According to the findings of this
research, performance is evaluated by
services and applications 34% of the
time. Safety and data correctness is
evaluated 13% of the time, and security
is evaluated 13% of the time in the
selected papers.

[27]

This article explores a shared vision
among participants along the value
chain regarding the use of radio
location and sensing for traffic
safety in the 5G ecosystem.

Experimentation and extensive
measurements are required to
validate the radio location and
sensing used for traffic safety in the
5G ecosystem.

This study presents a comprehensive
analysis of the performance
requirements, enabling technologies in
5G and beyond and the critical
architectural characteristics that make it
possible for the sensing and location
data to be collected, processed, and
efficiently shared in the network.
In 5G, either the network or the UE can
position itself (with network assistance)
(network-based). Without the help of
the network, the UE can localize itself
in RAT-independent positioning (such
as GNSS/RTK-GNSS) (standalone).

[28]

In order to extract similar traffic
patterns over time for accurate and
successful short-term traffic flow
prediction in massive IoT, this work
provides a large data-driven study
of the non-parametric model
supported by 6G. The model’s main
foundation is time-aware LSH
(Locality-Sensitive Hashing).

Because only a tiny percentage of
the sampled data is used to
anticipate traffic flow, the outcome
is not sufficiently accurate.

These sensors will gather all the
real-time traffic data, which will then
be transmitted to the cloud for the
processing and utilizing of the
cutting-edge 6G technology to
guarantee the efficiency, stability, and
integrity of the massively distributed
data transfer. The implementation of
the 6G-enabled short-term traffic flow
forecasting is a viable technique to give
traffic managers strategies to detect
flow breakdowns in the future,
according to the combined data
collected from all the sensors.

2.1. Incident Detectors with Artificial Intelligence and Machine Learning

Early in the 1970s, the first event detection algorithms were created, and the work on
them is still ongoing. The suggested method employs sensors to monitor accidents. With
the help of the force and impact data collected from car wrecks, the severity of the accidents
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is assessed using machine learning methods such as k-means clustering and support vector
machine (SVM) classification under reinforcement learning [29]. Smartphones, vehicular
ad hoc networks, and GSM and GPS technologies are used, and among these detection
methods are mobile applications. Every vehicle must be equipped with an automatic road
accident detection and information communication system [30] as they are typically not
constrained by energy and space restrictions. Detecting devices with high processing power
and high cost and weight, such as GPS, chemical spill detectors, video cameras, vibration
sensors, sound detectors, etc., can be installed in vehicles [25]. Based on multimodal in-
vehicle sensors, we recommend a machine learning framework for automatically detecting
car accidents. The study uses cutting-edge feature extraction techniques and common
automobile sensors to identify real-world driving collisions [31]. Artificial neural network
(ANN) models are another type of detection technology. These are the most popular
artificial intelligence algorithms, but they have not been as successful as their more modern
support vector machine counterparts. Support vector machine (SVM) models have greater
learning and prediction potential than ANN models because they may produce results
more quickly and offer the modeler more options [8,32].

One way to make contracts more precise is to insist on the specific use of new technol-
ogy, especially that which comes with new vehicles [33]. The system must be reactive in the
first place (detecting actual abnormal congestion rather than possible abnormal congestion),
not predictive, and it must only be based on recently deployed on-street equipment. The
second principle states that the algorithm must be able to run by utilizing only the U06
messages from a single detector [34]. The thorough examination of each vehicle’s behavior
at crossings should serve as the foundation for automatic monitoring systems rather than
the current practice of using global flow analysis. Each vehicle should be recognized
by the systems, which should also be able to monitor how it behaves and to identify
potentially harmful scenarios or the circumstances that precede them [35]. As a result,
the techniques that use the relevant data from traffic flow metrics and unique algorithms
to process this data to detect issues automatically are the most effective. However, new
information-gathering techniques and a sufficient detector saturation of the road network
are required [36].

Over the past few years, as shown in Figure 2, accident detection and alert systems
have been the subject of in-depth research. A telematics model with the main module,
the CCTV system, which intends to record the accident scene and provide the position
information to rescue systems through GPS, has been proposed by research that adds to
the field [37].
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2.2. Road Management Using Artificial Intelligence/Machine Learning

The dynamic nature of vehicle networks and their underlying heterogeneous struc-
ture introduce additional requirements for networking algorithms that deal with network
control and resource allocation. While network control works with the handover, routing,
and offloading of network traffic, network resource allocation deals with the spectrum,
transmission power, and computer resources. Traditional approaches cannot detect the
underlying patterns in in-vehicle networks, but the use of ML methods in this field of vehic-
ular networking is coupled with several enabling technologies [38]. Developing a message
queue telemetry-based traffic congestion monitoring system is suggested for looking at
traffic congestion trends (MQTT). The benefits of an infrastructure-based approach and the
MQTT techniques are combined in the proposed system, and the adaptability to support
the integration of various types of sensors for traffic flow observation in low-bandwidth
and high-latency vehicular networks environments is offered [37].

A country’s ability to maintain economic growth and development is greatly in-
fluenced by its transportation infrastructure. People wish to travel to more and more
destinations in a shorter time due to their hectic lifestyles and limited free time [39].

Relevance analysis would be programmed into the software, showing the sample
picture of road traffic management artificial intelligence and machine learning, which will
be executed if the database does not contain any similar circumstances [40].

2.3. Artificial Intelligence and Machine Learning and Deep Leaning Approaches in Automated
Incident Detection

Artificial intelligence is an intelligent machine that emulates or imitates how a human
behaves; it encompasses learning concepts and obtains an understanding of those concepts
and uses them to engage humans in dialogue. AI contains machine learning and deep
learning. Machine learning is a subset of artificial intelligence; it allows data to be fed
into the machine for it to learn, and in [41], it is postulated that machine learning offers a
flexible network architecture and large data and path loss forecasts. Radial basis function
(RBF) and support vector regression (SVR) models provide path loss estimates in the
examined settings. Multiple input parameters might be processed by the SVR model
without complicating the network design. Deep learning is a bigger part that represents
data and is focused on the neural network; it is also a computing system that allows the
system to identify objects.

There are several approaches to detecting road traffic accidents according to [42].
Multiple sub-sections (links) of the target corridor are separated by the same unit of
distance. Consider comparing the journey times of a probe vehicle at two successive
links. The travel time of the link is longer than that of the downstream link if there is
congestion in the upstream link. The bottleneck is located using both absolute and relative
disparities in the probe vehicle’s connection trip timings. To detect foreground regions in
the videos with a semi-stationary background, the technique of adaptive non-parametric
kernel density estimation (AKDE) is identified as the baseline system. AKDE addresses
both scene independence and the multi-modality of the backdrop. The advantages of AKDE
are caused by the fact that individual pixels can have distinct and adaptive thresholds, and
thus, a global threshold is not necessary for the pixels in a video scene. The system can
consistently operate with varied video scenarios without changing settings [43].

Another detecting device is the installed automatic device, such as CCTVs that run
continuously and alert action when necessary. In [44], the Haar-like algorithm and the
AdaBoost algorithm are discussed. The primary function of the Haar-like algorithm is to
extract details about certain object features, such as edges, contours, and intensity gradients.
This may be accomplished by adjusting the size, scale, location, and other characteristics
of the Haar-like temple. Integral pictures make it relatively simple to apply and compute
this feature, and the AdaBoost algorithm utilizing a sliding window system allows for
detection. During this procedure, a sub-window is moved over the screen to identify any
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item and determine whether it is a vehicle. However, this technique requires a lot of time
for sliding and detection.

In order to identify the occurrence of accidents, the study in [45] compares the perfor-
mance of two well-known machine learning models, support vector machine (SVM) and
probabilistic neural network (PNN). As a result, using traffic condition data after the actual
occurrence, several models are trained and tested for each machine learning technique
in order to ensure the quickest possible detection of accidents. A Haar-like feature is
comparable to a CNN (convolutional neural network) kernel. An input layer, an output
layer, and several hidden layers make up a CNN. It is the machine learning neural network
model that is mostly utilized for issues with picture categorization.

Furthermore, there is a new technique for ground vehicles to estimate their velocity.
Using video sequences captured by a fixed-mounted camera, the challenge at hand is to
automatically estimate vehicle speed. Using an optical flow technique, the motion of the
vehicle is recognized and tracked over the frames [46].

2.4. Road Safety Modeling

Road safety modeling, a practical method for promoting safe mobility, enables the con-
struction of collision prediction models (CPM) and the investigation of factors impacting
crash occurrence. This modeling has historically employed statistical techniques, despite
the approach’s limitations (certain assumptions and the construction of the link functions in
advance) being acknowledged. This development offers a chance to look into alternatives,
including applying machine learning (ML) approaches [47], identifying three areas where
AI controllers have the greatest potential to reduce congestion and increase safety, and
considering fully or partially autonomous driving, intersection management, and road
pricing for optimized traffic flow [48]. The sector’s ongoing objective is to increase trans-
portation safety, especially road transportation, which is the most popular. Having fewer
fatalities from traffic accidents benefits society [49], with all modern vehicles equipped with
electronic aides to facilitate safety. Assistance can keep you on the road at a safe distance
from the automobile in front of you [5].

Until recently, the main objective in improving positioning methods and architectures
has been accuracy, which is connected to the estimation error for the absolute or relative
position with regard to the genuine position. The position estimate related to other network
components or UEs is referred to as “relative positioning” [27]. Consequently, It will not be
long before AI contributes more to enhancing traffic safety. Improved CNN, computational
capacity, unsupervised learning, pattern recognition, and more robust computer hardware
will lead to better autonomous driving [50].

2.5. Advance Approaches for Incident Detectors of Road Traffic Accidents Using AI and ML
2.5.1. Incident Detectors through In-Vehicle Equipment

Equipment installed in vehicles is crucial for detecting incidents and preventing users
from irregular use. For example, installing a speed limiter is a clear way to regulate speed
and prevent traffic accidents. Speed restrictions must be in line with the intended speed
of the road to be successful. Speed is a major cause of accidents. Lowering the risks put
forward by drivers in their choice of speed with speed restrictions serves the primary
objective of improving safety. Tachographs, or speed logging devices, are examples of
in-vehicle equipment [51]. Technologies for detecting and monitoring vehicles are being
developed to deliver better data on speed monitoring, traffic counting, presence detection,
headway measuring, and vehicle categorization [52], and several other characteristics,
including symmetry, color, edge (horizontal/vertical), shadow, etc., have been employed as
crucial signals for vehicle recognition because of the rectangular shape of vehicles [53].

The equipment employed in vehicles varies in classification, and the accuracy of
incident detectors differs; the findings indicate that the success rate of the length-based
classification of sedans, passenger trucks/SUVs, motorcycles, buses, small commercial
trucks, and big commercial trucks is poor. With an extremely low classification rate between
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sport utility vehicles (SUVs) and small commercial vehicles, their multi-class support vector
machine (SVM) classifier has an average accuracy of 74%. However, the outcome of the
classification of vehicles by make and model and subjection to video resolution has not
been provided [54], and based on the algorithm’s comparatively greater practical value, a
kind of magnetoresistive traffic flow collecting equipment with low power consumption
and compact size was created. It uses the vehicle speed detection algorithm of micro-
magnetoresistive vehicle detection equipment for accuracy [55]. The vehicle equipment
necessary in road safety has seen a significant evolution with the introduction of active
safety systems such as the anti-lock braking system, the traction control system, the stability
control system, etc. Vehicle active safety systems are those that aim to prevent collisions or
lower the likelihood of having one in the automobile industry [56].

In the automobile industry, on-road vehicle detection has always been the main
emphasis. The inclusion of the collision avoidance system (CAS) in current automobiles
may lower the accident rate by rapidly and effectively recognizing all types of vehicles
and alerting drivers to the possibility of an accident. The review of sensors and methods
for tracking and detecting vehicles for the collision avoidance system (CAS), an auto-
mobile safety system, is intended to lessen the likelihood of an accident. It may gather
information on on-road traffic using various sensors (such as radar, laser, and cameras)
and then identify and categorize cars. When a collision is foreseen, these devices either
warn the driver or respond automatically without the driver’s involvement (by braking
or steering or both) [57]. What may pose a challenge for this in-vehicle equipment is the
managing of the maintenance of a commercial fleet; this is an active new application field
for mining and utilizing vehicle on-board sensor data for vehicle problem diagnosis and
failure prediction [58].

Another type of vehicle equipment is the two loop detector that makes up the dual
loop detectors. It has the ability to assess vehicle speed and length depending on the set
longitudinal distance between the two loop detectors; this is a fundamental advantage
of dual loop detectors over single loop detectors. Specifically, the speed of the vehicle
is determined by calculating the distance travelled in a certain amount of time between
two longitudinally positioned magnetic sensors; different machine learning classifiers,
including the decision tree (DT), support vector machine (SVM), k-nearest neighbor (kNN),
and naive Bayes classifier, are used to classify vehicles using the vehicle magnetic length
as the primary feature (NBC) [59]. The intrusion detection system IDS is also a vital
method that is frequently used in information and communication technologies (ICT) to
monitor and analyze local and/or network activities to spot attacks or other inappropriate
behavior when road users and drivers try to distort and mutilate data that may cause
a traffic accident. IDS reveals such violations of the stated traffic and security policy by
identifying aberrant patterns whenever potentially suspicious behavior takes place (such
as the transmission of unusually large amounts of data) [60].

2.5.2. Incident Detector through Image Processing at Intersections

This provides a method for incident detection that takes advantage of categorized
vehicle interactions. A video-based automated incident detection at intersections (AIDI)
system is built around this algorithm. Both in a driving simulator and in actual traffic, the
AIDI system’s effectiveness was successfully tested. Because the rate of detection depends
on the particular method used, only the most efficient methods should be used. These
include reports by witnesses calling rescue services on a mobile phone, information from
CCTV cameras, incident detection using detection systems (generally using inductive loops
or video processing techniques), incident detection using monitoring systems in vehicles
(e.g., eCall), or traffic incident detection by specialized patrols supervising individual
sections of the road (generally on dual carriageways) [61].

Intelligent transportation systems must effectively and reliably recognize vehicles
from photos and videos. New uses for on-road vehicle identification algorithms have



Math. Comput. Appl. 2022, 27, 77 10 of 24

been made possible by the advancement of computer vision methods and the ensuing
accessibility of the video image data [53].

Ref. [62], the usage of an omnidirectional (fisheye) camera for junction surveillance is
explained. We offer a methodology for incident detection that includes the following three
steps: (1) identify cars in the field of view of the camera (FoV); (2) monitor the cars entering
and leaving the field of view; and (3) compare their trajectory with the expected path and
look for any anomalies.

The “hybrid” approach uses two distinct models: (1) the rapid video-based vehicle
identification System (RVIS), an image processing technique-based tool that attempts to
identify the number of vehicle axles and is particularly applicable to light traffic conditions;
and (2) VEVID, a semi-automatic system that is particularly applicable to heavy traffic
conditions [54].

2.5.3. Incident Detector through Deep Spatio-Temporal Representation and
Stacked Autoencoder

The prevention of accidents is essential to traffic safety. Numerous users experience
the effects of traffic accidents, including delays, gridlock, air pollution, and other nega-
tive outcomes. Long short-term memory (LSTM) and gated recurrent units (GRUs), two
cutting-edge deep learning approaches, are used in this investigation to identify traffic inci-
dents [63]. Ref. [64], a basic one-hidden-layer neural network with unsupervised learning
is described; using the back-propagation technique is a stacked denoising autoencoder
(SDAE). By reducing the degree of distortion in reconstructed samples, an SDAE aims to
discover latent patterns from partly damaged data by converting them into a compressed
representation. To create the deep representation for the spatio-temporal video volumes
STVVs from the previously unseen traffic video, a separately stacked denoising autoencoder
(SDAE) trained over STVVs from the previously viewed regular traffic video is employed,
one for each representation. Based on the reconstruction error and the likelihood of the
deep representations, for which the outlier score is produced using the one-class SVM, the
probability of an accident is calculated. The ultimate determination of whether to classify
an occurrence as an accident is computed using all of these individual ratings (also known
as local scores). Two procedures make up the denoising autoencoder:

Encoding: The encoder creates a hidden representation by using nonlinear mapping
from the partially damaged input.

Decoding: The decoder is used to turn the hidden representation into a reconstructed
representation; in addition, the three categories developed for incident detection are the
modeling of patterns of traffic movement, vehicle activity analysis, and automobile interac-
tion modeling.

Deep learning techniques often succeed brilliantly, which accounts for their excep-
tional effectiveness in expressing visual data. To identify accidents during this stage, we
employ deep learning. We demonstrate an unsupervised deep learning system that can au-
tomatically identify distinguishing elements in security footage for accident detection [65].
Ref. [66], it is shown that the stack denoising convolutional autoencoder differs from stack
denoising autoencoder in that it uses convolutional connections rather than completely
linked connections between layers. In general, SDCAE’s prediction impact is unquestion-
ably superior to SDAE’s. The primary reason is that the convolutional autoencoder, as
opposed to the autoencoder itself, is better able to manage the spatial dependence on
traffic flows.

2.5.4. Incident Detector through the Internet of Vehicles

IoT equipment has been created that can detect an accident and gather all the accident-
related data, including position, pressure, gravitational force, speed, and more, and send
it to the cloud. A deep learning (DL) model is utilized in the cloud to evaluate the IoT
module’s output and activate the rescue module when the accident is recognized [67].
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If this system is to be used, it must first locate the accident and then contact emergency
personnel. Sensors make it possible to identify vehicle accidents.

Implementing intelligent traffic management, intelligent dynamic information services,
and intelligent vehicle control is one frequent application of the internet of things in
the field of transportation systems [68]. To withstand the challenging communication
environment within and/or outside the car and to provide effective and trustworthy
wireless communications, the provision of vehicle-to-everything (V2X) connectivity as an
alternative to more expensive radio interfaces, such as Wi-Fi, 3G/4G-TE, and DSRC/WAVE,
is one way to reduce costs [69].

The internet of vehicles (IoVs) network has numerous difficulties, including collisions
caused by covert terminals and interference from concurrently transmitting vehicles [70].
The idea of the internet of vehicles (loV) can be used for all forms of transportation,
significantly altering how information is exchanged between them [71].

2.5.5. Incident Detector through Vehicle Ad Hoc Networks

The majority of systems designed for VANET incident detection rely on individual
cars to infer the existence of an incident from reports from other vehicles [72]. To construct a
network with a large coverage area, a technique called a vehicular ad hoc network (VANET)
uses automobiles as wireless routers or mobile nodes. Therefore, understanding the mobil-
ity model representing the actual behavior of vehicle traffic is necessary before beginning
the simulation. To properly model vehicular mobility, we must differentiate between macro-
and micro-mobility descriptions [69]. VANET transforms each participating vehicle into
a router or wireless node, enabling vehicles up to 300 m distant to join a vast network.
Automobiles can link to other cars and connect vehicles to form a mobile internetwork
when they are outside of the signal range and out of the network [73]. IoT is a key net-
work in VANET that links all physical objects and entities to the internet and transmits
data without involving humans. IoT enables connectivity in the form of objects-to-objects
(vehicle-2-infrastructure) and things-to-humans (vehicle-2-human). IoT uses cutting-edge
communication technologies to make devices smarter, reducing the consequences of popu-
lation expansion, climate change, human mobility, and environmental changes. A potential
initiative in intelligent transportation is VANET. It illustrates how MANET networks can
support internal management and inter-node communication without relying on external
infrastructure [74].

First, topology-based routing techniques apply network link information to determine
the best route for packet forwarding. These routing protocols can also be split into hy-
brid, reactive, and proactive routing. In order to choose the subsequent forwarding hops,
location-based routing systems communicate geographic position data with nearby nodes
obtained using GPS sensors. Third, for cluster-based routing protocols, a node is chosen
as the cluster head in each cluster, which manages communications inside and between
clusters. Direct links connect nodes inside a cluster, and cluster heads handle communica-
tions between clusters. Fourth, VANETs typically share information via broadcast routing
techniques. The fifth is the geocast routing protocol, which sends packets from a source to
every node in a specific area. This routing strategy is advantageous for numerous VANET
applications [75].

In order to exchange information for purposes related to safety, comfort, or entertain-
ment, vehicles are equipped with on-board Units (OBUs), which enable them to communi-
cate with their surroundings (including other vehicles, roadside units (RSUs), people, and
sensors).VANET is a terrestrial networking paradigm [76].

2.5.6. Incident Detector through Wireless Communications with the Internet of Vehicles

In recent years, extensive research has been conducted on the effectiveness of wireless
communication systems, either under the influence of small- and large-scale fading or
their composite fading [77]. The freeway accident log includes local road traffic data from
15,000 loop detectors and tweets about accidents. Over 80% of the tweets tied to accidents
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can be correlated to nearby abnormal traffic data, according to the accident log, which can
detect roughly 66% of accident-related tweets [78].

Incident detection by wire communication is crucial but some require data transfer
from a vehicle to an infrastructure (V2I), while others are vehicle-to-vehicle (V2V). For three
basic reasons, wireless communication for automobiles is complicated. Firstly, there are
a lot of surfaces that reflect radio waves in the environment where automobiles operate,
particularly in cities. Secondly, different types of communication disruption are caused
by the large variety of speeds that cars drive at. Finally, adjacent transmitters and sources
within cars frequently cause radio frequency (RF) interference [79].

Figure 3 demonstrates how vehicular ad hoc networks (VANETs) enable wireless
communication between vehicle-to-vehicle (V2V) and vehicle-to-fixed infrastructure (V2FI)
in this situation (V2I). Additionally, by connecting to the city’s roadside units (RSUs) via
multi-hop V2V communication, VANET routing protocols can lessen the need for fixed
infrastructure [80].
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This study created the HNMI to measure the networks of various suppliers simulta-
neously. We find that the lone wireless network struggles to provide the internet access
demands in the high-speed mobility scenario. Heterogeneous network utilization in its
entirety provides several benefits [81]. Initial networks are compressed, using network
quantization by lowering the bit count for each weight parameter. Quantization utilizes
low-precision data to represent the original high-precision data by converting 32-bit floating-
point data into 16-bit floating-point data, 16-bit fixed-point data, 8-bit fixed-point data, etc.;
this is the conventional method. Binarized neural networks, ternary weight networks, and
XNOR networks are a few of the related technologies [82].

V2I vehicle-to-infrastructure communication offers a solution for longer-range vehicu-
lar networks in the detection of the incident using vehicle-to-vehicle (V2V) communication
multi-hop/multicast techniques. It is most effective in close-proximity vehicular networks
(such as traffic signal timing adaptation) (e.g., route guidance). According to their principal
use, VANET applications can be divided into two broad categories: safety applications,
such as collision and accident avoidance, and non-safety applications. Various wireless
communication technologies are employed for VANET communications to create a lo-
cal and integrated information system [83] and address the characteristics of wireless
infrastructure-based and ad hoc networks for communication between mobile devices in
automobiles. As there are so many different ports and interfaces for wired communica-
tion due to the heterogeneity of gadgets, wireless communication systems are extremely
attractive for automobile communication [84].

The seamless integration and convergence of vehicular communication networks,
information and transportation systems, and mobile devices and networks will face nu-
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merous technical, economic, and governmental challenges. It is crucial to create vehicle
communication systems that allow drivers and other participants to share information
in real time with high dependability. This enables pervasive sensing to keep track of
vehicles’ conditions and surroundings, develop data analytics tools to process the massive
amounts of data generated by connected vehicles, and create middleware platforms for
data management and sharing [85].

2.6. Detection of Road Accidents Using Wireless Technology
2.6.1. Detecting Incidents with 5G in Road Transport

To address the escalating need for urban innovation in the modern world, 5G gives city
and transportation experts the chance to update their key technology infrastructure [86].
Additionally, networked autonomous driving will promote and simplify the use of 5G
artificial intelligence and other information technologies. This new infrastructure system
of “pedestrian-vehicle-road-cloud” collaboration will be developed more quickly [87]. For
instance, with 5G you may share a vehicle’s location every second along with its speed,
internal temperature, condition, and the status of any cargo it has instead of just sharing it
every ten seconds. For programs that rely on data-intensive streaming programs such as
high definition video, 5G’s enhanced bandwidth is crucial [49].

These technologies include intelligent sensors for detecting the surroundings, using
artificial intelligence and big data, blockchain, and connectivity technologies such as C-V2X
and 5G [88]. The 5G core network communicates with purported network functionalities
through service-based interfaces. The expanded 3GPP location service architecture defines
any UE, including those in a vehicle, to have the gateway mobile location center (GMLC)
location-related features. The GMLC is a network element that interacts with the position
of the control plane service to receive and process location data. It may initiate a control
plane location service on its own or in response to a request from a location services client.
The client could be inside the UE or anywhere else in the architecture [27].

What is unique about 5G? Renault’s Remi Bastien highlighted the unique aspects
of 5G. For the network, we could benefit from network slicing, which would allow us
to have a specialized network for smartphones, automobiles, and the internet of things
with 5G. This could be useful to distinguish between the various consumers [89]. Future
innovation and economic growth will be possible through next-generation communication
technologies, benefiting businesses, consumers, and society. The rapid development of 5G
is happening in parallel with developments in the internet of things, artificial intelligence
(AI), and smart platforms for novel applications such as mission-critical communications
(IoT). These connections are used for a variety of services, the majority of which are non-
commercial safety services, such as automatic crash notification (ACN) services such as
eCall, the detection of stationary or slowly moving vehicles, and informational alerts
for traffic jams, roadwork, weather warnings, and other hazardous conditions [90]. The
effectiveness of urban public transportation operations can be increased by 5G. A more
accurate match between supply and demand could be achieved through technology-based
real-time monitoring of public vehicles and real-time management of user demand, leading
to the development of nearly real-time origin-destination (OD) matrix proxies. This would
increase transport operators’ efficiency by preventing the operation of either empty or
overloaded vehicles, enhancing the service quality for users and accident avoidance [91].

High-quality connection is essential for intelligent transportation systems because it
allows the various road users to communicate and share information instantly. Accord-
ing to Telefónica, the 5G network can concurrently offer the entire mobility ecosystem
high levels of connectivity, high bandwidth, and extremely low latencies thanks to edge
computing [92], and time-sensitive information will always be sent reliably. For instance,
if an autonomous vehicle’s function fails, it might be remotely driven in real time. To
maximize safety, efficiency, and sustainability, we anticipate the adoption of completely
autonomous capabilities in certain locations at first, using long-term progress toward an
utterly autonomous transport ecosystem and 5G signal coverage [93].
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2.6.2. 6G in Road Transport

For 6G to achieve the aforementioned lofty goals, it will be necessary to integrate
various cutting-edge technologies, such as more dependable and effective air interfaces,
resource management, decision making, and processing. For example, UAVs and low-earth
orbit satellites can provide V2X systems with considerably enhanced and seamless coverage,
helping to improve the communication quality of the service, especially in some potential
blind spots that could exist in conventional terrestrial communication systems [94]. A 6G-
V2X network is predicted to feature a significant number of connected vehicles in a dense
environment, a more diverse variety of applications, a complex signal analysis compared
to 5G-based V2X systems, and a greater demand for dependability and computational
power. Because of this, 6G-V2X networks require more processing power than is typically
provided by the network [74].

Mobility is the maximum speed at which a mobile station can move while being
supported by a network and receiving an adequate quality of experience (QoE) [95,96]. The
deployment scenario for high-speed trains is supported by the maximum mobility allowed
by 5G, which is 500 km/h. Commercial aircraft systems’ top speed in 6G is 1000 km/h [97].

In meeting the further stringent key performance indicators (KPIs), which only par-
tially satisfied 5G for vehicle communication [98], and accomplishing the challenging
objectives for IoV, 6G is essential [95,99].

After that, 6G technology allows these remote sensors to communicate with the cloud
platform while maintaining a reliable data stream. Finally, it is possible to integrate the
large-scale traffic-sensing data to produce a useful reference for traffic management [28],
where 6G will serve as a powerful enabler and catalyst for CAV’s key services. The primary
use of 5G is for communications (either human-to-human or machine-to-machine). Beyond
communication, 6G will do more. Radio frequency (RF) has been studied as a potential
tool for positioning and object sensing. Our opinion is that 6G mobile systems, also known
as CCPS for short, make it easier for missions to combine communications (C), computing
(C), positioning (P), and sense (S) to meet service/application needs while being deployed
at a wide and affordable scale [100].

3. Incident Detector Using Big Data Analytics and Neural Networks

Both datasets with many instances and datasets with many features are referred to as
“big data”. Big data has recently been used in many applications (such as banking, social
media, healthcare, transportation, and industry). As a result, managing this data type is
now a difficult issue. This problem influences the learning time for an algorithm in the
classification context, especially for the single classifier [101]. The many advancements
in AI today are centered on the concept of coexisting with AI on Earth (ANN). These
technologies include hardware and artificial intelligence (AI), which will affect how we live
and how our working software techniques attempt to recreate the nervous system more
resiliently than any system of the human brain.

By solving the issues that are easily impacted by hostile conditions, vehicles, for
example, can capture more data owing to NLOS perception than they otherwise could. The
systematic decision making between vehicles, the vehicles, and the roads are improved
in the calculation and decision-making process, such as in the resolution of the problem
of managing vehicle priority and traffic intersection optimization control [86]. The next
generation vehicular service, platooning autonomous/assisted driving, remote driving
support, and vehicle data services are all expected to be available, according to [102]. Every
email and a phone call between users can be understood by an AI computer that can
recognize speech and understand spoken language. It might also cover user privacy. In the
modern world, artificial intelligence is applied in various applications. AI has numerous
applications. There are uses in the military, applications in medicine, applications in space,
business utilizations [103], and applications in telecommunications [104].

Roadways become more crowded and hazardous because the number of vehicles
is increasing, sometimes exceeding the rate at which the population is growing. Using
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real-time transport location data and projected operating delays, with the amount of time
it takes to load people at various stations, machine learning algorithms can be utilized to
reliably estimate the time of arrival of many means of transport [105]. The skill to getting
around the difficulty of processing raw data, a typical issue with many ML techniques,
is a key requirement. The most common examples of this methodology are deep neural
networks (DNNs), recurrent neural networks (RNNs), and convolution neural networks
(CNNs), which are frequently used in speech recognition, visual object recognition, and
object detection [47].

3.1. Other Approaches for Road Accident Detectors

ANNs are frequently, though not always, the foundation for various machine learning
(ML) techniques, which are gaining popularity. According to May, ML is about giving
machines the ability to learn independently. Additionally, parking, accident detection, and
route optimization are the most often used applications [106].

The usage of machine learning and artificial intelligence in different aspects of road
transportation and technology is being used to reduce incidents, develop solutions to
mitigate incidents, and improve user comfort and safety in more efficient ways. The
following are some ways that artificial intelligence and machine learning are applied in road
transportation. Machine learning algorithms have also been applied in different engineering
applications and systems designs. Machine learning and AI have been adopted in path
loss modeling, healthcare management, construction industries, and signal propagation, as
in [19,41,107–115].

3.1.1. Detecting Road Accidents Using Predictive Fleet Maintenance

The integrated internet of things (IoT) system is connected by an artificial intelligence
engine employing a multilayer perceptron artificial neural network (MLP-ANN). It can
predict car maintenance by categorizing driver behavior. By using data mining’s k-means
technique, the key performance indicator (KPI) of the driving behavior has been deter-
mined [116], which investigates the ways that AI could be used to analyze real-world
circumstances in real-time. Recurrent neural networks (RNNs) and road condition predic-
tions offer a data-driven environment. Deep reinforcement learning uses machine learning
to implement RNN predictions and enable autonomous decision making. Real-time road
condition sensing is provided using convolution neural networks [117].

Figure 4 shows the predictive fleet maintenance, the fleet vehicle, the telematic service
provider, and the predictive analytical engine to the service manager.
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Predictive vehicle maintenance using machine learning COSMO is an unsupervised,
self-organized method that has been proven on a fleet of city buses using both off-board and
on-board data. It automatically generates the most intriguing onboard data representations
and isolates the offending car using a consensus-based method. The second strategy is a
supervised classification based on previously gathered and aggregated vehicle statistics,
where the usage statistics are labelled depending on the repair history [118].

3.1.2. Action Recognition for Accident Detection in Real-Time Vehicle Tracking

Within the network, dynamic changes in traffic patterns occur throughout the day and
on a global scale. Therefore, signal timing parameters need to be continuously monitored
depending on the performance and variability demands. Travel times must be computed
regularly to do this [119]. AI technologies are being used to create automated vehicles for
personal and commercial transportation usage. These vehicles rely on various sensors,
including GPS, cameras, radar, actuators (things that put motion into an input signal),
control systems, and software [120].

It is necessary to have a system for tracking and managing bus transportation that
is both time- and money-efficient because of the expanding population and technological
sophistication of the world. The growing population has caused poor real-time data analysis
of transportation facilities, taxing paper-and-pen methods, inadequate bus transportation
corporation facilities, and improper human resources and cost management. As a result,
distant users and bus transportation services such as MSRTC require an intelligent system
that offers real-time bus locations and information. Figure 5 demonstrates the transport
tracking system: vehicle tracking, data storage, GPS satellite, cellular network, and a
database [121].
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3.1.3. Detecting Road Accidents Using Traffic Management

Most traffic accidents take place in metropolitan areas, where there is a larger concen-
tration of road users who are more prone to injury and mortality in the case of an accident,
as well as a more complex traffic environment. Reducing speed restrictions is a reasonably
simple and economical traffic management strategy. In the literature on traffic safety, the
association between vehicle speed, accident risk, and accident result seriousness is well
established [51].
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The goal of traffic management is to affect supply and demand in traffic in a way that
improves the temporal and spatial alignment between traffic demands and the network’s
capacity supply. The issues with the road network are primarily related to certain bottle-
necks and times (i.e., peak hours, incidents, and events). The intelligent transportation
system (ITS) can provide safety, effectiveness, and sustainability for critical complications
with vehicle traffic on a broad scale. ITS uses machine learning with the current traffic
control system to ensure traffic flows smoothly, and it offers a real-time strategy [24].

Additional applications include real-time transportation management, ridesharing
design, implementation, and management, and the scheduling of logistical systems and
freight transportation planning and predicting, as well as the administering of transporta-
tion policy [122]. Others include environmental, toll-road, dependability, and safety-related
questions about operating transport systems. Moreover, the utilization and the manage-
ment of emerging technologies analysis, forecasting, and planning of travel require travel
information systems and services technology for the transportation and environmental
intelligence analysis and simulations of pedestrian and herd behavior. The planning for
sustainable mobility in cities requires vehicles with service-oriented design and those in a
communication infrastructure, the review and assessment of transportation technologies,
and simulated and artificial transportation systems [123].

3.2. Challenges Facing the Detection of Road Accident Using AI/ML

The difficulties in applying AI and ML for incident detection on the road are ILD instal-
lation, upkeep, replacement, and some recurring upkeep. The accuracy is bad, especially
when it comes to crucial road infrastructure. The sample size restriction makes accurate
measurements of the speed and travel duration difficult [73]. With the IoV’s development
tendency, large-scale sensors and vehicles frequently connect to the internet, which may
cause a network capacity issue [37]. With the help of this study, it is possible to analyze
the driving characteristics of drivers, the days with the highest accident rates, and the
roadways with the worst accident rates. The distribution by season and vehicle type was
shown on the heat maps, which added more complex variables to the research. Even with
a three-year time limit, the prediction model produced good results. A longer time frame
and more variables included in the predictive model’s eligibility could help to improve
accuracy [124]. It summarizes the state of the art, the challenges, and the opportunities
for researchers in the linked domains of context sensing, human affect sensing, and social
signaling analysis. According to some, the most promising method for obtaining precise
context sensing in realistic surroundings is to develop multimodal, multi-aspect context
sensing. The W5+ (who, where, what, when, why, and how) approach provides context
sensing [16].

Interference and collisions by concealed nodes present a significant obstacle to ef-
ficient data sharing between vehicles. Vehicles are unaware of other vehicles that are
simultaneously broadcasting due to the ad hoc nature of vehicular communications for
safety applications, which can lead to crashes. When there is a high vehicle density and a
high data traffic load, this is a severe concern of the network [70], which causes accidents;
another issue that needs to be addressed is liability. For the various levels of automation, a
distinct line defining the scope of liability must be established to determine the cause of
the accident. As a result, legislation, traffic laws, and insurance regulations may need to
be changed. The existing restrictions are based on the idea that a human driver is aboard
while the vehicle is driven. However, automation technology is supposed to completely or
partially replace the driver, shifting the responsibility [120].

Another challenge is the utilization of AI-based transport systems in low-income and
unstable nations, which is extremely difficult because of the lack of readiness for use of their
infrastructures and the inability to provide maintenance and repairs. This barrier includes
a shortage of dependable power sources and frail communication networks. Countries that
invest less of their GDP in technology research and physical infrastructure may find it more
difficult to take advantage of AI [6].
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4. Recent Trends, Research Directions, and Lessons Learned

Artificial intelligence and neural networks are widely used in every aspect of trans-
portation. All systems that handle the movement of goods by road contain their applica-
tions [123]. It is anticipated that future smart cities will include ITS as a crucial component
of urban design as they will improve energy efficiency while enhancing road and traffic
safety and transit efficiency [125].

The findings unmistakably demonstrate that when vehicle speed and class descriptions
were considered the ANN model could accurately predict vehicle traffic flow. Data loggers
are electronic devices used in road transportation networks to gather data or information
that has been gathered over time by moving cars on highways and at crossings. This data
can be examined or preserved for later use, using sensors to capture the data [12]. Future
logistics requirements will change due to new technology and societal advancements,
which could also have a disruptive impact on markets and dramatically expand the bounds
of current services [126]. The high mortality toll is partly due to inadequate infrastructure,
including bad roads and vehicles without current safety equipment, but human error also
contributes significantly. More than 90% of traffic collisions in the EU are caused by human
error, including speeding, distracted driving, and intoxicated driving [6].

Future vehicle networks will have to upgrade from the existing two-dimensional
handover and resource allocation situations to three-dimensional ones with the potential
incorporation of UAVs, further increasing the task complexity. The best option right now
for its explanatory power is NN-based DL. However, because of the deep network topology,
NN training frequently consumes a sizable amount of computational resources [38]. In
order to help traffic planners reduce congestion, numerous attempts have been made to
pinpoint the date, place, and severity of an occurrence. Their endeavors cover a wide
range, from manual reporting to automatic algorithms to neural networks. Human-written
manual reports may take longer to detect incidents and be less economical, whereas
experts in public transportation and AI professionals are developing innovative ideas that
might help the sector address its expanding problems. To achieve high accuracy, incident-
responsive algorithms and prediction systems are crucial for public transit networks’ safety
and security [127].

Today’s world needs ubiquitous AI, notably in road transportation, where its use
is essential to prevent accidents and increase user safety. The majority of automobile
accidents are related to human mistakes. Keeping an eye out for ways to improve safety by
developing autonomous incident detectors using ML and AI applications is crucial. The
ability to improve road transportation through AI and ML is vital. However, we must
investigate automatic incident detectors as numerous studies have focused on various
aspects of road transportation and its use with AI and ML. However, AI will unavoidably
change the public transportation industry and understanding how AI might affect the
sector is essential. Public transportation stakeholders should proactively consider AI’s
opportunities in order to enhance their offerings and create the mobility of the future [128].
As human error (such as speeding, distracted driving, and drunk driving) causes more
than 90% of accidents on EU roads, where more than 25,000 people died in 2017, AI-
based systems deployed in autonomous transportation could dramatically increase road
safety [120].

Previous research focused on autonomous vehicles connected with smart vehicle
communication systems. A smart crossroad management system based on the internet of
things is further explained. A wireless network type known as an ad hoc network does
not rely on the established infrastructure. A wireless network type known as an ad hoc
network does not rely on established infrastructure. This wi-fi or ad hoc network serves as
a conduit for data transmission. This also sends accident locations. A camera fixed to the
vehicle’s back and rear sides take pictures of the objects it strikes, for the investigation of
hit-and-run incidents [29].

Vehicle data is supplied via the cloud to a data-mining engine that predicts engine
stress using MLP-ANN algorithms and uses k-means clustering analysis to create a driver
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KPI score [116]. This work’s follow-up research aims to more thoroughly analyze traffic
monitoring video data and to offer helpful traffic travel advisory services [10]. With
a software system, the circumstances of an accident can be determined by identifying
overlapping images in real-time video streaming [129]. To create various condition-specific
datasets for model testing, we advise a more thorough comparison of these two, employing
field data for model calibration, simulation, DTW, and SVM. In order to estimate accident
and emergency response, artificial intelligence and machine learning models with different
algorithms are still necessary and should be discussed.

5. Conclusions

This study presented a review of the automatic incident detector in road transport
systems, and the role of artificial intelligence and machine learning in road management
systems. From the review, it is logical to state that by using multiple data sources, such as
fixed detectors (gathering point data) and probing vehicles (collecting spatial data), the
input data accuracy and comprehensiveness could be improved, thereby enhancing the
performance of an event detection system applied to roads. Additionally, the analysis of the
incident detector usage, leveraging artificial intelligence and machine learning, revealed
that the camera calibration yields the vehicle speed employed in the tracking algorithm and
event detection. Furthermore, the camera calibration would generate calculation mistakes if
the internal and exterior camera parameters were not precisely acquired. Finally, a detailed
application of machine learning and artificial intelligence in incident detection systems is
highlighted, and the most recent literature, trends, and potential issues that may arise when
the technology is gainfully applied are discussed extensively. Future studies would focus
on conducting more in-depth analyses on these issues to address road incident occurrences.
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