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Geotechnical engineering deals with materials (e.g. soil and rock) that, by their very nature, exhibit

varied and uncertain behavior because of the imprecise physical processes associated with the

formation of these materials. Modeling the behavior of such materials in geotechnical engineering

applications is complex and sometimes beyond the ability of most traditional forms of physically

based engineering methods. Artificial intelligence (AI) is becoming more popular and particularly

amenable to modeling the complex behavior of most geotechnical engineering applications,

including foundations, because it has demonstrated superior predictive ability compared to

traditional methods. The main aim of this paper is to review the AI applications in shallow

foundations and present the salient features associated with the AI modeling development. The

paper also discusses the strengths and limitations of AI techniques compared to other modeling

approaches.
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Introduction
Over the last decade, artificial intelligence (AI) has been
applied successfully to virtually every problem in geotech-
nical engineering. Among the available AI techniques
are artificial neural networks (ANNs), genetic programing
(GP), evolutionary polynomial regression (EPR), support
vector machines, M5 model trees, and k-nearest neighbors
(Elshorbagy et al., 2010). The focus of this paper will be
on three AI techniques, including ANNs, GP, and EPR.
These three techniques are selected because they have been
proved to be the most successful applied AI techniques
in geotechnical engineering especially for shallow founda-
tions. Of these, ANNs are by far the most commonly used
one. Interested readers are referred to Shahin et al. (2001),
where the pre-2001 ANN applications in geotechnical
engineering are reviewed in some detail, and Shahin et al.
(2009) and Shahin (2013), where the post-2001 papers of
AI applications in geotechnical engineering are briefly
examined.

The behavior of foundations (deep and shallow) in soils
is complex, uncertain, and not yet entirely understood.
This fact has encouraged many researchers to apply the AI
techniques for modeling the behavior of foundations. In
particular, ANNs have been used for shallow foundations
including settlement estimation (Chen et al., 2009; Shahin
et al., 2002b, 2003; Sivakugan et al., 1998; Soleimanbeigi

and Hataf, 2006) and prediction of ultimate bearing
capacity (Behera et al., 2013a, 2013b; Kalinli et al., 2011;
Kuo et al., 2009; Padmini et al., 2008; Provenzano et al.,
2004; Soleimanbeigi and Hataf, 2005). Likewise, GP and
EPR have been investigated for settlement prediction of
shallow foundations (Rezania and Javadi, 2007; Shahin,
2014; Shahnazari et al., 2014) as well as ultimate bearing
capacity (Adarsh et al., 2012; Pan et al., 2013; Shahin, 2014;
Shahnazari and Tutunchian, 2012; Tsai et al., 2013). The
objective of this paper is to provide an overview of some
of the popular AI techniques, present a review of the AI
applications to date in shallow foundations, and discuss
some of the current challenges and future directions.

Overview of AI
Artificial intelligence is a computational method that
attempts to mimic, in a very simplistic way, the human
cognition capability (e.g. emulating the operation of the
human brain at the neural level) to solve engineering
problems that have defied solution using conventional
computational techniques (Flood, 2008). The essence of AI
techniques in solving any engineering problem is to learn by
examples of data inputs and outputs presented to them so
that the subtle functional relationships among the data are
captured, even if the underlying relationships are unknown
or the physical meaning is difficult to explain. Thus, AI
models are data-driven models that rely on the data alone
to determine the structure and parameters that govern a
phenomenon (or system) and do not make any assumptions
about the physical behavior of the system. This is in
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contrast to most physically based models that use the
first principles (e.g. physical laws) to derive the underlying
relationships of the system, which usually justifiably simpl-
ified with many assumptions and require prior knowledge
about the nature of the relationships among the data. This
is one of the main benefits of AI techniques when compared
to most physically based empirical and statistical methods.

The AI modeling philosophy is similar to a number of
conventional statistical models, in the sense that both are
attempting to capture the relationship between a historical
set of model inputs and the corresponding outputs. For
example, imagine a set of x-values and corresponding
y-values in two-dimensional space, where y5f(x). The
objective is to find the unknown function f that relates
the input variable x to the output variable y. In a linear
regression statistical model, the function f can be obtained
by changing the slope tan Q and intercept b of the straight
line in Fig. 1a, so that the error between the actual outputs
and the outputs of the straight line is minimized. The same
principle is used in AI models. Artificial intelligence can
form the simple linear regression model by having one
input and one output (Fig. 1b). Artificial intelligence uses
available data to map between the system inputs and the

corresponding outputs using machine learning by repeat-
edly presenting examples of the model inputs and outputs
(training) to find the function y5f(x) that minimizes the
error between the historical (actual) outputs and the
outputs predicted by the AI model.

If the relationship between x and y is non-linear,
statistical regression analysis can be applied successfully
only if prior knowledge of the nature of the non-linearity
exists. On the contrary, this prior knowledge of the nature
of the non-linearity is not required for AI models. In the
real world, it is likely that complex and highly non-linear
problems are encountered, and in such situations, tradi-
tional regression analyses are inadequate (Gardner and
Dorling, 1998). In this section, a brief overview of three
selected AI techniques (i.e. ANNs, GP, and EPR) is
presented below.

Artificial neural networks
Artificial neural networks are a form of AI that attempt to
mimic the function of the human brain and nervous system.
Although the concept of ANNs was first introduced in 1943
(McCulloch and Pitts, 1943), research into applications of
ANNs has blossomed since the introduction of the back-
propagation training algorithm for feed-forward multi-
layer perceptrons (MLPs) in 1986 (Rumelhart et al., 1986).
Many authors have described the structure and operation
of ANNs (e.g. Fausett, 1994; Zurada, 1992). Typically, the
architecture of ANNs consists of a series of processing
elements (PEs), or nodes, that are usually arranged in
layers: an input layer, an output layer, and one or more
hidden layers, as shown in Fig. 2.

The input from each PE in the previous layer xi is
multiplied by an adjustable connection weight wji. At each
PE, the weighted input signals are summed and a threshold
value hj is added. This combined input Ij is then passed
through a non-linear transfer function f(.) to produce the
output of the PE yj. The output of one PE provides the
input to the PEs in the next layer. This process is sum-
marized in equations (1) and (2), and illustrated in Fig. 2

Ij~
X

wjixizhj summation (1)

yj~f(Ij) transfer (2)

The propagation of information in an ANN starts at
the input layer, where the input data are presented. The

1 Linear regression versus artificial intelligence (AI) model-

ing: a Linear regression modeling (Shahin et al., 2001);

b AI data-driven modeling [adapted from (Solomatine and

Ostfeld, 2008)]

2 Typical structure and operation of artificial neural networks (ANNs) (Shahin et al., 2009)
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network adjusts its weights on the presentation of a
training data set and uses a learning rule to find a set of
weights that produces the input/output mapping that has
the smallest possible error. This process is called learning
or training. Once the training phase of the model has been
successfully accomplished, the performance of the trained
model needs to be validated using an independent valida-
tion set. The main steps involved in the development of
an ANN, as suggested by Maier and Dandy (2000), are
illustrated in Fig. 3 and discussed in some depth in Shahin
(2013).

Genetic programing
Genetic programing is an extension of genetic algorithms
(GA), which are evolutionary computing search (opti-
mization) methods that are based on the principles of
genetics and natural selection. In GA, some of the natural
evolutionary mechanisms, such as reproduction, cross-
over, and mutation, are usually implemented to solve
function identification problems. Genetic programing
was first introduced by Holland (1975) and developed by
Goldberg (1989), whereas GP was invented by Cramer
(1985) and further developed by Koza (1992). The
difference between GA and GP is that GA is generally
used to evolve the best values for a given set of model
parameters (i.e. parameters optimization), whereas GP
generates a structured representation for a set of input
variables and the corresponding outputs (i.e. modeling or
programing).

Genetic programing manipulates and optimizes a
population of computer models (or programs) proposed
to solve a particular problem, so that the model that best
fits the problem is obtained. A detailed description of GP
can be found in many publications (e.g. Koza, 1992), and
a brief overview is given herein. The modeling steps by GP
start with the creation of an initial population of computer
models (also called individuals or chromosomes) that are
composed of two sets (i.e. a set of functions and a set of
terminals) that are defined by the user to suit a certain
problem. The functions and terminals are selected randomly

and arranged in a tree-like structure to form a computer
model that contains a root node, branches of functional
nodes, and terminals, as shown by the typical example of
GP tree representation in Fig. 4. The functions can contain
basic mathematical operators (e.g. z, 2, 6, /), Boolean
logic functions (e.g. AND, OR, NOT), trigonometric
functions (e.g. sin, cos), or any other user-defined functions.
The terminals, on the other hand, may consist of numerical
constants, logical constants, or variables.

Once a population of computer models has been created,
each model is executed using available data for the problem
at hand, and the model fitness is evaluated depending
on how well it is able to solve the problem. For many
problems, the model fitness is measured by the error
between the output provided by the model and the desired
actual output. A generation of new population of computer
models is then created to replace the existing population.
The new population is created by applying the following
three main operations: reproduction, cross-over, and muta-
tion. These three operations are applied on certain propor-
tions of the computer models in the existing population,
and the models are selected according to their fitness.
Reproduction is copying a computer model from an
existing population into the new population without

4 Typical example of genetic programing (GP) tree repre-

sentation for the function ½(4{x1)=(x2zx3)�2

3 Main steps in artificial neural network (ANN) model development (Maier and Dandy, 2000)
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alteration. Crossover is genetically recombining (swapping)
randomly chosen parts of two computer models. Mutation
is replacing a randomly selected functional or terminal
node with another node from the same function or terminal
set, provided that a functional node replaces a functional
node and a terminal node replaces a terminal node. The
evolutionary process of evaluating the fitness of an existing
population and producing new population is continued
until a termination criterion is met, which can be either a
particular acceptable error or a certain maximum number
of generations. The best computer model that appears in
any generation designates the result of the GP process.
There are currently three variants of GP available in the
literature including the linear genetic programing (LGP),
gene expression programing (GEP), and multi-expression
programing (MEP) (Alavi and Gandomi, 2011). More
recently, the multi-stage genetic programing (MSGP)
(Gandomi and Alavi, 2011) and multi-gene genetic pro-
graming (MGGP) (Gandomi and Alvari, 2012) are also
introduced. However, GEP is the most commonly used GP
method in geotechnical engineering and is thus described in
some detail below.

Gene expression programing was developed by Ferreira
(2001) and utilizes evolution of mathematical equations
that are encoded linearly in chromosomes of fixed length
and expressed non-linearly in the form of expression trees
(ETs) of different sizes and shapes. The chromosomes are
composed of multiple genes; each gene encoded a smaller
sub-program or sub-expression tree (Sub-ET). Every gene
has a constant length and consists of a head and a tail. The
head can contain functions and terminals (variables and
constants) required to code any expression, whereas the
tail solely contains terminals.

The genetic code represents a one-to-one relationship
between the symbols of the chromosome and the function
or terminal. The process of information decoding from
chromosomes to ETs is called translation, which is based
on sets of rules that determine the spatial organization of
the functions and terminals in the ETs and the type of
interaction (link) between the sub-ETs (Ferreira, 2001).
The main strength of GEP is that the creation of genetic
diversity is extremely simplified as the genetic operators
work at the chromosome level. Another strength is regarding
the unique multi-genetic nature of GEP, which allows the
evolution of more powerful models/programs composed of
several sub-programs (Ferreira, 2001).

The major steps in the GEP procedure are schematically
represented in Fig. 5. The process begins with choosing
sets of functions F and terminals T to randomly create
an initial population of chromosomes of mathematical
equations. One could choose, for example, the four basic
arithmetic operators to form the set of functions, i.e.
F5{z, –, 6, /}, and the set of terminals will obviously
consist of the independent variables of a particular pro-
blem, for example, for a problem that has two independent
variables, x1 and x2, would be T5{x1, x2}. Choosing the
chromosomal architecture, i.e. the number and length of
genes and linking functions (e.g. addition, subtraction,
multiplication, and division), is also part of this step. The
chromosomes are then expressed as ETs of different sizes
and shapes, and the performance of each individual chro-
mosome is evaluated by comparing the predicted and
actual values of the presented data. One could measure
the fitness fi of an individual chromosome i using the
following expression

fi~
XCt

j~1

(M{jC i,jð Þ{Tjj) (3)

where M is the range of selection, C(i.j) is the value
returned by the individual chromosome i for fitness case j
(out of Ct fitness cases), and Tj is the target value for the
fitness case j. There are, of course, other fitness functions
available that can be appropriate for different problems. If
the desired results (according to the measured errors) are
satisfactory, the GEP process is stopped; otherwise, some
chromosomes are selected and mutated to reproduce new
chromosomes, and the process is repeated for a certain
number of generation or until the desired fitness score is
obtained.

Figure 6 shows a typical example of a chromosome with
one gene, and its ET and corresponding mathematical
equation. It can be seen that, while the head of a gene
contains arithmetic and trigonometric functions (e.g., z,
2, 6, /, !, sin, cos), the tail includes constants and
independent variables (e.g. 1, a, b, c). The ET is codified
reading the ET from left to right in the top line of the tree
and from top to bottom.

Evolutionary polynomial regression
Evolutionary polynomial regression is a hybrid regression
technique based on evolutionary computing that was
developed by Giustolisi and Savic (2006). It constructs
symbolic models by integrating the soundest features of

5 Algorithm of gene expression programing (GEP)

(Teodorescu and Sherwood, 2008)
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numerical regression, with GP and symbolic regression
(Koza, 1992). The following two steps roughly describe
the underlying features of the EPR technique, aimed to
search for polynomial structures representing a system. In
the first step, the selection of exponents for polynomial
expressions is carried out, employing an evolutionary
searching strategy by means of GA (1989). In the second
step, numerical regression using the least square method
is conducted, aiming to compute the coefficients of the
previously selected polynomial terms. The general form of
expression in EPR can be presented as follows (Giustolisi
and Savic, 2006)

y~
Xm

j~i

F (X ,f(X ),aj)zao (4)

where y is the estimated vector of output of the process,
m is the number of terms of the target expression, F is a
function constructed by the process, X is the matrix of
input variables, f is a function defined by the user, and aj is
a constant. A typical example of EPR pseudo-polynomial
expression that belongs to the class of equation (4) is as
follows (Giustolisi and Savic, 2006)

ŶY~

aoz
Xm

j~i

aj
:(X1)ES j,1ð Þ . . . (Xk)ES j,kð Þ:f ½(X1)ES j,kz1ð Þ . . . (Xk)ES j,2kð Þ�

(5)

where Y
^

is the vector of target values, m is the length of
the expression, aj is the value of the constants, Xi is the
vector(s) of the k candidate inputs, ES is the matrix of
exponents, and f is a function selected by the user.

Evolutionary polynomial regression is suitable for
modeling physical phenomena, based on two features
(Savic et al., 2006): (i) the introduction of prior knowledge
about the physical system/process, to be modeled at three
different times, namely before, during, and after EPR
modeling calibration and (ii) the production of symbolic
formulae, enabling data mining to discover patterns that
describe the desired parameters. In the first EPR feature (i)
above, before the construction of the EPR model, the
modeler selects the relevant inputs and arranges them in a

suitable format according to their physical meaning.
During the EPR model construction, model structures
are determined by following user-defined settings such as
general polynomial structure, user-defined function types
(e.g. natural logarithms, exponentials, tangential hyper-
bolics), and searching strategy parameters. The EPR starts
from true polynomials and also allows for the develop-
ment of non-polynomial expressions containing user-
defined functions (e.g. natural logarithms). After EPR
model calibration, an optimum model can be selected
from among the series of models returned. The optimum
model is selected based on the modeler’s judgment, in
addition to statistical performance indicators such as the
coefficient of determination. A typical flow diagram of
the EPR procedure is shown in Fig. 7, and a detailed
description of the technique can be found in Giustolisi and
Savic (2006).

Artificial intelligence applications in
shallow foundations
This section provides an overview of most AI applications,
including ANNs, GP, and EPR, that have appeared to
date in relation to examining the relative success or
otherwise of AI in shallow foundations. It should be noted
that it is not intended to cover every single application or
scientific paper that can be found on this topic but rather
the intention is to provide a general overview of some of

7 Typical flow diagram of the evolutionary polynomial

regression (EPR) procedure (Rezania et al., 2011)

6 Schematic representation of a chromosome with one

gene and its expression tree (ET) and corresponding

mathematical equation (Kayadelen, 2011)
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the more relevant applications in engineering problems
of shallow foundations. Some works are selected to be
described in some detail, whereas others are acknowledged
for reference purposes.

Based on the author’s experience, there are several factors
in the use of AI techniques that need to be systematically
investigated when developing AI models for geotechnical
engineering problems, so that model performance can be
improved. These factors include the determination of
adequate model inputs, data division, data preparation,
model validation, model robustness, model transparency
and knowledge extraction, and model uncertainty. Some of
these factors have received recent attention, whereas others
require further research. Discussion of these factors is
beyond the scope of this paper but can be found in Shahin
(2013). Some of these factors are briefly discussed in the
applications presented below.

Settlement estimation
The design of foundations is generally controlled by the
criteria of bearing capacity and settlement, the latter often
being the governing factor in shallow foundations on
cohesionless soils. The estimation of settlement of shallow
foundations (on cohesionless soils in particular) is very
complex, uncertain, and not yet entirely understood. This
fact has encouraged a number of researchers to apply the
ANN technique to the settlement of shallow foundations
on cohesionless soils. For example, Sivakugan et al. (1998)
carried out a preliminary study on a small set of data to
explore the possibility of using ANNs to predict the settle-
ment of shallow foundations on sands. A neural network
was trained with five inputs representing the net applied
pressure, average blow count from the standard penetra-
tion test (SPT), width of the foundation, shape of the
foundation, and depth of the foundation. The output was
the settlement of the foundation. With the aid of cascade-
correlation, a network with 1 hidden layer and 11 hidden
nodes was found optimal. The results obtained by the
neural network were compared with the methods proposed
by Terzaghi and Peck (1967) and Schmertmann (1970).
Based on the results obtained, it was shown that the tra-
ditional methods of Terzaghi and Peck, and Schmertmann
overestimate the settlements by about 2?2 and 3?4 times,
respectively, as shown in Fig. 8a. In contrast, the predic-
tions using the ANN model were good (see Fig. 8b). Using
the same neural network features, Arnold (1999) extended
the work done by Sivakugan et al. (1998) with a database
containing a larger number of data cases. His work,
although relatively superficial, found that the best network
consisted of 18 hidden layer nodes with correlation coeffi-
cients equal to 0?954, 0?955, and 0?944 for the training,
testing, and validation sets, respectively. It should be noted
that 18 hidden layer nodes are considered to be large for a
network with five input variables, which may affect the
generalization ability of the model.

The ANN models developed above for settlement
prediction of shallow foundations on cohesionless soils
have been built on either a limited number of data cases or
have suffered from the lack of a comprehensive procedure
for testing their robustness and generalization ability. In an
attempt to develop more well-established models, Shahin

et al. (2002a, 2002b) carried out a comprehensive study to
predict the settlement of shallow foundations on cohesion-
less soils utilizing ANNs. Using a large database of actual
measured settlements and MLPs trained with the back-
propagation algorithm, Shahin et al. (2002b) developed an
ANN model that was found to outperform the most
commonly used traditional methods. The model was
trained using five inputs representing the footing width,
net applied footing load, average blow count obtained
from the SPT over the depth of influence of the
foundations as a measure of soil compressibility, footing
geometry (length to width of footing), and footing
embedment ratio (embedment depth to footing width).
The single model output was the foundation settlement.
The results between the predicted and measured settle-
ments obtained by utilizing ANNs were compared with
three traditional methods, namely Meyerhof (1965),
Schultze and Sherif (1973), and Schmertmann et al.
(1978). Comparisons of the results obtained using the
ANN and the above traditional methods in the validation
set are given in Table 1 and presented in Fig. 9. It is
evident from Table 1 that the ANN model performs better
than the traditional methods for all performance measures
considered. It is also evident from Fig. 9 that the ANN
model performs reasonably well over the full range of
measured settlements considered. In contrast, the tradi-
tional methods appear to work well for only small
settlements, in the range of 10–20 mm. The method of
Schmertmann et al. (1978) tends to over-predict larger
settlements, whereas the method of Schultze and Sherif
(1973) tends to under-predict severely larger settlements
and the method of Meyerhof (1965) appears both to over-
and under-predict larger settlements. In an attempt to
facilitate the use of the obtained ANN model and to make
it more accessible, Shahin et al. (2002a) translated the
model into a tractable and relatively simple formula
suitable for hand calculation. The derived formula can be
used to calculate the settlement as follows (Shahin et al.,
2002a)

Sp
ANN~0:6z

120:4

1ze 0:312{0:725tanh x1z2:984 tanh x2ð Þ

� �
(6)

in which

x1~0:1z10{3 3:8Bz0:7qz4:1N{1:8
L

B

� �
z19

Df

B

� �� �

(7)

x2~10{3 0:7{41B{1:6qz75N{52
L

B

� �
z740

Df

B

� �� �

(8)

where Sp is the predicted settlement (mm), B is the footing
width (m), q is the net applied footing load (kPa), N is the
average SPT blow count, L/B is the footing geometry, and
Df/B is the footing embedment ratio.

Using the same database of Shahin et al. (2002a) and
similar model inputs and outputs, Rezania and Javadi
(2007) and Shahnazari et al. (2014) developed two different
GP models, and Shahnazari et al. (2014) developed an
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additional EPR model. The formulation of the GP model
developed by Rezania and Javadi (2007) is as follows

S
GP

p
~

q(1:80Bz4:62){346:15Df

N2
z

11:22L{11:11

L
(9)

The formulations of the GP and EPR models developed
by Shahnazari et al. (2014) are as follows

SGP
p ~

2:5B N=B{1z(Bz1)=(Dfz0:16B)z(2B{N)=Lzq=Nð Þ
(Nz(Df=B) B{L=Bð ÞzB=N)

(10)

SEPR
p ~

7:2q

N2
{

190

NL
z3:4

B
ffiffiffi
q
p

{10
ffiffiffiffiffiffiffiffiffi
BDf

p

N
{0:3

ffiffiffiffiffiffi
Bq

p
z16

(11)

The above GP and EPR models represented by equations
(9)–(11) were compared with the traditional methods and
were found to outperform most available methods.

All of the above AI models were also compared to each
other in terms of the coefficient of determination (R2), root
mean squared error (RMSE), and mean absolute error
(MAE), and the results are given in Table 2. It can be seen
that the EPR- and GP-based models are the most precise
models in predicting the settlement of shallow foundations
on cohesionless soils. It can also be seen that the accuracy
of the ANN model proposed by Shahin et al. (2002a) and
the GP model developed by Rezania and Javadi (2007)
is high but not as high as the EPR and GP models
of Shahnazari et al. (2014). Overall, the statistical results
indicate that the application of EPR and GP methods
provides a more potential improvement over the ANN
model.

8 Settlement predictions using artificial neural networks (ANNs) and traditional methods by Sivakugan et al. (1998): a

Traditional methods; b ANNs
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The use of reinforcement to increase the bearing capacity
and reduce the settlement of shallow foundations is a
common construction technique; however, a few practical
methods have been developed to compute the settlement
of shallow foundations on reinforced cohesionless soils
(Soleimanbeigi and Hataf, 2006). In lieu of this fact,
Soleimanbeigi and Hataf (2006) examine the potentiality of
ANNs to investigate the settlement of shallow foundations

on reinforced cohesionless soils. A number of 123 data
records obtained from both laboratory and field measure-
ments were used for ANN model development and
verification. The ANN model inputs included the footing
size, soil properties, and reinforcement characteristics,
whereas the single output was the settlement of shallow
reinforced foundation. The results showed a good degree
of model accuracy (i.e. r50?876, RMSE52?23 mm, and

Table 1 Performance of artificial neural network (ANN) model and traditional methods in the validation set for settlement
estimation (Shahin et al., 2002b)

Performance measure ANN (Shahin et al., 2002b) Meyerhof (1965) Schultze and Sherif (1973) Schmertmann et al. (1978)

r 0.905 0.440 0.729 0.798
RMSE/mm 11.04 25.72 23.55 23.67
MAE/mm 8.78 16.59 11.81 15.69

RMSE: root mean squared error; MAE: mean absolute error.

9 Settlement predictions using artificial neural networks (ANNs) and traditional methods by Shahin et al. (2002b)
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MAE51?61 mm) for the validation set. To provide a
practical tool for design purposes, the authors developed
several design charts that were drawn from the developed
ANN model, which can be readily used for fast determina-
tion of settlement of shallow reinforced foundations.

Bearing capacity prediction
Bearing capacity is one of two criteria that governs the
design of shallow foundations, and has been examined by
several AI researchers, especially using ANNs. Provenzano
et al. (2004) explored the potential of using neurofuzzy
networks, namely ANFIS (adaptive network-based fuzzy
inference system), for predicting the load-settlement beha-
vior of shallow foundations, subjected to vertical centered
and eccentric loads. Neurofuzzy networks are ANN model-
ing technique that combines the explicit linguistic knowledge
representation of fuzzy systems with the learning power
of neural networks (Brown and Harris, 1995). Neurofuzzy
networks can be trained by processing data samples to
perform input/output mappings, similar to the way tradi-
tional neural networks do, with the additional benefit of
being able to provide a set of production if–then linguistic
fuzzy rules that describe the model input/output relation-
ships in a transparent way, such as

IF(x1 is high AND x2 is low) THEN (y is high), c~0:9

where x1 and x2 are input variables, y is the corresponding
output variable, and c50?9 is the rule confidence that
indicates the degree to which the above rule has contributed
to the output. The neural network was trained and validated
with data obtained from results of small scale model experi-
ments. The model was trained to predict the load transmitted
by the footing to the soil, as the single model input. The
model inputs included the seepage gradient, load eccentricity
ratio (i.e. eccentricity/footing width), and non-dimensional
settlement of footing (i.e. settlement/footing width). The
model was found to be robust as it was able to reproduce the
relationship between settlement and vertical load with a good

accuracy, for footings with large values of eccentricity.
However, for centered and small eccentricity footings, the
model accuracy was less satisfying and the model was rather
sensitive to the load conditions. On the other hand, Padmini
et al. (2008) also investigated the applicability of ANFIS
neurofuzzy for predicting the ultimate bearing capacity of
shallow foundations on cohesionless soil, and undertook a
comparative study with the commonly used bearing capacity
theories. The result indicated that the ANFIS model was
able to predict well the ultimate bearing capacity of shallow
foundations and perform significantly better than the
theoretical methods.

Soleimanbeigi and Hataf (2005) developed an ANN
model for predicting the ultimate bearing capacity of
shallow foundations on reinforced soils. In this study, the
data used for model development were obtained from
the literature and comprised a number of 351 records of
laboratory and field measurements of bearing capacity
of shallow foundations on reinforced cohesionless soils.
The model results were compared with three traditional
methods, i.e. Huang and Tatsuoka (1990), Huang and
Meng (1997), and Zhao et al. (1998). The model inputs
were the footing width, footing geometry (i.e. footing
length/footing width), footing depth ratio (i.e. depth of
embedment/footing width), internal friction angle of soil,
unit weight of soil, number of reinforcement, first layer
depth ratio (i.e. first reinforcement level depth/footing
width), vertical spacing of reinforcement layer ratio (i.e.
vertical spacing of reinforcement layers/footing width),
reinforcement width ratio (i.e. reinforcement width/foot-
ing width), and reinforcement stiffness. The single model
output was the bearing capacity of the foundation. The
methods were compared using three performance mea-
sures including the coefficient of correlation r, RMSE, and
MAE, as shown in Table 3. It is evident from Table 3 that
the ANN model outperforms the traditional methods.
The relative importance of the input variables for bearing
capacity was also carried out by performing a sensitivity
analysis, and it was found that the footing width, number
of reinforcement layers, and reinforcement vertical spacing
have more impact on bearing capacity than the other
factors.

Kuo et al. (2009) used ANN-based model for predicting
the bearing capacity of strip footing on multi-layered
cohesive soil. In this study, the data used for model
development were generated from a parametric study
carried out using numerical formulation of upper and
lower bound theorems. The inputs to the ANN model
included the cohesion of the multi-soil layers, the stratum
thickness of the soil layers, and the footing width. The
model output was the ultimate bearing capacity. To

Table 2 Statistical performances of different artificial
intelligence (AI) models in the validation set for
settlement estimation (Shahnazari et al., 2014)

Reference Method R2 RMSE MAE

Shahin et al. (2002b) ANN 0.851 10.25 7.14
Rezania and Javadi (2007) GP 0.826 11.07 6.77
Shahnazari et al. (2014) GP 0.878 9.27 6.03
Shahnazari et al. (2014) EPR 0.871 11.07 6.77

RMSE: root mean squared error; MAE: mean absolute error; ANN:
artificial neural network; GP: genetic programing; EPR: evolution-
ary polynomial regression.

Table 3 Performance of artificial neural network (ANN) model and traditional methods in the validation set for ultimate
bearing capacity of shallow foundation on reinforced cohesionless soils (Soleimanbeigi and Hataf, 2005)

Performance measure
ANN (Soleimanbeigi and
Hataf (2005))

Huang and Tatsuoka
(1990)

Huang and Meng
(1997)

Zhao et al.
(1998)

r 0.981 0.947 0.016 0.59
RMSE/kPa 45.7 129.3 347.8 150.7
MAE/kPa 28.2 76.6 238.1 128.6

RMSE: root mean squared error; MAE: mean absolute error.
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examine the accuracy of the ANN model, it was compared
with some other traditional methods, namely the multi-
regression and Bowles methods (Bowles, 1997). The result
indicated that the ANN model was able to predict well
the bearing capacity of a strip footing and significantly
outperform the other methods. The sensitivity analysis
carried out to test the robustness of the developed ANN
model and examine the relative importance of the model
inputs indicated that the bearing capacity of a footing on
multi-layered soils increases as the soil cohesion increases,
and as the width of the footing increases, and is strongly
influenced by the soil layers located immediately beneath
the footing.

More recently, Behera et al. (2013a) utilized ANNs
to predict the ultimate bearing capacity of eccentrically
inclined loaded strip footing over sand. The ANN model
was developed using data obtained from extensive labo-
ratory model tests that were carried out on a strip footing
foundation lying over sand bed subjected to an eccen-
trically inclined load. Based on the model test results, the
ANN model was developed to predict the reduction factor,
which was defined as the ratio of the ultimate bearing
capacity of the foundation subjected to an eccentrically
inclined load to the ultimate bearing capacity of the
foundation subjected to a centric vertical load. Different
sensitivity analyses were also carried out to evaluate the
parameters affecting the reduction factor. A prediction
model equation was also established using the trained
weights of the ANN model. The predictions from the ANN
model, and those from two other available empirical
approaches developed by Patra et al. (2012b) and Loukidis
et al. (2008), were compared. The ANN model inputs
included the eccentricity ratio (i.e. load eccentricity/footing
width), embedment ratio (i.e. embedment depth/footing
width), and ratio of load inclination (i.e. load inclination
angle/friction angle of soil), whereas the output was
the reduction factor as defined above. The coefficient of
determination (or efficiency) R2 for the training and
validation sets was found to be equal to 0?995 and 0?993,
respectively, indicating a high level of accuracy. The pre-
dictability of the ANN model was also found to be slightly
better than the empirical equations used for comparison.
It was observed from the relative importance study that
the load inclination ratio is the most important input
parameter followed by the eccentricity ratio and embed-
ment ratio. It was also observed from the sensitivity
analyses that the eccentricity and load inclination ratios are
inversely related to the reduction factor, whereas the
embedment ratio is directly related to the reduction factor.

Behera et al. (2013b), soon after, developed another
ANN model to estimate the reduction factor of the
ultimate bearing capacity of eccentrically inclined loaded
strip footing in reinforced condition, and model perfor-
mance was found to be reasonably well with R2 equal
to 0?994 and 0?988 for the training and validation sets,
respectively. The model predictability was also found to be
more accurate than the regression equation proposed by
Patra et al. (2012a). Another successful application for the
use of ANN for predicting the ultimate bearing capacity
of shallow foundations was carried out by Kalinli et al.
(2011).

The application of GP and EPR techniques for predict-
ing the ultimate bearing capacity of shallow foundation is
relatively recent. Adarsh et al. (2012) developed a GP
model to predict the ultimate bearing capacity of cohesion-
less soils beneath shallow foundations. In this study, the
model inputs were the footing width, footing depth, length-
to-width ratio of footing, density of soil, and angle of
internal friction of soil, and the model output was the
ultimate bearing capacity. The model results were com-
pared with three theoretical approaches, as well as an ANN
model and fuzzy inference system reported in the literature.
The statistical evaluation of the results showed that
the GP model is better than the theoretical approaches
and competed well with the other AI techniques, i.e. ANN
and fuzzy inference models. Similarly, Shahnazari and
Tutunchian (2012) developed another GP model for pre-
dicting the ultimate capacity of shallow foundations on
cohesionless soils. In this case, the GP model was calibrated
and validated using an experimental database consisting of
100 load tests. The results revealed that the GP model can
predict the ultimate bearing capacity precisely with a high
coefficient of correlation r of 98%.

Pan et al. (2013) introduced two different models, a GP
model and an EPR model, to predict the ultimate bearing
capacity of shallow foundations. The inputs of models
included the footing width (denoted P1), embedment depth
(denoted P2), footing length-to-width ratio (denoted P3),
unit weight of soil (denoted P4), and angle of shearing
resistance or friction angle of soil (denoted P5). The single
output of models was the ultimate bearing capacity
(denoted qu). It should be noted that the GP and EPR
techniques are able to choose automatically the inputs
that have the most significant impact on the output and
thus can produce more parsimonious models than ANNs.
Moreover, the models can be presented in the form of
visible mathematical formulae that facilitate parameter
studies and sensitivity analysis. The results demonstrated
that the proposed GP and EPR models are outstanding in
prediction accuracy and provide simple mathematical
formulation as well. The GP model was found to have a
coefficient of determination R2 of 0?988 and 0?984 in
the training and validation sets, respectively, whereas
these values were found to be equal to 0?984 and 0?987,
respectively, for the EPR model. The derived formulae are
as follows (Pan et al., 2013)

q
GP

u
~

7024P2P4 sin(P1){86:2 logj{43:9P5z97:5P4j
{4:1½1:11 exp(3:12 cos ({0:886P4))�0:132 log(68:5P1)

(13)

q
EPR

u ~67P1(0:0535P5{2:11P1z6:05P2
2)5 (14)

It can be seen from equations (13) and (14) above that
both the GP and EPR models did not select the geometry
ratio (P3) as a significant model input, whereas the EPR
model did not also select the unit weight of soil (P4) as a
significant model input. Another successful application for
the use of GP and EPR for predicting the ultimate bearing
capacity of shallow foundations was carried out by Tsai
et al. (2013).
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Discussion and conclusion
In geotechnical engineering, it is most likely to encounter
problems that are very complex and not well understood.
In this regard, AI provides several advantages over more
traditional computing techniques. For most traditional
mathematical models, the lack of physical understanding
is usually supplemented by either simplifying the problem
or incorporating several assumptions into the models.
Mathematical models also rely on assuming the structure
of the model in advance, which may be sub-optimal.
Consequently, many mathematical models fail to simulate
the complex behavior of most geotechnical engineering
problems. In contrast, AI techniques are a data-driven
approach in which the model can be trained on input–
output data pairs to determine the structure and parameters
of the model. In this case, there is no need to either simplify
the problem or incorporate any assumptions. Moreover, AI
models can always be updated to obtain better results by
presenting new training examples as new data become
available. These factors combine to make AI a powerful
modeling tool in geotechnical engineering. In the field of
foundation engineering, it was evident from this review that
AI techniques have been applied successfully to shallow
foundations. Based on the results of the studies reviewed in
this paper, it can be concluded that AI techniques perform
better than, or at least as well as, the traditional methods
used as a basis for comparison.

Despite the success of AI techniques, they are still facing
classical opposition because of some inherent shortcom-
ings that need further attention in the future including the
lack of transparency, knowledge extraction, and model
uncertainty. Detailed discussion of such shortcomings is
beyond the scope of this paper but have been presented in
detail by Shahin (2013). For example, special attention
should be paid to incorporating prior knowledge about
the underlying physical process based on engineering
judgment or human expertise into the learning formula-
tion, checking of model robustness, and evaluation of
model results. Improvements in these issues will greatly
enhance the usefulness of AI techniques and will provide
the next generation of applied AI models with the best way
for advancing the field to the next level of sophistication
and application. The author suggests that AI techniques
for the time being might be treated as a complement to
conventional computing techniques rather than as an
alternative, or may be used as a quick check on solutions
developed by more time-consuming and in-depth analyses.
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