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)e fault detection and diagnosis (FDD) along with condition monitoring (CM) and of rotating machinery (RM) have critical
importance for early diagnosis to prevent severe damage of infrastructure in industrial environments. Importantly, valuable
industrial equipment needs continuous monitoring to enhance the safety, reliability, and availability and to decrease the cost of
maintenance of modern industrial systems and applications. However, induction motor (IM) has been extensively used in several
industrial processes because it is cheap, reliable, and robust. Rolling bearings are considered to be the main component of IM.
Undoubtedly, any failure of this basic component can lead to a serious breakdown of IM and for whole industrial system. )us,
many current methods based on different techniques are employed as a fault prognosis and diagnosis of rolling elements bearing
of IM. Moreover, these techniques include signal/image processing, intelligent diagnostics, data fusion, data mining, and expert
systems for time and frequency as well as time-frequency domains. Artificial intelligence (AI) techniques have proven their
significance in every field of digital technology. Industrial machines, automation, and processes are the net frontiers of AI
adaptation. )ere are quite developed literatures that have been approaching the issues using signals and data processing
techniques. However, the key contribution of this work is to present an extensive review of CM and FDD of the IM, especially for
rolling elements bearings, based on artificial intelligent (AI) methods. )is study highlights the advantages and performance
limitations of each method. Finally, challenges and future trends are also highlighted.

1. Introduction

Many industries have adopted several measures in their
drive to optimize the reliability, availability, and safety to
reduce the maintenance cost of modern industrial systems
and applications, which are vital to process [1, 2]. )us,
condition-based maintenance (CBM) has gained a signifi-
cant role in an industrial world [3, 4]. However, CBM is

applied in order to achieve early maintenance decisions
through CM collected data [5]. Moreover, condition
monitoring (CM) and fault detection and diagnosis (FDD)
of rotating machinery (RM) [6, 7] have recently gained huge
attention [8, 9]. )erefore, CM and FDD become the most
important and critical aspects of industrial life (i.e., system
design and maintenance) [10]. )e main aim of CM and
FDD is to follow up the machinery health and the remaining
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useful life (RUL) in modern industrial machinery [11, 12].
However, predictive health monitoring (PHM) methods are
important to guarantee the required health state of the
machinery [13, 14]. )us, CM and FDD help to ensure the
health state of the machinery [15, 16]. Figure 1 shows the
main components of a typical CBM [17]. CM methods are
categorized into two groups, invasive and noninvasive
methods. On the one hand, invasive CM is considered to be
simple and basic technique. On the other hand, it is hard to
implement. To overcome this challenge, noninvasive CM
methods are highly used nowadays [18].

As key components of industrial systems and appli-
cations [19–21], rotating machinery, such as motor,
gearbox, wind turbines, generator, and engine, is vital
equipment in modern industrial applications [22]. )ese
important machines have to run efficiently, accurately, and
safely [23]. Due to the criticality and importance of this
issue, several analysis and studies were published during
the past years where many different approaches have been
investigated to improve the CM and FDD for rotating
machinery [24, 25]. Conventionally, the traditional CM
and FDD methods (such as model and signal as well as
data-based methods) [26–29] need to extract the diag-
nosable information manually from the raw data [30].
Following that, pattern recognition models were devel-
oped using the features vector in the classification process
[31]. )is scenario requires much experience knowledge
and complex feature extraction methods [32, 33]. To ad-
dress this issue, artificial intelligent (AI) methods and
techniques for CM and FDD of RM [34–39] are widely
employed and applied nowadays [40, 41].

Induction motor (IM) [42–49] is vital in industrial
processes and applications [50, 51]. Moreover, IM is ex-
tensively used, for example, in mining machines, automotive
applications, pumps, blowers, fans, chemical machines, lifts,
compressors, vacuums, conveyors cranes, and engines
[52–59]. Figure 2 summarizes applications of the IM.

All parts of IM (stator, bearing, bar, and rotor) are af-
fected by stress, aging, vibration, long operating time,
continuously monitoring, and electrodynamic forces
[60–62]. )us, any failure of any part of IM may cause a
serious breakdown of the machine, which increases the
maintenance cost and leads to heavy losses [63, 64]. Figure 3
shows IM faults and their percentage.

Rolling bearings [66] were considered to be the main
component of rotating machinery [67]. However, bearings
are used in several mechanical and electrical applications,
including IM, turbines, medical devices, cars and trucks,
engines, automobile industry, and aerospace [68]. Im-
portantly, any failure of this basic component can lead to a
serious breakdown of rotating machines [69]. Rolling
bearing faults could be categorized by two main factors,
location of the fault and nature of the fault. For location
category, five main faults occurred including, imbalance
shaft faults, ball faults, inner race faults, outer race faults,
and cage faults. For nature category, two main faults are
considered, including cyclic faults and noncyclic faults
[70, 71].

CM and FDD of bearing element bearings of RM are
widely used to follow up the operation condition of the
machine [72–74]. However, the main task of CM and FDD
is to diagnose faults and failures [75, 76]. As a result, any
failure may cause a serious breakdown, which increases the
maintenance cost and leads to heavy losses [77]. Recently,
various methodologies of CM and FDD of IM have been
discussed. Moreover, several data and model-based
techniques have been introduced including signal pro-
cessing-based techniques [78, 79], image processing based
techniques [80–83], intelligent techniques [84, 85], data
fusion techniques [86–90], data mining techniques
[91–96], and expert system techniques [97–99]. All those
techniques have used specific analyses to develop the FDD
methodology to arrive at efficient and accurate results
[100, 101]. As shown in Figure 4, the analyses used in those
studies include chemical analysis, electrical analysis, and
mechanical analysis, in more details, temperature analysis
[102–107], vibration analysis [108–112], noise analysis
[113, 114], radio-frequency (RF) analysis [115–118], in-
frared analysis [119–124], current and voltage analysis
[125, 126], electromagnetic field analysis [127–129], oil
analysis [110, 130–132], pressure analysis [133–137], ul-
trasound analysis [138–140], and sound and acoustic
emission analysis [141, 142]. Figure 5 shows a general
block diagram of a noninvasive FDD for rotating ma-
chinery. As an example, preprocessing stage includes data
denoising and filtering. However, most electrical and
mechanical signals are nonlinear and nonstationary sig-
nals. )us, denoising techniques have been extensively
studied nowadays. However, wavelet transform (WT),
continuous wavelet transform (CWT), discrete wavelet
transform (DWT), Kalman filtering, Wiener filtering,
Empirical mode decomposition (EMD), variational mode
decomposition (VMD), and singular value decomposition
(SVD) are some common denoising techniques [143].
Table 1 shows a comparison between various CM analysis
techniques.

)emain objective of this work is to review the CM and
FDD of the IM, especially for rolling elements bearings,
based on artificial intelligent (AI) methods. )e study also
points out the advantages and drawbacks of each method.
Finally, research challenges and possible future trends
directions in this field are also presented in this article.

)e rest of the paper has been organized as follows.
Firstly, background and general introduction are dis-
cussed in Section 2. Secondly, AI for CM and FDD for
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Figure 1: )e main components of CBM.
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rolling bearings are presented in Section 3. Finally,
challenges and future trends are discussed in Section 4.

2. Background and General Introduction

Nowadays, the need for earlier detection of faults for IM is
crucial. However, in order to increase the reliability of IM,
AI has been used to measure the accuracy at the incipient
stage of CM and FDD for IM [144]. Figure 6 shows all most
AI methods used in CM and FDD. A variety of AI studies of
CM and FDD for IM have been recently reported. In [145],
an intelligent FDD of RM (i.e., automotive engine) frame-
work is introduced. )erefore, in the feature extraction
stage, ensemble empirical mode decomposition (EEMD) is
implemented followed by intrinsic mode functions (IMF)
decomposition. )e correlation coefficient (CC) along with
singular value decomposition (SVD) is employed to elimi-
nate the redundant IMF and to obtain fault features. To add a
new layer of improvement, five single classifiers based on the
probabilistic committee machine (PCM) and Bayesian
learning machine are trained and used in the classification
stage.

Furthermore, (1) the single probabilistic classifiers, (2)
the single probabilistic and Bayesian machines, (3) pairwise-
coupled, and (4) two classifiers without pairwise-coupling
strategy are used for further comparison of classification. As
a result, the proposed probabilistic committee machine
method showed the superiority of diagnosing faults. In
[146], an online feature condition monitoring approach
based on unsupervised feature learning (dictionary learning)
under different operational conditions using vibration and
acoustic emission signals is introduced. )is work also
presents dictionary distance and signal fidelity driven
methods and techniques for anomaly detection are also
described. Moreover, time-propagated characteristics are
used along with sparse approximation of signals received

from vibration and acoustic emissions. Importantly, the
results of three case studies, i.e., the approximation accuracy,
overall computational overhead, and the adaptation rate, are
presented. As a result, under normal variation condition, the
learned features change slowly in comparison with high-
speed variation when a fault appears. In [147], an FDD
system of IM designed on multiscale entropy and support
vector machine (SVM) in combination with mutual infor-
mation algorithm is proposed. )e aim is to retrieve the
required entropy feature; techniques like vibration signals,
sample entropy, and multiscale entropy are applied. Im-
portantly, a support vector machine classifier is used for the
entropy feature vector. Furthermore, classification results
showed that these SVM based entropy techniques could
effectively diagnose various motor faults (i.e., bearing faults,
stator faults, and rotor faults). In [148], a multiclass FDD
approach of IM using wavelet and Hilbert transforms is
introduced. Moreover, for a feature extraction stage, Hilbert
transform (HT) and continuous wavelet transform (CWT)
are applied as advance signal processing techniques to re-
trieve features and characteristics from radial vibration
signals and to detect rotor, bearing, and stator faults. Im-
portantly, three classifiers are employed in this research: the
neural network (multilayer perceptron), neural network
(radial basis function), and support vector machines. As a
result, in this study, the performance of SVM is found to be
the best compared with NN classifiers, i.e., MLP and RBF
classifiers. In [149], a compound FDD approach for IM at
variable operating conditions using the SVM classifier is
introduced. Moreover, radial vibration and stator currents
are used. Four motor conditions are extracted and classified,
including healthy induction motor, misalignment, unbal-
anced rotor, and bearing fault. Kernel-nonlinear SVM along
with Gaussian radial basis function is employed. As a result,
SVM bootstrap based technique with features data fusion
has an ability of classifying multiple and single faults for
different operating conditions of the IM with good accuracy
(84.8–100%). In [150], vibration and current monitoring
based approach for both electrical and mechanical faults’
prediction under various operating conditions for IM is
proposed. Moreover, nine mechanical and electrical faults
are detected and classified using amulticlass SVM algorithm.
In the feature extraction stage, time domain of vibration and
current signals is used to seek statistical features. Impor-
tantly, MSVM is trained using the radial basis function
(RBF) kernel. As a result, for the vibration signal and

IM applications 

Nuclear power
plants 

Mining machines 
Chemical

processing plants
Automotive
applications

Petroleum
industry

Aviation industry
Transportation

industry 
Pumps and

blowers 
Conveyors cranes 

Li�s,
compressors, and

vacuums 

Figure 2: Applications of the IM.

Bearing

Stator

Rotor

Others

IM
 c
o
m
p
o
n
en
t

10 20 30 40 500

Percentage of the fault

Figure 3: IM faults [65].

Shock and Vibration 3



mechanical faults, the MSVM showed an ability of pre-
dicting all faults, but it could not predict current signals
based on electrical faults. However, the SVM is better than
MSVM for electrical faults diagnosis.

Recently, deep learning [151–153] is extensively used in
CM and FDD for IM. In [154], an automatic FDD approach
of IM uses deep learning techniques to combine the feature
extraction process with the classification process. Moreover,
deep belief networks (DBN) are modelled for vibration
signals to retrieve key features. Moreover, the restricted
Boltzmann machine (RBM) is used to build and train the
DBN using a layer-by-layer pretraining algorithm. Impor-
tantly, the proposed approach could detect the fault directly
from frequency distribution without needing traditional
feature extraction methods. Furthermore, to elevate the
classification accuracy and reduce training error, the pro-
posed approach could learn multiple layers of representation
and model high-dimensional data. In [155], an unsupervised
feature learning sparse autoencoder-based deep neural
network approach for induction motor faults classification is
proposed. Moreover, the proposed approach detected and

classified multiple faults, three-rotor faults (bowed, unbal-
anced, and rotor bars), defective bearing, and stator winding
fault. Features obtained from a sparse autoencoder are used
to train a neural network classifier. Importantly, the method
called “dropout” is used to prevent the training process from
overfitting. As a result, SAE-based DNN approach showed
good results in terms of feature learning capability and
classification accuracy of FDD for IM. To avoid complex
sensor data problems, deep learning technique is recently
used. In [156], deep learning for infrared thermal (IRT)
images is introduced to detect various machine conditions.
Moreover, convolutional neural networks (NNs) are
employed. )e accuracy of this method is at least 6.67%
better compared with normal approaches. Importantly, it
can be used for online FDD and CM when the access is very
difficult such as in offshore wind turbines. Table 2 sum-
marizes AI studies of CM and FDD for IM.

)e bearing is a critical component in IM. )us, robust
and intelligent CM and FDD methods are highly needed to
enhance detection, diagnosis, monitoring, and prognosis
capabilities.

3. AI in CM and FDD of Rolling Element
Bearings for IM

Bearing faults are considered to be a majority of faults in
IM [164–166]. In [167], four classification methods for
intelligent CM and FDD of rolling bearings are proposed.
Moreover, accuracy, time consumption, intelligibility, and
maintaining ability of intelligent methods like SVM based
particle swarm optimization (PSO-SVM), K-Nearest
Neighbor algorithm (KNN), a rule-based method (RBM)
based on the MLEM2 algorithm and probabilistic neural
network (PNN) are discussed. As a result, PSO-SVM
ranked the first in terms of accuracy followed by the RBM,
but PSO-SVM and RBM required more programming
efforts. Furthermore, the RBM showed the best in terms of
interpretation and reduction. In [168], an adaptive
method for the health monitoring of rotating bearings
using the vibration signal is introduced. )e proposed
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method applies the empirical mode decomposition–self-
organizing map (EMD–SOM) to find a confidence value
(CV) and to find the degradation of the fault. As a result,
SOM based technique showed a high ability for online
condition monitoring, especially for limited computing
resources cases.

3.1. Bayesian Network. Bayesian network [169, 170] is a
probabilistic statistical model, which uses a directed acyclic
graph (DAG) to seek conditional dependencies. )is model
shows a direct representation of causal relations between
variables. Currently, the Bayesian network is extensively
used [171] in several applications, such as feature extraction

Table 1: Comparison between various CM analysis techniques for bearings of IM.

)e technique Advantages Drawbacks Fault

Temperature and infrared analysis
(i) Basic method
(ii) Noninvasive

(i) Expensive sensor is
required
(ii) It cannot be used as early
FDD

(i) Mechanical and
electrical faults

Vibration and noise analysis
(i) Reliable and standard method
(ii) It can be used as early FDD

(i) Sensitive to the noise
(ii) Expensive sensor is
required
(iii) Intrusive

(i) Mechanical
faults

Chemical and oil analysis
(i) Fault estimation and location
capabilities
(ii) High performance for bearing FDD

(i) Expensive
(ii) Applicable for big size
machines

(i) Mechanical
faults

Sound and acoustic emission analysis

(i) It could be used as reliable and remote
CM
(ii) It is easily implemented
(iii) Fault estimation and location
capabilities
(iv) Signal to noise ratio is high
(v) It deals with high frequency range

(i) Sensitive to the noise
(ii) Expensive sensor is
required
(iii) Intrusive

(i) Mechanical
faults

Current, voltage, and electromagnetic
field analysis

(i) Inexpensive
(ii) Nonintrusive

(i) Sensitive to the noise
(ii) It cannot be used as early
FDD

(i) Mechanical and
electrical faults

Ultrasound analysis

(i) Effective in low speed bearings
(ii) It deals with low and middle
frequency ranges
(iii) High signal to noise ratio

(i) Expensive sensor is
required
(ii) Intrusive

(i) Mechanical and
electrical faults
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Table 2: AI studies of CM and FDD for IM.

Reference Analysis type Feature extraction Classification Highlights

[145] Vibration

Ensemble empirical mode
decomposition (EEMD) and
correlation coefficient (CC) along
with singular value decomposition
(SVD)

(1) )e single probabilistic
classifiers
(2) )e single probabilistic and
Bayesian machines
(3) Pairwise-coupled
(4) Two classifiers without
pairwise-coupling

(i) It diagnoses multiple and single
faults
(ii) )ere is simultaneous fault
diagnosis
(iii) )e accuracy for a single fault is
92.62% and for simultaneous faults is
85.73%

[146]
Vibration and
acoustic
emission

Unsupervised feature Dictionary learning

(i) )ere is online monitoring
(ii) )ere are different operational
conditions
(iii))ere are good computational costs

[147] Vibration Multiscale entropy SVM
(i) It diagnoses multiple faults
(ii) )e average accuracy is 96.25%

[148] Vibration
Hilbert transform (HT) and
continuous wavelet transform
(CWT)

Neural network (multilayer
perceptron), neural network
(radial basis function), and
support vector machines

(i) )ere is multiclass FDD
(ii) SVM is found to be the best (with
SVM 99.71%) compared to NN
classifiers

[149]
Vibration and
current

SVM bootstrap based technique
with features data fusion

Kernel-nonlinear SVM along
with Gaussian radial basis
function

(i) SVM multiclassification scheme is
presented
(ii) It diagnoses multiple faults
(iii) )ere are different operational
conditions
(iv) )e average accuracy is 99.4%

[150]
Vibration and
current

Statistical features analysis SVM and multiclass SVM

(i) It diagnoses multiple faults
(ii) )ere is electrical and mechanical
faults’ prediction
(iii) )ere are different operational
conditions
(iv) MSVM showed an ability of
predicting all mechanical faults
(v) SVM is better than MSVM for
electrical faults diagnosis
(vi) )e average accuracy is 93.28%

[154] Vibration Deep learning Deep belief networks (DBN)

(i) )ere is automatic FDD
(ii) )e proposed approach could
detect the fault directly from frequency
distribution without needing
traditional feature extraction methods
(iii) It learns multiple layers of
representation and models high-
dimensional data
(iii) )e average accuracy is 99.00%

[155] Vibration Deep learning Sparse autoencoder

(i) It diagnoses multiple faults
(ii) It prevents training process
overfitting
(iii) )e average accuracy is 97.61%

[156]
Infrared
thermal (IRT)
images

Deep learning Convolutional neural networks

(i) )ere is online monitoring
(ii) )ere are different operational
conditions
(iii) )e average accuracy is 95%

[157] Stator current Deep learning Deep neural network

(i) IM bearings monitoring tool based
on deep learning is proposed
(ii) Different load conditions 25%, 50%,
75%, and 100% are tested
(iii) Deep neural network showed better
classification accuracy than shallow
neural network (SNN) and principle
component analysis (PCA)

6 Shock and Vibration



and classification machine learning algorithms, data mining
and data processing, speech processing, bioinformatics,
error-control codes, medical applications, industrial diag-
nosis, and wireless sensor networks [172–174]. As a ML
algorithm for FDD of IM fault, the Bayesian network is
applied. In [175], different operating conditions of bearing
FDD approach based on acoustic signal are proposed. De-
cision tree (dimensionality reduction) is applied to extract
descriptive statistical features vector in the feature extraction
stage. Next, Bayes classifier is used in the classification stage.

In [170], the diagnosis approach of bearing faults in rotary
machinery based on the nonnative Bayesian approach using
vibration signals is introduced. In detail, EMD is utilized to
split up vibration signals into IMFs, and then the correlation
coefficient is used to pick the appropriate IMFs. Shannon
energy entropy of IMFs is used to seek useful statistical
properties and features. Finally, a nonnative Bayesian
classifier (NNBC) is employed to find independence among
features. Furthermore, in order to compare classification
results, backpropagation neural networks, normal naive

Table 2: Continued.

Reference Analysis type Feature extraction Classification Highlights

[158] Vibration Kurtogram and deep learning
Recurrent NN, long-/short-
term memory, and gated
recurrent unit

(i) FDD method based on kurtogram
and deep learning is proposed
(ii) Computational time, computing
resources and number of layers, is small
(iii) Misclassification occurred
(iv) )e average accuracy is 98%

[159] Vibration Neural networks Transfer learning

(i) Bearing FDD approach based on
transfer learning with neural networks
is proposed
(ii) Different working conditions are
analysed
(iii) Training time comparing with NN
is reduced
(iii) It deals with massive data
(iv) Transfer learning improved the
classification accuracies
(v) )e total classification accuracy is
improved by 10.4 %

[160]
Acoustic
emission

Transfer learning-based
convolutional neural network

Transfer learning

(i) Bearing FDD acoustic spectral
imaging and transfer learning under
variable speed conditions and
different rotational speeds is proposed
(ii) Two-dimensional acoustic
frequency spectral imaging with a
transfer learning is discussed
(iii) )e proposed method achieved an
average accuracy of 94.67%

[161] Vibration

Long-/short-term memory
recurrent neural network and
feature-transfer learning (joint
distribution adaptation)

Grey wolf optimization
algorithm

(i) Bearing FDD based on adaptive deep
transfer learning is proposed
(ii) Massive labeled fault data is
collected and analysed
(iii) )e proposed method achieved an
average accuracy of 99.4 %

[162] Vibration
Multiscale deep intraclass
adaptation network

Multiple scale feature learner

(i) Bearing FDD is based on multiscale
deep intraclass transfer learning
(ii) Different working conditions are
analysed
(iii) )e proposed method achieved an
average accuracy of 99 %

[163] Vibration
Hybrid deep signal processing
approach

Autoencoder

(i) Deep learning with time
synchronous resampling mechanism is
proposed
(ii) )e proposed method dealt with
shift variant properties, periodic inputs,
and misclassification challenges
(iii) )e proposed method achieved an
average accuracy of 99 %

Shock and Vibration 7



Bayesian classifiers, and kernel naive Bayesian classifiers are
employed. Importantly, in this research study, the NNB
classifier showed superiority compared with the other
classifiers, including neural network and normal NB.

3.2. Support Vector Machine. )e support vector machine
(SVM) [176, 177] uses supervised machine learning models
along with statistical and predictive methods for classifi-
cation and regression analysis. SVM is being used to solve
big data and multidomain classification problems in the
modern industrial environment [178]. SVM is also used as
CM and FDD method for IM. Subsequently, in [179], a
bearing fault detection scheme using vibration signals of IM
is proposed. SVM and continuous wavelet transform (CWT)
are used together. As a result, for using SVM with CWT, the
proposed scheme is simple to implement, very fast, and high
accurate. Using another ANN based techniques requires the
cumbersome process of trial and error to obtain an optimal
solution. Nevertheless, using a hybrid CWT-SVM technique
gives promising results (fast and efficient). In [180], an FDD
approach for bearings of IM based on Stockwell transform
and SVM is introduced. Moreover, in the feature extraction
stage, Stockwell transform technique is used for stator
current signals to retrieve features in time and frequency
domains. )en, Fisher score ranking is employed to select
high-ranking features. Importantly, in the classification and
location of faults stages, SVM is used. Following this,
comparing the results with another classifier is also applied.
Notably, the efficiency achieved using ANN equalled 77.78%
whereas the efficiency achieved using SVM classifier
equalled 91.667%. In [181], a multi-FDD method for rolling
element bearing employing orthogonal supervised linear
local tangent space alignment (OSLLTSA) and least square
SVM (LS-SVM) is proposed. Furthermore, vibration signals
are analysed and crumbled using EMD. In addition,
autoregressive (AR) coefficients and instantaneous ampli-
tude Shannon entropy are applied to seek the statistical
features for intrinsic mode functions (IMFs). After that, the
OSLLTSA technique is applied for dimension minimization
to obtain a low-dimensional fault features vector. Impor-
tantly, LS-SVM is employed using features vector as an
input. Moreover, the LS-SVM components are selected
based on enhanced particle swarm optimization (EPSO). As
a result, in this study, LS-SVM based OSLLTSA technique
gave good results for small sample size problem. In [182],
prediction method for machine condition based on wavelet
and SVM using vibration signals is proposed. In order to
enhance the modeling process, wavelet transform along with
SVM is applied. Moreover, SVM-WT degradation-predic-
tion model is employed to reduce irregular characteristics
and the complexity of the vibration signal. Importantly, to
compare the results, the neural network (NN) approach is
also employed. As a result of this research study, WT-SVM
model showed the best results compared with the NN and
single SVM models. In [183], an FDD approach for rolling
element bearings involving the use of enhanced multiscale
fuzzy entropy (IMFE), local mean decomposition (LMD),
Laplacian score (LS), and improved SVM based binary tree

(ISVM-BT) is proposed. Moreover, the local mean de-
composition is applied to decompose the complicated vi-
bration signal into a series of product functions (PFs).
Particularly, the improved multiscale fuzzy entropy is used
to assess the complexity and similarity of the signal. Im-
portantly, the obtained feature is fed to the ISVM-BT
classifier. Interestingly, IMFE-ISVMmethod showed a stable
and high performance for analysis of samples of discrete and
small time units in series. In [184], a hierarchical fuzzy
entropy and binary tree SVM technique for FDD of rolling
bearing are introduced. For instance, a hierarchical fuzzy
entropy method is applied as a feature retrieval process. To
get the fault feature vector by ordering the scale factors, the
Laplacian score (LS) method can also be used. Importantly,
the obtained feature vector is fed to an improved SVM based
binary tree (ISVM-BT) classifier. )e proposed ISVM-BT
based on hierarchical fuzzy entropy approach showed a good
performance for diagnosis of diverse conditions and se-
verities of rolling element bearings.

3.3. Artificial Neural Network (ANN). Recently, artificial
neural networks (ANN) [185, 186] have gained great at-
tention in industrial applications [187, 188]. Moreover, NN
is used as data processing and classification. Correspond-
ingly, AI self-adaptive FDD system inspired from genetic
algorithm (GA) and nearest neighbor (NN) is presented in
[189]. Infrared thermography (IRT) is used to diagnose
various conditions of roller element bearings. In feature
extraction stage to find approximation coefficients, a 2-di-
mensional discrete wavelet transform (2D-DWT) along with
Shannon entropy is used. Moreover, GA and nearest
neighbor are applied to find the histograms of chosen co-
efficients to be fed as an input to the feature space selection
method. Cost-effectiveness, noncontact, and non-
intrusiveness are the main advantages of applying this
method. Multilayer perceptron (MLP) [190] is a multiple
layer fee-forward neural network which uses supervised
learning. Authors in [125] present an FDD bearing fault
identification approach based on ANN for IM. Moreover, in
the proposed pattern identification approach, two current
sensors are used. )us, a multilayer perceptron (MLP) with
one and two hidden layers is employed. As a result, two
hidden layers of MLP are not suitable for bearing fault
identification. Two hidden layers MLP showed compara-
tively low accuracy and indicate higher computational costs
compared with one hidden layer MLP.

In [191], an intelligent online approach employing
empirical mode decomposition and ANN based technique
for automatic FDD of rolling bearings using vibration sig-
nals are proposed. Moreover, the feature retrieval method is
based on EMD energy entropy.)emost significant intrinsic
mode functions (IMFs) are selected by applying a mathe-
matical analysis. )en, the picked features are given an input
to the ANN to classify bearings defects. Importantly, the
proposed EMD-ANN approach could effectively detect the
intensity of the bearing defect and assess the bearing per-
formance degradation. Because of this, the proposed ap-
proach could be considered as an expert diagnosis and
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prognosis system. In [192], a fault discovery for roller
bearings and gearboxes neural networks using multiple
sensors and convolutional is introduced. )e key contri-
bution of this work is to achieve robust diagnosis accuracy
by applying data fusion and CNN techniques. Moreover,
features are extracted automatically without applying any
manual feature extraction/selection processes. As a result,
the CNN-data fusion technique showed posing superior
diagnosis performance as compared with manual feature
extraction techniques.

3.4. Combined ANN and SVM. In order to achieve high
diagnostic performance, combined ANN and SVM CM and
FDD techniques have been proposed [193]. In more details,
according to [194], an FDD approach of rolling element
bearings employing statistical feature extraction method
using vibration signals is proposed. Here, statistical features
are obtained using advanced signal processing tools and
central limit theory. Importantly, the output feature vector
(statistical feature vector) is fed as an input vector to a
classifier which categorizes different types of faults by using
ANN and SVM. As a result, in this study, the authors argued
that ANN and SVM could not offer an analytical guarantee
for the accuracy of FDD classifier. Furthermore, in [195], an
FDD method of ball bearings using both ANN and SVM is
introduced. Moreover, features of vibration signals are re-
trieved in time domain using statistical techniques. Fol-
lowing this, ANN and SVM are applied in the classification
stage. )e key findings of this work are that the accuracy of
FDD classifiers based on SVM is comparatively higher than
the ANN based classifiers in context of detection and pre-
diction of faults in combined bearing components. In [196],
an FDD of ball bearings using the vibration signal is pro-
posed. Correspondingly, multiscale permutation entropy
and wavelet based on ANN approach are introduced.
Moreover, a multiscale permutation entropy method is
applied to seek the best wavelet for a feature selection
process. For the classification stage in this approach, two
artificial intelligence techniques, ANN and SVM, are
employed. As a result of this research study, both ANN and
SVM, along with permutation entropy, give identical clas-
sification results.

3.5. Neuro-Fuzzy. Neuro-fuzzy is also used as an FDD
technique [197]. Yet, in [198], an enhanced real-time FDD
scheme for bearing CM based on a neuro-fuzzy (NF)
classifier using vibration signals is proposed. Firstly, two
signal processing techniques are implemented for the signals
from both time and frequency domains, and the time do-
main includes wavelet-spectrum reference functions and
kurtosis ratio reference functions. Secondly, an adaptive NF
classifier is developed. Importantly, by considering the fu-
ture states, the integrated NF based model showed the ability
of enhancing diagnostic reliability.

3.6. Deep Neural Network. Recently, deep neural networks
[199–203] are highly used in CM and FDD of rotating

machinery. Consequently, in [204], a hierarchical diagnosis
network (HDN) approach which uses deep learning (DL)
technique for FDD of rolling element bearings and uses
vibration signals is proposed. Furthermore, HDN is used to
obtain deep belief networks (DBN) for the hierarchical layer
discovery of the proposed method. Importantly, a two-layer
HDN is employed as a two-level diagnosis using the wavelet
packet energy feature. )e faults are diagnosed at the first
layer, while the intensity or severity of the faults is measured
at the second layer of HDN. As a comparison process,
backpropagation neuron networks (BPNNs) and SVM are
both applied to validate the effectiveness of applying HDN-
based technique. As a result, HDN shows a very promising
result for fault location classification and fault severity
identification. In [205], an improved deep fusion method is
developed for FDD of IM using vibration data. Moreover, in
order to improve and enhance the training of machine
learning, a deep autoencoder is built with both contractive
autoencoder (CAE) and denoising autoencoder (DAE).
)en, locality-preserving projection (LPP) is employed to
obtain the deep features vector and to enhance learning
capabilities by adding a new layer of learning enhancements.
Furthermore, for the training of smart fault detection and
diagnosis, the deep fusion features are fed to the neural
network-based classifier (softmax). Importantly, as a result
of this approach, the proposed method showed more ef-
fectiveness and robustness compared with standard CNN. In
[206], an innovative DL approach based on deep autoen-
coder feature learning is introduced as an FDD of rotating
machinery using vibration signals. In this study, feature
learning is enhanced using the loss function of deep
autoencoder based on the maximum correntropy. After that,
the artificial fish swarm algorithm is utilized to get the best
optimization values of the deep autoencoder signal features.
As a result, the authors summarized their conclusions by
stating that the proposed method shows effectiveness and
robustness compared with other learning methods. In [207],
an FDD health state identification approach of rotating
machinery components by means of a stacked denoising
autoencoder (SDA) using vibration signals is proposed.
Furthermore, SDA model is made of training and testing
groups. Next, the transmitting rule of greedy training is used
to build a deep hierarchical structure via layer-by-layer
scenario. In order to obtain a better robustness and high-
order characteristics, sparsity representation along with data
destruction is employed. As a result, the SDA-based health
state identification approach showed promising results,
especially for signals with ambient noise and working
condition fluctuations. Authors in [208] proposed a deep
learning FDD approach using acoustic emission for rolling
element bearing which is introduced. Moreover, a short-
time Fourier transform (STFT) is used as a preprocessing
stage. )en, a simple spectrum matrix is used for optimizing
DL networks, large memory storage retrieval (LAMSTAR)
neural network specifically. Key advantages of this approach
are that it deals with different working conditions, solving
the big data and manual feature extraction problems. In
[209], a hierarchical adaptive deep convolution neural
network approach evolving from an enhanced algorithm for
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bearing FDD and severity determination using vibration
signals is proposed. Moreover, hierarchical learning rate-
adaptive deep CNN (ADCNN) is applied to deal with big
data and to use as a feature extraction method for diag-
nosable information from several mass samples. In addition,
a two-layer ADCNN is developed; fault patterns are diag-
nosed from first layer, while second layer evaluates the fault
size. )e proposed automatic feature extraction model
showed very accurate results compared with the benchmark
methods used for fault diagnosis, such as traditional
DCNNs. In [210], a deep-learning-based hybrid feature
model for bearing FDD approach using vibration signals is
proposed. Moreover, the proposed approach can deal with
several working conditions, multiple faults, and fault se-
verity. In order to achieve an effective and accurate diag-
nosis, multiple severities faults, a hybrid technique includes
sparse stacked autoencoder (SAE) and deep neural networks
(DNNs) are applied. )e main advantage of applying this
hybrid technique is the ability of extracting more diag-
nosable vibration information with multiple crack sizes. As a
result, the proposed approach showed that it can produce
better results in diagnosing bearing multiple severities de-
fects than SVM and backpropagation neural networks
(BPNNs). In [211], an FDD approach for gearbox and
bearing systems based on deep statistical feature learning
using vibration signal analysis is introduced. Furthermore,
time domain analysis and frequency domain analysis as well
as time-frequency domain analysis are applied to obtain
features vector from vibration signals. As a deep statistical
feature learning tool, Gaussian-Bernoulli and Boltzmann
machines (GRBMs) methods are used to build a Gaussian-
Bernoulli deep Boltzmann machine (GDBM). )e proposed
approach showed good classification performances (95.17%
for the gearbox and 91.75% for the bearing system). Im-
portantly, compared with SVM classifier, GRBM based on
deep learning model showed ability of posing the best fault
classification rate. In [212], an intelligent FDD of bearings
and gearboxes based on deep neural networks tool with
massive vibration data is introduced. Moreover, the pro-
posed method is applied in different health conditions
among different operating conditions. To overcome the
deficiencies of the traditional shallow smart FDD methods
(i.e., ANN), deep neural networks (DNNs) are employed to
seek the useful diagnostic data from the vibration signals and
to approximate complex nonlinear functions. Importantly,
this work also highlights the superiority diagnosis accuracy
method and comparative analysis with the traditional ap-
proaches. In [213], an FDD for rolling bearings approach
based on improved convolutional deep belief network using
a vibration signal is proposed. Moreover, to enhance the
feature learning ability, convolutional deep belief network
(CDBN) model is employed along with Gaussian visible
units. Consequently, exponential moving average (EMA)
technique is used to further elevate the performance of
overall system. Importantly, the proposed CDBN based
method is more robust and effective than the normal shallow
methods.

In [214], a multimodal deep SVM classification
(MDSVC) approach with homologous features FDD using

vibration signals is introduced. In this approach, time and
frequency, as well as wavelet modalities, are separated first.
For each modality, to learn the patterns and different rep-
resentations for different features, Gaussian-Bernoulli deep
Boltzmann machine (GDBM) is used. Finally, an SVM
classifier is also employed to combine GDBMs with different
sensory system to obtain the improved version of MDSVC
method. Importantly, compared with representative deep
and traditional shallow learning methods, the suggested data
aggregation with a DL-based method achieved the best
classification rate. In [215], a feature learning model for CM
and FDD of the bearing based on convolutional neural
networks using vibration signals is proposed. Moreover, the
end-to-end machine learning system is developed. Impor-
tantly, compared with a classical approach (i.e., random
forest classifier), the overall accuracy is six times better than
the classical approaches. In [216], a deep neural network
FDD approach which uses vibration signals for analysis is
presented for rolling bearing. Moreover, time domain,
frequency domain, and time-frequency domain techniques
are applied to obtain the feature vector. In this research
study, three deep neural network models are employed as a
fault conditionmonitoring of rolling bearing, including deep
Boltzmann machines, deep belief networks, and stacked
autoencoders. Importantly, the classification accuracy for
those techniques is highly reliable (achieved more than
99%). In [217], deep learning enabled FDD approach using
time-frequency image analysis of rolling element bearings is
proposed. Moreover, deep neural network, image repre-
sentation, and time-frequency (TF) analysis techniques are
used together. )e vibration data is mapped into time-
frequency domain in order to draw relevant image repre-
sentations. Short-time Fourier transform, wavelet transform,
and Hilbert-Huang transforms are used as feature extraction
methods. Importantly, a deep convolutional neural network
(CNN) is applied in the classification stage. Furthermore, the
proposed CNN architecture based approach showed high
fault detection ability for noisy environments and with less
learnable parameters. In [218], a new deep residual learning-
based fault diagnosis method for the rolling bearing in
rotating machinery using vibration signals is proposed. )e
main contribution of this research study is to improve the
information flow throughout the deep neural network.
Moreover, CNN is adopted in feature extraction and 1D
convolutional layers are employed to obtain the feature
vector. In addition, basic neural network, deep neural
networks, stacked autoencoders, convolutional neural net-
work, and deep convolutional neural networks are also
employed for comparisons. As a result, the proposed ap-
proach could be effectively trained with a high classification
accuracy. In [219], a new CNN based on the LeNet-5 FDD
method is proposed for bearings using vibration signals. In
this method, the vibration signal is decomposed into two-
dimensional images; thus, the features are extracted from the
converted image. As a result, the proposed method showed
potentiality in the data-driven fault diagnosis field. However,
the prediction accuracy was about 99 %.

Table 3 summarizes AI algorithms used in FDD of IM
[193, 220–227].
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As a result of this study, it can be showed that both DL
and ML algorithms can be used as an intelligent diag-
nostic method of bearings for IM. Conventional ML
algorithms manually extract the features, where DL al-
gorithms learn the feature directly from input data. So,
human expertise and prior knowledge are not required
[228]. Table 4 shows a comparison between DL and ML

algorithms for bearings CM and FDD. Importantly, for
small datasets, conventional ML algorithms show better
accuracy results than DL algorithms, whereas, for big
datasets, DL algorithms show better accuracy results than
conventional ML algorithms. According to [144], as a
classification accuracy between SVM, KNN, and CNN,
the classification accuracy was 81.96, 86.25, and 82.70,
respectively, for small dataset, and 83.04, 87.85, and
89.26, respectively, for big dataset.

4. Challenges and Future Trends

Intelligent CM and FDDmethod is considered to be as a key
factor of fault diagnosis development [43, 229]. However,
this field still faces many challenges [35, 230, 231]. )is
section summarizes the challenges and the future trends of
AI methods in CM and FDD of rolling element bearings for
IM [232–235]:

(i) Dealing with all operating conditions, sensitivity
to the noise, and working environment (indoor/
outdoor) should be taken in a high consideration
when CM and FDD method is built and
developed.

(ii) Benefit from all strength points for each AI al-
gorithm is crucial for building a hybrid intelligent,
online, low cost, nonintrusive, and large scale CM
and FDD for industrial machinery.

(iii) Developing highly accurate sensors with cost-ef-
fective, fast, wireless, and energy-efficient charac-
teristics is highly required.

(iv) In order to increase diagnostic performance,
knowledge-based intelligent systems should be
further investigated.

(v) Automatic, online, continuous, and wireless di-
agnosis approach with better detection capabilities
based on IoT, expert systems, and AI may be
employed.

(vi) Compound faults and fault severity detection and
diagnosis approaches should be explored.

(vii) CM and FDD of multimotor systems have to be
proposed.

(viii) Integrated and comprehensive CM and FDD
system to deal with all faults of IM and to deter-
mine the damage level and severity should be
proposed.

(ix) Industrial Internet of things (IIoT) technologies a
long with AI should be used to develop high
performance CM and FDD methods.

(x) Big data problem is how to pick useful diagnostic
information from big data obtained by different
sensors quickly.

(xi) Data from different sensors should be used to
develop an effective heterogeneous methodology.

(xii) In order to achieve high availability of IM and to
reduce maintenance cost, fault-tolerant FDD and

Table 3: AI algorithms used in CM and FDD of IM.

)e method Highlights

Random forest

(i) )e small number of training samples is
required
(ii) )ere is low computational cost
(iii) )ere is good performance for high-
dimensional data

Bayesian
network

(i) )ere is high classification speed
(ii) It is useful if the prior knowledge is reliable
(iii) )ere is low storage need
(iv) It is computationally expensive
(v) )ere is prior beliefs’ problem

KNN

(i) )ere is low classification speed
(ii) It is simple and easy to apply
(iii) )ere is poor performance for high-
dimensional data
(iii) It is memory-intensive
(iv) It is noise sensitive
(v) It is computationally expensive

SVM

(i) )ere is good performance for high-
dimensional data
(ii) )ere are low storage needs
(iii) )ere is high classification speed
(iv) It is not efficient for big data
(v) It is noise sensitive
(vi) It has good accuracy

ANN

(i) )ere is fault tolerance
(ii) )ere is high classification speed
(iii) )ere is parallelism
(iv) )ere is hidden training problem
(v) It is efficient for big data
(vi) It is computationally expensive
(vii) )ere is black box behavior problem

Neuro-fuzzy

(i) )ere is good performance for high-
dimensional data
(ii) It has good diagnosis accuracy
(iii) )ere is robustness
(iv) )ere is parallelism
(v) It is efficient for big data
(vi) )ere is black box behavior problem
(vii) It has self-learning capability

DNN

(i) )ere is good classification speed
(ii) )ere are automatic fault diagnosis and
detection
(iii) )ere is good accuracy
(iv) )ere is parallelism
(v) It has complex and deep architecture
(vi) It is feature extraction free
(vii) It is computationally expensive
(viii) )ere are massive parallel computations
(ix) It is efficient for big data
(x) )ere is long time training problem
(xi) A large number of training samples are
required
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prognostic techniques have to be further
investigated.

5. Conclusions

Importantly, enhancing the reliability, availability, and
safety to reduce maintenance cost of modern industrial
systems and applications is crucial. )us, following up the
health of the machinery such as induction motor (IM) is
vital. )e bearing is a critical component in IM. )erefore,
robust and intelligent condition monitoring (CM) and fault
detection and diagnosis (FDD) methods are highly needed
to enhance detection, diagnosis, monitoring, and prognosis
capabilities. In this paper, a general descriptive review of
intelligent diagnostics methods of rolling element bearings
for IM is presented. )e advantages and limitations of each
method are highlighted. Finally, challenges and future trends
are also discussed.
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