1	A review of methods for river hydromorphological assessment
2	B. Belletti ^{a,*} , M. Rinaldi ^a , A.D. Buijse ^b , A.M. Gurnell ^c , E. Mosselman ^{b,d}
3	^a Department of Earth Sciences, University of Florence, Italy
4	^b Deltares, Netherlands
5	^c Queen Mary University of London, UK
6	^d Delft University of Technology, the Netherlands
7	
8	* Corresponding author: Via S.Marta 3, 50139, Firenze, Italy, Tel: ++390554796225;
9	Fax: ++39055495333; E-mail: barbara.belletti@unifi.it
10	

11 Abstract

12	Several hydromorphological assessment methods have been developed in different
13	countries during recent decades, with notable differences in their aims, scales, and
14	approaches. Although these methods are increasingly applied to support river
15	management, the strengths and limitations of the different types of methods have been
16	insufficiently investigated. The main objective of this review is to provide a critical
17	analysis of currently available hydromorphological assessment methods, identifying
18	their main strengths, limitations, omissions, the potential for integration of different
19	approaches, and the need for further improvements.
20	To address these aims, methods have been grouped into four categories of
21	hydromorphological assessment: (1) physical habitat assessment; (2) riparian habitat
22	assessment; (3) morphological assessment; (4) assessment of hydrological regime
23	alteration.
24	The general characteristics and information recorded by 121 methods are reviewed,
25	allowing for a comparative analysis of the four assessment categories. Based on this
26	comprehensive review, strengths and limitations have been identified for each of the
27	four categories of hydromorphological methods. The main gap in most methods is
28	insufficient consideration of physical processes. Thus, an integrated
29	hydromorphological analysis is recommended, where the morphological (3) -and
30	hydrological (4)-components are the key parts for the classification of
31	hydromorphological conditions. Besides, physical (1) -and riparian habitat (2) -methods
32	allow for a better characterization and improved potential linkages with ecological
33	conditions.

35 Keywords

- 36 Hydromorphology, Physical habitats, Riparian habitats, Hydrological regime,
- 37 Morphological alteration

39 Introduction

40	In recent decades, hydromorphology has been developed as an umbrella discipline
41	that links hydrology and geomorphology, and places the consideration of physical
42	stream characteristics and processes at the centre of river management and restoration
43	(Newson and Large 2006; Vaughan et al. 2009). Within Europe, it has developed
44	rapidly and numerous methodologies have been proposed following the introduction
45	of the EU Water Framework Directive (WFD; European Commission 2000), which
46	requires the incorporation of hydromorphology into the assessment and monitoring of
47	all European water bodies, including consideration of hydrological regime (i.e.,
48	quantity and dynamics of water flow and connection to groundwater bodies), river
49	morphology (i.e., channel dimensions and mobility, river bed structure and substrate
50	calibre, and the structure of the riparian zone), and river continuity.
51	Hydromorphological assessment can be defined as an evaluation and classification of
52	both hydrological and geomorphological stream conditions. It-Hydromorphological
53	assessment includes those consists of a suite of methods and procedures that identify
54	and characterize hydromorphological features in order to assess river conditions. The
55	many existing-operational methods that have been developed for application in
56	different countries, vary widely in terms of their their underlying concepts, and aims,
57	the spatial scales at which they are applied, the collected data that are collected, and
58	outputs-the indicators that are derived from the data.
59	Towards the end of the 20th century, hydromorphological assessment mainly
60	focussed upon types and abundances of physical habitats (e.g., Platts et al. 1983;
61	Plafkin et al. 1989; Raven et al. 1997, 2002). This was because physical habitats were
62	recognized as an important component in ecological studies that aimed at explaining

63	distributional patterns of organisms, and the composition and structure of biological
64	communities (Fernández et al. 2011). During the last decade, it has been recognised
65	that broader river condition assessments are needed that go beyond an inventory of
66	physical habitats to include the measurement of "pressure" or "response" variables
67	with a stronger emphasis on river dynamics and processes (Fryirs et al. 2008).
68	However, integration of the full range of disciplinary approaches necessary to assess
69	river conditions (hydrology, geomorphology, water quality, biology, ecology) in a
70	robust way remains a challenge.
71	There have been a number of recent reviews of hydromorphological assessment
72	methods that emphasise river habitat characterization (e.g., Weiss et al. 2008;
73	Fernández et al. 2011), and there have also been attempts to standardise these habitat-
74	based methods (CEN 2002; Parsons et al. 2004). However, many new methods,
75	employing a wider range of geomorphological concepts and approaches, have been
76	proposed in the last decade. Furthermore, Indeed although hydromorphological
77	assessment is now carried out by many public agencies, particularly within the
78	European Union as a part of implementation of the WFD ₇ . Nevertheless in many cases
79	there is still an insufficient awareness of the limitations and strengths of different
80	methods, and of how they should be integrated to ensure a robust assessment. In
81	response to these needs, an extensive review analysis of existing hydromorphological
82	methods (Rinaldi et al. 2013b) has been carried out in the context of REFORM
83	(REstoring rivers FOR effective catchment Management;
84	http://www.reformrivers.eu/), a collaborative EU project targeted towards
85	development of guidance and tools to make river restoration and mitigation measures
86	more cost-effective. The review takes recent published reviews, mainly focussed on
87	river habitat characterization, as its starting point (Raven et al. 2002; McGinnity et al.

88	2005; Weiss et al. 2008; Fernández et al. 2011). It represents an extension of the
89	review of Fernández et al. (2011), which incorporated 55 mainly habitat-based
90	assessment methods that have been developed worldwide, by incorporating a total of
91	121 methods. It synthesizes the results, identifying and discussing the main strengths,
92	limitations and gaps in existing methods, and in order to proposes future directions for
93	hydromorphological assessment. It also touches briefly ression on methods
94	specifically developed in Europe, in relation to the implementation of the WFD. The
95	review does not aim to discuss the scientific principles and concepts that underlie
96	hydromorphological and river condition assessments, since these are reported in other
97	recent reviews (e.g., Fryirs et al. 2008), but it aims to compare and discuss methods in
98	a critical way, starting from the knowledge and expertise of the authors.
99	
100	Methods, categories and properties of hydromorphological assessments Scope of
100 101	Methods, categories and properties of hydromorphological assessments S cope of the review
100 101 102	Methods, categories and properties of hydromorphological assessments Scope of the review In this section the meaning of hydromorphological assessment in the context of this
100 101 102 103	Methods, categories and properties of hydromorphological assessments Scope of the review In this section the meaning of hydromorphological assessment in the context of this review is defined; some broad types of assessment are identified; and the
100 101 102 103 104	Methods, categories and properties of hydromorphological assessments Scope of the review In this section the meaning of hydromorphological assessment in the context of this review is defined; some broad types of assessment are identified; and the characteristics that were extracted for each hydromorphological assessment method
100 101 102 103 104 105	Methods, categories and properties of hydromorphological assessments Scope of the review In this section the meaning of hydromorphological assessment in the context of this review is defined; some broad types of assessment are identified; and the characteristics that were extracted for each hydromorphological assessment method are described.
100 101 102 103 104 105 106	Methods, categories and properties of hydromorphological assessments Scope of the review In this section the meaning of hydromorphological assessment in the context of this review is defined; some broad types of assessment are identified; and the characteristics that were extracted for each hydromorphological assessment method are described. Hydromorphological assessment can be defined as an evaluation and classification of
100 101 102 103 104 105 106 107	Methods, categories and properties of hydromorphological assessments Scope of the reviewthe reviewIn this section the meaning of hydromorphological assessment in the context of this review is defined; some broad types of assessment are identified; and thecharacteristics that were extracted for each hydromorphological assessment method are described.Hydromorphological assessment can be defined as an evaluation and classification of both hydrological and geomorphological stream conditions. This review
100 101 102 103 104 105 106 107 108	Methods, categories and properties of hydromorphological assessments Scope of the review In this section the meaning of hydromorphological assessment in the context of this review is defined; some broad types of assessment are identified; and the characteristics that were extracted for each hydromorphological assessment method are described. Hydromorphological assessment can be defined as an evaluation and classification of both hydrological and geomorphological stream conditions. This review takes previously published, recent reviews, mainly focussed on river habitat
 100 101 102 103 104 105 106 107 108 109 	Methods, categories and properties of hydromorphological assessments Scope of the reviewIn this section the meaning of hydromorphological assessment in the context of thisreview is defined; some broad types of assessment are identified; and the characteristics that were extracted for each hydromorphological assessment methodare described.Hydromorphological assessment can be defined as an evaluation and classification of both hydrological and geomorphological stream conditions. This review takespreviously published, recent reviews, mainly focussed on river habitatcharacterization, as its starting point (Raven et al. 2002; McGinnity et al. 2005; Weiss
100 101 102 103 104 105 106 107 108 109 110	Methods, categories and properties of hydromorphological assessments Scope of the review In this section the meaning of hydromorphological assessment in the context of this review is defined; some broad types of assessment are identified; and the characteristics that were extracted for each hydromorphological assessment method are described. Hydromorphological assessment can be defined as an evaluation and classification of both hydrological and geomorphological stream conditions. This review takes previously published, recent reviews, mainly focussed on river habitat characterization, as its starting point (Raven et al. 2002; McGinnity et al. 2005; Weiss et al. 2008; Fernández et al. 2011). Specifically, it represents an extension of the

111 review of Fernández et al. (2011), which incorporated fifty five mainly habitat based

112 assessment methods that have been developed worldwide.

113 The range of application of the methods considered in this review varies from those 114 applicable to small, wadeable streams to those suited to relatively large, non-wadeable 115 rivers. It is restricted to physics-based assessments, i.e., methods that address all or 116 some of the physical elements required for a hydromorphological evaluation. 117 Therefore, methods for the assessment of longitudinal fish continuity are not included, 118 as they have a biological focus, although they were included in the broader review of 119 Rinaldi et al. (2013b). It also excludes physical habitat simulation models and 120 environmental flows methods, as they differ in structure and approach from the truly 121 hydromorphological (i.e., hydrological *and* geomorphological) assessments 122 considered here. Indeed, habitat simulation and environmental flow methods aim to 123 identify, habitats and flow requirements respectively, needed to achieve and/or 124 maintain a specified river condition (Arthington 1998; King et al. 2008), rather than to 125 directly assess hydromorphological condition, alteration and pressures. For some 126 examples of habitat modelling approaches see Rinaldi et al. (2013b), and for 127 environmental flows, refer to Arthington (1998), King et al. (2008) and to the recent 128 review of Poff and Zimmerman (2010). 129 The 121 methods reviewed, are listed in Table 1. included in this review. Each 130 method was systematically analyzed, drawing mainly on information found in 131 scientific papers and, where available, technical reports. In some cases, additional 132 information was requested from authors or practitioners who were directly involved in 133 the development and/or use of specific methods. 134

135 (Table 1)

137 **Categories of Methods**

138	An initial inspection of these hydromorphological methods four broad categories of
139	assessment, although a sharp delineation is difficult and some overlap between types
140	inevitably exists. These were identified based on the main focus and objectives of
141	each method, which were reflected in the spatial scale of application (Fig. 1).
142	A temporal trend is apparent in the development and application of different
143	approaches (Fig. 2). The earliest assessment methods started to appear at the
144	beginning of the 1980s. Until the end of the 1990s, proposed methods can mainly be
145	described as physical habitat survey procedures, with only a few examples of
146	morphological methods. This first phase reflects the progressive development of river
147	restoration techniques, which initially consisted of rather small-scale, localized
148	interventions for habitat improvement. The introduction of the WFD marked a notable
149	increase in the number of new methods developed in Europe, but most of these
150	continued to be physical habitat surveys. Only in recent years, a significant increase in
151	morphological and hydrological methods occurred, as a consequence of the increasing
152	need to use catchment-wide and process-oriented approaches for implementing river
153	restoration projects.
154	

155 (Figure 1)

156 (Figure 2)

157

158 Methods for physical habitat assessment

159	This category includes From the early 1980s methods and protocols for the survey,
160	characterization, and classification of physical habitat elements which can were
161	developed which can be described as river habitat surveys or physical habitat
162	assessments (e.g., Platts et al. 1983; Plafkin et al. 1989; Raven et al. 1997; Ladson et
163	al. 1999; National Environmental Research Institute 1999; LAWA 2000, 2002a, b).
164	These focus mainly on instream habitats or microhabitats, but generally they also
165	include some consideration of riparian habitats. They often provide one or more
166	indices that attempt to evaluate deviation from some reference condition. Methods
167	that aim to evaluate the overall functioning of the stream (e.g., method 39; Table 1) by
168	including information on ecology-related features, are also included in this category,
169	although they are not strictly habitat survey methods. Seventy-three physical habitat
170	assessment methods were identified, illustrating that this type of assessment remains
171	the most common approach for assessing the hydromorphological state of a river
172	(Table 1, Fig. 2).
173	
174	Methods for riparian habitat assessment

175 Riparian zones-systems are an integral component of riverine systems, since their 176 lateral and vertical-form and vegetation structures depend upon hydromorphological 177 processes. However, the development of specific methods for assessing riparian 178 ecosystem conditions is relatively recent (Fig. 2). Some indicators of riparian 179 conditions are often included in one of the other types of assessment methods, but this 180 particular category consists of methods that are specifically designed for the 181 characterization of habitats in the riparian zone (e.g., Munné and Prat 1998), including 182 some assessments of wetland ecosystem functioning (methods 74, 78; Table 1). 183 Fifteen riparian habitat methods were identified (Table 1).

185 Methods for morphological assessment

186	This category includes methods with the following distinctive characteristics differing
187	from the category of physical habitat assessment: (1) they make a broader evaluation
188	of river conditions including assessing channel forms, geomorphic adjustments, and
189	human alterations; (2) the spatial scale is typically the 'reach' scale, i.e. a variable
190	length with sufficiently homogeneous morphological characteristics and boundary
191	conditions.
192	Following the development of physical habitat assessment methods, this type of
193	broader assessment of river conditions has emerged, particularly during the last
194	decade (Fig. 2). In this regard, Fryirs et al. (2008) suggest that a clear distinction
195	should be made between a river audit and a river condition assessment. A river audit
196	permits assessment of river status by generatinges information on the presence and
197	frequency of physical habitats and their characteristics, while A river condition
198	assessment is a broader evaluation which places greater emphasis on physical
199	processes, and aims to measure both pressure and response variables (i.e.,
200	hydromorphological and biological indicators) as a basis for developing a clearer
201	understanding of the cause-effect relationships that regulate observed changes in
202	system conditions. The 'morphological assessment' category contains methods that
203	can be described as river condition assessments. A total of 22 methods were identified
204	(Table 1).
205	

206 Methods for the assessment of hydrological regime alteration

207 This category encompasses a further, independent, group of methods-area of progress 208 that produce hydrological assessments, particularly the development of specific 209 indicators of hydrologic alteration (method 118; Table 1; Richter et al. 1996; Poff et 210 al. 2003), which can support assessments of the alteration of the natural hydrological 211 regime. The output of these assessments is usually an index of the degree of deviation 212 from unaltered conditions. As previously noted, the related *environmental flows* 213 methods are not included in this review because their specific aim is an evaluation of 214 flow requirements for aquatic ecosystems and species, rather than a direct assessment 215 of the flow regime and its alterations (Arthington 1998; King et al. 2008; Poff and 216 Zimmerman 2010) provide extensive reviews of environmental flow methods. In our 217 review, A total of 11 hydrological methods were identified (Table 1). 218 219 Survey of method characteristics and recorded features Methodology

Survey of method characteristics and recorded reatures methodology

220 Each method was analyzed, drawing mainly on information found in scientific papers

and, where available, technical reports. In some cases, additional information was

222 requested from authors or practitioners who were directly involved in the

development and/or use of specific methods.

In a similar manner to previous reviews (in particular Fernández et al. 2011), the type

225 (category) of each assessment method was identified, and then (a) the characteristics

of the method;, (b) the features that were recorded, and, when appropriate, (c) the

river processes that were assessed, were extracted. The types of extracted information

- are summarised in Table 2 (a more detailed description is reported in Rinaldi et al.
- 229 2013b). The way in which these three main types ((a) to (c)) of information were
- 230 collected, differed slightly across the different assessment categories. In particular,

231 information regarding the hydrological regime assessment methods (HRA) differed

232 from the first three categories (i.e., PH, RH, M):

233	(a) Method characteristics. These concerned data collection methods or sources (e.g.,
234	field survey, remote sensing, etc.); the type of method (e.g., qualitative
235	characterization, assessment by a quantitative index); whether the method makes use
236	of some type of reference conditions; the spatial scale of the assessment, including the
237	zones of the river corridor that were surveyed; and the temporal scales of
238	investigation. There are several approaches used to define reference conditions,
239	including: (i) empirical data from reference sites; (ii) historical information (i.e. some
240	historical state is assumed as a reference condition); (iii) modelled; (iv) theoretical;
241	(v) based on expert judgement; (vi) based on the historic range of variability or
242	evolutionary sequence and ergodic reasoning (Brierley and Fryirs 2005). For
243	hydrological assessment methods, additional information was collected concerning
244	the predictive ability of the assessment, whether methods make a direct link to
245	ecology, and the particular strengths of a method (i.e., ease of application, ability to
246	use variable data series lengths, ability to be applied both to gauged and ungauged
247	catchments, inclusion of an assessment of pressures a priori).
248	(b) Recorded features. These represent the core of the review, since they highlight
249	differences between the categories of assessment. In the case of physical habitat,
250	riparian habitat, and morphological assessment, they comprise lists of
251	hydromorphological features recorded in various portions of the river corridor
252	(instream, banks, riparian areas, floodplain). For the hydrological assessment
253	methods, these include metrics of hydrological characterization, alteration and
254	pressures.

255	(c) River processes. These are only relevant to the first three categories of assessment,
256	and provide information on whether any specific physical river process is included in
257	the evaluation (e.g., longitudinal, lateral and vertical continuity, bank processes,
258	channel adjustments).
259	(Table 2)
260	
261	A comparative analysis of hydromorphological assessment methods
262	Based upon the characteristics, information, and, where relevant, river processes
263	incorporated within each assessment, the following sections provide a summary of the
264	properties of the assessment methods within each of the four categories (physical
265	habitat, riparian habitat, morphological, hydrological regime alteration).
266	The percentage of methods within each category covering the different characteristics,
267	recorded features and river processes is summarized in Table 2, Fig. 3 and Fig.4.
268	
269	Methods for physical habitat assessment
270	The percentage of physical habitat, riparian habitat, and morphological assessment
271	methods that incorporate particular aspects or features is summarised (Fig. 3 and
272	Table 2).
273	This reveals that Most physical habitat assessments are based on extensive field
274	surveys. Maps and remote sensing techniques are also frequently used for preliminary
275	reconnaissance of the river and to allow for reach identification.
276	In general, 78% of physical habitat assessment methods generate one or more indices
277	that evaluate hydromorphological condition. These indices are usually derived from
278	the inventory of recorded features (e.g., 12, 31; note numbers refer to methods listed

279 in Table 1), although some methods also aim at evaluating the overall functioning of 280 the stream (6% of methods), by including information on ecology-related features 281 (e.g., method 39; Table 1). Some form of reference conditions are also explicitly 282 incorporated in 58% of the reviewed methods. 283 The spatial scale of most physical habitat assessments is rather small, coinciding with 284 what might be described as a *site* scale, i.e. a river length in the order of a few 285 hundred meters. The longitudinal length of each site or reach may be either fixed 286 (e.g., 500 m) or variable, in the latter case the length reflects larger scale 287 characteristics (e.g., geology and climate, presence of longitudinal discontinuities, 288 etc.). All reviewed methods focus on the channel; most include the river banks and 289 riparian areas; but less than 75% extend to the surrounding floodplain. Concerning 290 their temporal scale, all reviewed methods assess the present state of the river at the 291 time of survey, while very few include information on recent or historical river 292 conditions (45; Table 1). 293 Regarding the features that are recorded, channel features usually include channel 294 dimensions, dominant bed sediment size and composition, channel forms and 295 morphological units (e.g., number of riffles and pools), and artificial features (e.g., 296 dams, weirs, culverts, deflectors, etc.). The physical structure of the banks and the 297 presence of artificial elements are the most commonly recorded feature of riverbanks 298 and riparian zones. Land use and the presence of fluvial forms (e.g., oxbow lakes, 299 wetlands) are the most commonly-recorded floodplain features. Information on large 300 scale catchment and valley characteristics is rarely included, and hydrological 301 information is only provided to characterize the condition at the time of the survey 302 (e.g., estimation of discharge). However, in some countries (e.g., Australia), the

- 303 hydrological assessment is more detailed and considers several properties of the river
- 304 regime (e.g., Ladson et al. 1999; Parsons et al. 2004).
- 305 In relation to river processes, longitudinal and lateral continuity are often assessed
- 306 based on the presence of artificial features, while only 12% of a few-methods include
- 307 some consideration of channel adjustments (i.e., widening/narrowing,
- 308 aggradation/degradation).
- 309
- 310 (Figure 3)
- 311
- 312 Methods for riparian habitat assessment
- 313 As for physical habitats, the assessment of riparian habitats is mainly undertaken
- 314 using extensive field assessment protocols, while the use of maps and remote sensing
- 315 is rare (Fig. 3; Table 2; but see method 87, Table 1).
- 316 The assessment approach varies, ranging from the use of indices or quality classes to
- 317 the application of inventory protocols often including sampling of vegetation
- 318 community composition (e.g., 75, 84; Table 1). A relatively low proportion (40%) of
- the methods makes explicit use of reference conditions (e.g., 87; Table 1).
- 320 Riparian habitat assessment is usually undertaken at the *reach* scale, which is larger
- 321 than the *site* scale that is generally employed in river habitat assessments. The area or
- 322 length that is surveyed is variable and has relatively homogenous vegetation
- 323 characteristics. Similar to physical habitat assessment, the temporal scale of
- 324 investigation is restricted to the time of the survey.
- 325 In terms of the recorded features, these methods focus on banks and riparian zones.
- 326 About 50% of the investigated methods record channel features, and mainly focus on
- 327 the width of the channel in relation to vegetated areas such as islands and vegetated

328 bars, and artificial features. The vegetation features most commonly assessed include 329 vegetation structure, species coverage, and species composition, with a special 330 emphasis on the presence and abundance of non-native species (particularly in 331 European methods). Some methods place emphasis on the temporal dynamics of 332 vegetation pattern (i.e., evidence of vegetation regeneration, for example, in terms of 333 the presence of seedlings). 334 While-Most of the methods evaluate longitudinal and lateral vegetation continuity 335 (which provides insights into the lateral connectivity between the riparian area and its 336 river and floodplain. Only a small proportion attempt to relate the riparian habitat to 337 physical processes.

338

339 Methods for morphological assessment

340 As for the previous categories, field survey is the predominant method of data-

341 gathering, but morphological assessments make more extensive use of remote sensing

342 data and maps (73%; Fig. 3, Table 2).

343 Morphological methods are mainly used for-aimed at providing: (i) an evaluation

framework of river conditions (e.g., 97, 103; Table 1); (ii) an assessment supported by

one or more indices (e.g., 102, 110; Table 1); or (iii) an assessment directed towards

346 restoration design (e.g., 92; Table 1). Some methods provide a risk assessment of

347 existing pressures rather than an analysis of morphological conditions (e.g., 104;

Table 1). In some case the assessment provides a morphological characterization that

349 is included in broader protocols for evaluating the river or watershed conditions (e.g.,

- 350 96, 99; Table 1). Lastly, some morphological methods are used in combination with
- 351 the assessment of other ecosystem components to provide an evaluation of the overall

river conditions (Healey et al. 2012). 64% of methods include the use of referenceconditions.

354	Compared to the previous categories, morphological assessment is generally carried
355	out at a larger spatial scale, which could still be termed the <i>reach</i> scale, i.e. a length in
356	the order of a few kilometres with sufficiently homogeneous morphological
357	characteristics and boundary conditions. In most cases (>80%), the assessment
358	concerns the entire river corridor (i.e., channel, banks, riparian zones, and floodplain).
359	In a temporal context, a larger proportion of these methods take account of recent and
360	historical channel adjustments through the use of maps and remote sensing.
361	Compared to physical habitat methods, the assessment of channel features is more
362	focussed on channel pattern and physical variables, but less on the survey of instream
363	habitats (e.g., instream vegetation, large wood accumulations, flow types). Although
364	some characterization of bed sediment is incorporated within most methods, relatively
365	few methods attempt to evaluate substrate structure alterations such as armouring and
366	clogging (or embeddedness) (see methods 105, 109, 110; Table 1). Bank morphology,
367	artificial features in the riparian zone, and floodplain forms and features are
368	considered to some extent by most of the morphological methods. More than 80%
369	evaluate hydrological alterations, although usually only in qualitative terms.
370	Many also include some consideration of river processes, including sediment
371	continuity, bank erosion, and channel adjustments.
372	
373	Methods for the assessment of hydrological regime alteration

The main characteristics of this category of assessment are summarised in Figure 43and Table 2.

376	This type of assessment mainly involves the processing of existing hydrological data
377	series or the use of modelled data. Numerical models are required when data are not
378	available or to fill gaps in incomplete data series (e.g., 120; Table 1). Maps and
379	remote sensing can be used to support the evaluation of human pressures at the
380	catchment scale or for characterizing the river or catchment (50% of methods). Field
381	measurements of river discharge may be included in the assessment (e.g., 115; Table
382	1), particularly for ungauged reaches (e.g., 120; Table 1).
383	Most of the methods produce a final single index or multiple indices. Given their
384	predictive ability, some are used to build scenarios for evaluating the success of
385	restoration or the impact of specific river changes (e.g., 117; Table 1). Reference
386	conditions are often used, and consist of undisturbed or pre-impact conditions based
387	on existing data or on modelling results (64% and 27%, respectively).
388	The spatial scale of application varies widely from the reach (the most common
389	scale) to the segment (i.e., a macro-reach of tens of kilometres) or to the entire
390	catchment.
391	46% of methods link explicitly with ecological components. For example they may
392	assess the ecological response to changes in the hydrological regime in order to
393	evaluate the present ecological status (114; Table 1).
394	Concerning the recorded features, almost all make use of river discharge data. In the
395	cases where field data are required, cross-sections, flow velocity and depth are
396	generally measured (e.g., 115; Table 1). Some methods (e.g., 112; Table 1) also
397	combine watershed land use characteristics (e.g., coverage, density) with hydrological
398	data. Almost all are based on the five main components of the flow regime: discharge
399	magnitude, frequency, duration, timing, rate of change (Richter et al., 1996, Poff et

- 400 al., 2003). Some also evaluate temporal variability (i.e., annual/seasons, inter-
- 401 annual/climatic changes) (e.g., 116; Table 1).
- 402 In terms of assessed pressures, the effects of impoundments, water abstractions and
- 403 diversions are commonly evaluated, while none of the reviewed methods assess the
- 404 effects of hydro-peaking from power generation plants.
- 405
- 406 (Figure 4)
- 407

408 Strengths, limitations and gaps in assessments

- 409 Based on the above review of existing assessment techniques, this section identifies
- 410 strengths and limitations within each of the four categories (Table 3). This is
- 411 supported by the authors' expert opinion on the pros and cons of the methods
- 412 implemented and applied by EU countries within the context of the WFD.
- 413
- 414 (Table 3)
- 415
- 416 Methods for physical habitat assessment
- 417 These methods have a number of strengths. They provide a framework within which
- 418 habitat units can be efficiently inventoried and sampled, and so-such that they are
- 419 useful for characterizing the range of physical habitats that are present, their
- 420 heterogeneity and thus the contemporary physical structure of ecosystems.
- 421 Additionally, these methods often inventory some features of ecological relevance,
- 422 which are not addressed within the other categories, such as the presence of refuge
- 423 areas, organic matter, shading, etc. (e.g., 12, 40; Table 1). Therefore, they are

424	potentially helpful in establishing links between morphology and ecological
425	conditions and communities. In particular, characterization of physical habitats can be
426	useful in (e.g., supporting explanation of the distribution patterns of organisms, the
427	composition and structure of biological communities or aspects of ecosystem
428	functioning). Finally, because some of these methods have been used quite widely
429	across Europe (e.g., method 12, Table 1, and similar procedures developed in other
430	countries), they allowing for comparison of data and results from different regions.
431	Nevertheless, physical habitat assessments have several shortcomings. First, these
432	methods have long been considered to be equivalent to hydromorphological
433	assessment, but they are now recognised to represent only one component of a
434	hydromorphological evaluation, which is mainly the occurrence of habitats. Indeed,
435	when physical habitat methods are used with the aim of understanding physical
436	processes and causes of river alterations, they generally fail (e.g. Fryirs et al. 2008,
437	Entwistle et al. 2011).
438	More specifically, the spatial scale of investigation (i.e., the <i>site</i> scale of few hundred
439	meters), which in most cases is rather small (site scale) and of a fixed length of the
440	order of a few hundred meters, is usually inadequate for the accurate diagnosis and
441	interpretation of the causes of any morphological alteration. This is because physical
442	site conditions commonly originate stem from processes and causes that operate at
443	larger spatial scales (e.g., Frissel et al. 1986; Brierley and Fryirs, 2005).
444	Additionally, physical habitat assessment methods require very detailed site-specific
445	data collection, such that their application to large numbers of water bodies may be
446	impractical. These methods also make limited use of geomorphological approaches
447	methods other than field surveys (Table 2; Fig. 3). The expansion of these
448	assessments to incorporate remotely sensed data and GIS analysis, would permit
	20

449 wider spatial and temporal scales of analysis, and, as a consequence, more

450 informative assessments. As a consequence, observations tend to be viewed in a static 451 way, rather than placing them in the temporal context within which channel processes 452 operate and river channels adjust. This is considered to be the main primary limitation 453 of physical habitat assessment methods, because it prevents the development of a 454 sound understanding of hydromorphological responses to pressures (i.e., cause-effect 455 relationships), which is essential for identifying and subsequently implementing 456 appropriate rehabilitation actions (Kondolf et al. 2003; Fryirs et al. 2008). 457 The use of reference conditions based on statistical analyses of empirical data is also 458 questionable. Selection of a sufficient and representative number of reference sites 459 can be problematic, given that many different morphological typologies should be 460 represented. The choice of *natural* sites is also prone to errors, because sites without 461 artificial elements could still be morphologically altered by disturbances occurring in 462 other parts of the river network (upstream or downstream) or that may have occurred 463 in the past. Moreover, the tendency is to define high status/reference conditions on the 464 basis of the presence and abundance of features. As a result, these procedures tend to 465 implicitly identify high status conditions with maximum morphological diversity for 466 all types of rivers, failing to recognize that in some cases the *natural* geomorphic 467 structure of a particular stream type may be very simple whereas in other cases it may 468 be more complex (Barquín et al. 2011; Fryirs 2003). 469 Additional limitations can be identified in the way that physical habitat methods 470 characterize channel forms and morphological units. These concern a notable gap in 471 the terminology used to describe morphological units in most habitat surveys when 472 compared to the present state of the art in fluvial geomorphology. For example, most 473 refer only to riffles and pools when describing configuration of the river bed, probably

474	because. This may be related to the fact that most habitat survey methods have been
475	developed to address small single-thread, sand-bed or gravel-bed rivers. As a result,
476	there is incomplete consideration, for example, of the wide variety of bed
477	morphologies found in steep, mountain, cobble- or boulder-bed streams, where other
478	morphological units may occur (cascades, rapids, glides, step-pools, etc.). On the
479	other hand, Although considerable progress has been made recently in the description
480	and terminology associated with morphological units found in mountain streams (e.g.,
481	Halwas and Church 2002; Comiti and Mao 2012), this post-dates the development of
482	most physical habitat assessment methods, and has been insufficiently incorporated
483	by updating these methods. The variety of bed morphologies found in large lowland
484	rivers is also poorly incorporated (e.g., dune-ripple morphologies). Similarly,
485	morphological units found in rivers with complex, transitional or multi-thread patterns
486	(i.e., braided or wandering) are not adequately covered, although some effort has been
487	made recently to represent some of these morphologies (including ephemeral or
488	temporary streams typical of some Mediterranean regions in Southern Europe; e.g.,
489	54, Table 1). In the case of large rivers with complex morphologies (e.g., many
490	piedmont Alpine rivers), field surveys alone are inadequate to characterize channel
491	forms and morphological units, and so the incorporation of remote sensing techniques
492	is essential. Furthermore, considerable progress has been achieved recently in
493	developing new procedures whereby the identification and analysis of individual
494	landforms (geomorphic units) is set in a more appropriate spatio-temporal framework
495	(e.g., Fryirs and Brierley 2013; Brierley et al. 2013), but this type of approach has not
496	been incorporated into any of the analysed methods.
497	

498 Methods for riparian habitat assessment

499	Many of the strengths and shortcomings of physical habitat assessments also apply to
500	riparian habitat assessments since they Methods devised for assessing riparian habitats
501	usually adopt a similar approach. As a result, many of the strengths and shortcomings
502	of physical habitat assessments also apply to riparian habitat assessments. However,
503	riparian habitat assessments also have some specific strengths, since they integrate
504	well with physical habitat assessments by extending their coverage from the river
505	channel into the riparian zone, and also giving more emphasis to vegetation,
506	particularly riparian vegetation. Therefore, they are extremely important in
507	accomplishing a requirement of the WFD, which is to give consideration to vegetation
508	as a key biological as well as hydromorphological element.
509	While most of these methods are based on field survey and some are still focussed on
510	the site scale, others make use can be well integrated with other hydromorphological
511	components in terms of other information sources and approaches (e.g., integrated use
512	of remote sensing and field survey) and a larger spatial scale (reach) that can be
513	integrated with other hydromorphological methods allowing for an overall river
514	condition assessment (e.g., 87; Table 1).
515	Despite these specific strengths, many riparian habitat assessments are essentially an
516	inventory of habitats and vegetation conditions observed along a portion of river. As a
517	result, there is limited consideration of the processes generating riparian conditions
518	and the causes of alteration at larger spatial and temporal scales.
519	Moreover This type of assessment is not yet widely used. In the U.S., riparian
520	assessment is often coupled with the assessment of wetland ecosystem functioning
521	(e.g., 78; Table 1). In Europe, most methods have been developed in Mediterranean
522	countries (e.g., Spain, Italy), where flashy flow regimes and ephemeral, multi-channel
523	patterns (incorporating vegetated islands) are more frequent, determining a more

524	complex riparian forest structure. This regional bias means that the validity of many
525	of the techniques is uncertain if they were to be applied to other climatic, hydrological
526	and morphological conditions. Additionally a regional bias could also exist in terms
527	of it should be considered that different human impacts may have acted on riparian
528	vegetation in different contexts (e.g., the predominance of water abstraction and
529	sediment budget changes in southern European countries in comparison with the
530	predominance of vegetation management / removal and pollution in northern ones).
531	
532	Methods for morphological assessment
533	Compared to the previous two categories, these methods make use of a more robust
534	geomorphologically-based approach by integrating information drawn from remote
535	sensing and field survey, with a stronger consideration of physical processes at
536	appropriate spatial and temporal scales. Such an approach goes beyond an inventory
537	of forms to support the development of a better understanding of cause-effect
538	relationships.
539	In most cases the basic spatial unit for the application is the <i>reach</i> scale, commonly a
540	few kilometres in length, where reaches are identified in a geomorphologically-
541	meaningful way, as sections of river along which present boundary conditions are
542	relatively uniform. This is a spatial scale that is defined in a geomorphologically-
543	meaningful way.
544	Additionally, some methods account explicitly for the temporal component by
545	incorporating a historical analysis of channel adjustments to provide insights into the
546	timing and causes of alterations and into potential future geomorphic changes (e.g.,
547	110; Table 1). Understanding evolutionary trajectories and past changes is an
548	important component when assessing contemporary river conditions. Morphological

indicators should take account of how rivers have changed through time (Brierley andFryirs 2005; Fryirs et al. 2008).

551 Some of these strengths could also be interpreted to some degree as limitations. 552 Physical processes are generally more difficult to assess. Evaluating the correct 553 functioning of processes is certainly a more difficult task than a simple inventory of 554 existing forms. A rigorous evaluation of processes requires the collection of 555 measurements at different times and process rates (e.g., bank erosion or deposition), 556 quantitative modelling or analyses of changes in the process regime (e.g., alterations 557 in sediment transport or water discharge regime), all of which are unlikely to be 558 feasible within the context of a relatively rapid hydromorphological assessment. For 559 practical reason, recorded indicators of processes are thus often generated from a 560 static visual assessment (in the field or based on remotely sensed information) of the 561 occurrence or not of active processes (observed in the field or based on remotely-562 sensed information). In other cases, the evaluation is indirectly based on the presence 563 of artificial elements, which are inferred to have significant impacts on some 564 processes. For example, the simple presence of transverse structures is often assumed 565 to alter sediment fluxes and continuity, without any quantitative evaluation of the 566 magnitude of their effects. Even though some morphological assessment methods 567 explicitly account for the temporal component by considering channel adjustments 568 (i.e., changes of channel form through time), this analysis is often prone to errors 569 because it is difficult and requires specialist expertise, specific analyses (e.g., GIS 570 analysis of channel planimetric changes), as well as high spatial and temporal 571 resolution data. Furthermore, the definition of the temporal interval of analysis can be 572 questionable because it is constrained by the quality and timing of the historical data 573 sources. The definition of a reference state for morphological conditions is even more

574 problematic than for the other categories. Some morphological assessments implicitly 575 incorporate the assumption that the past state is a reference condition. However, 576 where a more rigorous approach is attempted, a common vision of reference 577 conditions is lacking (Bertoldi et al. 2009; Dufour and Piégay 2009; Rinaldi et al. 578 2013a), leading to the application of non-harmonized definitions of reference 579 conditions. 580 The focus of morphological assessments is generally on fluvial forms and processes at 581 wider spatial and temporal scales than physical habitat assessment, but even though 582 these methods account for river processes in terms of longitudinal and lateral 583 continuity, the vertical component of river continuity (i.e., the connection to 584 groundwater) is still poorly considered (Table 2; Fig. 3). Limited attention is also 585 given to a systematic inventory of the morphological units and assemblages that 586 characterize a given morphology and are useful for ecosystem characterization, These 587 k of morphological inventory combine to be a severe limitation when morphological 588 assessment is used alone. 589 Lastly, these methods evaluate morphological conditions exclusively in terms of 590 physical forms or processes, without any inferences concerning their consequences or 591 implications in terms of ecological state. This means that a high morphological 592 quality is not necessarily related to a good ecological state, although this is most 593 likely the case, since many authors suggest that functioning of physical processes and 594 dynamic equilibrium promote ecosystem diversity and functioning (e.g., habitat 595 heterogeneity; Tockner and Ward 1999; Rinaldi et al. 2013a). However a clear 596 relation between some of the morphological indicators used in these methods and 597 biological responses is currently lacking.

598

599 Methods for the assessment of hydrological regime alteration

600 The main strength of this category of assessment is that it makes use of well-defined

601 indicators based on quantitative assessments, statistical analyses or physics-based

models. For example, most methods employed within Europe are based on some or all

- 603 of the Indicators of Hydrologic Alteration (IHA) proposed by Richter et al. (1996) and
- 604 Poff et al. (2003).

The drawback is that such indicators and models generally require large data sets and long-time series, which are often not available. In particular, applying these methods to ungauged streams is problematic. If models are applied when data are not available or incomplete, the uncertainties that can affect the estimation should be carefully considered.

610 A further critical issue is defining the unaltered (*natural*) reference hydrological

611 regime. This requires a sufficiently mostly non-existant long data series dating from

612 pre-impact conditions. Assuming that 'pre-impact' data series related to a particular

613 intervention (e.g. dam construction) represent *natural* conditions is rarely appropriate,

614 particularly in Europe where river systems and their hydrological regime have been

affected over many centuries by numerous and continuing alterations at a catchment

616 scale (Rinaldi et al. 2013c).

617 Indicators of hydrological alteration are usually based, at best, on daily discharges.

618 This prevents the analysis of hydrological alterations that occur at shorter time scales,

619 such as hydropeaking (as well as thermopeaking), that have very important effects on

620 ecological communities (e.g., Paetzold et al. 2008; Person and Peter 2012). Specific

621 indicators or models for analyzing hydropeaking are needed. Recent progress has

been made to develop integrating approaches and key indicators to assess

hydrological alterations due to hydropower impacts (e.g., Zolezzi et al. 2009; Meile et

al. 2011). These should be incorporated to further improve hydrological assessmentmethods.

626 Like other categories, the effects of groundwater alterations are generally not included 627 apart from an indirect assessment through low-flow analyses. Groundwater systems 628 are an important component of riverine ecosystems and so-methods are needed to 629 incorporate them into assessments in a more detailed way. 630 Because of the above limitations, the practical use of these methods for supporting 631 hydromorphological assessment is still modest-limited. An alternative and more 632 feasible approach might be an analysis of existing hydrological pressures, based on 633 the presence and type of impacts and causes of alteration (e.g., 112, 121; Table 1). 634 However, it can be extremely difficult to correctly evaluate the effects of a given 635 pressure in the absence of a quantitative analysis of hydrological data. Merging of 636 these two types of approach has been achieved in relation to developing 637 environmental flow methods, but with the aim of defining flow requirements for the 638 proper biological functioning together with the human needs (e.g., Arthington 1998; 639 King et al. 2008), rather than to assess regime alteration alone. 640 641 Methods implemented by EU countries in the context of the WFD 642 Finally, we briefly focus on the methods which have been formally approved or are 643 commonly used (but without formal approval) by European countries to implement 644 the WFD, because the choice of the methods and outcome of the assessments strongly 645 influences decision-making on ecological status and the need for rehabilitation 646 programmes. A more detailed analysis of these methods is provided by Rinaldi et al. 647 (2013b). Each method is included in one of the previously defined categories (Fig. 648 5a), revealing that physical habitat assessment methods prevail (31, 37, 38, 40, 44, 54,

649	60, 61, 64, 65, 68, 70, 73, 77; Table 1), followed by morphological methods (101,
650	104, 105, 109, 110; Table 1), while the use of riparian habitat and hydrological
651	alteration methods is very limited (77 and 120, respectively; Table 1). For this
652	analysis-aim, an adaptation of RHS to Portugal (Raven et al. 2009; Ferreira et al.
653	2011) has also been included within the physical habitat assessment methods, while
654	the three different versions of the German method have been counted only once (the
655	overall LAWA, corresponding to methods 31, 37, and 38 in Table 1).
656	In most EU countries (with the exception of France and Italy) physical habitat
657	assessments are the only methods used for the hydromorphological assessment in the
658	context of the WFD. The limitations of each category of methods have been
659	previously discussed, but the following points summarise current general limitations
660	in the application of hydromorphological assessment methods within the EU:
661	1) A lack of consideration of physical processes is the most important omission in
662	currently-used hydromorphological assessment methods. This omission is an
663	important limitation because a characterization of physical habitats alone is
664	insufficient to develop-limits development of a proper understanding of the causes of
665	alterations and responses to them (i.e., cause-effect). Such an understanding is
666	essential if appropriate rehabilitation actions are to be implemented (Kondolf et al.
667	2003; Fryirs et al. 2008).
668	2) Due to the widespread availability of methods for physical habitat assessment and
669	their relative simplicity, in most cases this approach has been identified as an
670	appropriate procedure for the stream hydromorphological assessment required by the
671	WFD. Limitations of this category of method have been previously discussed, but
672	Although informative, physical habitat assessment is only one component of an

673	overall hydromorphological assessment. At present, few EU countries attempt to
674	incorporate other components into a fully integrated hydromorphological assessment.
675	3) There is also currently no integration of the physical (hydromorphological) aspects
676	with other components (i.e., water quality, biology, ecology) to give a genuinely
677	interdisciplinary approach to overall river condition assessment (Fryirs et al. 2008) .
678	4) For future hydromorphological assessment and monitoring, a more integrated use
679	of more components is required to achieve an overall assessment, and a stronger
680	additional emphasis within hydromorphology on morphological and hydrological
681	methods would be beneficial.
682	To place these EU WFD-related assessments into a broader context and allow a more
683	general comparison of the use of the four categories of methods worldwide, the
684	distribution of method categories including all European methods (i.e., not only those
685	implemented for the WFD) as well as other non-European methods is plotted in
686	Figure 5b. It confirms that the most widely used category of methods worldwide is the
687	physical habitat assessment, followed by a recent increase in the development and
688	application of more morphological methods. Exceptions are South-Africa, where
689	morphological assessments prevail, and Australia, where it seems that more interest is
690	allocated to riparian habitats.
691	
692	(Figure 5)

694 Concluding remarks and recommendations for future developments

695The analysis of hydromorphological assessment methods presented in this paper

builds on existing reviews (Raven et al. 2002; Mc Ginnity et al. 2005; Weiss et al.

697 2008; Fernández et al. 2011). However, this review has extended previous reviews

698 and has-provided new insights, which can be summarised as follows.

Most previous reviews have a specific focus on European methods (e.g., Raven et al.

700 2002; Weiss et al. 2008), as they were mainly aimed at supporting the selection of

701 methods suitable for the implementation of the WFD. This paper started from a wider

702 geographical perspective (similar to Fernández et al. 2011), and then focussed briefly

703 on European WFD-related assessments.

704 Partly related to the previous point, Most previous reviews focus on physical habitat

assessment, as they have often been seen to be synonymous with hydromorphological

assessment. In this paper the review is wider, with the aim of identifying and critically

assessing the strengths and limitations of the various categories, and providing

suggestions for further progress in this area of assessment.

709 Starting from the identified limitations and gaps, future developments need to

710 incorporate physical processes into hydromorphological assessment methods; this

aspect becomes extremely relevant in the context of dynamic rivers, such as those of

southern Europe. This can be achieved by wider implementation of methods for

713 morphological rather than just physical habitat assessment in order to increase the

714 capability to assess geomorphic processes.

The assessment of morphological processes and alterations should be included in an

appropriate spatial hierarchical framework and scaling methodology, emphasizing

relevant spatial units and temporal scales, and identifying key controlling factors at

each spatial scale as well as appropriate morphological indicators.

Finally, the development of a framework for integrated hydromorphological analysis

is recommended, where the morphological and hydrological components (including

vegetation as a morphological driver) are key parts of the evaluation and classification

- of hydromorphological state and quality. An important issue for the future is to
- 723 combine an integrated hydromorphological assessment with other

724 Hydromorphological analysis should then be better integrated with the other

- 725 components of the river system. A combined and integrated assessment of
- morphology, hydrology, water quality, biology and ecology would provide the most
- 727 effective evaluation of river conditions.
- 728 In this respect, it is worth recalling that the various methodological categories
- identified in this review, reflect different conceptual approaches and disciplines (e.g.,
- hydrology, geomorphology, biology), and that application of each specific approach
- 731 requires training and some basic expertise. Application of assessment methods
- 732 without the necessary background and skill can represent a serious limitation in
- 733 promoting a truly integrated analysis of a river system.
- 734

735 Acknowledgements

- The work leading to this paper has received funding for the EU's 7 FP under Grant
- 737 Agreement No. 282656 (REFORM, Restoring rivers FOR effective catchment
- 738 Management). W. Bertoldi and W. Van de Bund are acknowledged for their inputs
- and comments. The REFORM colleagues are acknowledged for providing
- information on the methods adopted for WFD implementation: N. Friberg, G.
- 741 Geerling, M. Gielczewski, M. Gonzales del Tanago, A. Henshaw, J. Kail, B. Lastoria,
- 742 S. Mariani, A. Marzin, S. Muhar, P. Pollard (REFORM Advisory Board), M.C. Perez,
- 743 P. Reichert, L. Sandin, J. Segersten, M. Staras, C. Wolter.
- 744

References

746	Agences de L'Eau (1998): SEQ Physique. A system for the Evaluation of the Physical
747	Quality of watercourses. Version 0. Angers, November 1998. In: Mc Ginnity
748	PM, Mills P, Roche W, Müller M (2005) A desk study to determine a
749	methodology for the monitoring of the 'morphological conditions' of Irish
750	Rivers. Final Report. Environmental RTDI Programme 2000-2006. Central
751	Fisheries Board - Compass Informatics - EPA
752	Anderson JR (1993) State of the Rivers Project. Department of Primary Industries,
753	Queensland. In: Mc Ginnity PM, Mills P, Roche W, Müller M (2005) A desk
754	study to determine a methodology for the monitoring of the 'morphological
755	conditions' of Irish Rivers. Final Report. Environmental RTDI Programme
756	2000-2006. Central Fisheries Board - Compass Informatics - EPA
757	Arthington AH (1998) Comparative Evaluation of Environmental Flow Assessment
758	Techniques: Review of Holistic Methodologies. LWRRDC Occasional Paper
759	26/98. ISBN 0 642 26745 6
760	Barbour MT, Gerritsen J, Snyder BD, Stribling JB (1999) Rapid Bioassessment
761	Protocols for use in streams and wadeable rivers: periphyton, benthic
762	macroinvertebrates, and fish. Second edition. EPA 841-B-99-002 U.S.
763	Barquín J., Fernández D., Álvarez M. & Peñas F. (2011) Riparian quality and habitat
764	heterogeneity assessment in Cantabrian rivers. Limnetica 30(2):329-346
765	Bertoldi, W., Gurnell, A., Surian, N., Tockner, K., Zanoni, L., Ziliani, L., Zolezzi, G.
766	(2009) Understanding reference processes: Linkages between river flows,
767	sediment dynamics and vegetated landforms along the Tagliamento River, Italy.
768	River Res Applic 25:501-516. doi: 10.1002/rra.1233

769	Black AR, Bragg OM, Duck RW, Rowan JS (2005) DHRAM: a method for
770	classifying river flow regime alterations for the EC Water Framework Directive.
771	Aquatic Conserv: Mar Freshw Ecosyst 15:427–446
772	Braioni MG, Penna G (1998) I nuovi Indici Ambientali sintetici di valutazione della
773	qualità delle rive e delle aree riparie: wild State Index, Buffer Strip Index,
774	Environmental Landscape Indices: il metodo. Biologia ambientale 6:3-38
775	Brierley GJ, Fryirs KA (2005) Geomorphology and river management: applications of
776	the river style framework. Blackwell, Oxford, UK
777	Brierley GJ, Fryirs K, Cullum C, Tadaki M, Huang HQ, Blue B (2013) Reading the
778	landscape: integrating the theory and practice of geomorphology to develop
779	place-based understandings of river systems. Progress in Physical Geography
780	37(5):601-621
781	Buffagni A, Erba S, Ciampitiello M (2005) Il rilevamento idromorfologici e degli
782	habitat fluviali nel contesto della direttiva europea sulle acque (WFD): principi
783	e schede di applicazione del metodo Caravaggio. Istituto di Ricerca sulle Acque,
784	CNR IRSA. Notiziario dei metodi analitici 2:32-34
785	Bundesanstalt für Gewässerkunde (2001) Strukturgüte-Kartierverfahren für
786	Wasserstraßen. In: National Environmental Research Institute and Slovak
787	Hydrometeorological Institute (2004). Establishment of the Protocol on
788	Monitoring and Assessment of the Hydromorphological Elements (Slovakia).
789	Final Report
790	Buhmann D, Hutter G (1996) Fließgewässer in Vorarlberg. Gewässerstrukturen
791	Erfassen - Bewerten - Darstellen. Ein Konzept. Schriftenreihe Lebensraum
792	Vorarlberg, Band 33. In: Mc Ginnity PM, Mills P, Roche W, Müller M (2005)
793	A desk study to determine a methodology for the monitoring of the

```
34
```

794	'morphological conditions' of Irish Rivers. Final Report. Environmental RTDI
795	Programme 2000-2006. Central Fisheries Board - Compass Informatics - EPA
796	Bundesamt für Umwelt, Wald und Landwirtschaft (BUWAL) (1998) Methoden zur
797	Untersuchung und Beurteilung der Fließgewässer. In: Mc Ginnity PM, Mills P,
798	Roche W, Müller M (2005) A desk study to determine a methodology for the
799	monitoring of the 'morphological conditions' of Irish Rivers. Final Report.
800	Environmental RTDI Programme 2000-2006. Central Fisheries Board -
801	Compass Informatics - EPA
802	CEN (2002) A Guidance Standard for Assessing the Hydromorphological Features of
803	Rivers. CEN TC 230/WG 2/TG 5:N32
804	Chandesris A, Mengin N, Malavoi JR, Souchon Y, Pella H, Wasson JG (2008)
805	Système Relationnel d'Audit de l'Hydromorphologie des Cours d'Eau.
806	Principes et methodes, v3.1. Cemagref, Lyon, France
807	Comiti F, Mao L (2012) Recent advances in the dynamics of steep channels. In:
808	Church M, Biron PM, Roy AG (eds) Gravel-bed Rivers: Processes, Tools,
809	Environments. John Wiley & Sons, Ltd., pp 353-377
810	Crowe E, Kudray G (2003) Wetland assessment of the Whitewater watershed. Report
811	to U.S. Bureau of Land Management, Malta Field Office. Montana Natural
812	Heritage Program, Helena
813	van Dam O, Osté AJ, de Groot B, van Dorst MAM (2007) Handboek
814	Hydromorfologie. Monitoring en afleiding hydromorfologische parameters
815	Kaderrichtlijn Water. Directoraat-generaal Rijkswaterstaat, Waterdienst/ Data-
816	en ICT-Dienst, Lelystad/Delft. ISBN 9789036914512
817	Danish Environmental Protection Agency (1998) Biological Assessment of Biological
818	Stream Quality. Environmental Guidelines, 5. Copenhagen. In: Mc Ginnity PM,

819	Mills P, Roche W, Müller M (2005) A desk study to determine a methodology
820	for the monitoring of the 'morphological conditions' of Irish Rivers. Final
821	Report. Environmental RTDI Programme 2000-2006. Central Fisheries Board -
822	Compass Informatics – EPA
823	Davenport AJ, Gurnell AM, Armitage PD (2004) Habitat survey and classification of
824	urban rivers. River Res Applic 20(6):687-704
825	Davies NM, Norris RH, Thoms MC (2000) Prediction and assessment of local stream
826	habitat features using large-scale catchment characteristics. Freshwater Biology
827	45:343-369
828	Denortier G, Goetghebeur P (1996) Outil d'évaluation de la qualité du milieu
829	physique des cours d'eau. Synthèse, Angers (Agence de l'Eau Rhin-Meuse). In:
830	Mc Ginnity PM, Mills P, Roche W, Müller M (2005) A desk study to determine
831	a methodology for the monitoring of the 'morphological conditions' of Irish
832	Rivers. Final Report. Environmental RTDI Programme 2000-2006. Central
833	Fisheries Board - Compass Informatics - EPA
834	Dixon I, Douglas M, Dowe J, Burrows D, Townsend S (2005) A rapid method for
835	assessing the condition of riparian zones in the wet/dry tropics of northern
836	Australia. 4th Australian Stream Management Conference. Department of
837	Primary Industries, Water and Environment, pp 173-178
838	Dufour S., Piégay H. (2009): From the myth of a lost paradise to targeted river
839	restoration: forget natural references and focus on human benefits. River
840	Research and Applications 25:568-581.
841	Entwistle N., Heritage G., Milan D. (2011): River Habitat Survey: A useful tool for
842	hydromorphological assessment? Advances in River Sciences 2011, Swansea
843	UK, Abstracts

844	Environment Agency (1998) River Geomorphology: a pratical guide. Environment
845	Agency, Guidance Note 18, National Centre for Risk Analysis and Options
846	Appraisal, London, 56 pp. In: Sear DA., Hill CT, Downes RHE (2008)
847	Geomorphological assessment of riverine SSSIs for the strategic planning of
848	physical restoration. Report NERR013. Natural England Research
849	Environment Agency (2003) A refined geomorphological and floodplain component.
850	River Habitat Survey FD 1921, GeoRHS fieldwork survey form and guidance
851	manual. Warrington, DEFRA/EA Joint R&D – Project 11793, prepared by
852	University of Newcastle
853	European Commission (2000) Directive 2000/60/EC of the European Parliament and
854	of the Council of 23 October 2000 Establishing a Framework for Community
855	Action in the Field of Water Policy. Official Journal L 327, 22/12/2000,
856	Brussels, Belgium
857	Feld CK (2004) Identification and measure of hydromorphological degradation in
858	Central European lowland streams. Hydrobiologia 516(1):69-90
859	Fernández D, Barquin J, Raven PJ (2011) A review of river habitat characterisation
860	methods: indices vs. characterisation protocols. Limnetica 30(2):217-234
861	Ferreira J., Pádua J., Hughes S.J., Cortes R.M., Varandas S., Holmes N., Raven P.
862	(2011). Adapting and adopting River Habitat Survey: problems and solutions
863	for fluvial hydromorphological assessment in Portugal. Limnetica 30(2):263-
864	272
865	Fitzpatrick FA, Waite JR, D'Arconte PJ, Meador MR, Maupin MA, Gurtz ME (1998)
866	Revised Methods for Characterizing Stream Habitat in the National Water
867	Quality Assessment Program. U.S. Geological Survey Water Resources
868	Investigations Report 98-4052. Raleigh, North Carolina. In: Mc Ginnity PM,

869	Mills P, Roche W, Müller M (2005) A desk study to determine a methodology
870	for the monitoring of the 'morphological conditions' of Irish Rivers. Final
871	Report. Environmental RTDI Programme 2000-2006. Central Fisheries Board -
872	Compass Informatics - EPA
873	Freiland UmeltconsultingUmweltconsulting (2001a) NÖMORPH. Strukturkartierung
874	ausgewählter Fließgewässer in Niederösterreich. Endbericht - Teil I: Methodik.
875	(unpublished). In: Mc Ginnity PM, Mills P, Roche W, Müller M (2005) A desk
876	study to determine a methodology for the monitoring of the 'morphological
877	conditions' of Irish Rivers. Final Report. Environmental RTDI Programme
878	2000-2006. Central Fisheries Board - Compass Informatics - EPA
879	Freiland Umeltconsulting (2001b) NÖMORPH. Strukturkartierung ausgewählter
880	Fließgewässer in Niederösterreich. Endbericht - Teil II: Allgemeines und
881	Ergebnisse. (unpublished). In: Mc Ginnity PM, Mills P, Roche W, Müller M
882	(2005) A desk study to determine a methodology for the monitoring of the
883	'morphological conditions' of Irish Rivers. Final Report. Environmental RTDI
884	Programme 2000-2006. Central Fisheries Board - Compass Informatics – EPA
885	Frissel C.A., Liss W.J., Warren C.E., Hurley M.D. ()1986 A Hierarchical Framework
886	for Stream Habitat Classification: Viewing Streams in a Watershed Context.
887	Environmental Management 10(2):199-214).
888	Fryirs KA (2003) Guiding principles for assessing geomorphic river condition:
889	application of a framework in the Bega catchment, South Coast, New South
890	Wales, Australia. Catena 53:17-52
891	Fryirs KA, Arthington A, Grove J (2008) Principles of river condition assessment. In:
892	Brierley G, Fryirs KA (eds) River Futures. An Integrative Scientific Approach

- to River Repair. Society for Ecological Restoration International, Island Press,
- Washington, USA, pp 100-124
- Fryirs K, Brierley GJ (2013) Geomorphic Analysis of River Systems: An Approach to
 Reading the Landscape, Wiley, Chichester
- 897 Galli J (1996) Rapid stream assessment technique (RSAT) field methods.
- 898 Metropolitan Washington Council of Governments, Washington, D.C. In: Clean
- 899 Water Services, Watershed Management Division (Oregon) (2000) Tualatin
- 900 River Basin Rapid Stream Assessment Technique (RSAT) Watersheds 2000
- 901 Field Methods, Montgomery County Department of Environmental Protection;
- 902 Department of Environmental Programs Metropolitan Washington Council of
 903 Governments
- 904 González Del Tánago M, García De Jalón D (2011) Riparian Quality Index (RQI): a
- 905 methodology for characterizing and assessing environmental conditions of
- 906 riparian zones. Limnetica 30(2):235-254
- 907 Hallde'n A, Liliegren Y, Lagerkvist G (2002) Biotopkartering Vattendrag. Metodik
- 908 för kartering av biotoper i ochi anslutning till vattendrag. ISSN: 1101-9425.
- 909 Meddelande nr 2002:55. (In Swedish). Jönköping: Länsstyrelsen i Jönköpings
- 910 län. In: Molin J, Kagervall AJ et al (2010) Linking habitat characteristics with
- 911 juvenile density to quantify Salmo salar and Salmo trutta smolt production in
- 912 the river Savaran, Sweden. Fisheries Management and Ecology 17:446-453
- 913 Halwas KL, Church M (2002) Channel Units in Small, High Gradient Streams on
- 914 Vancouver Island, British Columbia. Geomorphology 43:243-256
- 915 Harding JS, Clapcott JE, Quinn JM, Hayes JW, Joy MK, Storey RG, Greig J, Hay HS,
- 916 James T, Beech MA, Ozane R, Meredith AS, Boothroyd IKG (2009) Stream

917 Habitat Assessment Protocols for wadeable rivers and streams of New Zealand,918 University of Canterbury

919	Harrelson CC, Rawlins CL, Potyondy JP (1994) Stream Channel Reference Sites: An
920	Illustrated Guide to Field Technique. General Technical Report RM-245. USDA
921	Healey M, Raine A, Parsons L, Cook N (2012) River Condition Index in New South
922	Wales: Method development and application. NSW Office of Water, Sydney
923	Henriksen JA, Heasley J, Kennen JG, Niewsand S (2006) Users' manual for the
924	Hydroecological Integrity Assessment Process. U.S. Geological Survey,
925	Biological Resources Discipline, Open File Report 2006-1093
926	Idaho Department of Environmental Quality (2004) Beneficial use reconnaissance
927	program field manual for streams (BURP). Beneficial Use Reconnaissance
928	Program Technical Advisory Committee, Idaho Department of Environmental
929	Quality, Boise
930	Ilnicki P, Lewandowski P (1997) Ekomorfologiczna waloryzacja dróg wodnych
931	Wielkopolski. Bogucki Wyd. Nauk., Poznań. In: Grzybowski M, Endler Z
932	(2012) Ecomorphological evaluation of the Łyna river along the Kotovo-Ardapy
933	section. Quaestiones Geographicae 31(1):51-65
934	Ilnicki P, Gołdyn R, Soszka H, Górecki K, Grzybowski M, Krzemińska A,
935	Lewandowski P, Skocki K, Sojka M, Marcinkiewicz M (2009) Opracowanie
936	metodyk monitoringu i klasyfikacji hydromorfologicznych elementów jakości
937	jednolitych części wód rzecznych i jeziornych, zgodnie z wymogami Ramowej
938	Dyrektywy Wodnej. ETAP I - II. Zadanie 1, 2 i 3. Kod CPV: 9071 1500–9.
939	Nomenklatura wg CPV: 90711500–9. Poznań listopad 2009 roku GEPOL sp. z
940	o.o., Poznań. In: Ilnicki P, Górecki K, Grzybowski M, Krzemińska A,

- 941 Lewandowski P, Sojka M (2010) Principles of hydromorphological surveys of
- 942 Polish rivers. J Water Land Dev 14:3-13
- 943 Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA) (2011):
- 944 Implementazione della Direttiva 2000/60/CE. Analisi e valutazione degli aspetti
- 945 idromorfologici. Versione 1.1. ISPRA, Roma
- Jansen A, Robertson A, Thompson L, Wilson A (2005) Rapid appraisal of riparian
- 947 condition. Version two. River and Riparian Land Management, Technical
- 948 Guideline 4A. Canberra, Land & Water Australia
- 949 Kaarup P (1999) Indeks for fysisk variation i vandløb. Vand og Jord nr. 6. In: Mc
- 950 Ginnity PM, Mills P, Roche W, Müller M (2005) A desk study to determine a
- 951 methodology for the monitoring of the 'morphological conditions' of Irish
- 952 Rivers. Final Report. Environmental RTDI Programme 2000-2006. Central
- 953 Fisheries Board Compass Informatics EPA
- 454 Kaufmann PR, Levine P, Robison EG, Seeliger C, Peck DV (1999) Quantifying
- 955 Physical Habitat in Wadeable Streams. EPA/620/R-99/003. U.S. Environmental
- 956 Protection Agency, Washington D.C.
- 957 Kansas Deptartment of Wildlife and Parks (2004) Subjective evaluation of aquatic
- habitats. Kansas Department of Wildlife and Parks, Environmental ServicesSection. Topeka
- 960 King JM, Tharme RE, de Villiers MS (eds) (2008) Environmental flow assessments
- 961 for rivers: manual for the Building Block Methodology. WRC Report No TT
- 962 354/08. Updated Edition. Water Research Commission, Pretoria, South Africa
- 963 Kleynhans CJ, Louw MD, Thirion C, Rossouw NJ, Rowntree KM (2005) River
- 964 EcoClassification: Manual for EcoStatus determination (version 1). Joint Water

965 Research Commission and Department of Water Affairs and Forestry, South
966 Africa. Report No. KV 168/05

967	Kleynhans CJ, Mackenzie J, Louw MD (2007) Module F: Riparian Vegetation
968	Response Assessment Index in River EcoClassification: Manual for EcoStatus
969	Determination (version 2). Joint Water Research Commission and Department
970	of Water Affairs and Forestry report. WRC Report No. KV 168/05
971	Kleynhans CJ, Louw MD, Graham M (2008) Module G: EcoClassification and
972	EcoStatus determination. in River EcoClassification: Index of Habitat Integrity
973	(Section 1, Technical manual) Joint Water Research Commission and
974	Department of Water Affairs and Forestry report. WRC Report No. TT 377-08
975	Kondolf GM, Montgomery D, Piégay H, Schmitt L (2003) Geomorphic
976	classifications of rivers and streams. In: Kondolf, GM, Piégay H (eds) Tools in
977	Fluvial Geomorphology. John Wiley and Sons, Chichester, UK, Chapter 7
978	Ladson AR, White LJ, Doolan JA, Finlayson BL, Hart BT, Lake PS, Tilleard JW
979	(1999) Development and testing of an Index of Stream Condition for waterway
980	management in Australia. Freshwater Biology 41:453-468
981	Langhammer J (2007) HEM Hydroekologický monitoring. Metodika pro monitoring
982	hydromorfologických ukazatelů ekologické kvality vodních toků. PřF UK,
983	Praha, 47 pp. In: Langhammer J (2009) Applicability of hydromorphological
984	monitoring data to locate flood risk reduction measures: Blanice River basin,
985	Czech Republic. Environ Monit Assess 152(1):379-392
986	LAWA (2000) Gewässerstrukturgütebewertung in der Bundesrepublik Deutschland.
987	Verfahren für kleine und mittelgroße Fließgewässer, Schwerin,
988	Länderarbeitsgemeinschaft Wasser. In: Kamp U, Binder W, Holzl K (2007)

989 River habitat monitoring and assessment in Germany. Environ Monit Assess

990 127(1-3):209-226

- 991 LAWA (2002a) Gewässerstrukturkartierung in der Bundesrepublik Deutschland.
- 992 Verfahren für mittelgroße bis große Fließgewässer. Schwerin,
- 993 Länderarbeitsgemeinschaft Wasser
- 994 LAWA (2002b) Gewässerstrukturgütekartierung in der Bundesrepublik Deutschland -
- 995 Übersichtsverfahren. Empfehlungen Oberirdische Gewässer. Entwurf April
- 996 2002. Länderarbeitsgemeinschaft Wasser
- 997 Lazorchak JM, Herlihy AT, Green J (1998) Rapid habitat and visual stream
- assessments. Section 14 In: US Environmental Protection Agency (2004):
- 999 WSAss Wadeable Streams Assessment: Field Operations Manual. Vol.
- 1000 EPA841-B-04-004
- 1001 Lehotský M, Grešková A (2007) Fluvial geomorphological approach to river
- assessment methodology and procedure. Geograficky Casopis 59(2):107-129
- 1003 Liechti P, Sieber U, Bundi U, Frutiger A, Hütte M, Peter A, von Blücher U, Willi AP,
- 1004 Göldi C, Kupper U, Meier W, Niederhauser P (1998) Méthodes d'analyse et
- 1005 d'appréciation des cours d'eau en Suisse Système modulaire gradué, Institut
- 1006 fédéral pour l'aménagement, l'épuration et la protection des eaux (IFAEPE);
- 1007 Office fédéral de l'économie des eaux (OFEE); Amt für Abfall, Wasser, Energie
 1008 und Luft (AWEL), canton de Zurich
- 1009 Magdaleno F, Martínez R, Roch V (2010) Índice RFV para la valoración del estado
- 1010 del bosque de ribera. Ingeniería Civil 157:85-96
- 1011 Martínez Santa-María C, Fernández Yuste JA (2010) IAHRIS 2.2. Indicators of
- 1012 Hydrologic Alteration in Rivers. User's Manual. Ministry of the Environment -

- 1013 Polytechnic University of Madrid CEDEX.
- 1014 <u>http://www.ecogesfor.org/IAHRIS_es.html</u>
- 1015 Matoušková M (2006) Dílčí zpráva z grantu GAČR 205/05/P102. Faculty of Science,
- 1016 Charles University in Prague. January 2006. In: Weiss A, Matouskova M,
- 1017 Matschullat J (2008) Hydromorphological assessment within the EU-Water
- 1018 Framework Directive trans-boundary cooperation and application to different
- 1019 water basins. Hydrobiologia 603:53-72
- 1020 Mc Ginnity PM, Mills P, Roche W, Müller M (2005) A desk study to determine a
- 1021 methodology for the monitoring of the 'morphological conditions' of Irish
- 1022 Rivers. Final Report. Environmental RTDI Programme 2000-2006. Central
- 1023 Fisheries Board Compass Informatics EPA
- 1024 Maine Department of Environmental Protection (2009) Stream Survey Manual.
- 1025Volume I and II (and Appendices). Maine Stream Team Program of the Maine
- 1026 Department of Environmental Protection
- 1027 Ministry of the Environment (1999) Revised Stormwater Management Guidelines
- 1028 Draft Report. Ontario Ministry of the Environment. In: Central Lake Ontario
- 1029 Conservation (2011): Black/Harmony/Farewell Creek Watershed. Existing
- 1030 conditions report. Chapter 13 Fluvial Geomorphology. Durham Region
- 1031 Minnesota Pollution Control Agency (2002): Physical habitat and water chemistry
- assessment protocol for wadeable stream monitoring sites. Minnesota Pollution
- 1033 Control Agency, St. Paul
- 1034 Muhar S, Jungwirth M (1998) Habitat intgegrity of running waters assessment
- 1035 criteria and their biological relevance. Hydrobiologia 386:195-202. In: Mc
- 1036 Ginnity PM, Mills P, Roche W, Müller M (2005) A desk study to determine a
- 1037 methodology for the monitoring of the 'morphological conditions' of Irish

- 1038 Rivers. Final Report. Environmental RTDI Programme 2000-2006. Central
- 1039 Fisheries Board Compass Informatics EPA
- 1040 Mühlmann H (2010) Leitfaden zur zustandserhebung in fliessgewässern -
- 1041 Hydromorphologie. Bundesministerium für Land- und Forstwirtschaft, Umwelt
- 1042 und Wasserwirtschaft (Wien).
- 1043 http://wisa.lebensministerium.at/article/articleview/81530/1/29401/
- 1044 Munné A, Prat N (1998) QBR: Un índice rápido para la evaluación de la calidad de
- 1045 los ecosistemas de ribera. Tecnología del Agua 175:20–37
- 1046 Munné A, Prat N, Sola C, Bonada N, Rieradevell M (2003) A simple field method for
- 1047 assessing the ecological quality of riparian habitat in rivers and streams: QBR
- 1048 index. Aquatic conserv: Mar Freshw Ecosyst 13: 147-163
- 1049 Munné A, Solà C, Pagés J (2006) HIDRI: Protocolo para la valoración de la calidad
- 1050 hidromorfológica de los ríos. Agència Catalana de l'Aigua, Barcelona
- 1051 Murphy M, Toland M (2012) River Hydromorphology Assessment Technique
- 1052 (RHAT). Training guide. Northern Ireland Environment Agency, Department of
- 1053 the Environment, Version 2012
- 1054 National Environmental Research Institute (1999) National Physical Habitat Index.
- 1055 In: Mc Ginnity PM, Mills P, Roche W, Müller M (2005) A desk study to
- 1056 determine a methodology for the monitoring of the 'morphological conditions'
- 1057 of Irish Rivers. Final Report. Environmental RTDI Programme 2000-2006.
- 1058 Central Fisheries Board Compass Informatics EPA
- 1059 Newson MD, Large ARG (2006) 'Natural' rivers, 'hydromorphological quality' and
- 1060 river restoration: a challenging new agenda for applied fluvial geomorphology.
- 1061 Earth Surf Process Landforms 31:1606–1624

- 1062 Ohio Environmental Protection Agency (2002) Field evaluation manual for Ohio's
- 1063 primary headwater habitat streams. Final Version 1.0. Division of Surface
- 1064 Water, Ohio Environmental Protection Agency, Columbus, Ohio. In: Kasich J,
- 1065 Taylor M, Nally S (2012) Field Evaluation Manual for Ohio's Primary
- 1066 Headwater Habitat Streams, Version 3.0. Ohio, US
- 1067 Oliveira SV, Cortes RMV (2005) A biologically relevant habitat condition index for
- streams in northern Portugal. Aquatic Conserv: Mar Freshw Ecosyst 15(2):189210
- 1070 Ollero A, Ballarín D, Díaz E, Mora D, Sánchez M, Acín V, Echeverría MT, Granado
- 1071 D, Ibisate A, Sánchez L, Sánchez N (2007) Un indice hidrogeomorfologico
- 1072 (IHG) para la evaluación del estado ecológico de sistemas fluviales.
- 1073 Geographicalia 52:113-141
- 1074 ONEMA (2010) Des étapes et des outils... Les outils de connaissance de
- 1075 l'hydromorphologie des cours d'eau français. Restauration physique des cours
 1076 d'eau Connaissance
- 1077 Overton CK, Wollrab SP, Roberts CB, Radko MA (1997) Fish and Fish Habitat
- 1078 Standard Inventory Procedures handbook. United States Department of
- 1079 Agriculture, Forest Service
- 1080 Oregon Watershed Enhancement Board (2000): Oregon Watershed Assessment
- 1081 Manual.
- 1082 <u>http://www.oregon.gov/OWEB/pages/docs/pubs/or_wsassess_manuals.aspx</u>
- 1083 Paetzold A., Yoshimura C., Tockner K. (2008) Riparian arthropod responses to flow
- 1084 regulation and river channelization. Journal of Applied Ecology 45:894-903.
- 1085 Pardo I, Álvarez M, Casas J, Moreno JL, Vivas S, Bonada N, Alba-Tercedor J,
- 1086 Jáimez-Cuéllar P, Moyà G, Prat N, Robles S, Suárez ML, Toro M, Vidal-

1087	Abarca MR (2002) El hábitat de los ríos mediterráneos. Diseño de un índice de
1088	diversidad de hábitat. Limnetica 21(3-4):115-133
1089	Parsons M, Thoms MC, Norris RH (2004) Development of a standardised approach to
1090	river habitat assessment in Australia. Env Monit Assess 98:109-130. In: Mc
1091	Ginnity PM, Mills P, Roche W, Müller M (2005) A desk study to determine a
1092	methodology for the monitoring of the 'morphological conditions' of Irish
1093	Rivers. Final Report. Environmental RTDI Programme 2000-2006. Central
1094	Fisheries Board - Compass Informatics - EPA
1095	Pedersen ML, Baattrup-Pedersen A (2003) Økologisk overvågning i vandløb og på
1096	vandløbsnære arealer under NOVANA 2004-2009. Danmarks
1097	Miljøundersøgelser. Teknisk Anvisning fra DMU nr. 21. In: National
1098	Environmental Research Institute and Slovak Hydrometeorological Institute
1099	(2004) Establishment of the Protocol on Monitoring and Assessment of the
1100	Hydromorphological Elements (Slovakia). Final Report
1101	Person E., Peter A. (2012) Influence of hydropeaking on brown trout habitat.
1102	Conference paper 9 th International Symposium on Ecohydraulics, 17 th -21 st
1103	September 2012
1104	Petersen RC (1992) The RCE: a Riparian, Channel, and Environmental Inventory for
1105	small streams in the agricultural landscape. Freshwater Biology 27(2):295-306.
1106	doi:10.1111/j.1365-2427.1992.tb00541.x
1107	Plafkin JL, Barbour MT, Porter KD, Gross SK, Hughes RM (1989) Rapid
1108	bioassessment protocols for use in streams and rivers-Benthic
1109	macroinvertebrates and fish. USEPA/440/4-89-001. US Environmental
1110	Protection Agency. Washington, D.C. In: Barbour MT, Gerritsen J, Snyder BD,
1111	Stribling JB (1999) Rapid Bioassessment Protocols for use in streams and
	47

- 1112 wadeable rivers: periphyton, benthic macroinvertebrates, and fish. Second
- 1113 edition. EPA 841-B-99-002 U.S.
- 1114 Platts WS, Megahan WF, Minshall GW (1983) Methods for evaluating stream,
- 1115 riparian, and biotic conditions. US Department of Agriculture, Forest Service,
- 1116 Intermountain Forest and Range Experiment Station. Ogden, UT
- 1117 Poff NL, Allan JD, Palmer MA, Hart DD, Richter BD, Arthington AH, Rogers KH,
- 1118 Meyer JL, Stanford JA (2003) River flows and water wars: emerging science for
- 1119 environmental decision making. Front Ecol Environ 1:298–306
- 1120 Poff NL, Zimmerman JKH (2010) Ecological responses to altered flow regimes: a
- 1121 literature review to inform the science and management of environmental flow.
- 1122 Freshwater biology 55:147-170
- 1123 Prichard D, Barrett H, Cagney J, Clark R, Fogg J, Gebhardt K, Hansen PL, Mitchell
- B, Tippy D (1998) Riparian area management: Process for assessing proper
- 1125 functioning condition. Technical Reference 1737-9, BLM/SC/ST-
- 1126 9/003+1737+REV95+REV98. Bureau of Land Management, Denver
- 1127 Rankin ET (1989) The Qualitative Habitat Evaluation Index (QHEI): Rationale,
- 1128 methods, and application. Div. Water Qual. Plan. & Assess., Ecol. Assess. Sect.,
- 1129 Columbus, Ohio. In: Taft B, Koncelik JP (2006): Methods for Assessing Habitat
- 1130 in Flowing Waters: Using the Qualitative Habitat Evaluation Index (QHEI).
- 1131 Ohio EPA
- 1132 Raven PJ, Fox P, Everard M, Holmes NTH, Dawson FH (1997) River habitat survey:
- 1133 A new system for classifying rivers according to their habitat quality.
- 1134 Freshwater Quality: Defining the Indefinable? In: Raven PJ, Holmes NTH,
- 1135 Charrier P, Dawson FH, Naura M, Boon PJ (2002) Towards a harmonized
- approach for hydromorphological assessment of rivers in Europe: a qualitative

- 1137 comparison of three survey methods. Aquatic Conserv: Mar Freshw Ecosyst
- 1138 12(4):405-424
- 1139 Raven PJ, Holmes NTH, Charrier P, Dawson FH, Naura M, Boon PJ (2002) Towards
- a harmonized approach for hydromorphological assessment of rivers in Europe:
- 1141 a qualitative comparison of three survey methods. Aquatic Conserv: Mar
- 1142 Freshw Ecosyst 12(4):405-424
- 1143 Raven P., Holmes N., Pádua J., Ferreira J., Hughes S., Baker L., Taylor L., Seager K.
- 1144 (2009). River Habitat Survey in Southern Portugal. Results from 2009.
- 1145 Environment Agency, Bristol
- 1146 Richter BD, Baumgartner JV, Powell J, Braun DP (1996) A method for assessing
- 1147 hydrologic alteration within ecosystems. Conservation Biology 10(4):1163-1148 1174
- 1149 Rinaldi M, Surian N, Comiti F, Bussettini M (2013a) A method for the assessment
- and analysis of the hydromorphological condition of Italian streams: The
- 1151 Morphological Quality Index (MQI). Geomorphology 180-181:96-108. doi:
- 1152 10.1016/j.geomorph.2012.09.009
- 1153 Rinaldi M, Belletti B, Van de Bund W, Bertoldi W, Gurnell A, Buijse T, Mosselman
- 1154 E (2013b). Review on eco-hydromorphological methods. Deliverable 1.1,
- 1155 REFORM (REstoring rivers FOR effective catchment Management), Project
- 1156 funded by the European Commission within the 7th Framework Programme
- 1157 (2007 2013), Topic ENV.2011.2.1.2-1 Hydromorphology and ecological
- 1158 objectives of WFD, Grant Agreement 282656
- 1159 Rinaldi M., Wyzga B., Dufour S., Bertoldi W., Gurmenll A.M. (2013c) River
- 1160 Processes and Implications for Fluvial Ecogeomorphology: A European
- 1161 Perspective. In: Schroder J.F. (ed.) Treatise in Geomorphology 12(4):37-52.

- 1162 Rosgen DL (1996) Applied River Morphology. Wildland Hydrology, Pagosa Springs,
- 1163 CO. In: Rosgen D (2006) The Natural Channel Design Method for River
- 1164 Restoration. Wildland Hydrology
- 1165 Rosgen DL (2006) A Watershed Assessment for River Stability and Sediment Supply
- 1166 (WARSSS). Wildland Hydrology Books, Fort Collins, CO.
- 1167 http://www.epa.gov/warsss/
- 1168 Rowntree KM, Wadeson RA (2000) Field manual for channel classification and
- 1169 condition assessment Institute for Water Quality Studies, Department of Water
- 1170 Affairs and Forestry, Pretoria, South Africa
- 1171 Saint-Jaques N, Richard Y (1998): Développement d'un indice de qualité de la bande
- 1172 riveraine : application à la rivière Chaudière et mise en relation avec l'intégrité
- 1173 biotique du milieu aquatique. In: Le bassin de la rivière Chaudière: qualité de la
- 1174 bande riveraine. Direction des écosystèmes aquatiques Ministère de
- 1175 l'Environnement et de la faune (Quebec), 6.1-6.41.
- 1176 Scheifhacken N, Haase U, Gram-Radu L, Kozovyi R, Berendonk TU (2012+) How to
- 1177 assess hydromorphology? A comparison of Ukrainian and German approaches.

1178 Environ Earth Sci 65:1483-1499. doi:10.1007/s12665-011-1218-2

- 1179 Schneiders A, Verhaert E, Blust GD, Wils C, Nervoets L, Verheyen R (1993)
- 1180 Towards an ecological assessment of watercourses. Journal of Aquatic
- 1181 Ecosystem Health 2:29-38. In: Mc Ginnity PM, Mills P, Roche W, Müller M
- 1182 (2005) A desk study to determine a methodology for the monitoring of the
- 1183 'morphological conditions' of Irish Rivers. Final Report. Environmental RTDI
- 1184 Programme 2000-2006. Central Fisheries Board Compass Informatics EPA
- 1185 Schumm SA, Harvey MD, Watson CC (1984) Incised Channels: Morphology,
- 1186 Dynamics and Control. Water Resources Publications, Littleton, Colorado. In:

1187	Darby SE, Simon A (eds) (1999) Incised River Channels: processes, forms,
1188	engineering and management. John Wiley & Sons 2:19-33.
1189	Sear DA, Hill CT, Downes RHE (2008) Geomorphological assessment of riverine
1190	SSSIs for the strategic planning of physical restoration. Report NERR013.
1191	Natural England Research
1192	Shiau J-T, Wu F-C (2008) A Histogram Matching Approach for assessment of flow
1193	regime alteration: application to environmental flow optimization. River Res
1194	Applic 24(7):914-928
1195	Siligardi M, Bernabei S, Cappeletti C, Chierici E, Ciutti F, Egaddi F, Franceschini A,
1196	Maiolini B, Mancini L, Minciardi MR, Monauni C, Rossi GL, Sansoni G,
1197	Spaggiari R, Zanetti M (2002) I.F.F. Indice di funzionalità fluviale. Manuale
1198	ANPA
1199	Simon A, Hupp CR (1986) Channel Evolution in Modified Tennessee Channels.
1200	Proceedings of the Fourth Interagency Sedimentation Conference, Las Vegas,
1201	Nevada. In: Darby SE, Simon A (eds) (1999) Incised River Channels:
1202	processes, forms, engineering and management. John Wiley & Sons, 1:3-18.
1203	Simon A, Downs PW (1995) An interdisciplinary approach to evaluation of potential
1204	instability in alluvial channels. Geomorphology 12(3):215-232. In: Heeren DM,
1205	Mittelstet AR, Fox GA, Storm DE, Al-Madhhachi AT, Midgley TL, Stringer
1206	AF, Stunkel KB, Tejral RD (2012) Using Rapid Geomorphic Assessments to
1207	assess streambank stability in Oklahoma Ozark streams. American Society of
1208	Agricultural and Biological Engineers 55(3):957-968
1209	Skriver J, Riis T, Carl J, Baattrup-Pedresen A, Friberg N, Ernst ME, Frandsen SB,
1210	Sode A, Wiberg-Larsen P (1999) Biologisk vandløbskvalitet (DVFI). Udvidet
1211	biologisk program. NOVA 2003. Afdeling for Vandløbsøkologi og Afdeling for 51

1212	Sø- og Fjordøkologi. In: Mc Ginnity PM, Mills P, Roche W, Müller M (2005) A
1213	desk study to determine a methodology for the monitoring of the
1214	'morphological conditions' of Irish Rivers. Final Report. Environmental RTDI
1215	Programme 2000-2006. Central Fisheries Board - Compass Informatics - EPA
1216	Smith D, Ammann A, Bartoldus C, Brinson MM (1995) An Approach for Assessing
1217	Wetland Functions Using Hydrogeomorphic Classification, Reference
1218	Wetlands, and Functional Indices. vol Wetlands Research Program Technical
1219	Report WRP-DE-9. US Army Corps of Engineers Waterways Experiment
1220	Station
1221	Spiegler A, Godina, Grass, Imhoff, Katzmann, Nachtnebel, Ohnmatch, Pelikan,
1222	Sabata (1989): Strukturökologische Methode zur Bestandsaufnahme und
1223	Bewertung von Fließgewässern. Planungen und Untersuchungen.
1224	Bundesministerium für Land- und Forstwirtschaft, Wasserwirtschaftskataster.
1225	Wien. In: Mc Ginnity PM, Mills P, Roche W, Müller M (2005) A desk study to
1226	determine a methodology for the monitoring of the 'morphological conditions'
1227	of Irish Rivers. Final Report. Environmental RTDI Programme 2000-2006.
1228	Central Fisheries Board - Compass Informatics - EPA
1229	Starr RR, Mc Candless T (2001) Stream and riparian habitats rapid assessment
1230	protocol. Chesapeake Bay Field Office, U.S. Fish and Wildlife Service,
1231	Annapolis, MD. In: Somerville DE, Pruitt BA (2004) Physical Stream
1232	Assessment: A Review of Selected Protocols for Use in the Clean Water Act
1233	Section 404 Program. vol 3W-0503-NATX. US Environmental Protection
1234	Agency, Office of Wetlands, Oceans, and Watersheds, Wetlands Division
1235	Starr RR (2009) Stream Assessment Protocol. Anne Arundel County, Maryland - US
1236	Fish & Wildlife Service

1237	Stranko S, Boward D, Kilian J, Becker A, Ashton M, Schenk A, Gauza R, Roseberry-
1238	Lincoln A, Kazyak P (2010) Maryland Biological Stream Survey, Round Three
1239	Field Sampling Manual. Revised version. Maryland Department of Natural
1240	Resources
1241	Tavzes B, Urbanic G (2009) New indices for assessment of hydromorphological
1242	alteration of rivers and their evaluation with benthic invertebrate communities;
1243	Alpine case study. Review of Hydrobiology 2:133-161
1244	The Nature Conservancy (2009) Indicators of Hydrologic Alteration Version 7.1.
1245	User's Manual
1246	Thorne CR (1998) Geomorphological stream reconnaissance handbook. Wiley
1247	Chichester
1248	Tickner D, Armitage PD, Bickerton MA, Hall KA (2000) Assessing stream quality
1249	using information on mesohabitat distribution and character. Aquatic Conserv:
1250	Mar Freshw Ecosyst 10(3):179-196
1251	Tockner K., Ward J.V. (1999) Biodiversity along riparian corridors. Large Rivers
1252	11(3). Arch. Hydrobiol. Suppl. 115(3):293-310
1253	UK Technical Advisory Group on the WFD (2008) UK Environmental Standards and
1254	Conditions (Phase 1) - Final. Vol. SR1-2006
1255	US Department of Agriculture (2009) Stream Visual Assessment Protocol Version 2,
1256	vol. Subpart B - Conservation Planning. USDA Natural Resources Conservation
1257	Service
1258	US Environmental Protection Agency (1997) Volunteer Stream Monitoring: A
1259	Methods Manual. In: Mc Ginnity PM, Mills P, Roche W, Müller M (2005) A
1260	desk study to determine a methodology for the monitoring of the

- 1261 'morphological conditions' of Irish Rivers. Final Report. Environmental RTDI
- 1262 Programme 2000-2006. Central Fisheries Board Compass Informatics EPA
- 1263 US Environmental Protection Agency (2004) Wadeable Streams Assessment
- 1264 (WASss): Field operations manual. EPA841- B-04-004. Office of Water and
- 1265 Office of Research and Development, Washington, DC
- 1266 US Forest Service (2006): Stream Inventory Handbook Level I & II. Vol. 2.6. US
- 1267 Forest Service, Pacific Northwest Region
- 1268 Valette L, Chandesris A, Malavoi JR, Suchon Y, Willet B (2010) Protocole AURAH-
- 1269 CE AUdit RApide de l'Hydromorphologie des Cours d'Eau. Méthode de recueil
- 1270 d'informations complémentaires à SYRAH-CE sur le terrain, Pôle
- 1271 hydroécologie des cours d'eau Onema/Cemagref
- 1272 Vermont Agency of Natural Resources (2010) Vermont Stream Geomorphic
- 1273 Assessment. Appendix A Field Forms. Waterbury
- 1274 http://www.vtwaterquality.org/rivers/htm/rv_geoassesspro.htm
- 1275 Vaughan IP, Diamond M, Gurnell AM, Hall KA, Jenkins A, Milner NJ, Naylor LA,
- 1276 Sear DA, Woodward G, Ormerod SJ (2009) Integrating ecology with
- 1277 hydromorphology: a priority for river science and management. Aquatic
- 1278 Conserv: Mar Freshw Ecosyst 19:113–125
- 1279 Ward TA, Tate KW, Atwill ER (2003) Visual Assessment of Riparian Health. Vol
- 1280 ANR Publication 8089, Rangeland Monitoring Series. University of California
- 1281 Weiss A, Matouskova M, Matschullat J (2008) Hydromorphological assessment
- 1282 within the EU-Water Framework Directive trans-boundary cooperation and
- 1283 application to different water basins. Hydrobiologia 603:53-72
- 1284 Werth W (1987) Ökomorphologische Gewässerbewertung in Oberösterreich
- 1285 (Gewässerzustandkartierungen). Eco-morphological classification of channels

- 1286 in Upper Austria. In: Oesterreichische Wasserwirtschaft 39 (5/6). Wien 1287 (Springer): 121-128. In: Mc Ginnity PM, Mills P, Roche W, Müller M (2005) A 1288 desk study to determine a methodology for the monitoring of the 1289 'morphological conditions' of Irish Rivers. Final Report. Environmental RTDI 1290 Programme 2000-2006. Central Fisheries Board - Compass Informatics - EPA 1291 Wilhelm J, Allan J, Wessell K, Merritt R, Cummins K (2005) Habitat Assessment of 1292 Non-Wadeable Rivers in Michigan. Environmental Management 36:592-609. 1293 doi:10.1007/s00267-004-0141-7 1294 Wils C, Schneiders A, Bervoets L, Nagels A, Weiss L, Verheyen RF (1994) 1295 Assessment of the ecological value of rivers in Flanders (Belgium). Water 1296 Science and Technology 30(10): 37-47. In: Goethals P, De Pauw N (2001) 1297 Development of a concept for integrated ecological river assessment in 1298 Flanders, Belgium. Journal of Limnology 60(1):7-16 1299 Winward AF (2000) Monitoring the Vegetation Resources in Riparian Areas. General 1300 Technical Report RMRS-GTR-47. US Department of Agriculture 1301 Wyżga B, Amirowicz A, Radecki-Pawlik A, Zawiejska J (2009) Hydromorphological 1302 conditions, potential fish habitats and the fish community in a mountain river 1303 subjected to variable human impacts, the Czarny Dunajec, Polish Carpathians. 1304 River Res Applic 25(5):517-536 1305 Xia T, Zhu W, Xin P, Li L (2010) Assessment of urban stream morphology: an 1306 integrated index and modelling system. Environ Monit Assess 167(1-4):447-460
- 1307 Yetman KT (2001) Stream corridor assessment survey. Survey protocols. Watershed
- 1308 Restoration Division Chesapeake & Coastal Watershed Services Maryland
- 1309 Maryland Dept. of Natural Resources

- 1310 Zolezzi G, Bellin A, Bruno MC, Maiolini B, Siviglia A (2009) Assessing
- 1311 hydrological alterations at multiple temporal scales: Adige River, Italy. Water
- 1312 Resources Research 45(12):W12421. doi:10.1029/2008WR007266.
- 1313

1314 TABLE CAPTIONS

1315 **Table 1** Summary of hydromorphological assessment methods included in this

1316 review. Method categories: PH = physical habitat assessment; RH = riparian habitat

- 1317 assessment; M = morphological assessment; HRA = hydrological regime alteration
- 1318 assessment. Ch = method characteristics; Fe = recorded features; Rp = river processes
- 1319 (n.a.: not applicable). The last three columns (Ch, Fe, Rp) express the percentage of
- elements of each category of information (described in detail in Table 2) accounted
- 1321 for by each method.
- 1322 **Table 2** Summary of types of information collected for each of the categories of
- 1323 assessment: PH, physical habitats; RH, riparian habitats; M, morphological

1324 assessment; HRA, hydrological regime alteration. Codes in the third column

- 1325 correspond to those reported in Figures 3, and 4. The percentage of methods, for each
- 1326 category (i.e., PH, RH, M, HRA), considering a specific type of characteristic, feature
- 1327 and process is also reported. The values (in %) refer each time to the sum of methods
- 1328 for one category, the type of information not being an alternative choice (i.e., each
- 1329 method can adopt one or more type of characteristic, feature, process). "/" means that
- 1330 the specific characteristic, feature or process has not been analyzed for the specific
- 1331 category
- 1332 **Table 3** Summary of strengths and limitations for each method category: PH =
- 1333 physical habitat assessment; RH = riparian habitat assessment; M = morphological
- 1334 assessment; HRA = hydrological regime alteration assessment
- 1335

1336 Table 1

	Category	Year	Country	Acronym	Kev reference	Ch	Fe	Rp
1	PH	1983	US	MESC	Platts et al. (1983)	47	56	33
2	PH	1987	Austria	Werth	Werth (1987)	59	48	17
3	PH	1989	Austria	WatercSt	Spiegler et al. (1989)	53	59	17
4	PH	1989	US	QHEI	Rankin (1989)	59	63	33
5	PH	1992	Sweden	RCE	Petersen (1992)	47	33	33
6	PH	1993	Australia	SRS	Anderson (1993)	59	41	33
7	PH	1993	Belgium	SEvalW	Schneiders et al. (1993)	47	33	17
8	PH	1994	Belgium	SK	Wils et al. (1994)	35	11	0
9	PH	1996	Austria	GEBD (RSR)	Buhmann and Hutter (1996)	59	56	17
10	PH	1996	France	Qualphy	Denortier and Goetghebeur (1996)	59	63	33
11	PH	1996	US	RSAT	Galli (1996)	41	41	17
12	PH	1997	England	RHS	Raven et al. (1997)	53	67	50
13	PH	1997	Poland	EcomorphEval	Ilnicki and Lewandowski (1997)	47	41	33
14	PH	1997	US	FFHSIP	Overton et al. (1997)	41	33	17
15	PH	1997	US	VSMM	US Env. Protection Agency (1997)	59	52	33
16	PH	1998	Austria	AssRivSt	Muhar and Jungwirth (1998)	59	67	50
17	PH	1998	Austria	RATyrol	BUWAL (1998)	41	26	17
18	PH	1998	Denmark	DSFI	Danish Env. Protection Agency (1998)	35,3		0
19	PH	1998	France	SEQ-P MadCana	Agences de L'Eau (1998)	59	03	33
20	PH	1998	Switzerland	ModConc MCCLL (NAWOA)	Liechti et al. (1998)	41	31	33
21		1998	US	MUSH (NAWQA)	Fitzpatrick et al. (1998)	47	27	0
22	PH	1998	US Austrolio	KHVSA-EMAP	Lazorchak et al. (1998)	41	37	0
23	гп рц	1999	Donmark	Aarbus	Lauson et al. (1999)	47	18	33
24		1999	Denmark	NDUI	National Env. Pasaarah Instituta (1000)	47	27	0
25		1999	Denmark	NF III PhysSC	Skriver et al. (1999)	47	57 41	0
20	РН	1999	US	PHC (EMAP)	$K_{aufmann et al} (1999)$	41	41	0
28	рц	1000		PRP	Plafkin et al. (1080) : Barbour et al. (1000)	50	56	33
20	РН	2000	Australia	HPM	Davies et al. (1969) , Davies et al. (1969)	59	18	17
30	PH	2000	England	MesoH	Tickner et al. (2000)	41	11	0
31	РН	2000	Germany	I AWA-FS-MToI	I AWA (2000)	59	48	50
32	PH	2000	US	WCE	Oregon Watersh Enhanc Board (2000)	71	52	33
33	PH	2000	Austria	NÖMORPH	Freiland Umeltconsulting (2001a, b)	59	41	17
34	PH	2001	Germany	BfG – WW	Bundesanstalt für Gewässerkunde (2001)	47	56	50
35	PH	2001	US	SCA	Yetman (2001)	47	48	50
36	PH	2001	US	SRHRAP	Starr and McCandless (2001)	41	41	33
37	PH	2002	Germany	LAWA-FS-SToL	LAWA (2002a)	59	52	50
38	PH	2002	Germany	LAWA-OS	LAWA (2002a, b)	53	37	50
39	PH	2002	Italy	IFF	Siligardi et al. (2002)	59	37	17
40	PH	2002	Spain	IHF	Pardo et al. (2002)	41	18	0
41	PH	2002	Sweden	BiotopeMap	Hallde'n et al. (2002)	65	44	17
42	PH	2002	US	HHEI	Ohio Env. Protection Agency (2002)	59	30	0
43	PH	2002	US	MinHWCP	Minnesota Pollution Control Ag. (2002)	41	44	17
44	PH	2003	Denmark	DHQI	Pedersen and Baattrup-Pedersen (2003)	71	41	17
45	PH	2003	England	GeoRHS	Environment Agency (2003)	59	48	67
46	PH	2003	US	MNHWA	Crowe and Kudray (2003)	47	26	33
47	PH	2004	Australia	AusRivAs-PAP	Parsons et al. (2004)	65	70	50
48	PH	2004	England	URS	Davenport et al. (2004)	53	56	50
49	PH	2004	Germany	GSI	Feld (2004)	59	52	17
50	PH	2004	US	BURP	Idaho Dep. Env. Quality (2004)	53	37	17
51	PH	2004	US	SEvalAH	Kansas Dep. of Widelife and Parks (2004)	53	37	33
52	PH	2004	US	VSGA	Vermont Ag. of Natural Resources (2004)	53	63	67
53	PH	2004	US	WSAss	US Env. Protection Agency (2004)	47	44	33
54	PH	2005	Italy	CARAVAGGIO	Buffagni et al. (2005)	59	70	50
55	PH	2005	Portugal	HCI	Oliveira and Cortes (2005)	53	26	0
56	PH	2005		NWHI E. D. 111	withelm et al. (2005)	41	22	1/
5/	PH DU	2006	Czecn Kep.	ECOKIVHAD	Munná st. sl. (2006)	05	52	33 17
58	PH DU	2006	Spain	HIDKI	Munne et al. (2006)	/1	59	1/
59	PH	2006	US Natharland	SIH Handhaala HVMO	US Forest Service (2006) Dam et al. (2007)	53	44	50
6U	PH DU	2007	Inetherlands	HAD SP	Dam et al. (2007) Labotalai and Craiterri (2007)	33 50	41	0/ 67
01	rп	2007	SIOVAKIA	11AF - SK	LCHOISKY AND GIESKOVA (2007)	59	03	07

	Category	Year	Country	Acronym	Key reference	Ch	Fe	Rp
62	PH	2008	South Africa	IHI	Kleynhans et al. (2008)	53	41	33
63	PH	2009	NZ	SHAP	Harding et al. (2009)	53	59	17
64	PH	2009	Poland	MHR	Ilnicki et al. (2009)		56	33
65	PH	2009	Slovenia	SI_HM	Tavzes and Urbanic (2009)		67	50
66	PH	2009	US	SCS-SH	Maine Dep. of Env. Protection (2009)	59	48	50
67	PH	2009	US	SVAP	US Dep. of Agricolture (2009)	53	59	67
68	PH	2010	Austria	HYMO	Mühlmann (2010)	47	41	50
69	PH	2010	China	USM	Xia et al. (2010)	41	44	50
70	PH	2010	France	CarHyCE	ONEMA (2010)	35	44	33
71	PH	2010	US	MBSS	Stranko et al. (2010)	47	52	17
72	PH	2011	Ukraine	UA-FS	Scheifhacken et al. (2011)	47	48	17
73	PH	2012	Ireland	RHAT	Murphy and Toland (2012)	65	67	67
74	RH	1995	US	HGM	Smith et al. (1995)	35	7	17
75	RH	1998	Italy	BSI & WSI	Braioni and Penna (1998)	59	67	0
76	RH	1998	Quebec	IQBR	Saint-Jacques and Richard (1998)	35	22	0
77	RH	1998	Spain	QBR	Munné and Prat (1998); Munné et al. (2006)	47	33	17
78	RH	1998	US	PFC	Prichard et al. (1998)	29	41	50
/9	RH	2000	US	RWA	Oregon Watersh. Enhanc. Board (2000)	4/	22	17
80	RH	2000	US	VRRA	Winward (2000)	41	15	1/
81	RH	2003	US	VARH	Ward et al. (2003)	35	41	33
82	KH	2005	Australia	TRARC	Jansen et al. (2005)	33 25	22	0
83		2005	Australia	IKAKU	Dixon et al. (2005)	33	41	0
84 85		2006	Spain South Africo		Munne et al. (2006) Klaymbans et al. (2007)	47	41 20	0
85 86	КП рц	2007	South Africa	VEGKAI	Magdalano et al. (2010)	47	20	0
80 97	КП DU	2010	Spain	REV	Conzélaz DT and Caraía DL (2011)	47	62	50
07		2011	Australia	RUI DOI	Healey et al. (2012)	47	22	17
00 80	м	1084.86	Australia	CEMa	Schumm et al. (1084): Simon and Hupp (1086)	20	22	67
00	M	1904-00		SCRS	Harralson at al. (1904).	41	18	22
90	M	1994		RGAs	Ministry of Env. (1994) Simon and Downs (1995)	50	40	33
02	M	1006		NCD	Rosen (1006)	53	52	33
93	M	1998	England	FA	Environment Agency (1998)	65	81	83
94	M	1998	England	SRH	Thome (1998)	53	70	50
95	M	2000	South Africa	GI	Rowntree and Wadeson (2000)	71	56	33
96	M	2000	US	CMA	Oregon Watersh Enhanc Board (2000)	65	26	33
97	M	2005	Australia	RSF	Brierely and Fryirs (2005)	65	56	67
98	M	2005	South Africa	GAI	Kleynhans et al. (2005)	53	44	83
99	M	2005	Spain	HIDRI-P1	Munné et al. (2006)	41	11	0
100	M	2006	US	WARSSS	Rosgen (2006)	53	56	67
101	M	2007	Czech Republic	HEM	Langhammer (2007)	71	48	50
102	M	2007	Spain	IHG	Ollero et al. (2007)	59	63	83
103	М	2008	England	GAP	Sear et al. (2008)	59	81	83
104	М	2008	France	SYRAH-CE	Chandesris et al. (2008)	47	37	100
105	М	2008	Scotland	MImAS	UK Technical Advisory Group (2008)	59	52	67
106	М	2009	Poland	RHO	Wyżga et al. (2009)	65	56	83
107	М	2009	US	SAP	Starr (2009)	53	48	50
108	М	2009	US	SCS-RGA	Maine Dep. of Env. Protection (2009)	65	22	50
109	М	2010	France	AURAH-CE	Valette et al. (2010)	41	18	17
110	М	2013	Italy	MQI	Rinaldi et al. (2013)	65	59	83
111	HRA	1998	US	RVA	Richter et al. (1996)	32	54	n.a.
112	HRA	2000	US	HCA	Oregon Watersh. Enhanc. Board (2000)	36	41	n.a.
113	HRA	2005	Scotland	DHRAM	Black et al. (2005)	46	54	n.a.
114	HRA	2005	South Africa	HAI	Kleynhans et al. (2005)	39	41	n.a.
115	HRA	2006	Spain	QM-HIDRI	Munné et al. (2006)	39	18	n.a.
116	HRA	2006	US	HIT	Henriksen et al. (2006)	29	50	n.a.
117	HRA	2008	Taiwan	HMA	Shiau and Wu (2008)	46	54	n.a.
118	HRA	2009	US	IHA	The Nature Conservancy (2009)	25	59	n.a.
119	HRA	2010	Spain	IAHRIS	Martínez SM and Fernández Yuste (2010)	39	54	n.a.
120	HRA	2011	Italy	IARI	ISPRA (2011)	57	68	n.a.
121	HRA	2012	Australia	HS RCI	Healey et al. (2012)	50	54	n.a.

1338 Table 1 continued

1340 Table 2

Categori	ies of	Туре	Code	PH (73)	RH (15)	M (22)	HRA
(a) Metho	d characteristics			(13)	(13)	(<u>44</u>) %	(11)
Source of	information / Data	Man/Pamoto sonsing	M/DS	60	22	73	55
collection	methods	Field survey or measurement	EC INI/KS	00	02	75	55
concention	nethous	- Field survey of measurement	гэ DE	99	95	91	9
		- Rapid heid assessment	КГ	54 10	27	9	01
		- Modelling	MO	10	0	5	91
		- Existing database or data series	ED	/	/		100
Type of m	nethod/assessment	- Characterization/Inventorying	CI	66	33	50	/
		- Assessment by index	IN	78	73	59	1
		- General assessment/Design	GA	6	0	50	/
		- Simple index	SI	/	/	/	36
		- Multiple index	MI	/	/	/	46
		- Modelling status	MS	/	/	/	18
		- Expert judgment	EJ	/	/	/	27
River type	ology	- No river typology	NT	/	/	/	64
		- River typology/type	RT	/	/	/	0
Reference	conditions	- Use of reference conditions	RC	58	40	64	/
		- Known reference conditions	KR	/	/	/	64
		 Reconstructed reference conditions 	RR	/	/	/	27
Spatial	Longitudinal	- Fixed length	FI	37	33	9	/
scale		- Length vs. width	CW	18	7	14	/
		- Variable length	VA	47	60	64	/
	Lateral	- Channel	CH	100	53	100	/
		 Banks/Riparian zone 	B/RZ	95	93	96	/
		- Floodplain	FP	71	53	86	/
		- Catchment	CA	/	/	/	18
		- River	RI	/	/	/	36
		- Reach	RE	/	/	/	91
		- Section	SE	/	/	/	36
Temporal	scale	- Present (last year)	Р	100	100	100	/
		- Recent (1-10 year)	R	3	7	36	/
		- Historical (10-50 year)	Н	6	7	46	/
		- Monthly	Μ	/	/	/	55
		- Daily	D	/	/	/	82
		- Hourly	Н	/	/	/	0
		- Other	0	/	/	/	27
Predictive	ability	- Pressure change	PC	/	/	/	18
		- Restoration success	RS	/	/	/	18
		- No prediction	NO	/	/	/	27
Link to ec	ology	- Link to ecology	LE	/	/	/	46
Strengths/	Gaps of the method	- Easy to apply	EA	/	/	/	18
-		- Variable data series length	DL	/	/	/	18
		- Gauged / Ungauged stations	G/U	/	/	/	36
		- A priori pressure assessment	AP	/	/	/	55

Categories of information	Туре	Code	PH (73)	RH (15)	M (22)	HRA (11)
(b) Recorded features				%		
Channel features	- Channel pattern	CP	55	13	82	/
	- Channel form	CF	78	27	86	/
	- Channel dimension	CD	84	33	73	/
	- Flow type	FT	36	7	27	/
	- Substrate	SB	85	20	82	/
	- Physical parameters	PP	/	/	32	/
	- In-channel vegetation	IV	62	20	27	/
	- Woody debris	WD	62	27	50	/
	- Artificial features and structures	AF	75	27	77	/
Banks / Riparian zone features	- Bank profile/shape	BP	66	27	82	/
F	- Bank material	BM	33	20	36	/
	- Riparian vegetation structure	VS	71	93	64	,
	- Riparian vegetation continuity	VC	52	67	32	,
	- Riparian vegetation width	vw	38	53	27	,
	- Species composition	SP	/	73	18	,
	- Species coverage/distribution	SC	,	80	/	,
	- Vegetation regeneration	VR	,	60	,	<i>'</i> ,
	- Riparian soil	RS	,	20	,	,
	- Artificial features and structures	AF	73	17	77	<i>'</i> ,
	- I and use	III	63	53	46	<i>'</i> ,
Eloodplain fasturas	- Land use	FE	34	12	40	/
Floouplain leatures	- Floodplain dimensions	FS	/	15	40	
	- Floodplain dimensions	гэ ED	,	/	41	
	- Floouplain leatures		67	40	32	
Larga saala aharaataristias	- Land use		40	40	40	
Large scale characteristics	- Large scale pressure		49	15	00	
	- Hydrological regime/Discharge	HK	/0	27	82	
** 1 1 1 1 1.1	- Valley form	VF	49	1	64	/
Hydrological conditions	- Flow regime	FR	/	/	/	91
	- Discharge	DI	/	/	/	91
	- Change in depth	CD	/	/	/	9
	- Velocity	VE	/	/	/	9
	- Shear stress	55	/	/	/	0
	- Other	0	/	/	/	27
Metrics of flow regime	- Magnitude	MG	/	/	/	73
	- Frequency	FR	/	/	/	64
	- Duration	DU	/	/	/	82
	- Timing	TI	/	/	/	91
	- Rate of change	RC	/	/	/	55
	- Minimum flow	MI	/	/	/	82
	- Maximum flow	MA	/	/	/	82
	- Annual variability	AV	/	/	/	36
	- Inter-annual variability	IV	/	/	/	46
	- Intermittent flow	IF	/	/	/	9
Pressure assessed	- Flow diversion	FD	/	/	/	73
	 Groundwater interaction 	GW	/	/	/	64
	 Hydropeaking 	HP	/	/	/	0
	- Impoundment	IM	/	/	/	82
	- Lateral/Vertical adjustment	CA	/	/	/	0
	- Large scale pressure	LS	/	/	/	36
(c) River processes	··· ·			%		
River processes	- Longitudinal continuity	LC	56	7	55	/
inter processes	- I steral continuity	TC	49	40	68	,
	- Lateral continuity	SC	+7 /	+0	36	',
	- Large scale scutteril connectivity	BE	50	27	50 82	
	- Dalik elosioli/stability Channel adjustments		12	21 7	02 82	
	- Channel adjustments	CN	12	/	02 19	
	 vertical connection (groundwater) 	GW	/	/	18	/

1342 Table 2 – Continued

	Strengths	Limitations
PH	1. Framework for habitat inventory	1. Small and usually fixed spatial scale
	2. Ecological relevance	2. Detailed, time-consuming data collection
	3. Widely used	3. Limited use of geomorphological methods and
		remote sensing
		4. Static approach
		5. Local assessment of 'natural' state, which
		corresponds to feature presence/absence
		7. Outdated terminology and incomplete coverage of
		morphological units (and channel patterns)
RH	1. Focus on riparian zone and	1. Limited consideration of processes
	vegetation	2. Poorly developed/used (e.g., mainly in the
	2. Recent development of hymo	Mediterranean areas of EU)
	integrating approaches (e.g., remote	Additional limitations, as for PH methods
	sensing, reach scale)	
	Including strengths of PH	
М	1. Robust geomorphological-based	1. Physical processes difficult to assess rigorously
	approach	2. Temporal component difficult to assess
	2. Use of geomorphologically-	3. Several definitions of reference state
	meaningful spatial scale (i.e., reach)	4. Assessment of vertical continuity not explicitly
	3. Account for temporal component	included
		5. Limited consideration of physical habitats
		6. Lack of linkages with biological components
HRA	Robust approaches (indicators)	1. Need for a large dataset and long-time series
		2. Difficult to define unaltered hydrological regime
		3. Short time scales not included (e.g., hydropeaking)
		4. Groundwater alteration not included

1347 FIGURES CAPTIONS

1348	Fig. 1 Spatial context, spatial scales and overlap between assessment method
1349	categories. PH: physical habitat assessment; RH: riparian habitat assessment; M:
1350	morphological assessment; HRA: hydrological regime alteration assessment
1351	
1352	Fig. 2 Timing of the introduction of four categories of assessment methods (121
1353	assessment methods included). PH: physical habitat assessment; RH: riparian habitat
1354	assessment; M: morphological assessment; HRA: hydrological regime alteration
1355	assessment
1356	
1357	Fig. 3 Analysis of (a) the method characteristics; (b) the recorded features; (c) the
1358	processes incorporated in the reviewed physical habitat (PH), riparian habitat (RH),
1359	and morphological (M) assessment methods. For the definition of the codes recorded
1360	on the vertical axes see Table 2
1361	
1362	Fig. 4 Analysis of (a) the method characteristics; (b) recorded features incorporated in
1363	the reviewed methods of assessment of hydrological regime alteration (HRA). For the
1364	definition of the codes reported on the vertical axes see Table 2
1365	
1366	Fig. 5 Number of reviewed methods, sub-divided according to the assessment
1367	category, used by: (a) European countries for the implementation of the Water
1368	Framework Directive; (b) European (in general, not only for the WFD) and non-EU
1369	countries, where "Others" refers to Canada and Quebec, China, New Zeeland,
1370	Switzerland, Ukraine. Method categories: PH = physical habitat assessment; RH =

- 1371 riparian habitat assessment; M = morphological assessment; HRA = hydrological
- 1372 regime alteration assessment