
A review of asymptotic procedures in stress analysis:
known solutions and their applications

D A Hills*, D Dini, A Magadu and A M Korsunsky

Department of Engineering Science, University of Oxford, Oxford, UK

Abstract: A comprehensive review is given of the origins of asymptotic procedures in stress analysis.
Specifically, attention is focused on the use of fracture mechanics to characterize the elastic stress state
ahead of a crack tip. Analogies are then drawn between this configuration and the stress state adjacent
to the apex of a sharp V-notch. Extensions of these asymptotic procedures to bonded and slipping
contacts are then considered and it is shown that although power order singularities may be
obtained, the solutions are more complicated. Lastly, the use of nested asymptotic procedures are
considered in order to account for a small but finite radius at the tip of cracks and notches or at the
edge of slipping contacts.
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NOTATION

a crack half-length
G strain energy release rate
Ki stress intensity factor (i � I, II and III)
ðr; �Þ polar coordinate set at the notch tip or wedge

apex
ui local displacement field in the i direction x or y
vðx, yÞ local displacement field in Cartesian

coordinates
w local displacement field in the transverse

direction (out of the xy plane)
ðx, yÞ Cartesian coordinate set z ¼ xþ iy

ð�,�Þ Dundurs’ parameters
ð�1, �2Þ wedge angles
� infinitesimal distance
� Kolosov’s constant ¼ 4� 3� for plane strain,

ð3� �Þ=ð1þ �Þ for plane stress
� order of singularity
� modulus of rigidity
� Poisson’s ratio
ð	, �Þ polar coordinate set at the crack tip

ij direct stress component in the direction ij
tij shear stress component in the direction ij
�ðzÞ complex stress function
’ notch internal half-angle
� stress function

1 INTRODUCTION

The most commonly encountered asymptotic procedure
in stress analysis is the concept of fracture mechanics and
the framework it provides for the prediction of both
monotonic fracture loads and the rate of growth of
fatigue cracks. As this may be a familiar subject the
ideas behind it will be developed in some detail, before
going on to more general applications where the same
principles apply. In brief, the whole concept of asympto-
tic analysis relies on being able to focus on some feature,
such as the tip of a crack, or the apex of a sharp notch, or
the corner of some slipping complete contact, and to
recognize that the stress state in the neighbourhood of
that feature may be the same (in the sense of having
the same spatial distribution of stresses) as all other fea-
tures having the same local geometry: the influence of
remote boundaries forming the shape of the component,
may be irrelevant. It follows that a simplified solution,
ignoring the presence of all remote boundaries so that
the key feature under consideration is present in a
semi-infinite domain, may correctly capture that stress
state. Thus, as the feature is approached in the finite
and semi-infinite bodies the stress states implied by an
elastic solution become the same (hence, within certain
limits, all crack tips exhibit the same state of stress).
This has further implications for the strength of the com-
ponent if failure originates at the feature; in brief, it
shows that a single quantity scaling the state of stress
may be used to correlate the failure load in any pair of
components having the same local geometry. The most
commonly encountered quantity is that employed in
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linear elastic fracture mechanics, viz. the stress intensity
factor.

Recent developments in the applications of asymptotic
analysis have included the prediction of the fracture
strength of notched components and fretting contacts.
These will be described, together with the use of nested
asymptotic solutions, to permit the effects of various
local variations in the geometry to be gauged, and in
which the authors have been particularly involved.

2 FRACTURE MECHANICS

There are many undergraduate textbooks on fracture
mechanics, including those by Broek [1, 2], Ewalds and

Wanhill [3] and Gdoutos [4]. Many elementary
approaches to the subject fail to take a strong enough
account of why the subject hinges on the stress intensity
factor, and recent texts at the first year postgraduate
level, taking a more rigorous approach, include another
by Gdoutos [5], one by Kanninen and Popelar [6] and
another by Broberg [7]. A particularly rigorous and
appropriate approach, in the present context, is the one
taken by Aliabadi and Rooke [8]. It is not possible to
develop the subject ab initio here, but the key elements
in the technique will be given.

Consider a crack, of half-length a, in an infinite
plane, shown in Fig. 1a. Suppose, for the time being,
that it is subjected to remote tension, 
0, in both the x
and y directions. A solution is required to the boundary

Fig. 1 (a) Crack in an infinite plane. (b) Local coordinates at the crack tip
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value problem


xx

yy
txy

8<
:

9=
;!


0

0
0

8<
:

9=
; Limit x; yj j ! 1 ð1Þ


yy
txy

� �
! 0

0

� �
Limit yj j ! 0, xj j < a ð2Þ

This problem was first solved by Westergaard [9], who
showed that the solution was given by

�ðzÞ ¼ 
0zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2
p ð3Þ

where �ðzÞ is a complex stress function and

z ¼ xþ iy ð4Þ
The corresponding stresses are then defined as


xx ¼ Re½�ðzÞ� � y Im½�0ðzÞ�


yy ¼ Re½�ðzÞ� þ y Im½�0ðzÞ�

txy ¼ �yRe½�0ðzÞ�
ð5Þ

where �0ðzÞ is the first-order derivative of �ðzÞ. The local
displacement field is given by

2�uðx, yÞ ¼ �� 1

2
Re½�ðzÞ� � y Im½�ðzÞ�

2�vðx, yÞ ¼ �� 1

2
Im½�ðzÞ� � yRe½�ðzÞ�

ð6Þ

where ���ðzÞ is the complex conjugate of �ðzÞ, � is the
modulus of rigidity, � is Kolosov’s constant [¼ 3� 4�
in plane strain and 3� �ð Þ= 1þ �ð Þ in plane stress] and
� is Poisson’s ratio.

Now a new local polar coordinate set,  ¼ z� a, is
set up where  	, �ð Þ is positioned at the crack tip (see
Fig. 1b). The stress function may be written in the
form �ðÞ ¼ 
0ð þ aÞ=½ð þ 2aÞ�1=2. By expanding this
expression using the binomial theorem, and taking the
lead term, it can be seen that the state of stress for
small 	=a is given approximately by


xx


yy

txy

8><
>:

9>=
>; ¼

KIffiffiffiffiffiffiffiffi
2p	
p

cosð�=2Þ½1� sinð�=2Þ sinð3�=2Þ�
cosð�=2Þ½1þ sinð�=2Þ sinð3�=2Þ�
sinð�=2Þ cosð�=2Þ cosð3�=2Þ

8><
>:

9>=
>;,

	� a ð7Þ

where

KI ¼ 
0
ffiffiffiffiffiffi
pa
p

ð8Þ

For completeness the local displacement field is also
recorded, which is given by

�
ux
uy

�
¼
�
KI

2�

� ffiffiffiffiffiffi
	

2p

r �
cosð�=2Þð�� cos �Þ
sinð�=2Þð�� cos �Þ

�
ð9Þ

This solution is far more than the asymptotic stress state
relevant to the case of uniform remote loading. Provided
that the value ofKI is chosen correctly, equation (7) gives
the stress at the apex of any crack, subject to remote
loading, which simply tends to open the crack (
yy > 0,
txy ¼ 0 on � ¼ 0, 	 > 0), and is known in the jargon as
mode I loading. As part of the analysis for a wedge or
notch (section 3), this solution, i.e. equation (7), will be
shown to correspond to a special case [equation (33)].

A second, independent, solution may be found by an
analogous method (see Gdoutos [5] for details) for the
case when the crack in an infinite plane is subject to
remote shear, txy ¼ t0, i.e.


xx


yy

txy

8><
>:

9>=
>;!

0

0

t0

8><
>:

9>=
>; Limit jx; yj ! 1 ð10Þ

The corresponding potential is given by

�ðzÞ ¼ � it0zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2
p ð11Þ

This complex stress function is connected to the stress
field by the equations


xx ¼ 2Re½�ðzÞ� � y Im½�0ðzÞ�


yy ¼ y Im½�0ðzÞ�

txy ¼ � Im½�ðzÞ� � yRe½�0ðzÞ�
ð12Þ

while the local displacement field is given by

2�uðx; yÞ ¼ �þ 1

2
Re½�ðzÞ� � y Im½�ðzÞ�

2�vðx; yÞ ¼ �� 1

2
Im½�ðzÞ� � yRe½�ðzÞ�

ð13Þ

Here the asymptotic solution is given by


xx


yy

txy

8><
>:

9>=
>; ¼

KIIffiffiffiffiffiffiffiffi
2p	
p

� sinð�=2Þ½2þ cosð�=2Þ cosð3�=2Þ�
sinð�=2Þ cosð�=2Þ cosð3�=2Þ

cosð�=2Þ½1� sinð�=2Þ sinð3�=2Þ�

8><
>:

9>=
>;,

	� a ð14Þ

where

KII ¼ t0
ffiffiffiffiffiffi
pa
p

ð15Þ

Again, for completeness the local displacement field is
also recorded as

�
ux

uy

�
¼
�
KII

2�

� ffiffiffiffiffiffi
	

2p

r �
2þ �þ cos �

2� �� cos �

�
ð16Þ
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As before, this solution is of more general relevance, as it
applies whenever the remote loading tends simply to
shear the crack (
yy ¼ 0, txy > 0 on � ¼ 0, 	 > 0), and
is known in the jargon as mode II loading. Again, the
analysis for a wedge or notch will show this as a special
case.

There is a third form of loading that may arise, known
as ‘anti-plane’ deformation. In the notation of Fig. 1 this
occurs when the remote loading is in the form of a shear
into or out of the plane, rather like tearing a book, and
the remote boundary condition is now tyz ¼ tz0. The
corresponding solution is given by

�ðzÞ ¼ tz0zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2
p ð17Þ

where, in this kind of loading, the non-zero stresses are
given by

tzx ¼ Im½�0ðzÞ�

tyz ¼ Re½�0ðzÞ�
ð18Þ

while the transverse direction (normal to the xy plane)
displacement, w, is given by

w ¼ 1

�
Im½�ðzÞ� ð19Þ

The asymptotic solution then takes the form

�
txz
tyz

�
¼ KIIIffiffiffiffiffiffiffiffi

2p	
p

�� sinð�=2Þ
cosð�=2Þ

�
ð20Þ

where

KIII ¼ tz0
ffiffiffiffiffiffi
pa
p

ð21Þ

and the displacement is given by

w ¼
�
2KIII

�

� ffiffiffiffiffiffi
	

2p

r
sinð�=2Þ ð22Þ

2.1 Physical relevance of the solution

The solutions obtained above have been discovered by
several analysts and by different routes. Each gives an
independent contribution to the singular elastic stress
field adjacent to a crack tip. As the solutions are elastic
they may be applied together, from the principle of
superposition, to give a ‘mixed mode’ crack tip field.
Note that, in terms of a series expansion of the state of
stress, the next term in the series is one where the stress
state varies as

ffiffiffi
	
p

for all three components of loading,
i.e. next in sequence to equations (7), (14) and (20).
The contributions from the second terms are therefore

bounded, but the application of a remote load parallel
with the crack faces, 
T, is, to a first-order approxima-
tion, unaffected by the presence of the crack. It therefore
gives rise to a contribution to the local stress state that is
less significant than the first-order singular terms
derived, but may be more important than the second-
order bounded terms, at small but finite distances from
the crack tip. It is known, in fracture mechanics jargon,
as the ‘T-stress’.

Monotonic fracture of a highly brittle material subject
to remote tension applied perpendicular to the faces of
the crack is governed by the celebrated Griffith criterion
[4, 10]. This simply states that a crack cannot extend until
the strain energy which is released, dU, under remote
controlled-displacement conditions, when the crack
extends by an amount da, is at least as great as that
needed to form the new crack surfaces, � per unit area,
assumed to be a material property. A quantity G is
introduced, the strain energy release rate or generalized
crack extension force, defined by G ¼ dU=da, and
crack extension occurs when

G ¼ 2� ð23Þ

It may be shown that G is related to the mode I stress
intensity factor by evaluating the energy released when
the crack extends by a small amount. This is found by
evaluating the work done in closing the crack, over an
infinitesimal distance, �, giving

G ¼ 2Limit

�
1

2�

ð�
0

yyð� � 	Þvð	Þ dr

�
ð24Þ

where, because the distance � is small compared with
the crack length so that the integral is evaluated
within the region dominated by the singular region, the
traction is given by 
yy ¼ KI=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð� � 	Þ

p
and vðrÞ ¼

KI½ð�þ 1Þ=2��
ffiffiffiffiffiffiffiffiffiffi
	=2p

p
. This is one part of the so-called

Irwin K � G relation, and is

G ¼ ð�þ 1ÞK2
I

8�
ð25Þ

It demonstrates that the scaling factor for the asymptotic
crack tip stress field, the stress intensity factor, controls
fracture for a brittle material.

The asymptotic field has greater relevance than this,
however. Firstly, in the presence of a very modest
amount of plasticity, the assumption that the stress
intensity factor controls fracture is adopted as a hypoth-
esis, simply because the state of stress in the fracture zone
is itself proportional to KI. Thus, it is argued that there is
a material property that represents the critical value of
the stress intensity factor at which fracture occurs. This
‘material property’ is dependent on the degree of trans-
verse constraint but is substantially constant under
plane strain conditions, when it is known as the fracture
toughness and given the symbol KIC. This hypothesis has
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been experimentally tested and been shown to be true,
provided that the plasticity which is present at the
crack tip is modest.

The relationship between the strain energy released
when the crack extends and the stress intensity factors
present may be extended to modes II and III loading,
using, again, an infinitesimal increase in crack length as
the vehicle. The following complete form for the relation-
ship between G and KI, KII, KIII emerges

G ¼ ð�þ 1ÞðK2
I þ K2

IIÞ
8�

þ K2
III

2�
ð26Þ

It is postulated that the crack will extend when the value
of G reaches a critical value, with contributions from all
three forms of remote load, although this extension to
the original concept is not universally accepted (see Sih
[11, 12]). The point is made, however, that the elastic
singular solution contributions must again control the
complete fracture process.

A consideration of the relevance of the crack tip stress
intensity factors to the problem of crack propagation
under cyclic loading will now be considered. Crack pro-
pagation occurs by the local exhaustion of plasticity in a
small region (the ‘process zone’) at the tip of the crack. It
is not known what attributes of the local stress or strain
field actually control the exhaustion process, but it is
clear that they must be associated with the local plastic
stress and strain. These quantities are themselves difficult
to quantify, because they require the solution of a fully-
fledged elastic–plastic problem: indeed, even if it were
possible to find the true local values of stress and
strain, that would still not represent a complete solution
to the problem, because there is no universal criterion for
the exhaustion of ductility. However, the argument is
made that, if the process zone is small compared with
an elastic hinterland in which the singular solution
itself dominates, all the relevant quantities controlling
the inner process zone are themselves determined by a
single scaling variable, viz. the stress intensity factor.
The concept of ‘small-scale yielding’, which must be
satisfied for crack growth to be controlled by the stress
intensity factor, is precisely this. In fact, there are stron-
ger requirements on the nature of the stress state that the
crack tip experiences: (a) if the T-stress is significant in
proportion to the singular field at the position of the
process zone front, that may have an influence on the
fatigue performance; (b) if the crack tip is experiencing
combined modes loading, each non-zero mode contri-
butes to the local stress field and, if the ratio between
the stress intensity factors varies during the loading
cycle (the so-called ‘non-proportional loading’ regime),
the crack may propagate in a way that is difficult to
predict; the latter is the subject of current research [13].
Lastly, it is known that it is the range of plastic strain
(rather than its maximum value) which is principally
responsible for the rate of crack extension. Thus, the

key parameters at the crack tip may be thought of as
functions of both Kmax and Kmin. These are not the two
best choices of characteristic parameter, however: it is
better to use the range of stress intensity experienced
(�K ¼ Kmax � Kmin) and something quantifying the
average value of the local loads. The R ratio is normally
chosen for this, which may be defined either classically
using the nominal stress present in the crack’s absence
or, for consistency, in terms of the stress intensity factors
as R ¼ Kmin=Kmax: Note that this definition requires
that Kmin 5 0, and hence R5 0. The crack growth rate
is a strong function of �K and a weak function of
R. It is emphasized again here that the actual size of
the plastic zone is necessarily very small for the principles
behind elastic fracture mechanics to hold. The plastic
zone must be much smaller than the region over
which the singular term solutions dominate the state of
stress.

Note that the fracture of heterogeneous materials may
not introduce any fundamentally new principles, pro-
viding that the size of each characteristic phase or com-
ponent is large compared with the process zone size,
and the fracture principles cited may be applied on a
pointwise basis. The presence of interfaces between
those phases may, however, introduce further problems,
because the singularities induced there may be different.
This issue will be addressed in section 5.

3 NOTCH PROBLEM

The results reviewed above, abstracted from standard
fracture mechanics theory, may be arrived at in another
way, involving not the asymptotic expansion of the local
stress field around the tip of a crack in a particular geo-
metry but from a solution constructed in an infinite
domain. The best way to do this is to consider a semi-
infinite notch or wedge (Fig. 2) of internal angle 2’
and to deduce the stress field in the neighbourhood of
the notch tip. This is a well-posed problem, first solved
by Williams [14], and the general results obtained are
of practical relevance, as they may be used to define
characteristic singular local fields. As a special case, by
making the internal notch half-angle equal to p, the
characteristic stress fields derived above may be deduced
directly. The details of the algebra needed may be found
in the books by Barber [15] and by Aliabadi and Rooke
[8], and here only an outline of the method will be repro-
duced. The nomenclature used in fracture mechanics
relating to the three independent modes of crack tip
loading is adopted for notches. In-plane loading will
therefore be considered first. Polar coordinates ðr, �Þ
centred on the notch apex (Fig. 2) are appropriate and
the biharmonic equation is then given by
�
@2

@r2
þ 1

r

@

@r
þ 1

r2
@2

@�2

�2
� ¼ 0 ð27Þ
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where the stress components are related to the stress
function, � , by


rr ¼
1

r

@�

@r
þ 1

r2
@2�

@�2


�� ¼
@2�

@r2

tr� ¼
1

r2
@�

@�
� 1

r

@2�

@r @�
ð28Þ

If it is assumed, pro tem, that there are tractions varying
in a power series along the faces of the notch, the form of
the above equations would suggest an investigation of a
variables-separable solution of the form

� ¼ r�þ1Fð�Þ ð29Þ

If this is substituted into the biharmonic equation the r
variation is seen to be satisfied, and Fð�Þ emerges as

Fð�Þ ¼ A1 cosð�� 1Þ�þ A2 cosð�þ 1Þ�

þ A3 sinð�� 1Þ�þ A4 sinð�þ 1Þ� ð30Þ

This solution is now substituted into equation (28) to
obtain the stresses and the traction components are
set on the faces � ¼ �’ to 0. This then yields the
following set of two pairs of uncoupled simultaneous

homogeneous equations:

cosð�� 1Þ’ cosð�þ 1Þ’
� sinð�� 1Þ’ sinð�þ 1Þ’

0 0

0 0

2
6664

0 0

0 0

sinð�� 1Þ’ sinð�þ 1Þ’
� cosð�� 1Þ’ cosð�þ 1Þ’

3
7775

A1

A2

A3

A4

8>>><
>>>:

9>>>=
>>>;

¼

0

0

0

0

8>>><
>>>:

9>>>=
>>>;

ð31Þ

where � ¼ ð�� 1Þ=ð�þ 1Þ. The first two equations
correspond to a symmetric solution while the second
two are antisymmetric. The solution of these equations
requires the determinants of the separate pairs of equa-
tions to vanish, leading to the following eigenequations:

sin�’� � sin 2’ ¼ 0 ð32Þ

where the symmetric solution is associated with the þ
sign and the antisymmetric solution with the � sign.
The corresponding eigenvalues are plotted in Fig. 3. It
should be recalled that the stress state varies as r��1,
so the stress state is bounded when �� 1 > 0 and is

Fig. 2 Semi-infinite wedge of notch
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singular when �� 1 < 0. The figure displays the results in
the practically important singular region and indicates
that the symmetric solution is singular if ’ > p=2 radians,
while the antisymmetric solution is singular only if
’ > 128:78. Further, the symmetric solution is always
more strongly singular than the antisymmetric one, for
any given notch, so that, unless special precautions are
taken to suppress the symmetric mode (in practice this
rarely happens; indeed, it is very hard to contrive), the
symmetric solution will dominate the solution for suffi-
ciently small r:† If the eigenvalue is back-substituted into
the relevant pair of equations in equation (31) the ratio
A1=A2 (symmetric solution) or A3=A4 (antisymmetric
solution) may be found. These then serve to fix the spatial
distribution of stress with the polar angle �, allowing the
overall solutions to be written in the form


ijðr, �Þ ¼ K�I r
�I�1FIð�Þ þ K�IIr

�II�1FIIð�Þ ð33Þ

where the multiplicative factors K�n take on the rôle of
generalized stress intensity factors. Their value is, in
practice, found by collocating the asymptotic solution
with the local stress state given by the full solution, nor-
mally found by the finite element method of Tur et al.

[16]. For example, under pure mode I loading a plot is
made of 
��ðr, 0Þr1��I against r. As r! 0, 
�� !1 but
their product is finite and equal to K�I .

Note that if ’ is set to p in equation (32) above and the
resulting eigenvalue (� ¼ 0:5) is back-substituted into
equation (31) for the case of symmetric loading, equation
(33) becomes identical to equation (14).

The singular solutions for notches are less well known
than their specialized counterparts, the singular crack-tip
solutions, described in section 2. It must be emphasized
that the mode I and II terms do not necessarily contri-
bute equally to the magnitude of the local stress and
the former dominates. Potentially, these solutions take
on a function analogous to the crack tip stress fields,
but they have found rather less practical application so
far. This is partly because sharp notches are always
avoided, if at all possible, and partly because, even
when the geometry does arise, there is very often at
least some notional radius present at the notch root
that may invalidate the solution. This point will be
addressed in a later section. There remains significant
practical objections to the use of the generalized stress
intensity factors as controllers of the notch monotonic
fracture strength, not least because there is no release
of energy to propel the subsequent crack when the
notch forms a crack [17]. However, there is less objection
to their use as controllers of the size of the local process
zone and hence as the basis of a crack initiation criterion.

Fig. 3 Order of singularity, �� 1, at a notch apex

†The asymptotic solution is usually used to infer properties of the
process zone. As this is of finite extent the contribution from the
antisymmetric term may be significant, especially if the multiplicative
factors in the solution are comparable.
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A third asymptotic solution applies when the notch
root is loaded in anti-plane shear (the mode III solution
in fracture mechanics nomenclature), although the
authors have not been able to find a reference to it in
the literature. Its derivation is straightforward and a
beginning is made by writing the governing differential
equation for this class of problem, viz.

�Fðr, �Þ ¼ 0 ð34Þ

where

trz ¼ �
@F

@r

tz� ¼
1

r

@F

@�
ð35Þ

It is assumed that Fðr, �Þmay be written in the variables-
separable form Fðr, �Þ ¼ r�Tð�Þ, so that

�Fðr, �Þ ¼ r��2

�
�2T þ @

2T

@�2

�
ð36Þ

from which

Fðr, �Þ ¼ r�ðc1 cos��þ c2 sin��Þ ð37Þ

and the only non-zero stresses are given by

trz ¼ �
@F

@r
¼ �r��1ðc1 cos��þ c2 sin��Þ

tz� ¼
1

r

@F

@�
¼ �r��1ð�c1 sin��þ c2 cos��Þ

ð38Þ

Now set the traction component of stress ðtz�Þ to zero on
the faces � ¼ �’, to give the following characteristic
equation:

sin 2�’ ¼ 0 ð39Þ

from which the relevant eigenvalue is given by

� ¼ p
2’

ð40Þ

Back-substituting, as before, yields the eigenfunction
and hence the spatial distribution of the non-zero shear
stresses, which take on a particularly simple form. The
solution (see Fig. 3) is very similar in behaviour to the
symmetrical solution for the in-plane problem. It shows
that all re-entrant wedges are singular, with, as expected,
the strongest singularity (square root) when the wedge is
folded to form a crack, i.e. 2’ ¼ 2p radians. For any
given wedge angle the mode III singularity is weaker
than the mode I solution, but stronger than the mode
II solution.

4 BONDED COMPONENTS

When two elastically similar bodies are bonded together,
theremay be an abrupt change in stiffness across the bond
line. Where the bond line meets the free surface a singular
state of stress may arise, depending on the local contact
geometry. Some simple cases are shown in Fig. 4. They
include the butt joint, where the interface line meets the
free surface normally (Fig. 4a), and this is seen to be a
special case of the scarf joint (Fig. 4b). In these cases

Fig. 4 Examples of bonded components for idealized geometries
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the free surface is locally straight, whereas locally attach-
ing a block also produces a geometric discontinuity (Fig.
4c). If it is found that this gives rise to a very severe stress
intensity it is possible to modify the local geometry to
produce a pedestal mounting (Fig. 4d), and in the case
of a soldered or brazed joint the weld/braze material
may produce a local feature such as that shown in Fig.
4(e). Problems of this kind were studied by Bogy [18],
by representing the feature as two bonded elastic semi-
infinite wedges (Fig. 5a), so that the salient features of
the geometry and interface may be included. The under-
lying problem that has to be studied is therefore that of
two elastically dissimilar bonded wedges, as shown in
Fig. 5a. The solutions to such problems clearly depend
on a total of four elastic constants (two for each material)
and, indeed, in the original paper all four constants

appeared in the solution. Subsequently, Dundurs [19]
showed that the key features of the solution depended
on only two quantities, which have now entered the litera-
ture as the ‘Dundurs’ constants’. These are

� ¼ ð�2=�1Þð�1 þ 1Þ � ð�2 þ 1Þ
ð�2=�1Þð�1 þ 1Þ þ ð�2 þ 1Þ

� ¼ ð�2=�1Þð�1 � 1Þ � ð�2 � 1Þ
ð�2=�1Þð�1 þ 1Þ þ ð�2 þ 1Þ

ð41Þ

where the subscripts 1 and 2 refer to the bodies shown in
Fig. 5a. Bogy subsequently re-examined his results [20]
and published them in a more comprehensive form,
making use of the ‘Dundurs’ parallelogram diagram’
(Fig. 5b). If Poisson’s ratio for both materials lies in the

Fig. 5 (a) Bonded elastically dissimilar wedges. (b) Dundurs’ parallelogram for �1 ¼ p and �2 ¼ p=2
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range 04 �i 4 1
2 , all physically acceptable combinations

of materials must lie within this parallelogram. In
particular, Fig. 5b shows the values of � to be found
below, relating to Fig. 5a, for the special case �1 ¼ p
and �2 ¼ p=2. Although the solution method used by
Bogy was slightly different, a direct method of attack,
based on a variation of the technique employed by Wil-
liams, would seem to be the most efficient way to derive
the results. For each wedge, a variables-separable solu-
tion of the kind employed in section 3 is written down.
Subscripts 1 and 2 are added for the two bodies and it
is supposed that the included angles of each are
�1ð< 0Þ and �2ð> 0Þ, with the line � ¼ 0 denoting the
interface (Fig. 5). In equation (28) a start was made by
displaying the stress–stress function relationships, in
order to be able to write down the traction components.
The displacement to stress function relationships are
now additionally required, in order to be able to develop
the continuity conditions across the interface. These are
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ð42Þ

As before, the free outer faces are traction free, so that,
on � ¼ �1, �2, the condition 
�� ¼ tr� ¼ 0 is required,
On the interface � ¼ 0 the following continuity condi-
tions apply:


��1 ¼ 
��2
tr�1 ¼ tr�2

u�1 ¼ u�2
ð43Þ

and, in addition, there is no relative radial displacement,
so that

ur1 � ur2 ¼ 0 ð44Þ

These eight conditions give rise to a homogeneous set
of equations for the pair of wedges and the correspond-
ing eigenvalue problem permits the nature of the
exponent in the expressions for the stresses to be
determined. This is very much more complicated than
the monolithic case and the eigenequation will not be
derived here. Instead, it will merely be quoted; the
determinant that is required to vanish is

�ð�1,�2,�,�;�Þ

¼ Að�1,�2;�Þ�2

þ 2Bð�1,�2;�Þ�� þ Cð�1,�2;�Þ�2

þ 2Dð�1,�2;�Þ� þ 2Eð�1,�2;�Þ�

þ Fð�1,�2;�Þ ð45Þ

where

Að�1,�2;�Þ ¼ 4Kð�,�1ÞKð�,�2Þ

Bð�1,�2;�Þ ¼ 2�2 sin2ð�1ÞKð�,�2Þ

þ 2�2 sin2ð�2ÞKð�,�1Þ

Cð�1,�2;�Þ ¼ 4�2ð�2 � 1Þ sin2ð�1Þ sin2ð�2Þ

þ K½�, ð�1 � �2Þ�

Dð�1,�2;�Þ ¼ 2�2½sin2ð�1Þ sin2ð��2Þ

� sin2ð�2Þ sin2ð��1Þ�

Eð�1,�2;�Þ ¼ �Dð�1,�2;�Þ þ Kð�,�2Þ � Kð�,�1Þ

Fð�1,�2;�Þ ¼ K ½�, ð�1 þ �2Þ�
ð46Þ

and

Kð�, sÞ ¼ sin2ð�sÞ � �2 sin2ðsÞ ð47Þ

The roots of this determinant govern the behaviour of
the state of stress in the following way. If �1 is the root
of � having the smallest real part in the strip
0 < Reð�Þ4 1, then


i j ¼

Oðr�1�1Þ if �1 real

O½r�1�1 cosð�1 log rÞ� or O½r�1�1 sinð�1 log rÞ�
if�1 ¼ �1 þ i�1 is complex

Oðlog rÞ if�1 ¼ 1 and @�=@� ¼ 0 at�1 ¼ 1

Oð1Þ if no zeros of � in the strip

and @�=@� 6¼ 0 at�1 ¼ 1

8>>>>>>>>>>><
>>>>>>>>>>>:

ð48Þ

The conditions for bounded/singular behaviour are
more complicated than before and are found in the
following manner. From equation (48) this condition is
defined by the locus of points along which the logarith-
mic singularities occur (as long as no other root occurs
in the strip). Therefore, @�=@� is found and �1 ¼ 1 is
substituted into the resulting expression which, when
evaluated to zero, gives the curve delineating the
bounded/singular regions. As an illustration consider
the special case of �1 ¼ p and �2 ¼ p=2 (Fig. 5a). Fol-
lowing the above procedure, �2ð1þ �Þ2 ¼ 0 is obtained
as the locus and note that the point � ¼ �1 satisfies this
condition. Results for this example case are given in
Fig. 5b. As there are now four independent physical vari-
ables in the problem (�1, �2, � and �) a comprehensive
display of the characteristic solution to the problem is
not feasible.
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5 INTERFACE CRACK

A special case of the above problem is when two bodies
are bonded along a common, straight interface, save over
a small region where the bond fails, leaving an interface
crack (Fig. 4f ). This may be studied using the Bogy pro-
cedure by specializing each of the wedges to a half-plane,
which gives rise to some interesting and surprising
results. In particular, it is found that, with external load-
ing, which would normally cause opening of the crack
tips, in mode I, they actually remain closed. If an attempt
is made to model the crack as if it were open to the tips, it
is found that there is local implied interpenetration, as
found by England [21]. In order to get round this prob-
lem a complete solution to the problem of a finite
crack in an infinite plane was first provided by Comni-
nou [22], who assumed that the crack faces adjacent to
the crack tip were pressed together, giving rise to a
local contact pressure. The solution she derived implies,
in fact, a singular distribution of contact pressure, so that
there is a mode I compression field in (a, b), whereas
ahead of the crack tip the material sees mode II loading.
This solution was subsequently refined by Gautesen and
Dundurs [23]. It seems counterintuitive, even though it is
mathematically rigorous. The contact length adjacent to
the crack tip is very small indeed (although it may be
quite large if there is also remote mode II loading [24])
and a little further out from the crack tip the nominal
stress fields look very much like the conventional ones
present at an open crack tip. If the process (plastic)
zone extends to a region in which the local stress field
looks like that of an open crack tip, the refined solution
may not be needed. This question will be addressed in
more detail later, where the application of nested asymp-
totes to help address this problem is described.

The classical ‘bilateral’ (traction-free faces) solution to
the interface crack problem gives rise to stresses present
along the line of the interface of the form [25]


yy þ itxy ¼
Kffiffi
r
p
�
r

a

�i"

ð49Þ

where r is the distance from the crack tip, a the crack
half-width, K a complex quantity analogous to the
stress intensity factor and " is a dimensionless bimaterial
parameter defined by

2p" ¼ log

�
1þ �
1� �

�
ð50Þ

and � is Dundurs’ parameter, defined above. The
corresponding discontinuity in displacement across the
crack faces is given by

�vþ i�u ¼ ½ð�1 þ 1Þ=�1 þ ð�2 þ 1Þ=�2�Kðr=aÞi"
ffiffi
r
p

2ð1þ 2i"Þ coshðp"Þ
ð51Þ

This solution implies an oscillatory displacement field
with points of interpenetration, which cannot be physi-
cally correct. The exact solution implies that, over a
short distance attached to the crack ends, the crack
faces are pressed together, so that there is no mode I
singularity. There is, however, a mode II singularity
ahead of the crack tip.

The most important feature of this solution is the
nature of the ‘physically incorrect’ bilateral solution
(the one ignoring the possibility of crack face contact).
Although this predicts contact at a number of points
within the crack, the interpenetration zones are widely
separated. If a new angle, �i, is defined by the relation

�i ¼ argð�uy þ i�uxÞ ð52Þ

then equation (51) gives

�i ¼ argðKÞ þ " log
�
r

a

�
� tan�1ð2"Þ ð53Þ

Interpenetration zones are defined by cosð�iÞ < 0, i.e.

ð2n� 3
2Þp < �i < ð2n� 1

2Þp ð54Þ

where n is any integer. This shows that the relative dis-
tance between any adjacent pair of contact regions is in
the ratio ½expð2"=pÞ�4. This is a very large number
indeed: its minimum possible value is about 3:9� 1015,
so that this implies that, if there is a point of inter-
penetration of order of the crack length, the next one
down in size is truly minute, so minute as to be swamped
by a plastic region at the crack tip for any practically
important load. This illustrates that, while the classical
bilaterally defined solution is formally incorrect, in prac-
tice it is of good quality, with physical inconsistencies
occurring only within the region where, in any case, the
material is not in an elastic state and therefore the solu-
tion is invalid. Details of the argument, and its extension
to configurations loaded remotely in shear, are given in
reference [25].

6 FRICTIONAL CONTACTS

The problem of interfaces between components in rela-
tive motion is now discussed. The intended application
of this class of solution is to components in contact but
suffering relative tangential motion in the presence of
friction. In particular, the results to be derived may be
applied to components suffering fretting damage, pro-
viding that the relative motion is not sufficiently dama-
ging for wear to change the local profile, which
remains unchanged. If the coefficient of friction is suffi-
ciently high for the bodies to adhere, the problem
becomes that of a monolithic contact, with a solution
given either by the Williams solution if the bodies
have the same elastic constants or the Bogy solution if
they are dissimilar. If the coefficient of friction is not
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sufficiently high to prevent local slip, the situation at the
contact edge may be represented by two wedges with
mixed interfacial boundary conditions; there must be
continuity in the � direction displacement and the shear-
ing traction must be equal in magnitude to the product of
the coefficient of friction, f , and the direct traction at that
point (Fig. 6a):

u�1 ¼ u�2

jtr�j ¼ �f
��, 
�� < 0
ð55Þ

This problem was tackled by Gdoutos and Theocaris [26]
and also by Comninou [27], which should be consulted
for full details. In order to reduce the number of indepen-
dent variables, body 1 is assumed to be a half-plane
(�1 ¼ �p). A further point to bear in mind is that the
nature of the solution depends on the direction in
which slippage occurs, so that the following sign conven-
tion is used:

f > 0 ) wedge ð�2Þ slipping in the þve x direction

(away from the corner)

f < 0 ) wedge ð�2Þ slipping in the �ve x direction

(towards the corner)

Each of the papers cited deals also with the case where
the bodies may be elastically dissimilar, when, in the
same nomenclature used above (Fig. 5a), the eigen-
equation corresponds to the determinant of the bound-
ary value problem given by

Dð f ,�2,�,�;�Þ ¼ 8ð1þ �Þ sinð�pÞFð f ,�2,�,�;�Þ
ð56Þ

where

Fð f ,�2,�,�;�Þ

¼ ð1þ �Þ cos�pðsin2 ��2 � �2 sin2 �2Þ

þ 1
2 ð1� �Þ sin�pðsin 2��2 þ � sin 2�2Þ

þ f sin�p½ð1� �Þ�ð1þ �Þ sin2 �2

� 2�ðsin2 ��2 � �2 sin2 �2Þ� ð57Þ

The case is also recorded where the two components have
the same elastic constants, which occurs more frequently
in practice, so that equation [54] becomes

Fð f ,�2, 0, 0;�Þ ¼ cos�pðsin2 ��2 � �2 sin2 �2Þ

þ 1
2 sin�pðsin 2��2 þ � sin 2�2Þ

þ f sin�p�ð1þ �Þ sin2 �2 ð58Þ

It is noteworthy that, in the case where one of the
wedges is an elastic half-plane and the other wedge
represents the edge of a finite contacting body, the gradi-
ent of the displacement field immediately exterior to the
contact edge is singular, i.e. it has a gradient normal to
the free surface. It follows that the solution described
above is strictly valid only when the punch has an
internal angle which is p=2 or less, if additional contact
exterior to the contact face along the inclined flank
(Fig. 6b) is to be avoided. A related problem has been
studied by Adams [28] who solves explicitly for the con-
tacting length. This is normally quite small and, provid-
ing the plastic zone is larger in size than the contact
length, the validity of a single asymptotic solution in
which its presence is neglected will not be invalidated.
Figure 7 shows a plot of the order of singularity, �� 1,
against the wedge angle, �2, when � ¼ � ¼ 0 for
sample coefficients of friction. These contours are
found by plotting Fð f ,�2, 0, 0;�Þ ¼ 0 [from equation
(58) above] for various �2 and constant f . Details of
the interpretation of this figure can be found in
Mugadu et al. [29]. It is clear that, for a given contact
angle, �2, the singularity at the corner is stronger when
the frictional traction is directed towards the contact
corner than when it is directed away. Also, it is note-
worthy that, for strong coefficients of friction and
contact angles around 1008, singularities that are slightly
stronger than the square root can be anticipated.

6.1 Mode III frictional contact

Suppose that two elastically similar wedges are pressed
together and slid in the z direction to produce what
may be thought of as mode III loading, i.e. where the
frictional shearing traction is directed parallel with a

Fig. 6 Asymptotic frictional contact problem for sliding semi-infinite wedges
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tangent to the contact edge, e.g. as when a ball is pressed
into a block and twisted or as shown schematically in
Fig. 8a. This problem is of practical interest in determin-
ing the local behaviour of, for example, a shrink-fitted
shaft subject to torsion, as it describes the stress state
when the shaft emerges from the pulley or wheel into
which the shrink has been made (Fig. 8b). This problem
differs fundamentally from the ‘mode II’ frictional con-
tact described above, in that slip in the z direction pro-
duces an antiplane problem that is uncoupled from the
in-plane component of loading, which here is the contact
pressure, 
��. It follows that, as tr� is zero on the slipping

faces of the wedges, the in-plane solution corresponds
exactly to that of frictionless loading and that this part
of the problem may be solved separately. When once
this has been done, the effect of the antiplane traction
may be found by considering a straightforward bound-
ary value problem for each of the wedges, in isolation.
The free boundary, � ¼ �2, is devoid of tractions:


�� ¼ tr� ¼ 0, � ¼ �2 ð59Þ

while on the interface boundary, � ¼ 0, the direct trac-
tion, 
��ðrÞ, is specified by the eigenfunction for the fric-
tionless contact problem, and tz� ¼ f
��.

Fig. 7 Plot showing the order of singularity, �� 1, against the pad angle, �2, as a function of the coefficient of
friction, f

Fig. 8 Mode III frictional slip: (a) example of where it arises and (b) idealization of the asymptotic solution
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It is possible to extend this approach to the case
of mixed mode II and III loadings. It will be assumed
that the two semi-infinite wedges are being slid, relative
to each other, along a line making an angle � with
the r direction, and this solution is currently under
investigation.

7 EMBEDDED ASYMPTOTIC SOLUTIONS

A number of situations arise in which the asymptotic
solutions developed above are insufficient to describe
the behaviour of the local stress state, usually because
the geometry of the problem in the immediate neighbour-
hood of the discontinuity is not that implied by the math-
ematical description. The most obvious case where this
may be so is at the root of a V-notch or crack, where
there will normally be a finite radius present, and it will
not be atomically sharp. Clearly, the presence of a
finite radius at the crack root will formally invalidate
the asymptotic solution, but, if the radius is very small,
it seems intuitively correct that the asymptotic solution
will be recovered, for practical purposes. However,
how big can the crack tip radius be? A simple answer
to this question is to say that, providing that the radius
is small compared with the size of the process (plastic)
zone, then its presence will not be felt, and this is the
usual criterion employed. Thus the range of loads that
can be supported by a cracked component and for
linear elastic fracture mechanics to be valid may be
found in the following way: the upper bound to the
load is imposed by the requirement that the boundary
of the process zone must be well within the region in
which the singular (KI) crack tip field dominates the
state of stress, and the full field is itself geometry-depen-
dent. On the other hand, the lower bound is dictated by
the requirement that the plastic zone must be large com-
pared with the radius of any crack tip radius present. If
the crack is extending by fatigue, and hence the compo-
nent is subjected to a fluctuating load, these bounds will
set bounds to the upper and lower loads respectively and,
if these bounds are not satisfied, predictions based on
linear elastic fracture mechanics theory will be unsafe.

7.1 Crack tip and notch root solutions (finite root radius)

Recently, a more sophisticated solution to the question
of the tolerable crack tip radius has been devised [30],
which employs a semi-infinite rounded slot solution to
represent the crack end and which is embedded within
the singular crack tip solution. The spirit of the pro-
cedure is that a nested set of asymptotic solutions is
developed. There is an outer ‘full-field’ solution, as pre-
vious described, and, moving in towards the singularity,
an asymptotic solution (in the case cited, a conventional
crack tip stress intensity solution, which is scaled by the
stress intensity factor). This element of the analysis may

be thought of as collocating a semi-infinite crack solution
into the finite crack problem. Now, moving inwards
again, the outer solution for the semi-infinite slot solu-
tion is crack-like in behaviour, so this may now be
embedded within the semi-infinite crack solution, using
the stress intensity factor as the scaling quantity. Explicit
solutions monitoring the increasing discrepancy between
the crack solution and the slot solution may be found,
and hence these provide a more precise measure of the
minimum plastic (process) zone radius.

The innermost solution under consideration is that for
a semi-infinite slot having a radiused end, recently devel-
oped by Filippi et al. [31]. This paper should be consulted
for full details, but here the results found will simply be
recorded. The paper itself deals with a rounded-root,
straight-sided notch, so the geometry is first specialized
by making the root sides parallel. Note that there are
two solutions to this problem, one that is symmetrical
in nature, so that direct stresses arise on the line of sym-
metry but with no shearing tractions (mode I in fracture
mechanics jargon), while the other is antisymmetrical.
Here only the shear stress is non-zero on the line of
symmetry and this is therefore ‘mode II’. The solutions
are, of course, elastic, and hence may be superposed to
obtain any mode mixity required.

A generalization of the procedure described above is
possible for the case when the basic singular solution
refers to a sharp notch. Exactly the same philosophy of
‘nesting’ the solutions applies and the procedure has
again been made possible by the results found in Filippi
et al. [31].

7.2 Complete contact solution (finite end radius)

The solution for the frictional slipping of wedges
described above assumes that the contact corner is
extremely sharp and, of course, in practice this is unlikely
to be achieved. In the spirit of the solution described
above, the state of stress in the neighbourhood of the
edge of a semi-infinite punch having a rounded profile
has recently been deduced. Interest is principally on a
punch where the faces of the punch are perpendicular
to the end face, and therefore an ‘outer asymptote’ is
needed in the form of a semi-infinite square-ended
punch. This could be found in one of two ways: either
a start could be made from the general solution for two
wedges, specializing one to a half-plane and the other
to a quarter-plane, or, if the punch is rigid, the standard
solution could be employed for a finite rigid, square-
ended punch and an asymptotic expansion performed
at the punch corner [32].

7.3 Interface crack

The problem of a crack present at an interface between
elastically dissimilar materials introduces issues that are
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counterintuitive; it does not seem reasonable that the
application of a remote tensile force leaves the crack
tips closed (and hence giving rise to no mode I loading),
but inducing a mode II singularity. In fact, there is a
mode I singularity, but it occurs in the form of a local
contact pressure between the crack faces. The question
that arises is: ‘What are the implications of these obser-
vations for the behaviour of the local stress field and,
in turn, what are its influences on the behaviour of the
local process zone, and hence crack extension?’ Further
notes on this problem are included in reference [25].

8 CONCLUSION

A comprehensive review has been given of the origins of
asymptotic procedures in stress analysis. It has been
shown that the elastic stress state adjacent to a notch
tip can be accurately defined by a dominant singular
term solution whose characteristics depend on the
nature of the external loading (mode I, II and III load-
ings). The corresponding generalized stress intensity
factor ðKI, KII or KIIIÞ is then used to scale the asympto-
tic solution to the local stress state. Additionally, the
solutions may be combined using the principle of super-
position to give a ‘mixed mode’ notch tip elastic stress
field. Lastly, the presence of a stress intensity factor
leads to local yielding so that a process or plastic zone
arises. The limitations of the asymptotic procedure in
quantifying the stress state, i.e. small scale yielding,
have been defined.

Bonded elastically dissimilar components were then
considered. Once again it was possible to deduce the
nature of the singular elastic stress state adjacent to the
apex. However, unlike the crack and notch configura-
tions mentioned above, there is one singular solution
corresponding to a given set of parameters. Further-
more, the singular solution is neither symmetric nor
antisymmetric. Additionally, for this class of problem,
the eigenvalues associated with the boundary value
problem may be complex, giving rise to oscillating singu-
larities. A frictional interface was then introduced; the
analysis is analogous to that of the bonded wedges. It
is noteworthy that, for this class of problem, the order
of singularity also depends on the relative direction of
slip. Additionally, out-of-plane slip (mode III in fracture
mechanics jargon) was considered, allowing ‘mixed
mode’ frictional behaviour to be probed.

Lastly, it is appreciated that the asymptotic analyses of
elastic stress fields assume the edges to be atomically
sharp. However, in practice, there will be a local
radius. The question then is: ‘How large can the radius
be for the asymptotic solution to still hold?’ This is
answered using the concept of nested asymptotes, the
outer asymptote being the semi-infinite asymptotic solu-
tions described above and the inner asymptote being that
appropriate to a semi-infinite rounded geometry. This

procedure has been applied to the crack tip, the V-
notch and the slipping asymptotic solutions.
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