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Abstract. An audio fingerprint is a compact content-based signature that summarizes an audio recording. Audio

Fingerprinting technologies have attracted attention since they allow the identification of audio independently of its

format and without the need of meta-data or watermark embedding. Other uses of fingerprinting include: integrity

verification, watermark support and content-based audio retrieval. The different approaches to fingerprinting have

been described with different rationales and terminology: Pattern matching, Multimedia (Music) Information

Retrieval or Cryptography (Robust Hashing). In this paper, we review different techniques describing its functional

blocks as parts of a common, unified framework.

Keywords: audio fingerprinting, content-based audio identification, watermarking, integrity verification, audio

information retrieval, robust hashing

1. Introduction

Audio fingerprinting is best known for its ability to

link unlabeled audio to corresponding meta-data (e.g.

artist and song name), regardless of the audio format.

Audio fingerprinting or content-based audio identifi-

cation (CBID) systems extract a perceptual digest of

a piece of audio content, i.e. a fingerprint and store it

in a database. When presented with unlabeled audio,

its fingerprint is calculated and matched against those

stored in the database. Using fingerprints and match-

ing algorithms, distorted versions of a recording can

be identified as the same audio content.

A source of difficulty when automatically identify-

ing audio content derives from its high dimensionality,

the significant variance of the audio data for percep-

tually similar content and the necessity to efficiently

compare the fingerprint with a huge collection of reg-

istered fingerprints. The simplest approach that one

may think of—the direct comparison of the digital-

ized waveform—is neither efficient nor effective. A

more efficient implementation of this approach could

use a hash method, such as MD5 (Message Digest 5) or

CRC (Cyclic Redundancy Checking), to obtain a com-

pact representation of the binary file. In this setup, one

compares the hash values instead of the whole files.

However, hash values are fragile, a single bit flip is

sufficient for the hash to completely change. Of course

this setup is not robust to compression or minimal dis-

tortions of any kind and, in fact, it cannot be considered

as content-based identification since it does not con-

sider the content, understood as information, just the

bits.

An ideal fingerprinting system should fulfill several

requirements. It should be able to accurately identify

an item, regardless of the level of compression and

distortion or interference in the transmission channel.

Depending on the application, it should be able
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to identify the titles from excerpts of only a few

seconds. The fingerprinting system should also be

computationally efficient. Efficiency is critical in a real

application both in the calculation of the fingerprint

of the unknown audio and, even more so, in the search

for a best match in huge repository of fingerprints.

This computational cost is related to the size of the

fingerprints, the complexity of the search algorithm

and the complexity of the fingerprint extraction.

The design principles and needs behind audio fin-

gerprinting are recurrent in several research areas.

Compact signatures that represent complex multime-

dia objects are employed in Information Retrieval for

fast indexing and retrieval. In order to index com-

plex multimedia objects it is necessary to reduce their

dimensionality (to avoid the “curse of dimensional-

ity”) and perform the indexing and searching in the

reduced space [1–3]. In analogy to the cryptographic

hash value, content-based digital signatures can be seen

as evolved versions of hash values that are robust to

content-preserving transformations [4, 5]. Also from

a pattern matching point of view, the idea of extract-

ing the essence of a class of objects retaining its main

characteristics is at the heart of any classification sys-

tem [6–10].

This paper aims to give a vision on it Audio Finger-

printing. The rationale along with the differences with

respect to watermarking are presented in 2. The main

requirements of fingerprinting systems are described

in 3. The basic modes of employing audio fingerprints,

namely identification, authentication, content-based

secret key generation for watermarking and content-

based audio retrieval and processing are commented in

Section 4. We then present in Section 5 some concrete

scenarios and business models where the technology

is used. In the lasts sections of the article (from Sec-

tion 6 to 10), we introduce the main contribution of the

article: a general framework of audio fingerprinting

systems. Although the framework focuses on identifi-

cation, some of its functional blocks are common to

content-based audio retrieval or integrity verification.

2. Definition of Audio Fingerprinting

An audio fingerprint is a compact content-based sig-

nature that summarizes an audio recording. Audio fin-

gerprinting has attracted a lot of attention for its au-

dio identification capabilities. Audio fingerprinting or

content-based identification (CBID) technologies ex-

tract acoustic relevant characteristics of a piece of audio

content and store them in a database. When presented

with an unidentified piece of audio content, character-

istics of that piece are calculated and matched against

those stored in the database. Using fingerprints and

matching algorithms, distorted versions of a single

recording can be identified as the same music title [11].

The approach differs from an alternative existing

solution to identify audio content: Audio Watermark-

ing. In audio watermarking [12], research on psychoa-

coustics is conducted so that an arbitrary message, the

watermark, can be embedded in a recording without

altering the perception of the sound. The identification

of a song title is possible by extracting the message

embedded in the audio. In audio fingerprinting, the

message is automatically derived from the perceptu-

ally most relevant components of sound. Compared

to watermarking, it is ideally less vulnerable to attacks

and distortions since trying to modify this message, the

fingerprint, means alteration of the quality of the sound.

It is also suitable to deal with legacy content, that is,

with audio material released without watermark. In ad-

dition, it requires no modification of the audio content.

As a drawback, the computational complexity of fin-

gerprinting is generally higher than watermarking and

there is the need of a connection to a fingerprint repos-

itory. In addition, contrary to watermarking, the mes-

sage is not independent from the content. It is therefore

for example not possible to distinguish between per-

ceptually identical copies of a recording. Just like with

watermarking technology, there are more uses to fin-

gerprinting than identification. Specifically, it can also

be used for verification of content-integrity; similarly

to fragile watermarks.

At this point, we should clarify that the term

“fingerprinting” has been employed for many years

as a special case of watermarking devised to keep

track of an audio clip’s usage history. Watermark

fingerprinting consists in uniquely watermarking each

legal copy of a recording. This allows to trace back

to the individual who acquired it [13]. However, the

same term has been used to name techniques that

associate an audio signal to a much shorter numeric

sequence (the “fingerprint”) and use this sequence to

e.g. identify the audio signal. The latter is the meaning

of the term “fingerprinting” in this article. Other terms

for audio fingerprinting are robust matching, robust or

perceptual hashing, passive watermarking, automatic

music recognition, content-based digital signatures

and content-based audio identification. The areas
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relevant to audio fingerprinting include information re-

trieval, pattern matching, signal processing, databases,

cryptography and music cognition to name a few.

3. Properties of Audio Fingerprinting

The requirements depend heavily on the application

but are useful in order to evaluate and compare dif-

ferent audio fingerprinting technologies. In their Re-

quest for Information on Audio Fingerprinting Tech-

nologies [11], the IFPI (International Federation of the

Phonographic Industry) and the RIAA (Recording In-

dustry Association of America) tried to evaluate sev-

eral identification systems. Such systems have to be

computationally efficient and robust. A more detailed

enumeration of requirements can help to distinguish

among the different approaches [14, 15]:

Accuracy: The number of correct identifications,

missed identifications, and wrong identifications (false

positives).

Reliability: Methods for assessing that a query is

present or not in the repository of items to identify is of

major importance in play list generation for copyright

enforcement organizations. In such cases, if a song has

not been broadcast, it should not be identified as a

match, even at the cost of missing actual matches. In

other applications, like automatic labeling of MP3 files

(see Section 6), avoiding false positives is not such a

mandatory requirement.

Robustness: Ability to accurately identify an item,

regardless of the level of compression and distortion or

interference in the transmission channel. Other sources

of degradation are pitching, equalization, background

noise, D/A-A/D conversion, audio coders (such as

GSM and MP3), etc.

Granularity: Ability to identify whole titles from ex-

cerpts a few seconds long. It requires to deal with

shifting, that is lack of synchronization between the

extracted fingerprint and those stored in the database

and it adds complexity to the search (it needs to com-

pare audio in all possible alignments).

Security: Vulnerability of the solution to cracking or

tampering. In contrast with the robustness requirement,

the manipulations to deal with are designed to fool the

fingerprint identification algorithm.

Versatility: Ability to identify audio regardless of the

audio format. Ability to use the same database for dif-

ferent applications.

Scalability: Performance with very large databases

of titles or a large number of concurrent identifications.

This affects the accuracy and the complexity of the

system.

Complexity: It refers to the computational costs of

the fingerprint extraction, the size of the fingerprint,

the complexity of the search, the complexity of the

fingerprint comparison, the cost of adding new items

to the database, etc.

Fragility: Some applications, such as content-

integrity verification systems, may require the detec-

tion of changes in the content. This is contrary to the

robustness requirement, as the fingerprint should be

robust to content-preserving transformations but not to

other distortions (see Section 4.2).

Improving a certain requirement often implies losing

performance in some other. Generally, the fingerprint

should be:

• A perceptual digest of the recording. The fingerprint

must retain the maximum of acoustically relevant

information. This digest should allow the discrimi-

nation over a large number of fingerprints. This may

be conflicting with other requirements, such as com-

plexity and robustness.

• Invariant to distortions. This derives from the robust-

ness requirement. Content-integrity applications,

however, relax this constraint for content-preserving

distortions in order to detect deliberate manipula-

tions.

• Compact. A small-sized representation is interest-

ing for complexity, since a large number (maybe

millions) of fingerprints need to be stored and com-

pared. An excessively short representation, how-

ever, might not be sufficient to discriminate among

recordings, affecting thus accuracy, reliability and

robustness.

• Easily computable. For complexity reasons, the ex-

traction of the fingerprint should not be excessively

time-consuming.
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Figure 1. Content-based audio identification framework.

4. Usage Modes

4.1. Identification

Independently of the specific approach to extract the

content-based compact signature, a common architec-

ture can be devised to describe the functionality of

fingerprinting when used for identification [11].

The overall functionality mimics the way humans

perform the task. As seen in Fig. 1, a memory of the

recordings to be recognized is created off-line (top);

in the identification mode (bottom), unlabeled audio is

presented to the system to look for a match.

Database creation: The collection of recordings to

be recognized is presented to the system for the extrac-

tion of their fingerprint. The fingerprints are stored in a

database and can be linked to a tag or other meta-data

relevant to each recording.

Identification: The unlabeled recording is processed

in order to extract a fingerprint. The fingerprint is

subsequently compared with the fingerprints in the

database. If a match is found, the tag associated with

the recording is obtained from the database. Optionally,

a reliability measure of the match can be provided.

4.2. Integrity Verification

Integrity verification aims at detecting the alteration of

data. The overall functionality (see Fig. 2) is similar

to identification. First, a fingerprint is extracted from

the original audio. In the verification phase, the finger-

print extracted from the test signal is compared with

the fingerprint of the original. As a result, a report in-

dicating whether the signal has been manipulated is

Figure 2. Integrity verification framework.

output. Optionally, the system can indicate the type of

manipulation and where in the audio it occurred. The

verification data, which should be significantly smaller

than the audio data, can be sent along with the original

audio data (e.g. as a header) or stored in a database.

A technique known as self-embedding avoids the need

of a database or a special dedicated header, by embed-

ding the content-based signature into the audio data

using watermarking (see Fig. 3). An example of such

a system is described in [16].

4.3. Watermarking Support

Audio fingerprinting can assist watermarking. Audio

fingerprints can be used to derive secret keys from

the actual content. As described by Mihçak et al. [5],

using the same secret key for a number of differ-

ent audio items may compromise security, since each

item may leak partial information about the key. Au-

dio fingerprinting/perceptual hashing can help generate

input-dependent keys for each piece of audio. Haitsma

et al. [4] suggest audio fingerprinting to enhance the

security of watermarks in the context of copy attacks.

Copy attacks estimate a watermark from watermarked

content and transplant it to unmarked content. Binding

the watermark to the content can help to defeat this

type of attacks. In addition, fingerprinting can be use-

ful against insertion/deletion attacks that cause desyn-

chronization of the watermark detection: by using the

fingerprint, the detector is able to find anchor points

in the audio stream and thus to resynchronize at these

locations [5].
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Figure 3. Self-embedding integrity verification framework: (a)

fingerprint embedding and (b) fingerprint comparison.

4.4. Content-Based Audio Retrieval and Processing

Deriving compact signatures from complex multime-

dia objects is an essential step in Multimedia Informa-

tion Retrieval. Fingerprinting can extract information

from the audio signal at different abstraction levels,

from low level descriptors to higher level descriptors.

Especially, higher level abstractions for modeling au-

dio hold the possibility to extend the fingerprinting

usage modes to content-based navigation, search by

similarity, content-based processing and other appli-

cations of Music Information Retrieval. In a query-

by-example scheme, the fingerprint of a song can be

used to retrieve not only the original version but also

“similar” ones [17].

5. Application Scenarios

Most of the applications presented in this section are

particular cases of the identification usage mode de-

scribed above. They are therefore based on the ability

of audio fingerprinting to link unlabeled audio to cor-

responding meta-data, regardless of audio format.

5.1. Audio Content Monitoring and Tracking

5.1.1. Monitoring at the Distributor End. Content

distributors may need to know whether they have

the rights to broadcast certain content to consumers.

Fingerprinting helps identify unlabeled audio in TV

and Radio channels repositories. It can also iden-

tify unidentified audio content recovered from CD

plants and distributors in anti-piracy investigations

(e.g. screening of master recordings at CD manufac-

turing plants) [11].

5.1.2. Monitoring at the Transmission Channel. In

many countries, radio stations must pay royalties for

the music they air. Rights holders are eager to monitor

radio transmissions in order to verify whether royal-

ties are being properly paid. Even in countries where

radio stations can freely air music, rights holders are

interested in monitoring radio transmissions for statis-

tical purposes. Advertisers are also willing to monitor

radio and TV transmissions to verify whether commer-

cials are being broadcast as agreed. The same is true

for web broadcasts. Other uses include chart compi-

lations for statistical analysis of program material or

enforcement of “cultural laws” (e.g. in France a cer-

tain percentage of the aired recordings needs to be

in French). Fingerprinting-based monitoring systems

can be and are actually being used for this purpose.

The system “listens” to the radio and continuously

updates a play list of songs or commercials broad-

cast by each station. Of course, a database contain-

ing fingerprints of all songs and commercials to be

identified must be available to the system, and this

database must be updated as new songs come out. Ex-

amples of commercial providers of such services are:

Broadcast Data System (www.bdsonline.com), Mu-

sic Reporter (www.musicreporter.net), Audible Magic

(www.audiblemagic.com), Yacast (www.yacast.fr).

Napster and Web-based communities alike, where

users share music files, have proved to be excellent

channels for music piracy. After a court battle with

the recording industry, Napster was enjoined from

facilitating the transfer of copyrighted music. The first

measure taken to conform with the judicial ruling was

the introduction of a filtering system based on file-

name analysis, according to lists of copyrighted music

recordings supplied by the recording companies. This

simple system did not solve the problem, as users

proved to be extremely creative in choosing file names

that deceived the filtering system while still allowing
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other users to easily recognize specific recordings.

The large number of songs with identical titles was

an additional factor in reducing the efficiency of

such filters. Fingerprinting-based monitoring systems

constitute a well-suited solution to this problem.

Napster actually adopted a fingerprinting technology

(see www.relatable.com) and a new file-filtering

system relying on it. Additionally, audio content can

be found in ordinary web pages. Audio fingerprinting

combined with a web crawler can identify this content

and report it to the corresponding right owners (e.g.

www.baytsp.com).

5.1.3. Monitoring at the Consumer End. In usage-

policy monitoring applications, the goal is to avoid

misuse of audio signals by the consumer. We can con-

ceive a system where a piece of music is identified by

means of a fingerprint and a database is contacted to

retrieve information about the rights. This information

dictates the behavior of compliant devices (e.g. CD and

DVD players and recorders, MP3 players or even com-

puters) in accordance with the usage policy. Compliant

devices are required to be connected to a network in

order to access the database.

5.2. Added-Value Services

Content information is defined as information about

an audio excerpt that is relevant to the user or nec-

essary for the intended application. Depending on the

application and the user profile, several levels of con-

tent information can be defined. Here are some of the

situations we can imagine:

• Content information describing an audio excerpt,

such as rhythmic, timbrical, melodic or harmonic

descriptions.

• Meta-data describing a musical work, how it was

composed and how it was recorded. For example:

composer, year of composition, performer, date of

performance, studio recording/live performance.

• Other information concerning a musical work, such

as album cover image, album price, artist biography,

information on the next concerts, etc.

Some systems store content information in a

database that is accessible through the Internet. Fin-

gerprinting can then be used to identify a record-

ing and retrieve the corresponding content informa-

tion, regardless of support type, file format or any

other particularity of the audio data. For example, Mu-

sicBrainz, Id3man or Moodlogic (www.musicbrainz.

org, www.id3man.com, www.moodlogic.com) auto-

matically label collections of audio files; the user

can download a compatible player that extracts fin-

gerprints and submits them to a central server from

which meta data associated to the recordings is down-

loaded. Gracenote (www.gracenote.com), who has

been providing linking to music meta-data based on

the TOC (Table of Contents) of a CD, recently of-

fered audio fingerprinting technology to extend the

linking from CD’s table of contents to the song level.

Their audio identification method is used in com-

bination with text-based classifiers to enhance the

accuracy.

Another example is the identification of an audio ex-

cerpt by mobile devices, e.g. a cell phone; this is one of

the most demanding situations in terms of robustness,

as the audio signal goes through radio distortion, D/A-

A/D conversion, background noise and GSM coding,

and only a few seconds of audio are available (e.g.

www.shazam.com).

5.3. Integrity Verification Systems

In some applications, the integrity of audio recordings

must be established before the signal can actually be

used, i.e. one must assure that the recording has not

been modified or that it is not too distorted. If the

signal undergoes lossy compression, D/A-A/D conver-

sion or other content-preserving transformations in the

transmission channel, integrity cannot be checked by

means of standard hash functions, since a single bit

flip is sufficient for the output of the hash function to

change. Methods based on fragile watermarking can

also provide false alarms in such a context. Systems

based on audio fingerprinting, sometimes combined

with watermarking, are being researched to tackle this

issue. Among some possible applications [16], we can

name: Check that commercials are broadcast with the

required length and quality, verify that a suspected in-

fringing recording is in fact the same as the recording

whose ownership is known, etc.

6. General Framework

In spite of the different rationales behind the identifica-

tion task, methods share certain aspects. As depicted in

Fig. 6, there are two fundamental processes: the finger-
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Figure 4. Content-based audio identification framework.

print extraction and the matching algorithm. The fin-

gerprint extraction derives a set of relevant perceptual

characteristics of a recording in a concise and robust

form. The fingerprint requirements include:

• Discrimination power over huge numbers of other

fingerprints,

• Invariance to distortions,

• Compactness,

• Computational simplicity.

The solutions proposed to fulfill the above require-

ments imply a trade-off between dimensionality re-

duction and information loss. The fingerprint extrac-

tion consists of a front-end and a fingerprint modeling

block (see Fig. 5). The front-end computes a set of

measurements from the signal (see Section 7). The

fingerprint model block defines the final fingerprint

representation, e.g: a vector, a trace of vectors, a code-

book, a sequence of indexes to HMM sound classes, a

sequence of error correcting words or musically mean-

ingful high-level attributes (see Section 8).

Given a fingerprint derived from a recording, the

matching algorithm searches a database of fingerprints

to find the best match. A way of comparing finger-

prints, that is a similarity measure, is therefore needed

(see Section 9.1). Since the number of fingerprint com-

parisons is high in a large database and the similarity

can be expensive to compute, we require methods that

speed up the search. Some fingerprinting systems use

a simpler similarity measure to quickly discard can-

didates and the more precise but expensive similarity

measure for the reduced set of candidates. There are

also methods that pre-compute some distances off-line

and build a data structure that allows reducing the num-

ber of computations to do on-line (see Section 9.2).

According to [1], good searching methods should be:

Figure 5. Fingerprint extraction framework: Front-end (top) and

fingerprint modeling (bottom).

Figure 6. Feature extraction examples.

• Fast: Sequential scanning and similarity calculation

can be too slow for huge databases.

• Correct: Should return the qualifying objects, with-

out missing any—i.e. low False Rejection Rate

(FRR).

• Memory efficient: The memory overhead of the

search method should be relatively small.

• Easily updatable: Insertion, deletion and updating of

objects should be easy.
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The last block of the system—the hypothesis testing

(see Fig. 6)—computes a reliability measure indicating

how confident the system is about an identification (see

Section 10).

7. Front-End

The front-end converts an audio signal into a sequence

of relevant features to feed the fingerprint model block

(see Fig. 6). Several driving forces co-exist in the de-

sign of the front-end:

• Dimensionality reduction

• Perceptually meaningful parameters (similar to

those used by the human auditory system)

• Invariance/robustness (to channel distortions, back-

ground noise, etc.)

• Temporal correlation (systems that capture spectral

dynamics).

In some applications, where the audio to identify is

coded, for instance in mp3, it is possible to by-pass

some blocks and extract the features from the audio

coded representation.

7.1. Preprocessing

In a first step, the audio is digitalized (if necessary)

and converted to a general format, e.g: mono PCM

(16 bits) with a fixed sampling rate (ranging from 5

to 44.1 KHz). Sometimes the audio is preprocessed to

simulate the channel, e.g: band-pass filtered in a tele-

phone identification task. Other types of processing

are a GSM coder/decoder in a mobile phone identifi-

cation system, pre-emphasis, amplitude normalization

(bounding the dynamic range to (−1,1)).

7.2. Framing and Overlap

A key assumption in the measurement of characteris-

tics is that the signal can be regarded as stationary over

an interval of a few milliseconds. Therefore, the signal

is divided into frames of a size comparable to the vari-

ation velocity of the underlying acoustic events. The

number of frames computed per second is called frame

rate. A tapered window function is applied to each

block to minimize the discontinuities at the beginning

and end. Overlap must be applied to assure robustness

to shifting (i.e. when the input data is not perfectly

aligned to the recording that was used for generating

the fingerprint). There is a trade-off between the ro-

bustness to shifting and the computational complexity

of the system: the higher the frame rate, the more ro-

bust to shifting the system is but at a cost of a higher

computational load.

7.3. Linear Transforms: Spectral Estimates

The idea behind linear transforms is the projection

of the set of measurements to a new set of features.

If the transform is suitably chosen, the redundancy is

significantly reduced. There are optimal transforms

in the sense of information packing and decorrelation

properties, like Karhunen-Loève (KL) or Singular

Value Decomposition (SVD) [9]. These transforms,

however, are problem dependent and computationally

complex. For that reason, lower complexity trans-

forms using fixed basis vectors are common. Most

CBID methods therefore use standard transforms

from time to frequency domain to facilitate efficient

compression, noise removal and subsequent process-

ing. Lourens [18], (for computational simplicity),

and Kurth et al. [19], (to model highly distorted

sequences, where the time-frequency analysis exhibits

distortions), use power measures. The power can still

be seen as a simplified time-frequency distribution,

with only one frequency bin.

The most common transformation is the Discrete

Fourier Transform (DFT). Some other transforms have

been proposed: the Discrete Cosine Transform (DCT),

the Haar Transform or the Walsh-Hadamard Trans-

form [2]. Richly et al. did a comparison of the DFT

and the Walsh-Hadamard Transform that revealed that

the DFT is generally less sensitive to shifting [20].

The Modulated Complex Transform (MCLT) used by

Mihçak et al. [5] and also by Burges et al. [21] exhibits

approximate shift invariance properties [5].

7.4. Feature Extraction

Once on a time-frequency representation, additional

transformations are applied in order to generate the

final acoustic vectors. In this step, we find a great

diversity of algorithms. The objective is again to

reduce the dimensionality and, at the same time,

to increase the invariance to distortions. It is very

common to include knowledge of the transduction

stages of the human auditory system to extract
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more perceptually meaningful parameters. Therefore,

many systems extract several features performing a

critical-band analysis of the spectrum (see Fig. 3).

In [6, 22], Mel-Frequency Cepstrum Coefficients

(MFCC) are used. In [7], the choice is the Spectral

Flatness Measure (SFM), which is an estimation of

the tone-like or noise-like quality for a band in the

spectrum. Papaodysseus et al. [23] presented the

“band representative vectors”, which are an ordered

list of indexes of bands with prominent tones (i.e. with

peaks with significant amplitude). Energy of each band

is used by Kimura et al. [3]. Haitsma et al. use the

energies of 33 bark-scaled bands to obtain their “hash

string,” which is the sign of the energy band differences

(both in the time and the frequency axis) [4].

Sukittanon and Atlas claim that spectral estimates

and related features only are inadequate when au-

dio channel distortion occurs [8]. They propose mod-

ulation frequency analysis to characterize the time-

varying behavior of audio signals. In this case, features

correspond to the geometric mean of the modulation

frequency estimation of the energy of 19 bark-spaced

band-filters.

Approaches from music information retrieval in-

clude features that have proved valid for comparing

sounds: harmonicity, bandwidth, loudness [22].

Burges et al. point out that the features commonly

used are heuristic, and as such, may not be optimal [21].

For that reason, they use a modified Karhunen-Loéve

transform, the Oriented Principal Component Analysis

(OPCA), to find the optimal features in an “unsuper-

vised” way. If PCA (KL) finds a set of orthogonal

directions which maximize the signal variance, OPCA

obtains a set of possible non-orthogonal directions

which take some predefined distortions into account.

7.5. Post-Processing

Most of the features described so far are absolute mea-

surements. In order to better characterize temporal

variations in the signal, higher order time derivatives

are added to the signal model. In [6] and [24], the

feature vector is the concatenation of MFCCs, their

derivative (delta) and the acceleration (delta-delta), as

well as the delta and delta-delta of the energy. Some

systems only use the derivative of the features, not

the absolute features [7, 19]. Using the derivative of

the signal measurements tends to amplify noise [10]

but, at the same time, filters the distortions produced

in linear time invariant, or slowly varying channels

(like an equalization). Cepstrum Mean Normalization

(CMN) is used to reduce linear slowly varying channel

distortions in [24]. If Euclidean distance is used (see

Section 9.1), mean subtraction and component wise

variance normalization are advisable. Some systems

compact the feature vector representation using trans-

forms (e.g. PCA [6, 24]).

It is quite common to apply a very low resolution

quantization to the features: ternary [20] or binary [4,

19]. The purpose of quantization is to gain robustness

against distortions [4, 19], normalize [20], ease hard-

ware implementations, reduce the memory require-

ments and for convenience in subsequent parts of the

system. Binary sequences are required to extract error

correcting words utilized in [5, 19]. In [5], the dis-

cretization is designed to increase randomness in order

to minimize fingerprint collision probability.

8. Fingerprint Models

The fingerprint modeling block usually receives a se-

quence of feature vectors calculated on a frame by

frame basis. Exploiting redundancies in the frame

time vicinity, inside a recording and across the whole

database, is useful to further reduce the fingerprint size.

The type of model chosen conditions the similarity

measure and also the design of indexing algorithms for

fast retrieval (see Section 9).

A very concise form of fingerprint is achieved by

summarizing the multidimensional vector sequences

of a whole song (or a fragment of it) in a single vector.

Etantrum [25] calculates the vector out of the means

and variances of the 16 bank-filtered energies corre-

sponding to 30 s of audio ending up with a signature

of 512 bits. The signature along with information on

the original audio format is sent to a server for iden-

tification. Musicbrainz’ TRM signature [26] includes

in a vector: the average zero crossing rate, the esti-

mated beats per minute (BPM), an average spectrum

and some more features to represent a piece of audio

(corresponding to 26 s). The two examples above are

computationally efficient and produce a very compact

fingerprint. They have been designed for applications

like linking mp3 files to meta-data (title, artist, etc.) and

are more tuned for low complexity (both on the client

and the server side) than for robustness (cropping or

broadcast streaming audio).

Fingerprints can also be sequences (traces, trajec-

tories) of features. This fingerprint representation is

found in [22], and also in [4] as binary vector se-
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quences. The fingerprint in [23], which consists on

a sequence of “band representative vectors,” is binary

encoded for memory efficiency.

Some systems, include high-level musically mean-

ingful attributes, like rhythm ( [28]) or prominent pitch

(see [22, 26]).

Following the reasoning on the possible sub-

optimality of heuristic features, Burges et al. [21]

employ several layers of OPCA to decrease the local

statistical redundancy of feature vectors with respect

to time. Besides reducing dimensionality, extra robust-

ness requisites to shifting and pitching are accounted

in the transformation.

“Global redundancies” within a song are exploited

in [7]. If we assume that the features of a given au-

dio item are similar among them (e.g: a chorus that

repeats in a song probably hold similar features), a

compact representation can be generated by clustering

the feature vectors. The sequence of vectors is thus ap-

proximated by a much lower number of representative

code vectors, a codebook. The temporal evolution of

audio is lost with this approximation. Also in [7], short-

time statistics are collected over regions of time. This

results in both higher recognition, since some tempo-

ral dependencies are taken into account, and a faster

matching, since the length of each sequence is also

reduced.

Cano [6] and [24] use a fingerprint model that further

exploits global redundancy. The rationale is very much

inspired on speech research. In speech, an alphabet of

sound classes, i.e. phonemes can be used to segment

a collection of raw speech data into text achieving a

great redundancy reduction without “much” informa-

tion loss. Similarly, we can view a corpus of music,

as sentences constructed concatenating sound classes

of a finite alphabet. “Perceptually equivalent” drum

sounds, say for instance a hi-hat, occurs in a great

number of pop songs. This approximation yields a fin-

gerprint which consists in sequences of indexes to a

set of sound classes representative of a collection of

recordings. The sound classes are estimated via unsu-

pervised clustering and modeled with Hidden Markov

Models (HMMs). Statistical modeling of the signal’s

time course allows local redundancy reduction. The

fingerprint representation as sequences of indexes to

the sound classes retains the information on the evolu-

tion of audio through time.

In [5], discrete sequences are mapped to a dictionary

of error correcting words. In [19], the error correcting

codes are at the basis of their indexing method.

9. Similarity Measures and Searching Methods

9.1. Similarity Measures

Similarity measures are very much related to the type

of model chosen. When comparing vector sequences, a

correlation metric is common. The Euclidean distance,

or slightly modified versions that deal with sequences

of different lengths, are used for instance in [22].

In [8], the classification is Nearest Neighbor using a

cross entropy estimation. In the systems where the

vector feature sequences are quantized, a Manhattan

distance (or Hamming when the quantization is

binary) is common [4, 20]. Mihçak et al. [5] suggest

that another error metric, which they call “Exponential

Pseudo Norm” (EPN), could be more appropriate to

better distinguish between close and distant values

with an emphasis stronger than linear.

So far we have presented an identification frame-

work that follows a template matching paradigm [9]:

both the reference patterns—the fingerprints stored in

the database—and the test pattern—the fingerprint ex-

tracted from the unknown audio—are in the same for-

mat and are compared according to some similarity

measure, e.g: hamming distance, a correlation and so

on. In some systems, only the reference items are actu-

ally “fingerprints”—compactly modeled as a codebook

or a sequence of indexes to HMMs [7, 24]. In these

cases, the similarities are computed directly between

the feature sequence extracted from the unknown audio

and the reference audio fingerprints stored in the repos-

itory. In [7], the feature vector sequence is matched

to the different codebooks using a distance metric.

For each codebook, the errors are accumulated. The

unknown item is assigned to the class which yields

the lowest accumulated error. In [24], the feature se-

quence is run against the fingerprints (a concatena-

tion of indexes pointing at HMM sound classes) using

the Viterbi algorithm. The most likely passage in the

database is selected.

9.2. Searching Methods

A fundamental issue for the usability of a fingerprinting

system is how to efficiently do the comparison of the

unknown audio against the possibly millions of finger-

prints. A brute-force approach that computes the sim-

ilarities between the unknown recording’s fingerprint

and those stored in the database can be prohibitory. The
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time for finding a best match in this linear or sequential

approach is proportional to Nc(d( )) + E , where N is

the number of fingerprints in the repository and c(d( ))

the time needed for a single similarity calculation and

E accounts for some extra CPU time.

9.2.1. Pre-Computing Distances Off-Line. One can-

not pre-calculate off-line similarities with query fin-

gerprint because the fingerprint has not been previ-

ously presented to the system. How ever one can pre-

compute distances among the fingerprints registered

in the repository and build a data structure to reduce

the number of similarity evaluations once the query is

presented. It is possible to build sets of equivalence

classes off-line, calculate some similarities on-line to

discard some classes and search exhaustively the rest

(see for example [3]). If the similarity measure is a

metric, i.e. the similarity measure is a function that

satisfies the following properties: positiveness, sym-

metry, reflexivity and the triangular inequality, there

are methods that reduce the number of similarity eval-

uations and guarantee no false dismissals (see [29]).

Vector spaces allow the use of efficient existing spatial

access methods [30].

9.2.2. Filtering Unlikely Candidates with a Cheap

Similarity Measure. Another possibility is to use a

simpler similarity measure to quickly eliminate many

candidates and the more precise but complex on the

rest, e.g. in [31, 32]. As demonstrated in [30], in order

to guarantee no false dismissals, the simple (coarse)

similarity used for discarding unpromising hypothesis

must lower bound the more expensive (fine) similarity.

9.2.3. Inverted File Indexing. A very efficient

searching method is the use of inverted files indexing.

Haitsma et al. proposed an index of possible pieces of

a fingerprint that points to the positions in the songs.

Provided that a piece of a query’s fingerprint is free of

errors (exact match), a list of candidate songs and posi-

tions can be efficiently retrieved to exhaustively search

through [4]. In [6], indexing and heuristics similar to

those used in computational biology for the compari-

son of DNA are used to speed up a search in a system

where the fingerprints are sequences of symbols. Kurth

et al. [19] present an index that use code words ex-

tracted from binary sequences representing the audio.

Sometimes this approaches, although very fast, make

assumptions on the errors permitted in the words used

to build the index which could result in false dismissals.

9.2.4. Candidate Pruning. A simple optimization to

speed up the search is to keep the best score encoun-

tered thus far. We can abandon a similarity measure

calculation if at one point we know we are not going

to improve the best-so-far score (see for instance [3]).

Some similarity measures can profit from structures

like suffix trees to avoid duplicate calculations [1].

Miller et al. [27] propose a tree to avoid redundancies

in the calculation of the best-match in a framework built

on the fingerprint representation of [4]. Combining the

tree structure with a “best-so-far” heuristic avoids not

only current fingerprint similarity computation but also

all the fingerprints that have a common starting.

9.2.5. Other Approaches. In one of the setups of [33],

the repository of fingerprints is split into two databases.

The first and smaller repository holds fingerprints with

higher probability of appearance, e.g. the most popu-

lar songs of the moment, and the other repository with

the rest. The queries are confronted first with the small

and more likely repository and only when no match is

found does the system examine the second database.

Production systems actually use several of the above

depicted speed-up methods. Wang and Smith [33] for

instance, besides searching first in the most popular

songs repository, uses an inverted file indexing for fast

accessing the fingerprints along with a heuristic to fil-

ter out unpromising candidates before it exhaustively

searches with the more precise similarity measure.

10. Hypothesis Testing

This last step aims to answer whether the query is

present or not in the repository of items to identify.

During the comparison of the extracted fingerprint

to the database of fingerprints, scores (resulting from

similarity measures) are obtained. In order to decide

that there is a correct identification, the score needs to

be beyond a certain threshold. It is not easy to choose

a threshold since it depends on: the used fingerprint

model, the discriminative information of the query, the

similarity of the fingerprints in the database, and the

database size. The larger the database, the higher the

probability of wrongly indicating a match by chance,

that is a false positive. The false positive rate is also

named false acceptance rate (FAR) or false alarm rate.

The false negative rate appears also under the name of

false rejected rate (FRR). The nomenclature is related

to the Information Retrieval performance evaluation

measures: Precision and Recall [1]. Approaches to
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deal with false positives have been explicitly treated

for instance in [4, 18, 34].

11. Summary

We have presented a review of the research carried

out in the area of audio fingerprinting. Furthermore a

number of applications which can benefit from audio

fingerprinting technology were discussed. An audio

fingerprinting system generally consists of two com-

ponents: an algorithm to generate fingerprints from

recordings and algorithm to search for a matching fin-

gerprint in a fingerprint database. We have shown that

although different researchers have taken different ap-

proaches, the proposals more or less fit in a general

framework. In this framework, the fingerprint extrac-

tion includes a front-end where the audio is divided

into frames and a number of discriminative and robust

features is extracted from each frame. Subsequently

these features are transformed to a fingerprint by a fin-

gerprint modeling unit which further compacts the fin-

gerprint representation. The searching algorithm finds

the best matching fingerprint in a large repository ac-

cording to some similarity measure. In order to speed

up the search process and avoid a sequential scanning

of the database, strategies are used to quickly eliminate

non-matching fingerprints. A number of the discussed

audio fingerprinting algorithms are currently commer-

cially deployed, which shows the significant progress

that has been made in this research area. There is,

of course, room for improvement in the quest for more

compact, robust and discriminative fingerprints and ef-

ficient searching algorithms. It also needs to be seen

how the identification framework can be extended to

browsing and similarity retrieval of audio collections.
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