
2329-9290 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2018.2830113, IEEE/ACM

Transactions on Audio, Speech, and Language Processing

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. XYZ, NO. XYZ, XYZ 2017 1

A Review of Automatic Drum Transcription

Chih-Wei Wu1, Christian Dittmar2, Carl Southall3, Richard Vogl4,5,

Gerhard Widmer4, Jason Hockman3, Meinard Müller2, Senior Member, IEEE,

and Alexander Lerch1 Member, IEEE

Abstract—In Western popular music, drums and percussion
are an important means to emphasize and shape the rhythm,
often defining the musical style. If computers were able to analyze
the drum part in recorded music, it would enable a variety of
rhythm-related music processing tasks. Especially the detection
and classification of drum sound events by computational meth-
ods is considered to be an important and challenging research
problem in the broader field of Music Information Retrieval.
Over the last two decades, several authors have attempted
to tackle this problem under the umbrella term Automatic
Drum Transcription (ADT). This paper presents a comprehensive
review of ADT research, including a thorough discussion of
the task-specific challenges, categorization of existing techniques,
and evaluation of several state-of-the-art systems. To provide
more insights on the practice of ADT systems, we focus on
two families of ADT techniques, namely methods based on Non-
negative Matrix Factorization and Recurrent Neural Networks.
We explain the methods’ technical details and drum-specific
variations and evaluate these approaches on publicly available
datasets with a consistent experimental setup. Finally, the open
issues and under-explored areas in ADT research are identified
and discussed, providing future directions in this field.

Index Terms—Music Information Retrieval, Automatic Music
Transcription, Automatic Drum Transcription, Machine Learn-
ing, Matrix Factorization, Deep learning.

I. INTRODUCTION

IN music information retrieval (MIR), the task of Automatic

Music Transcription (AMT) is considered to be one of

the most challenging research problems [1]. In simple terms,

transcription can be understood as the reverse of music

making. Instead of having musicians perform with their

instruments according to a notated sheet music, AMT aims

at deriving such symbolic notation from previously recorded

music. If computers were able to fulfill this task with high

accuracy, this would enable diverse applications in music

education, music production, musicology, and other areas. In

the MIR literature, many authors focus on transcribing the

pitch, onset time, and duration of note sequences that are

either played by melodic instruments such as piano and guitar,

or performed by human singing voice [2]. Fewer authors
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Fig. 1: The most important parts of a drum kit as used in

Western popular music. The color-coding and abbreviations

are used throughout the article.

have proposed algorithms for Automatic Drum Transcription

(ADT), where the equivalent of discerning musical pitches

is the detection and classification of drum sound events.

On the one hand, ADT systems focus on the detection and

recognition of highly transient and impulsive events, which

could be similar to other audio signal processing problems

such as audio-surveillance [3] and acoustic event detection

[4]. On the other hand, the musically organized drum events

and the underlying vocabulary resemble well-studied problems

in speech or language processing [5]. The combination of

both makes ADT a unique research problem that might be

of interest to the general audio signal processing community.

In an effort to reflect and facilitate the progress in ADT,

FitzGerald and Paulus [6] provided a coherent summary of

early approaches. However, due to the lack of comparability of

results, a detailed quantitative comparison among the reviewed

systems is hard to achieve.

In this overview article, we want to provide a comprehensive

review and categorization of existing approaches to ADT

and related tasks. ADT generally covers a wide spectrum of

percussive instruments that can be found in both Western

and non-Western music (e.g., drum kits, Tabla [7], or Beijing

opera percussion ensemble [8]). In this paper, we focus on the

transcription of drum kits in the context of Western music. To

this end, we discuss a variety of techniques and applications,

pointing out the differences, commonalities, benefits and

limitations of the respective approaches and highlight open

issues and challenges. Beyond the literature survey, we present

a systematic comparison of state-of-the-art approaches on

two publicly available corpora of drum recordings. After

discussing the experimental findings, we highlight and indicate
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Fig. 2: Illustration of typical drum sound events of (a) HH,

(b) SD, and (c) KD. The panels show the time-domain signal

in black and the corresponding spectrogram representation,

with darker shades of gray encoding higher energy. For

the sake of visibility, the spectrograms are given with a

logarithmically spaced frequency axis and logarithmically

compressed magnitude values.

the potential directions for future research.

A. Introduction to Drum Kits

The drum kit plays an important role in many Western

music genres such as rock, pop, jazz, and dance music. The

traditional role of drums in these music genres is to emphasize

the rhythmical structure as well as to support the segmentation

of the piece into different parts. Generally speaking, the sound

characteristics of drum instruments (unpitched, percussive, and

transient) differ in many aspects from pitched instruments

which constitute the melodic and harmonic foundations of

music. It should be noted that there are exceptions to this

tendency. For example, there are pitched percussion instruments

such as the vibraphone. Moreover, certain instruments such as

piano and guitar also comprise transient sound components.

Fig. 1 introduces the parts of a basic drum kit with their

abbreviations and color coding as used throughout this article.

The different drum instruments can be roughly classified into

the two classes membranophones and idiophones. The Kick

Drum (KD), Snare Drum (SD), and High /Mid /Low Toms

(HT, MT, LT) are typical examples of membranophones, which

have vibrating membranes spanned over cylindrical bodies. In

contrast, the Hi-Hat (HH), Crash Cymbal (CC), and Ride

Cymbal (RC) are typical examples of idiophones, whose

metallic body vibrates as a whole.

Fig. 2 illustrates the typical sound events produced by the three

drum instruments KD, SD, and HH. The KD is played via

a foot pedal, generating sounds with low indefinite pitch. In

Figure 2c, this can clearly be seen by the concentration of

energy in the lower frequency region. In the frequency band

around 55 Hz, the initial transient is followed by a slow decay

spread over several hundred milliseconds. Depending on the

music style and recording conditions, the presence of such

tonal components within drum sounds is not an uncommon

phenomenon. The SD often acts as the rhythmic counterpart

of the KD. It has snare wires stretched across the lower drum

head. When striking the upper head with a drum stick, the

lower head’s vibrations excite the snares, generating a bright

sound. In Fig. 2b, it can be seen that the SD tends to decay

faster than the KD and usually covers the middle frequency

range. The sound of a HH can be influenced by opening or

closing it with a foot pedal. When closed, it produces a quickly

decaying clicking sound. When open, it produces a standard

cymbal sound exhibiting many inharmonic partials. As shown

in Fig. 2a, the HH’s sound components are usually concentrated

in the higher frequency regions.

Acoustic drum instruments can produce a wide variety of drum

sounds depending on many influences (e.g., the striking position

and velocity). Professional drummers may use this freedom

for artistic expression. In contrast, drum sampler softwares

usually feature a limited number of prerecorded drum sounds

per instrument. To emulate the variability of acoustic drums,

it is common to switch between different samples of the same

drum, either based on velocity levels or random selection.

B. Challenges and Particularities

As already indicated, drum instruments are quite different

from pitched instruments. Hit with sticks or mallets, drums

usually start with transient-like sound components exhibiting

broadband, noise-like spectra. Tonal components may also

occur for certain drum types and playing techniques. Con-

trasting pitched instruments, the tonal elements are usually

not structured like partials in a harmonic series. Instead, their

frequency relationship can range from inharmonic to chaotic.

Due to these characteristics, certain algorithms tailored to

pitched instruments (e.g., fundamental frequency estimation)

are not applicable for ADT. As shown in Fig. 2, the magnitude

spectrograms of drums do not show a clear harmonic structure

as occurring for many pitched instruments. Moreover, in com-

parison to singing voice, for example, there is less variability

within a single drum instrument. For that reason, template-

based approaches are often used in ADT.

In music recordings, drum sounds are usually superimposed on

top of each other, i.e., different drum instruments are played

simultaneously. To illustrate the implications, we show the

spectrogram of a funk drum pattern played with KD, SD, and

HH in Fig. 3a. At first sight, one can observe a fairly complex

mixture of different drum sound events. As emphasized by

the color-coding in Fig. 3b, there is a strong overlap between

KD, SD, and HH in both time and frequency. This can lead to
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Fig. 3: Illustration of drum transcription in drum-only recordings. (a) Example drum recording in a spectrogram representation

with logarithmic frequency spacing and logarithmic magnitude compression. Darker shades of gray encode higher energy. (b)

The same spectrogram representation with color-coded contributions of individual drum instruments. (c) Target onsets displayed

as discrete activation impulses. (d) Drum notation of the example signal. The note symbols have been roughly aligned to the

time axis of the figures above.

ambiguous situations where it is hard to automatically classify

drum sound events or combinations thereof. This challenge is

further intensified when drums are mixed with other instruments

(see Sect. III-A). There are, however, other properties of the

drum signals that can be exploited. For instance, drums are

usually played in a locally periodic and repetitive fashion in

order to shape the rhythm. Thus, many onset events of the same

drum instrument can be observed throughout a recording, often

repeating a rhythmic pattern. This can be utilized by methods

that inherently capture these quasi-periodic characteristics.

Going beyond the recognition of drum sound events, the

recognition of special playing techniques, which create a variety

of spectral and temporal variations of the drum sounds, poses

an additional challenge (see Sect. III-B).

As will be shown in the later sections, these challenges not

only highlight the unique aspects of drum sound analysis, but

also play an important role in advancing the development of

the state-of-the-art ADT systems.

C. Task Definition

The various tasks that are typically considered as ADT are

introduced in the top-most rows of Table I. In its most basic

form, Drum Sound Classification (DSC) aims at automatic

instrument classification of recordings of isolated drum sounds.

A related task is Drum Sound Similarity Search (DSSS),

where the aim is to quantify how similar isolated drum sounds

are to each other. Drum Technique Classification (DTC) goes

beyond that, paying extra attention to recognizing special

playing techniques.

As opposed to isolated drum events, typical drum recordings

are sequences of drum sounds. One special case of transcribing

a sequence of non-overlapping drum events is voice percussion

transcription (VPT), which involves the detection of the

percussion sounds produced during beat boxing (a vocal

technique to mimic drum rhythms). While some skilled

beatboxing artists are capable of producing simultaneous

sounds mimicking two or more drum instruments, voice

percussion is usually monophonic due to limitations of the

human vocal tract. Therefore, VPT is often considered as

a simplified ADT task. Drum Transcription of Drum-only

recordings (DTD) is a well-studied task that is addressed in

many publications. As with VPT, the task is to recognize

different drum sounds exclusively played on drum instruments.

In contrast to VPT, different instruments may occur

simultaneously, making it more difficult to unambiguously

discern multiple drum instruments. A typical output of DTD is

shown in Fig. 3c, where the discrete onsets (i.e., the physical

time when a certain drum is hit) are encoded as impulse-like

activations.

Drum Transcription in the presence of Percussion (DTP)

allows that additional percussion instruments besides the

targeted ones may be played. Clearly, this is a more complex

scenario which typically leads to more erroneously detected

onsets.

Finally, Drum Transcription in the presence of Melodic

instruments (DTM) aims at detecting and classifying the
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TABLE I: List of acronyms and abbreviations used in this

article. We have grouped the diverse terms into main categories

for better structuring.

Category Acronym Abbreviation for

Drum DSC Drum Sound Classification
Transcription DSSS Drum Sound Similarity Search
Task DTC Drum Technique Classification

DTD Drum Transcription of Drum-only
Recordings

DTP Drum Transcription in the
Presence of Additional Percussion

DTM Drum Transcription in the
Presence of Melodic Instruments

OD Onset Detection
VPT Voice Percussion Transcription

Feature AVF Audio-Visual Features
Representation BPF Bandpass Filterbank

CQT Constant-Q Transform
DWT Discrete Wavelet Transform
HPSS Harmonic-Percussive Source Separation
LLF Low-Level Audio Features
LSF Line Spectral Frequencies
MLS Mel-Scale Log Magnitude
MFCC Mel-Frequency Cepstral Coefficients
STFT Short-Time Fourier Transform
WAV Waveform
ZCR Zero-Crossing Rate

Method for AdaMa Template Adaptation and Matching
Activation FDA Fisher Discriminant Analysis
Function and ICA Independent Component Analysis
Feature ISA Independent Subspace Analysis
Transformation LDA Linear Discriminant Analysis

MDS Multi Dimensional Scaling
MPSC Matching Pursuit Using

Sparse Coding Dictionary
NSP Noise Subspace Projection
NMF Non-Negative Matrix Factorization
NMFD Non-Negative Matrix Factor Deconvolution
NNICA Non-Negative ICA
PCA Principal Component Analysis
PFNMF Partially-Fixed NMF
PLCA Probabilistic Latent Component Analysis
PSA Prior Subspace Analysis
SANMF Semi-Adaptive NMF

Classifiers ALC Alternate Level Clustering
for Frame-Wise ABT AdaBoost
Processing CRF Correlation Function

DNN Deep Neural Network
DT Decision Tree Classifier
HCA Hierarchical Cluster Analysis
KNN K-Nearest Neighbor Classifier
SVM Support Vector Machine

Classifiers BLSTM Bidirectional LSTM
Exploiting BRNN Bidirectional RNN
Temporal CNN Convolutional Neural Network
Context GRU Gated Recurrent Unit

HMM Hidden Markov Model
LSTM Long-Short Term Memory
RNN Recurrent Neural Network
CNN Convolutional Neural Network
CRNN Convolutional Recurrent Neural Network

occurrences of different drum sounds in full-mixture music

such as pop, rock, or jazz recordings.

We would like to point out that we use the term transcription

in a rather loose way, as is common in the MIR literature.

A complete transcription would require to fit the recognized

drum onsets into a rhythmical grid (e.g., a direct mapping

to symbolic representation as done in [9] or detecting bar

position as in [10], [11]) in order to generate a musical score

in drum notations. Additionally, other meta data included

in sheet music, (e.g., instructions for playing techniques,

embellishments, indications for tempo and dynamics changes)

may be regarded to be part of full transcripts. This is illustrated

in Fig. 3d, where we show the ground-truth drum notation

of the example signal. To make the correspondences more

obvious, we roughly aligned the musical time axis to the

physical time axis of the panels above.

Having a complete symbolic representation as the output of

ADT systems is usually beneficial in terms of applicability

and accessibility for human musicians. However, this requires

the integration of various MIR systems, which adds another

layer of complication to the core research problem. As a result,

much of the ADT research focuses on extracting drum onset

times as the output representation. For the sake of consistency

with prior work, this overview paper uses the term drum

transcription to cover the detection and classification of drum

sound events.

D. Application Scenarios

ADT entails some challenging audio processing problems:

in general, it is an instance of detecting unexpected, sparsely-

distributed events, which can be related to broader applications

such as detecting impulsive and transient sounds from

audio streams. In the following, we introduce music-related

application scenarios which benefit the most from ADT

research.

Music Education: Music education software and video

games such as RockSmith1 or Songs2See2 could potentially

benefit from automatic drum transcription. Very few

educational applications offer the possibility to practice

drums by using electronic drum pads that output MIDI

signals. None of the existing applications allow users to

practice on acoustic drum kits. In this context, the goal

would be to monitor the players while they are practicing and

provide automatic performance assessment, ideally in real-time.

Music Production: In professional music production,

drum parts are usually recorded using multiple microphones.

Post-processing typically includes equalization, reverberation,

dynamics processing, or even drum replacement using

specialized plug-ins.3 It is difficult to properly set up drum

microphones and engineer the microphone signals to minimize

cross-talk (leakage). In [12], an approach for drum leakage

suppression was proposed (which later went into the product

Drumatom4). With the availability of affordable, easy-to-use,

and high-quality drum sample software, it becomes more and

more common in music productions to use both sampled

1http://rocksmith.ubi.com/, last accessed 2017/10/02
2http://www.songs2see.com/, last accessed 2017/10/02
3http://www.drumagog.com/, last accessed 2017/10/02
4http://drumatom.com/, last accessed 2017/10/02
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drums and recorded acoustic drums with extracted triggers.

Having a reliable ADT method at hand would facilitate

both drum leakage suppression as well as drum replacement

applications. Additionally, with the growing size of drum

loop databases, ADT would enable content-based approaches

for retrieving these samples, improving the efficiency of

computer-aided music composition or even automatic music

accompaniment systems.

Music Remixing: Dittmar and Müller showed that reliable

drum transcription is beneficial for decomposing monaural

drum recordings into single drum hits for the purpose

of remixing in [13]. In this context, a score-informed

audio-aligned transcription is used for initialization of an

audio-decomposition method. Recently, the music software

Regroover,5 whose main feature is a similar source separation

technology, was released. For certain tasks, this software still

requires a lot of intervention by the user, which could be

alleviated when having a reliable ADT algorithm at hand.

Music Information Retrieval: More generally speaking,

ADT is a useful preprocessing step for obtaining higher-level

music content descriptions in MIR. First, transcription of

the drums is an important prerequisite for determining

the rhythm patterns. This information can be valuable for

structuring large corpora of popular music [14] as well

as electronic music [15]. Moreover, music recommender

systems could use the data to better rate the danceability

and rhythmic similarity between different songs. Going

more into musicological research, there is a high interest in

determining microrhythmic properties such as swing, shuffle

and groove [16]–[18] inherent in music recordings. Robust

ADT in conjunction with precise estimation of onset times (see

discussion in Sect. II-F) can be beneficial in that regard as well.

E. Structure of the Paper

The remaining parts of the paper are organized as follows:

Sect. II to Sect. III focus on the comprehensive review of prior

work. Sect. II discusses and categorizes previous publications

on ADT. This includes an extensive literature review and a

general introduction of commonly used datasets and evaluation

metrics. Next, we discuss current challenges of ADT systems

in Sect. III.

Sect. IV to Sect. VIII are dedicated to the evaluation of

state-of-the-art systems: Sect. IV introduces the mathematical

notations and the systems’ commonalities, followed by the

detailed description of two specific algorithmic paradigms:

Non-Negative Matrix Factorization (NMF) in Sect. V and

Recurrent Neural Networks (RNNs) in Sect. VI. In Sect. VII,

we explain the datasets and evaluation strategies that we used

to compare NMF-based and RNN-based ADT methods in

systematic experiments using two publicly available datasets.

In Sect. VIII, we present the most important findings from

our experiments in condensed form. Finally, in Sect. IX, we

5http://regroover.com/, last accessed 2017/10/02

conclude with recommendations and a list of the identified

important directions for future work.

II. GENERAL TRENDS IN DRUM TRANSCRIPTION

A. General Design Patterns

In this section, important directions in ADT research are

presented. Table I provides a reference for acronyms and

abbreviations used throughout this paper. Table II provides

an exhaustive listing and categorization of the reviewed

publications comprised in our literature review. In earlier works

on ADT, FitzGerald and Paulus [6] proposed to categorize the

systems into two types, namely the pattern recognition and

separation-based approaches. Later on, a more refined grouping

of four categories was proposed [19], [20]. These are:

1) Segment and Classify Approach,

2) Separate and Detect Approach,

3) Match and Adapt Approach,

4) HMM-based Recognition Approach.

Considering the increasing amount of ADT research published,

we found it difficult to draw clear boundaries between separate

categories, and the classic categorization might not accurately

reflect the advances in ADT in recent years. As an alternative,

we propose to distinguish between methods according to their

constituent building blocks. Specifically, we identify six generic

design patterns that are used in most methods, see Fig. 4 for

an overview. Before we briefly introduce each of these patterns

in the following paragraph, we first want to emphasize that

they can be used like items from a toolbox, interchangeably

and in no particular order. Second, the distinction between the

patterns is sometimes vague, and the particular technical tool

implementing each of these patterns may vary depending on

the method. And third, the patterns are often not specific to

drums, but very generic, e.g., inspired from research in speech,

language, and general multimedia processing. For a general

introduction to these processing steps, please refer to [21], [22].

Feature Representation (FR): Apart from the time-

domain waveform, discretized audio signals can also be

converted into feature representations that are better suited for

certain processing tasks. A natural choice are Time-Frequency

(TF) transforms (e.g., Short Time Fourier Transform, STFT),

or Low-Level Features (LLF) derived from them. These

representations are beneficial for untangling and emphasizing

the important information hidden in the audio signal. Into

this pattern, we also subsume processing steps intended to

emphasize the target drum signal in an audio mixture. These

can either be based on spectral characteristics (e.g., band-pass

filters, BPF, with predefined center frequencies and bandwidths)

or based on TF characteristics (e.g., Harmonic-Percussive

Source Separation, HPSS [23]).

Event Segmentation (ES): The main goal of this design

pattern is to detect the temporal location of musical events in

a continuous audio stream before applying further processing.

This usually consists of computing suitable novelty functions

(e.g., Spectral Flux) and identifying locations of abrupt change.

A typical procedure would be to extract local extrema by
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Output
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Event

Classification

§ Clustering

§ Classification
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Function

§ NMF, NMFD, PLCA

§ DNN, RNN

LM

Language

Model

§ Viterbi decoding

§ Musical knowledge

FT

Feature

Transformation

§ PCA, LDA, ICA

§ Feature selection

Fig. 4: Our proposed grouping of design patterns that are relevant for ADT.

applying a suitable peak-picking strategy, often referred to as

OD in MIR research. Recently, learned feature representations

have been shown to yield superior performance compared to

hand-crafted ones for event segmentation.

Activation Function (AF): This design pattern seeks

to map feature representations into activation functions, which

indicate the activity level of different drum instruments.

Different techniques such as NMF, Probabilistic Latent

Component Analysis (PLCA) or Deep Neural Neworks

(DNNs) are commonly used for deriving the activation

functions.

Feature Transformation (FT): This design pattern provides a

transformation of the feature representation to a more compact

form. This goal can be achieved by different techniques such

as feature selection, Principal Component Analysis (PCA), or

Linear Discriminant Analysis (LDA). It should be mentioned

that there is a strong overlap between the patterns FT and AF˙

Event Classification (EC): This processing step aims

at associating the instrument type (e.g., KD, SD, or HH) with

the corresponding musical event. In the majority of papers, this

is achieved through machine learning methods (e.g., Support

Vector Machines, SVM) that can learn to discriminate the

target drum instruments (or combinations thereof) based on

training examples. Inexpensive alternatives include clustering

(e.g., Alternate Level Clustering, ALC) and cross-correlation.

Language Model (LM): This pattern takes the sequential

relationship between musical events into account. Usually this

is achieved using a probabilistic model capable of learning

the musical grammar and inferring the structure of musical

events. LMs are based on classical methods such as Hidden

Markov Models (HMM) or more recent methods such as RNNs.

While these design patterns represent essential building

blocks, usually only a subset of them are used in specific ADT

approaches. Different methods comprise selected patterns with

additional minor adaptations.

The following sections will discuss various combinations and

cascades of the introduced patterns in more detail. In each

of the section headings, the typical cascade of patterns (e.g.,

FR, ES, EC) is given with the abbreviations introduced in

Fig. 4. Note that these combinations are not exhaustive as

new methods emerge constantly. However, with this flexible

framework, it is possible to characterize future studies with

different sets of cascaded patterns.

B. Segmentation-Based Methods (FR, ES, EC)

This type of approach centers around the Event Segmen-

tation ES concept and generally uses a cascade of Feature

Representation FR and ES with occasional inclusion of Event

Classification EC. Since most of the drum events are percussive

and transient in nature, it is intuitive to apply a simple

ES method (e.g., OD) on the input signal for segmenting

and detecting such events. The rationale is to first emphasize

the drum sound events within an audio mixture through various

Feature Representation FR operations (e.g., HPSS [23], BPF),

and perform ES on the resulting feature representations.

One of the earliest systems in this category was presented
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TABLE II: Overview of previously proposed methods for ADT. The properties in the columns highlight the most important

algorithmic details. For a reference to the acronyms, please refer to Table I.

Year Author(s) Reference(s) ADT Task Design Patterns FR FT ES EC AF LM

1985 Schloss [24] DTD FR, ES WAV – OD – – –
2000 Gouyon et al. [25] DSC FR, EC LLF – – FDA – –
2002 FitzGerald et al. [26] DTD FR, AF, ES STFT – OD – ISA –
2002 Herrera et al. [27] DSC FR, ES, FT, EC LLF CFS OD KNN – –
2002 Zils et al. [28] DTM FR, ES, EC WAV – OD CRF – –
2003 Eronen [29] DSC FR, ES, FT, EC MFCC ICA OD HMM – –
2003 FitzGerald et al. [30]–[32] DTD FR, AF, ES STFT – OD – PSA –
2003 Herrera et al. [33] DSC FR, ES, FT, EC LLF CFS OD DT/MDS – –
2004 Dittmar & Uhle [34] DTM FR, AF, ES STFT – OD – NNICA –
2004 Gillet & Richard [35] DTD FR, ES, EC LLF – OD HMM/SVM – –
2004 Herrera et al. [36] DSC FR, ES, EC LLF – OD DT/KNN – –
2004 Nakano et al. [37] VPT FR, LM MFCC – – – – HMM
2004 Sandvold et al. [38] DTM FR, ES, FT, EC LLF CFS OD DT/ABT – –
2004 Steelant et al. [39], [40] DSC FR, EC LLF – – SVM – –
2004 Tindale et al. [41] DTC FR, ES, EC LLF – OD SVM/KNN – –
2004 Yoshii et al. [42]–[44] DTM FR, ES, EC STFT – OD AdaMa – –
2005 Degroeve et al. [45] DSC FR, EC LLF – – SVM – –
2005 Gillet & Richard [46] DTM FR, ES, FT, EC BPF/NSP PCA OD SVM – –
2005 Gillet & Richard [47] DTM FR, ES, FT, EC AVF PCA OD SVM – –
2005 Hazan [48] VPT FR, ES, EC LLF – OD DT/KNN – –
2005 Paulus & Virtanen [49] DTD FR, AF, ES STFT – OD – NMF –
2005 Tanghe et al. [50] DTM FR, ES, EC LLF – OD SVM – –
2005 Tzanetakis et al. [51] DTM FR, ES DWT/BPF – OD – – –
2006 Bello et al. [52] DTD FR, ES, EC LLF – OD HCA – –
2007 Gillet & Richard [53] DTM FR, ES, LM Symbolic – OD – – N-gram
2007 Moreau & Flexer [54] DTM FR, ES, EC NMF/LLF – OD KNN – –
2007 Roy et al. [55] DSC FR, ES, FT, EC LLF IGR OD SVM/KNN – –
2008 Gillet & Richard [19] DTM FR, ES, FT, EC MFCC PCA OD SVM – –
2008 Pampalk et al. [56] DSSS FR, EC MLS – – MNSR – –
2009 Alves et al. [57] DTM FR, AF, ES STFT – OD – NMF –
2009 Paulus & Klapuri [20], [58] DTM FR, FT, LM MFCC LDA – – HMM
2010 Scholler & Purwins [59] DSC FR, EC MPSC – – DT – –
2010 Spich & Zanoni [60] DTM FR, FT, ES STFT – OD – PSA –
2011 Şimşekli et al. [61] DTD FR, LM STFT – – – – HMM
2012 Battenberg [62], [63] DTD (RT) ES, FR, AF STFT – OD – NMF –
2012 Kaliakatsos et al. [64] DTD FR, ES WAV/BPF – OD – – –
2012 Lindsay-Smith et al. [65] DTD FR, AF, ES STFT – OD – NMFD –
2013 Miron et al. [66], [67] DTD (RT) ES, FR, EC LLF – OD KNN – –
2014 Dzhambazov [10] DTM FR, LM LLF – – – – HMM
2014 Benetos et al. [68] DTM FR, AF, ES CQT – OD – SIPLCA –
2014 Dittmar & Gärtner [69] DTD (RT) FR, AF, ES STFT – OD – SANMF –
2014 Thompson & Mauch [9] DTM FR, ES, EC MFCC – OD SVM – –
2015 Röbel et al. [70] DTM FR, AF, ES STFT – OD – NMFD –
2015 Souza et al. [71] DSC, DTC ES, FR, EC MFCC/LSF – OD SVM – –
2015 Rossignol et al. [72] DTM FR, EC, ES LLF – OD ALC – –
2015 Wu & Lerch [73], [74] DTD, DTM FR, AF, ES STFT – OD – PFNMF –
2016 Gajhede et al. [75] DSC ES, FR, EC MLS – OD CNN – –
2016 Vogl et al. [76], [77] DTD, DTM FR, AF, ES CQT – OD – RNN –
2016 Southall et al. [78] DTD, DTM FR, AF, ES STFT – OD – BRNN –
2016 Wu & Lerch [79] DTC FR, AF, EC STFT/LLF – – SVM PFNMF –
2017 Vogl et al. [11] DTM FR, AF, ES CQT – OD – CNN/CRNN –
2017 Southall et al. [80] DTM FR, AF, ES STFT – OD – CNN –

by Schloss [24]. The system estimates the envelope of the

waveform and determines the attack with a threshold on

the envelope-slope. Additionally, the decay time-constant is

characterized by model fitting. By combining this information,

the resulting system is able to detect basic strokes from drum-

only recordings. Zils et al. [28] proposed a method starting

with initial drum sound templates created from band-pass-

filtered impulses. Next, the calculation of correlation between

the time-domain signal and the initial templates, followed by

a peak-quality assessment, is used as the event classification

EC step. Finally, the templates are updated with the averaged

time-domain signals of the detected events. This process is

repeated until the number of detected events stops changing.

While this analysis by synthesis approach has the advantage

of requiring minimum prior knowledge, it has some potential

issues due to its focus on time-domain signals, such as the

confusion between high-pitched percussive sounds and singing

voice, simultaneous events, and mismatches between initial

template and the target drum sounds. These issues may become

severe when the complexity of the audio mixture increases.

Another method of this category was proposed by Tzanetakis

et al. [51]. The FR emphasises the characteristic frequency

ranges of KD (30-280 Hz) and HH (2.7k-5.5k Hz) via BPF

based on Discrete Wavelet Transform (DWT). Next, the ES and

EC for each drum was achieved by OD on the extracted

envelope of the time-domain sub-band signal. Since this method
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relies heavily on the selection of the frequency ranges of the

filters, its generalization to other types of drum sounds can be

problematic.

Kailakatsos-Papkostas et al. [64] proposed a similar method

with a focus on the real-time performance. First, multiple band-

pass filters are applied followed by suitable amplifiers. Instead

of using predefined frequency ranges, an iterative process is

used to estimate optimal filter parameters (e.g., filter passband,

stopband, onset detection threshold) by minimizing an objective

function. Once the training is completed, a threshold is used

to decide whether a drum is active or inactive. This method

provides an alternative solution to the selection of characteristic

frequency ranges of drums.

Generally speaking, the simplicity of the above mentioned meth-

ods has several advantages. First, the direct use of waveforms

in the processing pipeline provides good interpretability of

the results; this allows users with limited or minimal technical

background to gain better control over the systems. Additionally,

simple FR methods (such as BPF) and EC methods (such as

cross-correlation or thresholding) can be implemented very

efficiently, therefore enabling real-time applications, e.g., in

the context of live music performances. However, such systems

also have downsides. First, the robustness to additional sound

components (e.g., coming from melodic instruments) might be

insufficient. Since the systems typically use a simple FR step

such as BPF to highlight the presence of drum events, they are

susceptible to the interference of additional sounds. Second,

these systems mainly use time-domain signals in favor of the

fast processing speed. This potentially limits their capability

of extracting more detailed information of the musical content,

compared to other signal representations. Finally, the basic

EC methods incorporated in this type of approach might not

be able to differentiate subtle timbral variations created by

various playing techniques.

C. Classification-Based Methods (FR, ES, FT, EC)

This type of approach builds around the Event Classification

EC concept that differentiates different drum sounds using

classifiers. Classification-based methods and Segmentation-

based methods may look similar in terms of their cascaded

patterns, but they are quite different in nature; Segmentation-

based methods emphasize the efficiency and interpretability,

whereas Classification-based methods focus on getting better

performances with more sophisticated algorithms. There are

many papers implementing this strategy; the basic idea is to

extract Feature Representations FR from the audio signal, find

the location of the potential events using Event Segmentation

ES, refine the features with Feature Transformation FT,

and then determine the instrument class of the events using

EC Event Classification. Since this processing pipeline is

based on the standard pattern recognition paradigm, many

different systems using different choices of FR, FT, and

EC have been proposed. The most commonly used input

representations are combinations of spectral features (e.g.,

centroid, flux, flatness), temporal features (e.g., zero crossing

rate, local mean energy, RMS, envelope descriptors), and

Mel-Frequency Cepstral Coefficients (MFCCs) [19], [25],

[27], [33], [36], [38]–[41], [45], [48], [50], [52], [66], [67],

[72]; other features, such as NMF derived features [54]

and learned features [55], were also found useful in drum

sound classification and drum transcription, respectively. To

derive spectral features, mainly the STFT was used as FR;

variants such as Constant-Q Transform (CQT) [52], [72],

Line Spectral Frequencies (LSF) [71], and Mel-scale Log

magnitude Spectrogram (MLS) [75] have been shown to be

viable options as well. Besides audio features, Gillet and

Richard [47] proposed to use audio-visual features (AVF),

which included features derived from video recordings of the

drum performances. In contrast to the input representations,

FT methods are optional and thus more situational. Techniques

that were adopted in previous systems include Principal

Component Analysis (PCA) [47], Information Gain Ratio [55],

Recursive Feature Elimination [19], Correlation-based Feature

Selection (CFS) [27] and Sparse Coding Matching Pursuit

(SC-MP) [59], [81].

In terms of classifiers, basic models such as K-Nearest

Neighbors (KNN) were often selected for their simplicity and

interpretability [27], [33], [36], [41], [54], [66]. To account for

non-linear relationships of the extracted features, SVMs with

different kernel functions were used extensively in various

systems [9], [19], [35], [39]–[41], [45], [47], [50], [55], [71],

[81]; ensemble methods, such as Adaboost [39] and Random

Forest (RF) [59], were often included in comparative studies

for their effectiveness. Recently, successful models from

other applications of machine learning, such as Convolutional

Neural Networks (CNNs), have also been applied for drum

sound classification [75]. In addition to the above mentioned

supervised approaches, unsupervised methods were also

applied for EC. For example, algorithms such as K-means

[25], [52], [67] and ALC [72] were adopted to solve different

ADT sub-tasks.

In Eronen’s work on musical instrument recognition, a slightly

different approach using a probabilistic model in the EC stage

for classifying the drum sounds was presented [29]. Eronen

proposed to use an HMM to model the temporal progression

of features within an isolated audio sample. MFCC and

the first derivative of MFCC were extracted as the features,

followed by a FT step using Independent Component Analysis

(ICA) that transforms the features into statistically independent

representations.

Another system that falls implicitly into this category is

the AdaMa-appraoch proposed by Yoshii et al. [42]–[44].

The general concept is to start with an initial guess for the

drum sounds (sometimes called templates) that are iteratively

refined to match the drum sounds that actually occur in

the target recording. The refinement is based on alternating

between drum onset detection with the latest drum template

estimate and updating the template with an averaged model

of several, trustworthy onset instances of the drum sound.

Unlike the system proposed by Zils et al. [28], AdaMa uses

an STFT-based FR instead of raw waveforms, and an EC step

based on a customized distance measure between the target

event and the templates.

To summarize, the Classification-based methods have the

following advantages. First, the general processing flow
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inherited from the pattern recognition paradigm allows an

efficient and automated search of suitable settings. For

instance, different classifiers or feature selection methods

can be easily introduced in a modular fashion. Second, the

possibility of adding various features during the FR step

ensures the flexibility of incorporating expert knowledge in

this type of system. However, since this type of system relies

on a robust ES step to detect the musical events, any potential

errors made in this stage are propagated through the system.

Furthermore, to be able to handle simultaneous events (e.g.,

HH + SD, HH + KD), more classes are needed during the

training phase. Thus, the number of class combinations will

increase drastically as more instruments (e.g., HT, MT, LT,

RC, and CC) are considered. Finally, Classification-based

methods might have difficulties to recognize drum sound

events in the presence of other melodic instruments that have

never been presented to the system at training time, as the

trained features are usually susceptible to the interference of

the melodic instruments.

D. Language-Model-Based Methods (FR, FT, LM)

After applying Feature Representation FR and Feature

Transformation FT patterns, Language-model-based methods

typically rely on a final processing stage, which involves the

deployment of a Language Model LM to account for the

temporal evolution of events on a higher hierarchical level.

Instead of detecting drum sound events directly from input

representations, Language-model-based methods infer the

underlying drum sound events by considering neighboring

events and their probability as an entire sequence. This

step is usually implemented using probabilistic models such

as HMMs, where emission and transition probabilities are

estimated from the temporal context of the training data.

One of the earliest works in this category was presented by

Nakano et al. [82], which focused on VPT (i.e., beatboxing).

The proposed system first extracts MFCCs from the given

audio recording. Next, the acoustic features are decoded into

sequences of onomatopoeic expressions using the Viterbi

algorithm. Finally, the onomatopoeic expressions are mapped

to drum sequences by retrieving the drum patterns with highest

similarity from the predefined database. Another work that

applies HMMs to model drum sequences was proposed by

Paulus and Klapuri [20], [58]. In the FR step, the system

uses a sinusoids-plus-residual model to suppress the harmonic

components in the audio mixtures. Next, MFCCs are extracted

as the feature representation, followed by an FT step using

Linear Discriminant Analysis (LDA). Finally, the Viterbi

algorithm and trained HMMs are used to determine the

underlying drum sequences. Similarly, Şimşekli et al. [61] also

use HMMs for detecting percussive events such as clapping

and drum hits; with additional parameters, the model can be

adjusted for the trade-off between accuracy and latency. The

authors report good performances on the specific datasets,

however, their generalizability on other datasets still needs to

be further investigated.

In addition to decoding the underlying drum sequences,

language models can also be used as post-processing tool.

Gillet and Richard proposed to apply N-gram models on the

symbolic data in order to fine-tune the detected onsets from

the ADT systems in [53]. Their system first aligns the detected

onsets to the tatum grid (a grid based on the smallest time

unit inferred from the perceived musical events). Next, the

probability of a particular sequence can be estimated using

a smoothed probability distribution of various sequences in

the training corpus, as presented in [10]. Both supervised

and unsupervised training schemes are evaluated, and the

experiment results show a general performance gain of these

methods. Nevertheless, the error from the preceding step (i.e.,

drum onset detection) may propagate through and reduce the

overall performance.

The above mentioned methods are based on statistical

estimation of the most likely drum sequences, and are hence

aware of the musical context. In other words, these systems

try to make predictions that are musically meaningful. For

example, an unusual hit after certain sequences might be

ignored due to the low probability of the resulting drum hit

sequence.

LMs are not commonly used in modern ADT systems

and are usually limited to basic methods. This is due to the

fact that the application of LMs in the context of ADT, and

more general in music related tasks bears several challenges.

First, the application of LMs commonly used in Automatic

Speech Recognition (ASR) on music data is only viable

to a certain degree. The different properties of speech and

language require a reformulation of the basic underlying

assumptions. In ASR, LMs usually model lengths of phonemes

and identify words, and on a second level may be used

(e.g.,LSTMs) to model the grammar and typical sentences

of a language. These concepts do not translate to music,

while in ASR durations and pauses are of little concern,

these factors are essential for music, especially drums. Also,

music generally does not follow strict rules compared to the

grammar of a language. Attempts at using LMs for music in

the context of chord recognition showed that the adaptation

is far from trivial [83]. Furthermore, training of valid

LMs usually requires large amounts of training data, which

are available in the case of ASR, but are lacking for ADT tasks.

E. Activation-Based Methods (FR, AF, ES)

Activation-based systems often comprise a cascade of

Feature Representation FR, Activation Function AF, and Event

Segmentation ES steps. The defining factor of this approach

is the concept AF, which generates the activity of a specific

instrument over time. With the activation functions for every

drum instrument, the ES step can be as simple as finding local

maxima of those activation functions by means of suitable

peak-picking algorithms.

There are basically two families of algorithms for deriving

activation functions. The first one uses magnitude spectrograms

as FR and applies matrix factorization algorithms as AF in
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order to decompose the spectrogram into basis functions and

their corresponding activation functions. Early systems used

methods such as Independent Subspace Analysis (ISA) [26],

Prior Subspace Analysis (PSA) [30]–[32], [60], and Non-

Negative Independent Component Analysis (NNICA) [34].

The basic assumption of these algorithms is that the target

signal is a superposition of multiple, statistically independent

sources. Already for drum-only recordings, this assumption

is problematic since the activations of the different drum

instruments are usually rhythmically related. When the signal

contains both drums and melodic instruments, this assumption

may be more severely violated. Recently, more and more

systems opted for NMF, which has less strict statistical

assumptions about the sources. In NMF, the only constraint

is the non-negativity of the sources, which is naturally given

in magnitude spectograms. NMF-based ADT systems include

basic NMF [49], [57] as well as related concepts such as

Non-negative Vector Decomposition (NVD) [62], [63], Non-

Negative Matrix Deconvolution (NMFD) [65], [70], Semi-

Adaptive NMF [69], Partially-Fixed NMF [73], [74], [79], and

Probabilistic Latent Component Analysis (PLCA) [68]. Most

of these factorization-based methods require a set of predefined

basis functions as prior knowledge; when this predefined set

does not match well with the components in the target signal,

the resulting performance may decrease significantly. In Sect. V,

we will provide an in-depth description of the technical details

and peculiarities of NMF-based ADT approaches.

The second family of algorithms which can be used to generate

activation functions are based on Deep Neural Networks (DNN).

In general, DNNs are a machine learning architecture that

allow to learn non-linear mappings of arbitrary inputs to target

outputs based on training data. They are usually constructed

as a cascade of layers consisting of learnable, linear weights

and simple non-linear functions. The learning of the weight

parameters is performed by variants of gradient descent [84].

In recent years, RNNs, a special form of DNNs designed to

work on time series data, have been applied successfully for

ADT. The use of bidirectional RNNs [78], RNNs with label

time shift [76], as well as RNNs with Gated Recurrent Units

(GRUs) and Long Short-Term Memory cells (LSTMs) [77],

[80], showed comparable results to state-of-the-art systems. It

is important to note that RNNs can in principle also perform

sequence modeling, similar to the more classic methods such

as HMM (see Sect. II-D). However, the lack of large amounts

of training data and the applied training methods, prohibit this

behavior in the related work, so far. Recently, promising first

attempts to apply CNNs and CRNNs to the task of ADT have

been made [11], [80], showing the possibilities of adopting

different architectures in addition to RNNs.

In Sect. VI, we will provide an in-depth description of

the technical details and peculiarities of RNN-based ADT

approaches.

Overall, Activation-based methods have the advantage of

producing intermediate output representations that are easy

to interpret. Some of the factorization-based approaches can

also be used to reconstruct the magnitude spectrogram of drum

sources and serve as source separators. In addition, this type of

approach takes care of simultaneous events without the need of

introducing combined classes during training (see Sect. II-C).

However, when the multiple sources overlap in the spectral

domain, cross-talk between activation functions will appear and

degrade the performance. For instance, the activation function

of a KD may also contain the interference from a bass guitar.

Furthermore, the use of magnitude spectrograms neglects the

phase, which could potentially strip away critical information.

F. Datasets and Metrics

In addition to the combinations of design patterns, the data

used to train and evaluate ADT systems plays an important

role. Furthermore, there are commonly accepted procedures

for assessing ADT performance.

Public Datasets: In Table III, we present an overview

of existing datasets. These are often associated with different

ADT tasks and contain different types of recordings. For

example, 200 Drum Machines [85] features a collection of

electronic drum sounds, whereas as MDLib2.2 [86] only

features acoustic drum sounds. As a result, the choice of

dataset may have significant impact on the generalization

capabilities of the resulting system.

Among these publicly available datasets, IDMT-SMT-

Drums [69] and ENST-Drums [87] are two of the most

commonly used datasets in recent ADT studies. IDMT-SMT-

Drums [69] comprises solely drum recordings containing the

major drum instruments (i.e., HH, SD, KD). Each item in

the dataset has a ground-truth transcription and comes with

training audio files, which contain the used drum sounds in

isolation. This dataset can be used for DSC and DTD tasks.

ENST-Drums [87] comprises recordings of full drum kits,

including instruments such as CC, RC, HT, MT, and LT (see

Fig. 1). Again, each item in the dataset has a corresponding

ground-truth transcription available. These recordings are

played by three different drummers on their own drum kits.

Additionally, some of the drum recordings have corresponding

accompaniment recordings, allowing the creation of complete

mixtures. The accompaniments contained in ENST-Drums are

partly played on real instruments (e.g., bass, guitar, saxophone,

clarinet) and partly on synthesizers. All are temporally aligned

to the drum recordings, since the drummers were asked to play

along to the backing tracks. This dataset can be used for DTD,

DTP, and DTM tasks. These datasets, while being limited

in certain aspects (see Sect. III-D for a detailed discussion),

provide a great starting point for most ADT tasks. Therefore,

both of the datasets are currently considered as benchmark

datasets for ADT research.

Common Metrics: As discussed in Sect. I-C, ADT studies

cover a variety of tasks, and their evaluation metrics differ from

each other. For tasks such as DSC and DTC, many previous

studies (e.g., [25], [27], [41]) performed cross-validation

on the collection of isolated drum sounds and reported the

classification accuracy per instrument. This accuracy is usually

calculated as the ratio between number of correct samples and

number of total samples.

For tasks such as DTD, DTP, and DTM, the main focus is
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TABLE III: An overview of the existing annotated datasets for

ADT tasks. * indicates the dataset that is not freely available

Dataset Suited Size Audio
for ADT task (Duration) avail.

ENST-Drums [87] DTD/DTP/DTM
316 files
(10-90 s each)

Y

IDMT-SMT-Drums [69] DTD
560 files
(5-20 s each)

Y

DREANSS [88] DTD/DTM
22 files
(10 s each)

N

Tindale et al. [41] DTC
1264 files
(<1 s each)

Y

200 Drum Machines [85] DSC
7371 files
(<1 s each)

Y

MDLib2.2 [86] DTC
10624 files
(1-2 s each)

Y

RWC-POP* [89] DTM
100 files
(3-5 min each)

Y

Drum PT [79] DTC
30 files
(30-90 s each)

N

to extract onset times of different drum instruments from

a continuous audio stream. In this case, the metrics for

assessing onset detection algorithms, namely Precision, Recall,

and F-measure, are commonly used in several studies [58],

[69], [74], [76], [78]. A detected onset is counted as a

true positive (TP) if its deviation from the corresponding

ground-truth annotation is less than a pre-determined tolerance

window. If a detected onset does not coincide with any

annotated drum event, it is counted as a false positive

(FP); alternatively, if an annotated drum event does not

coincide with any detected onset, it is counted as a false

negative (FN). These three quantities define the standard

Precision P = TP/(TP + FP), Recall R = TP/(TP + FN),
and F-measure F = 2 · TP/ (2 · TP + FP + FN).

Tolerance Window: The size of the pre-determined tolerance

window is dependent on the ADT application. For example, if

the desired output is a musical score or tabulature, the time

resolution for the detected onsets can be relatively coarse as

onset times are quantized based on the smallest increment

within a metrical grid (i.e., 16th or 32nd notes), for these

kind of representations. For other applications, like analysis of

(un-)intentional variation of onset timings by human performers

(e.g.,for humanization), musicological studies of micro-timing

[16]–[18], or extraction of a precise symbolic representation

(e.g.,MIDI files), a greater precision is required. Perceptionally,

the lower bound of the time-gap which allows humans to

identify two click sounds as separate is somewhere in the range

of 8 -10 ms [90]. This suggests that for precise reproduction

for a human ear, a tolerance of up to 20 ms should be

acceptable. Common tolerance window sizes used in existing

ADT literature include 50 ms [69], [74], [78], 30 ms [65], and

20 ms [11], [77].

The choice of tolerance window also depends on the preci-

sion of the available training and evaluation data’s annotations.

To be able to use low tolerance windows, the annotations

must also conform to these high standards. With synthetic (i.e.

generated) datasets it is easy to achieve annotations with high

precision, but with human annotated datasets a high level of

quality insurance is necessary. This might be a reason why

in tasks like ADT and onset detection, traditionally, relatively

high tolerance windows (e.g.,50 ms) are commonly used.

III. CURRENT CHALLENGES

In the following section, we highlight the challenges that are

commonly encountered in current and previous ADT research.

A. Interference of Multiple Instruments

The major challenge of state-of-the-art ADT systems

usually comes from the interference of other instruments. The

superposition of various instruments (e.g., guitar, keyboard,

vocal, or drums) makes the recognition of a specific instrument

difficult due to the overlaps in both spectral and temporal

domain. Typically, the challenges arise in the presence of the

following types of instruments:

Percussive Instruments: A basic drum kit, as introduced

in Sect. I-A, includes drums of different sizes and well-

distinguishable timbral characteristics. However, in a more

advanced setup for studio recordings, similar drums with subtle

variations in timbre often appear, resulting in sounds that are

harder to differentiate. This problem is more severe when these

sounds occur simultaneously. In previous work, this problem

is mostly addressed as a DSC task, in which the sounds are

presented as isolated audio samples, and Classification-Based

Methods (FR, ES, FT, EC) tend to achieve a reasonably high

classification accuracy. For example, in [33], a classification

task for 33 different percussive instruments was performed;

in [71], an attempt was made to classify different cymbals,

such as china, crash, hi-hat, ride and splash. However, in a

more realistic setting such as DTP, the perfect isolation of

each drum sound is hard to achieve. Thus, the classification

accuracy can be expected to decrease.

Melodic Instruments: Despite the fundamental difference

between percussive and melodic instruments, the wide range

of sounds produced from a drum kit can potentially coincide

with sound components of many melodic instruments (e.g.,

the KD may overlap with bass guitar or SD may overlap

with guitar and piano). As a result, DTM is considered

much more challenging than DTP and DTD. Among all the

methods in Table II, only less than half of the systems were

evaluated under the DTM setting, and most of them reported

a noticeable drop in performance compared with DTD and

DTP. Preprocessing steps intended to suppress the melodic

content of the audio signals have been proposed in [19], [44],

however, the improvement has not been substantial so far.

B. Playing Techniques

Playing techniques are an important aspect of expressive

musical performances. For drum instruments, these techniques

include basic rudiments (e.g., roll, paradiddle, drag, and flam)

as well as timbral variations (e.g., ghost note, brush, cross

stick, and rim shot). In spite of being an essential part of
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performances, most of the systems only focus on transcribing

basic strikes, and the effects of different playing techniques

are largely overlooked.

In an early attempt to transcribe playing techniques, Tindale

et al. [41] presented a study on the automatic identification

of timbral variations of the snare drum sounds induced by

different excitations. A classification task is formulated to

differentiate sounds from different striking locations (center,

halfway, edge, etc.) with different excitations (strike, rim

shot, and brush). Similarly, Prockup et al. [86] explored the

discrepancy between more expressive gestures on a larger

dataset with combinations of different drums, stick heights,

stroke intensities, strike positions, and articulations. In addition

to membranophones percussive instruments, Souza et al. [71]

thoroughly investigated different playing techniques for cymbal

sounds. They differentiated either by the position where the

cymbal is struck (bell, body, edge), how a hi-hat is played

(closed, open, chick), or other special effects such as choking

a cymbal with the playing hand. All of these studies showed

promising results in classifying the isolated sounds, however,

when the classifier is applied to the real-world recordings,

as pointed out in [79], the performance dropped drastically.

Another attempt to retrieve playing techniques was proposed

by Hochenbaum and Kapur through the use of both audio and

accelerometer data [91]. However, the extra requirement of

attaching the sensors to the performer’s hands might impact the

playing experience and deviate from the real playing gestures.

C. Recording Conditions and Post Production

In musical terms, the drum recordings contained in these

corpora exhibit different degrees of rhythmic complexity. With

respect to their acoustic properties, both corpora feature clean

recordings that allow for controlled transcription experiments.

However, in real-world drum recordings, there might be

additional problems that are not reflected well in this data

yet.

In practice, it is likely that we have to deal with convolutive,

time-variant, and non-linear mixtures instead of linear super-

positions of single drum sounds. First, the acoustic conditions

of the recording room and the microphone setup lead to

reverberation effects that might be substantial. Furthermore,

the recording engineer will likely apply equalization and

filtering to the microphone signal. Mostly, the resulting signal

alterations can be modeled as convolution with one or more

impulse responses. Second, non-linear effects such as dynamic

compression and distortion might be applied to the drum

recordings. Especially dynamics processing is considered to

be one the most important post-processing steps that recording

engineers use to modify drum sounds.

Not having these aspects covered in our datasets has two

consequences. First, any methods involving machine-learning

might deteriorate if the “closed world” of the training data

does not match the “open world” of some target data. A

typical example is found in speech processing where systems

trained with clean speech often fail under noisy or reverberant

conditions. Second, any methods involving decomposition

based on a linear mixture model might be affected when the

observed drum mixtures do violate these basic assumptions.

A possible strategy to counter these challenges might be data

augmentation. In our case the amount of training data could be

greatly enhanced by applying diverse combinations of audio

processing algorithms including reverberation, distortion and

dynamics processing.

D. Insufficient Real-world Datasets

As summarized in Table II, many of the existing ADT

systems are based on data-driven machine learning approaches.

However, with the complexity of music, the difficulty of

generating labels, and the restrictions of intellectual property

laws, building and sharing annotated datasets becomes a

non-trivial task; many of the commonly used datasets are

thus limited in different aspects. A closer look at the existing

datasets shown in Table III reveals the following limitations:

Size: The most common issue of all the existing drum

transcription datasets is the insufficient amount of data.

Overall, the datasets that contain only audio samples with a

single drum hit (Tindale et al. [41], 200 Drum Machines [85],

and MDLib2.2 [86]) have more files, whereas the datasets

that contain entire drum sequences (ENST-Drums [87],

IDMT-SMT-Drums [69], DREANSS [88], RWC-POP [89] and

Drum PT [79]) have less files. However, the total duration

of each dataset is usually less than a few hours and might

not be representative for the immense amount of real-world

music. Furthermore, since these datasets are created under

very different conditions, they cannot be easily integrated into

one large entity. Recently, an early attempt to address this

challenge by utilizing unlabeled music data was presented in

[92], but the insufficient amount of labeled data still remains

to be an open problem.

Complexity: The existing datasets have the tendency

of over-simplifying the ADT problem. For example, in datasets

containing isolated drum hits (i.e., Tindale et al. [41], 200

Drum Machines [85], and MDLib2.2 [86]), the transcription

problem is reduced to the classification of different drum

sounds; In IDMT-SMT-Drums [69], only the drum sequences

with basic patterns are presented in the dataset. The lack

of complexity results in datasets that are unrealistic for the

real-world use cases.

Diversity: Most of these datasets do not cover a wide

range of music genre and playing style. For instance,

RWC-POP [89] only covers Japanese pop music, IDMT-

SMT-Drums [69] only covers basic patterns and playing

techniques for pop and rock music, and ENST-Drums [87]

only features playing styles from 3 drummers. The limitation

in terms of diversity can hinder the system’s capability of

analyzing a wider range of music pieces. Particularly, the

lack of any singing voice in the corpora ENST-Drums and

IDMT-SMT-Drums indicates their insufficiency. Tests on

tracks containing singing voice revealed that this poses a big

problem, especially for RNN-based ADT methods.
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Homogeneity: The problem of homogeneity usually

originates from the creation of the dataset. Since each dataset

is most likely to be generated under fixed conditions (i.e.,

recorded in the same room by the same group of performers),

the audio files within the same dataset tend to have high

similarities. This is very different from real-world scenarios,

where the drum recordings come from different musicians,

different drum kits, and different recording and processing

conditions (as discussed in Sect.III-C). This limitation in

homogeneity can potentially lead to an overfitting issue in the

resulting ADT systems.

With these general remarks on challenges in ADT research,

we conclude our literature overview. In the following sections,

we focus on evaluating state-of-the-art ADT systems. In the

process, many of the aforementioned difficulties will become

relevant again. Over the past few years, activation-based ADT

systems have achieved the state-of-the-art results, which lead

to the in-depth discussion and evaluation in the following

sections. However, with the introduction of general design

patterns in Sect. II-A, we hope to encourage the discovery of

un-explored combinations and inspire future ADT research

IV. COMMONALITIES OF STATE-OF-THE-ART SYSTEMS

Following the general overview of ADT approaches and

challenges, we now want to focus on ADT systems that

are currently defining the state-of-the-art. According to

their constituent design patterns, these systems can all be

categorized as activation-based methods. However, based on

how the activation functions are derived, they can be further

categorized into two families, namely the NMF-based and

RNN-based approaches. The next four sections will provide a

more detailed discussion on these techniques. We will start by

introducing their commonalities in FR and ES with consistent

mathematical notations. Next, we will provide detailed

description on AF with both NMF-based and RNN-based

approaches. Finally, a comprehensive evaluation will highlight

the strengths and weaknesses of the different approaches. Not

all aspects of the systems are covered and so the reader is

referred to the original papers if further information is desired.

In order to put both in an unified perspective, we will start

with the introduction of a common signal model.

A. Common Notation

The following mathematical notation will be used

throughout the remainder of this paper. Uppercase italic letters

such as K will be used to denote fixed scalar parameters,

while lowercase italic letters such as k are used to denote

running variables or indices. We denote integer intervals as

[1 : K] := {1, 2, . . . ,K}. Uppercase non-italic letters such

as X usually denote matrices, while lower-case non-italic

letters such as x denote column vectors. The operation X⊤

denotes transposition. Rounded brackets are used to refer to

elements of vectors and matrices, e.g., X(k, t) refers to the

element located at the kth row and the tth column of matrix

X. The colon is a short notation for taking slices along a

certain dimension of a matrix, e.g., X(:, t) denotes the tth

column. For notational convenience, we also introduce the

superscript notation xt := X (:, t) and the subscript notation

xk := X (k, :). In Sect. VI, we will make extensive use of

that notation, also for the sake of compatibility with previous

work. Other notational conventions will be explained in the

respective paragraphs.

B. Feature Representation

Both families of ADT systems considered here belong to

the activation-based methods. As such, they are all based on

the signal model assumption that the given drum recording

is approximately a linear mixture of constituent drum sound

events. Let X ∈ R
K×T
≥0 be the signal’s magnitude spectrogram

from the STFT, with X(k, t), representing the non-negative,

real-valued TF magnitude coefficient at the kth spectral bin

for k ∈ [0 : K] and the tth time frame for t ∈ [1 : T ]. The

number of frequency bins is determined by the window size N
as K = N/2. The number of spectral frames T is determined

by the available signal samples. Our objective is to map X to

an activation representation G ∈ R
R×T
≥0 . Here, the number of

rows R ∈ N is usually equal to the number of distinct drum

instruments (e.g., R = 3 for KD, SD, HH). As G encodes the

activations of a certain drum instrument over time, G(r, t)
should be large if instrument r has an onset at time t and

otherwise small. Ideally, the activations should be impulse-like

as shown in Figure 3c.

C. Event Segmentation (Peak-Picking)

The detection of candidate onset events is typically ap-

proached by picking the peaks in the activation function G(r, :)
for each r ∈ [1 : R]. This process is similar to the Peak-Picking

step in generic onset detection methods [93], and different

adaptive thresholding techniques may be chosen for further

optimization. However, since the activation functions of the

evaluated systems in this paper are different in nature, no

specific optimization has been done. Instead, we employ a

very simple procedure consistently for all evaluated methods

instead of the different peak-picking approaches used in the

original works. This is done in order to easier identify the

differences focusing on the extraction of activation functions.

First, a dynamic threshold ∆ ∈ R
R×T
≥0 is calculated for each

considered drum instrument and each frame using

∆(r, t) =
1

2Γ + 1

t+Γ
∑

n=t−Γ

G(r, n). (1)

In this context, Γ ∈ N determines the window used to calculate

the average (we assume suitable zero padding at the boundaries).

Second, we introduce a binary-valued output matrix O ∈ B
R×T

with B := {0, 1}. The elements of O encode onset candidates

and are defined as follows:

O(r, t) =







1, G(r, t) = max (G(r, t− Ω : t+Ω))
and G(r, t) > ∆(r, t)

0, otherwise
(2)
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Here, Ω ∈ N determines the window used for local maximum

search. In other words, a candidate peak is only accepted

if it exceeds the dynamic threshold ∆ as well as its local

neighborhood. If the criterion in Eq. (2) also is true for

two peaks within a certain distance, the weaker of both is

discarded. The output matrix O will become important again

in the context of evaluation metrics in Sect. VII-C.

V. NMF-BASED ADT SYSTEMS

In this section, we provide more details of the different ADT

systems employing variants of NMF. Fig. 5 depicts the basic

of decomposing the mixture spectrogram X into spectral basis

functions B (:, r) (called templates), and corresponding time-

varying gains G(r, :) (called activations). Intuitively speaking,

the templates comprise the spectral content of the mixture’s

constituent components, while the activations describe when

and with which intensity they occur.

The entries of template matrix B can be interpreted as averaged

spectra of the corresponding drum instruments KD, SD, and

HH. The KD, in red, occupies the lowest frequency region,

the SD, in green, occupies the mid-region, and finally the HH,

in blue, has most of its energy in the upper frequency region.

In G, the corresponding drum onset events occur as peaks

with quickly rising attacks. They are followed by exponentially

decaying slopes that correspond to the natural decay of the

drum sound events.

In both B and G we also inserted hatched regions. These shall

express that we might add additional components modeling

sound events in the mixture that do not originate from KD, SD,

or HH. We will return to this concept in Sect. V-C. Furthermore,

we discuss a convolutive extension to NMF in Sect. V-E.

A. Basic NMF Model

Mathematically, NMF is based on iteratively computing a

low-rank approximation X̃ ∈ R
K×T
≥0 of the mixture spectrogram

X. Specifically, X̃ is defined as the linear combination of the

templates B ∈ R
K×R
≥0 and activations G ∈ R

R×T
≥0 such that

X ≈ X̃ := B ·G. Note that X̃ always uses the latest available

version of all parameters.

NMF typically starts with a suitable initialization of matrices

B and G. Subsequently, these matrices are iteratively updated

to approximate X with respect to a cost function L. A standard

choice is the generalized Kullback-Leibler Divergence [94],

given as

L = DKL(X | X̃) =
∑

(

X⊙ log

(

X

X̃

)

−X+ X̃

)

. (3)

The symbol ⊙ denotes element-wise multiplication; the division

is to be performed element-wise as well. The sum is to be

computed over all KT elements of X. To minimize this cost,

an alternating scheme with multiplicative updates is used [94].

The respective update rules are given as

B← B⊙
X

X̃
·G⊤

J ·G⊤
, (4)

G← G⊙
B⊤ · X

X̃

B⊤ · J
, (5)

where the symbol · denotes the matrix product. Furthermore,

J ∈ R
K×T denotes a matrix of ones. Since this is an

alternating update scheme, it should be noted that Eq. (4) uses

the latest update of G from the previous iteration. In the same

vein, Eq. (5) uses the latest update of B. These update rules

are typically applied for a limited number of iterations L, with

the iteration index ℓ ∈ [1 : L].

B. Fixed-Bases NMF (FNMF)

When using NMF for ADT, it is essential to choose a

suitable number of components R ∈ N for the approximation

and to provide good initializations for B. One popular choice

(see for example [20], [49], [63], [69]) is to set R to the

number of distinct drum instruments and to initialize individual

B (:, r) with averaged spectra of isolated drum sound events.

The rationale is to let the NMF component updates start

from a point in the parameter space that is already close to a

meaningful optimum.

In this context, some authors [63], [69] also propose to keep

the initialized B (:, r) fixed throughout the NMF iterations,

i.e., not to apply Eq. (4), which makes the optimization

problem convex. Although this is a very appealing and simple

approach, fixed NMF bases may be problematic in cases

where the mixture consists of other components than the

previously trained drum sounds. Intuitively speaking, the NMF

updates rules will try to model the observed X as accurate as

possible given the fixed prior basis vectors, possibly leading

to spurious activations that resemble cross-talk between the

different drum sounds.

C. Partially-Fixed NMF (PFNMF)

In addition to the fixed bases, additional templates in B can

also be initialized randomly in order to model the harmonic

part of the mixtures. In PFNMF [74], the matrices B and G
are further split into the matrices BD and BH, as well as GD

and GH, respectively. The matrix BD is initialized as described

in Sect. V-A and is fixed during the factorization process,

while the matrices BH, GH, and GD are initialized randomly

and are updated iteratively. The number of components RD

in BD and GD depends on the number of templates (i.e.,

instruments) provided, and the number of additional templates

RH is a free parameter. The total number of components is

R = RD + RH. To further emphasize the drum components,

both the BD and BH can be weighted inside the loss function

by scaling factors γ and δ, respectively. These scaling factors

are set to be γ = (RD +RH)/RD for each drum template and

δ = RH/(RD +RH) for each harmonic template. This setting

strengthens drum templates and attenuates harmonic templates
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Fig. 5: Illustration of an NMF-based ADT system. The individual drum instruments appear in the same order as in Fig. 3.

when RH is larger than RD. The modified NMF cost function

is definded as:

L = DKL(X | γX̃D + δX̃H). (6)

The matrices BH, GH, and GD will be updated according to

the following update rules:

BH ← BH ⊙

X

(γX̃D+δX̃H)
·G⊤

H

J ·G⊤

H

, (7)

GD ← GD ⊙
B⊤

D ·
X

(γX̃D+δX̃H)

B⊤

D
· J

, (8)

GH ← GH ⊙
B⊤

H ·
X

(γX̃D+δX̃H)

B⊤

H
· J

. (9)

Note that the algorithm reduces to the FNMF approach as

described in Sect. V-B when RH = 0.

To further improve the pre-defined drum dictionary BD, two

template adaptation methods are introduced in [74]. In the

first method (referred to as AM1), the drum dictionary BD is

updated based on evaluating the cross-correlation between the

activations GH and GD. PFNMF starts by randomly initializing

BH with RH components. Although BH tends to adapt to the

harmonic content, it may still absorb spectral magnitude of

the drum sounds, which leads to unwanted cross-talk artifacts

between GH and GD, generating less pronounced activations

in GD. However, these harmonic templates may also provide

complementary information to the original drum templates. To

identify these entries, the normalized cross-correlation between

GH and GD for each individual drum is computed as:

ρx,y =
〈x, y〉

‖x‖
2
· ‖y‖

2

, (10)

where 〈·, ·〉 denotes the inner product and ‖·‖2 is the Euclidean

norm. Furthermore, x and y represent different pairs of

activation vectors (e.g., x = GD(r1, :), y = GH(r2, :), with

r1 ∈ [1 : RD], r2 ∈ [1 : RH]). A threshold ρthr is defined

for identification of relevant entries, and each drum template

BD(:, r) is updated after Eq. (7) via:

BD(:, r)← (1− α)BD(:, r) + α
1

|S|

S
∑

i∈S

(ρx,y(i)BH(:, i)) .

(11)

Here, S ⊂ [1 : RH] denotes the subset of component indices

whose corresponding activations fulfill ρx,y ≥ ρthr and |S| is

the cardinality of this subset. In other words, the right-most

term in this equation represents a weighted combination

of templates from the harmonic dictionary that potentially

contribute to the drums. A high threshold ρthr leads to minimal

adaptation of the initial BD(:, r), whereas a low threshold

leads to strong adaptation. The amount of adaptation also

depends on the blending parameter α = 1

2ℓ
, which decreases

as the iteration index ℓ increases.

In [74], the second method (referred to as AM2) allows

adaptation of the drum templates BD by alternatively fixing

BD and GD during the decomposition process. The adaptation

process starts by fixing BD, and PFNMF will try to fit the

best activation GD to approximate the drum part in the

music. Once GD is determined, a new iteration of PFNMF

is started by fixing GD, while BD, BH and GH are updated.

This modification will guide the algorithm to fit better drum

templates based on the detected activation GD. The update

rule for BD is as follows:

BD ← BD ⊙

X

(γX̃D+δX̃H)
·G⊤

D

J ·G⊤

D

(12)

Both methods have the same criterion to stop iterating

when the error between two consecutive iterations changes by

less than 0.1% or the number of iterations exceeds 20. In our

experiments, the adaptation process typically converges after

5–10 iterations.

D. Semi-Adaptive NMF (SANMF)

An alternative approach for combining meaningful initial-

ization with adaptability is to allow the spectral bases in B to

deviate from their initial shape with increasing iteration count.

Dittmar and Gärtner [69] proposed to enforce this behavior by

blending between the latest update of B obtained from Eq. (4)

and the fixed initial dictionary denoted this as B:

B← (1− α) · B+ α · B. (13)

The blending parameter α depends on the ratio of the current

iteration count ℓ to iteration limit L taken to the power of β:

α =

(

ℓ

L

)β

. (14)

Thus, only small adaptations of the NMF components are

allowed early on, whereas stronger adaptation are allowed in

later iterations. The larger the parameter β, the longer one

attenuates the influence of Eq. (4) on B.

Note that both Eq. (11) and Eq. (13) are ad-hoc updates and

the convergence is not always guaranteed. However, in practice,

these update rules generally converge in a reasonable number
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Fig. 6: Illustration of an NMFD-based ADT system.

of iterations. More details and experimental behaviors can be

found in the original papers [69], [74]

.

E. Non-Negative Matrix Factor Deconvolution (NMFD)

The different NMF methods presented so far assumed

that one template per drum instrument is sufficient to model

temporal dynamics of drum sounds. However, we indicated

already in Sect. I-A that certain drum instruments may generate

complex, time-varying patterns when being struck. This is

in line with the findings of [62], [63], where separate NMF

templates for attack and decay of a drum sound event are used.

As an alternative to that, previous works (such as [13], [65],

[70], [95], [96]) successfully applied NMFD, a convolutive

version of NMF, for drum transcription and drum sound

separation.

As has been discussed in the above-mentioned publications, the

NMFD model assumes that all drum sound events occurring

in the mixture can be explained by a prototype event that

acts as an impulse response to some impulse-like activation

(e.g., striking a particular drum). In Figure 6, we illustrate

this by introducing R = 3 prototype magnitude spectrograms

Pr ∈ R
K×M
≥0 . Each Pr can be directly interpreted as a

spectrogram pattern consisting of M ≪ T spectral frames.

Each pattern is convolved with the corresponding row of G,

yielding a convolutive approximation of X.

Mathematically, this can be formalized by grouping the above-

mentioned patterns into a pattern tensor P ∈ R
K×R×M
≥0 . In

short notation, the slice of the tensor which refers to the rth

pattern is Pr := P(:, r, :); whereas Pm := P(:, :,m) refers

to the mth frame index simultaneously in all patterns. The

convolutive spectrogram approximation X ≈ X̃ is modeled as:

X̃ :=
M−1
∑

m=0

Pm ·
m→

G , (15)

where
m→

(·) denotes a frame shift operator (explained in

[95]). Similar to NMF, both P and G are suitably initialized.

Subsequently, they are iteratively updated to minimize a cost

function between the convolutive approximation X̃ and X.

According to [95], the update-rules extending Eq. (4) and

Eq. (5) are given by:

Pm ← Pm ⊙

X

X̃
·

(

m→

G

)

⊤

J ·

(

m→

G

)

⊤
(16)

G← G⊙
P⊤

m ·

←m
[

X

X̃

]

P⊤

m · J
(17)

for m ∈ [0 : M − 1].
As can be seen in Fig. 6, the NMFD-based activations in G
exhibit a more spiky, impulse-like shape compared to the ones

resulting from NMF in Fig. 5. As said before, this is a desirable

property since it alleviates the ES step. The peaks are more

concentrated since the Pr have the capability to better model

the decay part of the drum sound events, thus attenuating the

level of the activations during the decay phase. However, if the

pattern length M is set too high, the increased expressiveness

is also a potential drawback of NMFD. As discussed in [65],

it may happen that the NMFD fails to untangle the underlying

drum sounds, and instead captures sequences of drum strokes.

For reasonable M (see Table IV), the learned Pr typically

resemble spectrogram snippets averaged from all instances of

the target drum sound occurring in the signal (as shown in the

center panel of Fig. 6).

Note that NMFD is conceptually similar to the classic AdaMa

method [42]–[44]. The typical alternation between drum

detection and drum template refinement used by AdaMa is

also entailed in the update rules for NMFD activations and

templates. In contrast to AdaMa, no explicit decision making

about the acceptance of drum sound candidates is required

during NMFD updates, so that hard decisions can be omitted.

VI. RNN-BASED ADT SYSTEMS

In this section, we provide more details of the different

ADT systems based on recurrent variants of DNNs, called

RNNs. Fig. 7 illustrates the basic concept behind ADT with

RNNs. In contrast to the NMF-based systems, the mixture

spectrogram X is processed as a time-series in a frame-wise

fashion, i.e., we insert each individual spectral frame xt

sequentially into a trained RNN. If an input frame corresponds

to the start of a drum sound event, it should ideally lead to a

spiky, impulse-like activation at the RNNs’ output as shown

in Fig. 7e. In order to explain the necessary training steps

enabling this desired input-output behavior, a few basics of

DNN training are first reviewed.
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A. DNN Training

As briefly explained in Sect. II-E, DNNs are networks

consisting of linear, learnable parameters (weights and biases)

and fixed non-linearities. These essential building blocks are

usually organized in layers. For our concrete ADT tasks, we

use spectral slices xt of X as input to the first layer. Processing

the input data in the first layer is interpreted as transformation

to a more abstract representation, which in turn is used as

input to the subsequent layer. Ideally, when the data has been

processed by all layers, the neurons in the network’s output

layer should generate activation functions of the assigned drum

instruments, as shown in Fig. 7. This is achieved by training the

network with pairs of typical input data and target output data

and automatically adjusting the learnable parameters towards

the desired behavior. In our ADT scenario, the target output

is typically generated from ground-truth transcriptions of the

training data. For each of the considered drum instruments,

frames corresponding to the start of a drum sound event

are labeled as 1 and the remaining frames as 0 (as shown

in Fig. 3c). The trained DNN should then produce similar

activation functions when provided with the spectrogram input

data of previously unseen drum mixtures.

Mathematically, the input-output behavior of a single network-

layer can be formalized as

h = φ (W · x + b) , (18)

where W ∈ R
D×K is the weight matrix and b ∈ R

D is the

bias vector. The non-linearity φ(·) is applied in an element-

wise fashion to yield the layers’ output h ∈ R
D. A variety of

non-linearities are used in the literature, the most common ones

being hyperbolic tangent (tanh), sigmoid (σ), and rectified-

linear units (ReLU). The meta-parameter D ∈ N determines

the number of neurons per layer and is also referred to as layer

width. Sticking to our ADT example of detecting KD, SD, HH

sound events using just a single network layer, D = 3 would

be a natural choice.

In accordance to the literature, we denote the entirety of

network parameters as the set Θ, such that W ⊆ Θ and b ⊆ Θ.

During training, the parameter set is adapted so that the DNN

produces the desired input-output behavior as specified by the

training data. In the following, we denote the ground-truth

target output as y and the output delivered by the network as ŷ.

For example, one has ŷ = h for the simple, one-layer network

presented above.

The parameters Θ need to be suitably initialized and can

then be iteratively optimized by gradient descent [97]. For

the optimization, one needs a cost function (often called loss

function) L that measures the deviation between the network

output ŷ and the target output y. A popular choice is cross-

entropy:

L =
1

D

D
∑

d=1

(yd log ŷd + (1− yd) log(1− ŷd)) . (19)

From this, the gradient G of the cost function with respect to

the network parameters Θ needs to be determined. Then, the

update of the network parameters is given by

Θ← Θ− µ · G. (20)

The meta-parameter µ, a small positive constant, is called

learning rate. As with the NMF-based ADT methods, the

parameter updates are iterated for L epochs.

In contrast to our simplified example, DNNs are usually a

cascade of many layers with individually trainable weights

and biases. Although this seems to complicate the derivation

of the gradient G, the layered architecture of DNNs allows

the use of the backpropagation algorithm [97] to efficiently

calculate gradients for the parameters. In practice, this is

usually achieved by using automatic differentiation libraries

(e.g.,Theano, TensorFlow, etc.).

There are different approaches to utilize training data in this

process: using the full dataset (Batch Gradient Descent, BGD),

a single data point (Stochastic Gradient Descent, SGD), or a

small portion of data points (Mini-Batch Gradient Descent,

MBGD) for one update. To accelerate the convergence of

gradient descent and to avoid getting stuck in local minima,

several modifications have been proposed. Momentum

approaches use past update values of the gradient to speed

up convergence in problematic areas of the loss function L
(e.g., SGD with momentum [97] and Nesterov accelerated

gradient [98]). Adaptive learning rate methods adjust the

parameter µ according to the history of past gradients

(e.g., Adagrad [99], Adadelta [100], RMSprop [101], and

Adam [102]).

B. Basic RNN Model (RNN)

In the following sections, four RNN-based ADT systems

proposed in the literature [76]–[78], [103] will be discussed in

detail. Their differences with respect to network configuration,

cell architecture, and training strategy will be explained in the

corresponding subsections.

RNNs represent an extension of DNNs featuring additional

recurrent connections within each layer. The recurrent connec-

tions provide the single layers with the previous time step’s

outputs as additional inputs. The diagram of Fig. 7b visualizes

this concept by a feedback connection from a neuron’s output

to its input. The equation for the output of an RNN layer at

time step t is given by

ht = φ
(

W ·
[

xt, ht−1
]

+ b
)

, (21)

where [:, :] denotes concatenation. Furthermore, W and b
represent the appropriately sized weight matrix and biases

vector, while xt is the current input to the layer and ht−1 is

the output from the previous time step of the same layer. In

case of RNNs with several hidden layers, the output ht is

interpreted as input to the next hidden layer. The feedback of

the outputs within the hidden layer acts as a simple form of

memory and makes RNNs suitable for dealing with time series

such as the sequence of spectral frames xt in our spectrogram

X.

An algorithm called Back-Propagation Through Time

(BPTT) [104] is utilized to train RNNs, during which the
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Fig. 7: Illustration of an RNN-based ADT system. (a) Spec-

trogram of the drum mixture. (b) Spectrogram frames are

sequentially used as input features for a pretrained RNN. (c)

Activations of the first hidden layer. (d) Activations of the

second hidden layer. (e) Activations of the output layer.

network is thought of being unfolded in time for the length

of the time series sequence. Unfolded RNNs become very

deep networks, depending on the sequence length used for

training. Since deep networks are harder to train, often only

subsequences of the time series data are used for training.

In Fig. 7c and Fig. 7d, we show the hidden layer activations

in a trained RNN. Darker shades of gray encode higher

absolute activation. On closer inspection, some structure is

visible as the activations tend to be stronger simultaneously

to drum sound events occurring in the input. Finally, Fig. 7e

displays the output activations according to our example drum

recording. The output activations nicely indicate the onset

times of drum sound events. For our example signal, the

RNN-based activations are even more pronounced and spiky

than the ones obtained via NMFD (cf. Fig. 6).

For the evaluation in Sect. VII, we use a simple baseline RNN,

similar to the plain RNNs in [76], [78]. The meta-parameters

used in our experiments are given in Table IV.

Fig. 8: An overview of an unfolded bidirectional RNN. The

solid (forward) connections are also found in a standard RNN

while the bidirectional RNN contains additional backward

connections (dashed arrows). xt and ŷt are the inputs and

outputs at time step t, with the circles representing the layers

of the network.

C. Bidirectional RNNs (tanhB)

Southall et al. [78] introduced a system based on Bidirec-

tional RNNs (BRNN) [105] for ADT. BRNN layers consist of

two RNN sub-layers, one with recurrent connections in forward

direction (t− 1→ t) and the other with recurrent connections

in backward direction (t+ 1→ t) as shown in Fig. 8. These

allow the network to take past as well as future information

into consideration for the output at time step t, which has

been shown to be beneficial for many different tasks. As a

downside of BRNNs, the entire sequence to be processed must

be available in advance, making them generally unsuitable for

real-time applications. By using small subsequences of the

input stream it is possible to partly circumvent this issue.

The network configuration for the BRNNs used in [78] is

given in Table IV. Each drum instrument under observation is

treated as an independent classification problem using separate

neural networks with softmax output layers. This approach

allows to easily remove and add additional observed drum

instrumentation.

D. RNNs with Label Time-Shift (ReLUts)

Vogl et al. [76] confirmed that BRNNs perform better than

RNNs, but also showed that equal results can be achieved

with RNNs using a label time-shift (25 ms). For this, all drum

instrument annotation labels are shifted in time +25 ms (for a

more detailed explanation see [76] ). This shift allows an RNN

to access information before and after the true start of drum

sound events. One major benefit of using time shifts (instead

of BRNNs) is that the method enables online application (with

only a short delay). The network transcribes all three drum

instruments using a sigmoid output layer with three neurons.

This approach exploits the advantages of Multi-Task Learning

(MTL) [106] by using a common model for different tasks

which can improve overall performance. The meta-parameters

of the network configuration are given in Table IV.

E. Long Short-Term Memory (LSTM) (lstmpB)

In addition to recurrent connections, LSTM cells [107]

feature an internal memory (in the following denoted as c),

which allows the network to learn long-term dependencies. The

internal memory is accessed and updated using three gates

(input gate i, forget gate f , and output gate o) controlled by
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Fig. 9: Overview of LSTMP (a) and GRU (b) cell architec-

tures. Converging connections represent concatenation of the

respective data. Diverging connections represent copies of

the same matrix. Dashed lines in the LSTM cell represent

peephole connections for LSTMPs. The application of weights

and biases is omitted for simplicity and the output arrows show

connections to both the next layer and time step.

the input xt, the hidden state ht−1 and, in case of LSTMs

with peephole connections (LSTMPs), the cell memory c.

The inclusion of c as a gate input allows the long-term

dependencies stored within the cell memory to influence the

flow of information through the gates. The model for an RNN

layer with LSTMP architecture is specified as follows (see also

Fig. 9a):

it = σ(Wi ·
[

xt, ht−1, ct−1
]

+ bi), (22)

ft = σ(Wf ·
[

xt, ht−1, ct−1
]

+ bf), (23)

c̃t = tanh(Wc ·
[

xt, ht−1, ct−1
]

+ bc), (24)

ct = ft ⊙ ct−1 + it ⊙ c̃t, (25)

ot = σ(Wo ·
[

xt, ht−1, ct
]

+ bo), (26)

ht = ot ⊙ tanh(ct). (27)

In these equations, the subscripts are used to denote to which

of the internal gates the weights and biases are associated to.

In the work of Southall et al. [80] bidirectional LSTMs with

peephole connections (BLSTMP) are used in an architecture

similar to [78]. The corresponding meta-parameters of the

network configuration are given in Table IV.

F. Gated Recurrent Unit (GRU) (GRUts)

Similar to LSTMPs, Gated Recurrent Units (GRU) [108] can

be seen as a modification of standard LSTMs. GRUs have a

significantly lower number of parameters compared to LSTMs.

This is achieved by reducing the number of gates, using only an

update gate z and a reset gate r, as well as merging the memory

and the hidden state (ht−1). The model for an RNN layer with

GRU architecture is specified in the following equations (see

also Fig. 9b):

zt = σ(Wz ·
[

xt, ht−1
]

+ bz), (28)

rt = σ(Wr ·
[

xt, ht−1
]

+ br), (29)

h̃t = tanh(Wh ·
[

xt, rt ⊙ ht−1
]

+ bh), (30)

ht = zt ⊙ ht−1 + (1− zt)⊙ h̃t. (31)

In [77], Vogl et al. implement RNNs using GRUs combined

with label time-shift (30 ms). The corresponding meta-

parameters of the network configuration are given in Table IV.

VII. EVALUATION

In this section, we provide the details of the evaluation we

conducted with the state-of-the-art ADT systems introduced in

the last two sections. Specifically, we implemented ten systems

from publications within the last five years (cf. Table II) in

order to assess and compare their capabilities in a unified

experimental framework. The selected algorithms are listed in

Table IV, where we refer the reader to the original papers as

well as the corresponding paragraphs in this article. Whenever

implementational details are omitted, they are equivalent to

the descriptions in the original works. The source code of the

implemented systems can be found online.6,7,8

A. Evaluation Datasets

As indicated earlier, we used two publicly available corpora

of drum recordings for our experiments. We processed and

partitioned the available corpora in such a way that they directly

correspond to the three most relevant ADT tasks introduced

in Sect. I-C. In particular, these are Drum Transcription of

Drum-only recordings (DTD), Drum Transcription in the

presence of Percussion (DTP), and Drum Transcription in

the presence of Melodic instruments (DTM). Table V gives

an overview of the content of these datasets; additional

information is provided in the following paragraphs.

D-DTD: This dataset is intended to evaluate DTD performance,

i.e., transcription of recordings containing only the three drum

instruments KD, SD, HH. A real-world application scenario

for this task would be the transcription of single track drum

recordings in a studio. This dataset uses the latest version of

the IDMT-SMT-Drums corpus [69].

D-DTP: This dataset is intended to assess DTP performance,

i.e., transcription of recordings containing other percussion

instruments in addition to the drum instruments under

observation. A user aiming to transcribe recordings of a large

6https://github.com/cwu307/NmfDrumToolbox, last accessed:10/02/2017
7https://github.com/CarlSouthall/ADTLib, last accessed:10/02/2017
8https://github.com/richard-vogl/dt demo, last accessed:10/02/2017



2329-9290 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2018.2830113, IEEE/ACM

Transactions on Audio, Speech, and Language Processing

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. XYZ, NO. XYZ, XYZ 2017 20

TABLE IV: Overview of all implemented systems included in our evaluation.

Type Abbrev. Reference Sect. Parameters

NMF- SANMF Dittmar and Gärtner [69] V-D R = 3, L = 30, β = 4

based NMFD Lindsay-Smith et al. [65] V-E R = 3, L = 30,M = 10

PFNMF Wu and Lerch [74] V-C RD = 3, RH = 10 (DTD), RH = 50 (DTP & DTM), L = 20

AM1 Wu and Lerch [74] V-C RD = 3, RH = 10 (DTD), RH = 50 (DTP & DTM), L = 20

AM2 Wu and Lerch [74] V-C RD = 3, RH = 10 (DTD), RH = 50 (DTP & DTM), L = 20

RNN- RNN Vogl et al. [76] VI-B 1 hidden layer, D = 200, tanh, RMSprop with initial µ = 0.005, sigmoid outputs, bias init 0,
based Southall et al. [78] mini-batch size = 8 sequences of length 100, weight init uniform ±0.01

tanhB Southall et al. [78] VI-C 2 hidden layers, D = 50, tanh, Adam with initial µ = 0.05, softmax outputs, bias init 0,
mini-batch size = 10 sequences of length 100, weight init uniform ±1, dropout rate 0.25

ReLUts Vogl et al. [76] VI-D 1 hidden layer, D = 100, ReLU, RMSprop with initial µ = 0.001, sigmoid outputs, bias init 0,
mini-batch size = 8 sequences of length 100, weight init uniform ±0.01, dropout rate 0.2

lstmpB Southall et al. [80] VI-E 2 hidden layers, D = 50, BLSTMP, Adam with initial µ = 0.05, softmax outputs, bias init 0
mini-batch size = 10 sequences of length 100, weight init uniform ±1, dropout rate 0.25

GRUts Vogl et al. [77] VI-F 2 hidden layers, D = 50, GRU, RMSprop with initial µ = 0.007, sigmoid outputs, bias init 0,
mini-batch size = 8 sequences of length 100, weight init uniform ±0.1, dropout rate 0.3

TABLE V: Overview of the three datasets used for our evaluation.

Dataset Reference Total KD SD HH Total Avg. Subset 1 Subset 2 Subset 3
#onsets #onsets #onsets #onsets #items Dur. Origin (#items) Origin (#items) Origin (#items)

D-DTD IDMT-SMT-Drums 8722 2309 1658 4755 104 15 s D-DTD-1 D-DTD-2 D-DTD-3
[69] RealDrum (20) TechnoDrum (14) WaveDrum (70)

D-DTP ENST-Drums 22391 6451 6722 9218 64 55 s D-DTP-1 D-DTP-2 D-DTP-3
minus-one [87] Drummer1 (21) Drummer2 (22) Drummer3 (21)

D-DTM ENST-Drums 22391 6451 6722 9218 64 55 s D-DTM-1 D-DTM-2 D-DTM-3
accompanied [87] Drummer1 (21) Drummer2 (22) Drummer3 (21)

drum kit but only being interested in a subset of the drum

instruments is a real-world example of this scenario. Therefore,

we use all items contained in the ENST-Drums minus-one

dataset [87]. In order to use this information for DTP

evaluation, we only consider the annotations for KD, SD,

and HH for our performance metrics (see Sect. VII-C).

In contrast to D-DTD, this set does not have training

audio of isolated drum sound events for each recording,

but only for the three different drum kits that have been

used in the recordings. More detailed information about the

content of this dataset is provided in the second row of Table V.

D-DTM: This set is intended to evaluate DTM performance,

i.e., transcription of polyphonic music recordings containing

a variety of melodic instruments in addition to the drum

instruments under observation. This scenario represents

transcription of full song recordings, which is the most

demanding task but also the one with highest applicability

to real-world music data. Again, we use all items contained

in the ENST-Drums minus-one dataset. We combined

accompaniment and drum tracks using a mixing ratio of 1/3
and 2/3, respectively. This ratio is chosen for consistency

with prior work [19], [58], and is reasonable as confirmed by

listening experiments. We can readily re-use the ground-truth

transcriptions of D-DTP since the underlying drum recordings

stay the same. We again focus on KD, SD, HH and interpret

the melodic accompaniment and the additional percussion as

interference making the DTM task the most challenging in

our performance comparison.

As shown in the three rightmost columns of Table V,

all three datasets come with a natural split into three

subsets. For the IDMT-SMT-Drums corpus, the subsets

correspond to the different origins of the drum recordings,

namely acoustic drum kits (RealDrum), drum computers

(TechnoDrum), and drum sampler software (WaveDrum). For

the ENST-Drums corpus, the subsets correspond to three

different session drummers, each one playing an individual

acoustic drum kit. As layed out in Table V, we denote the

individual subsets with the respective dataset name, followed

by the suffix -1,-2, and -3. As an example, the subset named

D-DTP-2 refers to the set of all drum recordings played

by the second drummer in the ENST-Drums corpus. In the

next section, we will explain why these different subsets are

important for our evaluation.

B. Evaluation Strategies

The goal of our evaluation is to compare the attainable ADT

performance of NMF-based and RNN-based systems within

a common evaluation framework. As explained in Sect. V,

all ADT systems employing NMF-variants require informed

initialization of their spectral bases with averaged drum sound

spectra. This step is essential and can be interpreted as some

sort of training stage.

Similarly, all ADT systems employing RNN-variants require a

training stage (see Sect. VI), where a large number of input

feature vectors and target output vectors are presented to the

network to adjust the internal parameters. Moreover, both

families of algorithms belong to the cluster of Activation-Based

Methods (FR, AF, ES), whose output activations have to

undergo an ES stage, which we realize via peak picking. As
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described in Sect. IV-C, the identification of peak candidates

also depends on meta-parameters that have to be optimized.

In our evaluation, we follow the established standards used for

evaluating machine learning algorithms. First and foremost,

that means we have to partition the entirety of our data into

disjoint sets used for training, validation, and testing. The

training data is used to optimize the internal parameters of the

selected ADT systems, the validation data is used to optimize

hyper-parameters (i.e., the meta-parameters for peak-picking)

and to prevent overfitting of the DNN models, while the test

data is used to measure the performance on unseen data. Note

that parameters of DNNs (i.e., number of neurons, number of

layers, and activation functions) are kept the same as in their

original publications and are thus not optimized during the

process.

We pursue three evaluation strategies explained in the following

paragraphs. In Table VI, we illustrate how the three strategies

apply to the dataset D-DTD. The same principle then applies

for the remaining two datasets D-DTP and D-DTM, the only

difference being that the datasets need to be swapped.

Eval Random: This strategy evaluates the ADT performance

within the “closed world” of each dataset D-DTD, D-DTP,

and D-DTM individually. In order to maximize the diversity

of the data, all items (regardless of the subset partitions) are

randomly split into non-overlapping training, validation and

testing set.

Eval Subset: This strategy also evaluates the ADT

performance within the ”closed world” of each dataset but

using a three-fold subset cross-validation. To this end, each of

the three subsets (see Table V) is evenly split into validation

and testing sets. The union of all items contained in the

remaining two subsets serves as training data. A single subset

is used for the validation and testing set in order to maintain

sufficient training data.

Eval Cross: This strategy evaluates ADT performance

within the ”open world” and the generalization capabilities of

the systems across the different datasets. To this end, each of

the datasets (in full) is used as the testing data for the systems

trained, using the other two corresponding datasets, in the

Eval Random evaluation strategy.

C. Parameters and Performance Metrics

The FR considered in our evaluation is computed via STFT

with a blocksize of N = 2048 and a hopsize of N
4

= 512.

Since all items have a sampling rate of 44.1 kHz, the frequency

resolution of the STFT is approximately 21.5 Hz and the

temporal resolution is approx. 11.6 ms. As window function,

we use a symmetric Hann-window of size N .

For performance metric, we use the standard F-measure as

discussed in Sect. II-F with a tolerance window of 50 ms. This

choice of tolerance window is consistent with many previous

studies on ADT [69], [74], [78] and onset detection [93]

(see Sect. II-F for more discussions on tolerance window). A

TABLE VI: Summary of the three evaluation strategies applied

to the dataset D-DTD (the same principle also applies for D-

DTP and D-DTM by swapping them). The given percentages

denote random selection of items contained in the respective

dataset or subset. The curly brackets denote the union of the

enclosed subsets.

Evaluation
Strategy

Training Validation Testing

Eval Random 70% D-DTD 15% D-DTD 15% D-DTD

Eval Subset {D-DTD-2, D-DTD-3} 50% D-DTD-1 50% D-DTD-1
{D-DTD-1, D-DTD-3} 50% D-DTD-2 50% D-DTD-2
{D-DTD-1, D-DTD-2} 50% D-DTD-3 50% D-DTD-3

Eval Cross 70% D-DTP 15% D-DTP 100% D-DTD
70% D-DTM 15% D-DTM 100% D-DTD
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Fig. 10: Summary of our evaluation. (a) F-measure for the

ADT task for different datasets and different algorithms using

the Random scenario. (b) The F-measure similar to (a). This

time, however, different evaluation strategies are used with

D-DTD dataset only.

reduction of the tolerance window, as shown in [65], generally

leads to a degradation in performance.

VIII. RESULTS AND DISCUSSIONS

To highlight the essence of our evaluation, Sect. VIII-A

yields a top-down summary of the main findings. Sect. VIII-B

and Sect. VIII-C provide a more detailed discussion. For the

sake of completeness and reproducibility, the table with all

evaluation results can be found on our complementary website9.

A. Results Summary

In Fig. 10a, we assess how well the selected systems can

cope with ADT tasks of increasing complexity. To this end,

we show the average F-measure across our three datasets in

the evaluation scenario Eval Random. This evaluation scenario

provides the most ideal case, in which the training data is

likely to be representative of the test data. As expected, the

9http://www.audiolabs-erlangen.de/resources/MIR/
2017-DrumTranscription-Survey/, last accessed 2017/10/02
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(a) D-DTD with Eval Random (b) D-DTD with Eval Subset

(c) D-DTP with Eval Random (d) D-DTP with Eval Subset

(e) D-DTM with Eval Random (f) D-DTM with Eval Subset
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Fig. 11: Evaluation results (Eval Random and Eval Subset) of dataset (a)(b) D-DTD (c)(d) D-DTP (e)(f) D-DTM

highest results are achieved with the least complex dataset D-

DTD. From the family of RNN-based methods, lstmpB is the

best-performing system with approximately 0.97 F-measure,

i.e., almost perfectly solving the DTD task. From the family of

NMF-based methods, NMFD scores best but falls short of all

RNN-based systems. For the more challenging dataset D-DTP,

the performance of all systems drops, except for PFNMF

variants. Although they do not surpass the RNN-systems,

they seem to have an advantage when dealing with additional

percussion instruments. Finally, for the most challenging D-

DTM dataset, GRUts is the only system that surpasses 0.8
F-Measure. Once again, the performance of all other systems

deteriorates. Only the PFNMF-variants can partly compensate

for the performance drop, with AM1 scoring best among the

NMF-methods.

In Fig. 10b, we assess the generalization capabilities of the

evaluated systems. To this end, we stay with the dataset D-

DTD and sweep through our evaluation scenarios. This dataset

is the simplest among the three, which gives the measure of the

best case scenario. We observe that the RNN-based systems are

quite susceptible to mismatches in the training data. Performing

RNN-training on the Eval Subset data already leads to a slight

decrease. The performance drop is even more pronounced

when the training is based on the Eval Cross data. In contrast,

the NMF-based methods either stay stable or improve their

performance through the different training scenarios. This can

be attributed to the adaptivity inherent to NMF.

It should be noted that we present here the averaged results,

i.e., the Eval Subset training results are averaged over the test

splits of D-DTD-1, D-DTD-2, and D-DTD-3. Likewise, the

Eval Cross training results are averaged over training with

D-DTP and D-DTM. More detailed results are provided in

Fig. 11 to Fig. 12.

Based on the above results, the following trends can be

concluded: First, RNN-based systems generally outperform

NMF-based systems. Even the basic RNN system (included

as a baseline) performs on a par with the other systems in

most cases. Since RNNs exploit the temporal dependencies in

the input data, they have the potential to learn the underlying

structure and temporal context. However, for less challenging

data, NMF-based system may provide competitive results

without requiring a computationally expensive training session.

Second, the margin between the strongest and weakest systems

decreases as the signals get increasingly difficult. This result

indicates the typical vulnerability against the interference of

other instruments that is common for all state-of-the-art systems.

Third, the differences between different training strategies are

less pronounced for NMF-based systems, whereas for RNN-

based systems, the performance drop from Eval Random over

Eval Subset to Eval Cross is noticeable. Since Eval Random

offers more diversity (i.e., more training examples similar to

the ones in the test set), it is expected to be more advantageous

for RNNs. On the contrary, when the test data contains unseen

examples, RNNs become less reliable.

B. Eval Random vs. Eval Subset Results

In Fig. 11a to Fig. 11f, we depict the F-measure scores

achieved across all three datasets. The results obtained via

Eval Random are always presented in the left panels. In that

case, the box plots summarize the statistics of individual results

of KD, SD, and HH. The results obtained via Eval Subset are

presented in the right panels, with the box plots summarizing

the statistics of different subsets.

In Fig. 11a and Fig. 11b, it can be found that the two families

of algorithms react differently under the different evaluation

strategies. In Eval Random the best performing system is

lstmpB; in Eval Subset the best performing system is NMFD.

Additionally, for RNN-based systems, switching from Eval

Random to Eval Subset decreases the overall performances; for

NMF-based systems, however, the result is the exact opposite.

In Fig. 11c, the best performing systems are GRUts and

lstmpB. Similar to the D-DTD dataset, switching from Eval
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(a) D-DTD trained on D-DTP (b) D-DTD trained on D-DTM 

(c) D-DTP trained on D-DTD (d) D-DTP trained on D-DTM

(e) D-DTM trained on D-DTD (f) D-DTM trained on D-DTP

Fig. 12: Evaluation results (Eval Cross) of dataset (a)(b) D-DTD with systems trained on D-DTP and D-DTM (c)(d) D-DTP with

systems trained on D-DTD and D-DTM (e)(f) D-DTM with systems trained on D-DTD and D-DTP

Random to Eval Subset , as shown in Fig. 11d, introduces a

noticeable drop in the overall performances for RNN-based

systems; for NMF-based systems, the discrepancy between

the two evaluation strategies is relatively small. An interesting

phenomenon is the steep performance-drop of the RNN-systems

for subset D-DTP-1. This is possibly caused by the special

sound characteristic of the drum kit in that subset, which is

not well reflected in the other two subsets; this may imply the

tendency of overfitting with RNN-systems. NMF-systems, on

the other hand, adapt better on D-DTP-1. This is possibly due

to their ability to separate superimposed sound sources.

In Fig. 11e, the results generally follow the same trend in

Fig. 11c with a slightly inferior performance for all systems.

Note that in Fig. 11f, the combination of dataset D-DTM and

Eval Subset training is used, which represents a challenging

evaluation scheme that is common in previous work [58], [74],

[76], [78]. In this case, the best performing system is lstmpB.

However, the gap between the best performing system and

the others is marginal. Specifically, the NMF-based system

AM2 achieved similar performance as the RNN-based system

lstmpB. Also, the performance drop for D-DTM-1 can be

observed from all systems, showing that additional harmonic

sounds are problematic to both RNN and NMF systems. All

of the systems tend to achieve the highest performance on

KD, may be due to its distinctive frequency range. On the

other hand, all systems have difficulties with SD, this can be

explained by the large spectral overlap between SD and the

melodic instruments in the dataset D-DTM.

C. Eval Cross Results

In Fig. 12a to Fig. 12f, the results for our cross evaluation

strategy are shown. By using each of the datasets D-DTD

D-DTP and D-DTM as test data once, this evaluation strategy

indicates the capability of the evaluated systems to generalize

across different datasets. The error bar represents the standard

deviation across different instruments.

Results using test data from the D-DTD dataset, is shown in

Fig. 12a and Fig. 12b. The best performing system based on

the averaged F-measure is NMFD for both training datasets

D-DTP and D-DTM). Additionally, the differences between

the two training scenarios seem to be small for most of the

systems.

Fig. 12c and Fig. 12d are based on test data from the D-

DTP dataset. When training with D-DTD the best performing

system is ReLUts. When training with D-DTM the best

performing system is GRUts. Comparing these two training

datasets, D-DTM seems to lead to better performances for most

of the systems.

Fig. 12e and Fig. 12f show the results when using test data

from the D-DTM. Not surprisingly, using training data from

D-DTP achieves slightly better results since the drum kits are

the same in both the test and training dataset.

Based on the results, the following observations can be

made. First, while RNN-based systems outperform NMF-based

systems in many cases, the margin becomes small. In the

most challenging case (D-DTM), NMF-based systems actually

achieve a performance comparable to RNN-based methods,

although on a low level. This finding is consistent with the

results in Fig. 11f, in which the RNN and NMF-based systems

performed similarly under the most challenging combination of

evaluation scenario and test data. This indicates the advantage

of the NMF-based systems, which is the generality for unseen

data. Second, most of the systems tend to perform better when

the test data is less complex than the training data. This result

shows the benefits of having data with higher complexity

(i.e., real-world data of polyphonic music), and it also implies

the need for more representative datasets in order to make

further progress in ADT research (see Sect. III-D). Third,

the performance drop from D-DTD to D-DTP and D-DTM
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indicates that all of the systems suffer from the presence of

additional sounds, which could be due to the superimposed

percussive sounds or harmonic sounds in the background.

Further comparison of results between D-DTP and D-DTM

confirms the influence from the harmonic sounds, and the gap

between D-DTD and D-DTM shows that there is still plenty

of room for improvements for all ADT systems.

IX. CONCLUSION

In this survey paper, we provided an up-to-date review of

research in the field of automatic drum transcription over

the last 15 years. This fills up the gap that existed since the

previous survey [6] that had been published a decade ago, and

it also contextualizes modern ADT systems that are based on

the novel matrix factorization and deep learning approaches.

Furthermore, we conducted a systematic evaluation of state-

of-the-art systems on ADT. This evaluation yields a detailed

analysis and comparison between various systems under well-

controlled experimental conditions.

Based on our experiments, RNN-based methods seem to be

the most promising approaches, and they are recommended

when a large and diverse training dataset with high-quality

annotations is available. NMF-based methods, on the other

hand, provide decent performance with only little training data

required; suitable for cases when large training datasets are

not available. Generally speaking, reliable performances can

be expected from the state-of-the-art systems for the DTD

task; for DTP and especially DTM tasks, however, there is still

plenty of room for future improvement.

In the following sections, we identify and summarize

promising future directions in ADT research.

A. More Data

As highlighted in Sect.III-D, having a substantial collection

of high-quality and representative data is the key to the success

of data-driven approaches. ADT research, as one of many

research areas that rely on publicly available data, is also

in need of more data for making further progress. Having

more annotated music available would provide the necessary

diversity and complexity for training models that generalize

well for real-world music recordings. Since creating human-

annotated datasets is a labor-intensive task, an organized and

distributed effort within the ADT research community should

be highly encouraged. Also, as it is a common practice to

record drums into multiple tracks, building multi-track drum

datasets and exploiting the isolated drum information can be

another interesting direction for future ADT research.

B. Public Evaluation

In addition to publicly available datasets, the research

community also benefits from an open evaluation forum for

sharing the latest technological advances, as exemplified by the

Music Information Retrieval Evaluation eXchange (MIREX)

[109]. Despite the continued success of MIREX, ADT is still

a relatively underrepresented task. Recently, ADT research has

seen a steady growth in the MIR community, and efforts have

been made to revive the ADT MIREX task. However, active

participation from the community is vital for the success of

these efforts.

C. More Instruments

So far, most published approaches focus on only the three

main drum instruments, namely the HH, SD, and KD. For

certain applications, a wider range of instruments in the drum

kits (e.g., tom-tom drums, cymbals, or electronic drum sounds),

as well as other drum instruments (e.g., tablas, congas, or other

percussive sounds) would be desirable. In the state-of-the-

art systems evaluated in this paper, such as NMF-based and

RNN-based methods, the extension is conceivable by adding

more templates or neurons to account for extra instruments.

Nevertheless, the viability of the existing methods for these

instruments needs to be further assessed. Also, suitable datasets

would be required in any case, which remains to be an open-

ended issue at this moment.

D. More Dynamic Details

One of the shortcomings shared by most of the state-of-

the-art systems is the ignorance of dynamics of the drum

events. That is, the intensity (or loudness) of a drum event

is usually ignored in favor of the simple and robust binary

representation of the onsets. Activation-based methods provide

curves which tend to be interpreted as onset intensities, but

this information is usually not encoded in the output of the

transcription. Since dynamics has a strong connection to playing

techniques (as described in Sect.III-B) and expressivity, it

would be a reasonable next step for ADT research.

E. Pre/Post-processing Strategies

Intuitively, ADT tasks should benefit from preprocessing

techniques that suppress the irrelevant components and enhance

the target drum sounds. In that regard, source separation

methods (e.g., HPSS [23]) would be an ideal inclusion that

might lead to better suited FR and overall performance.

An example for such techniques is given in [44], where

performance improvements for the AdaMa algorithm could

be achieved when using Harmonic Structure Suppression to

attenuate the influence of pitched instruments on the detection

of KD and SD. However, other studies incorporating similar

ideas report inconclusive results [19]. A common problem

is that suppression of pitched instruments might lead to

additional artifacts that can have a detrimental effect on the

ADT performance.

Additionally, existing ADT systems including NMF-based (see

Sect. V) and RNN-based (see Sect. VI) approaches implicitly

perform source separation during the optimization process

which reduces the need for such preprocessing. Nevertheless,

with the latest developments in source separation techniques

such as the contributions in Signal Separation Evaluation

Campaign for Music (SiSEC MUS10), new strategies that

10https://www.sisec17.audiolabs-erlangen.de, last accessed 2018/04/10
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are optimal for ADT tasks could be worth exploring. For

post-processing, using LMs in ADT seems to be promising

and currently under-explored, but the limitation regarding the

availability of symbolic data should be taken into consideration

(see next section).

F. Integration of Music Language Models

Current state-of-the-art ADT systems mainly focus on

extracting the onset times of the drum events without taking

into account the musical context. Specifically, most of the

state-of-the-art systems are activation-based methods with a

simple peak-picking process as the final step. While achieving

decent results, these approaches do not benefit from high-level

musical information. The integration of LMs (as mentioned in

Sect.II-D) into ADT systems has been proposed in previous

work [53]. However, results so far are below current systems

without LMs. Furthermore, new types of LMs (e.g.,LSTMs)

have not been tested for ADT. This is mainly due to the

fact that the application of common LMs from the automatic

speech recognition domain is not trivial, and large datasets

for both audio and symbolic data for drums are not publicly

available (as mentioned in Sect.II-D). Although the lack of

large training datasets as well as the adaptation of ASR methods

for music are a challenge, the integration of LMs in modern

ADT approaches might be another direction that can potentially

lead to a breakthrough in ADT.

G. Towards Full Transcripts

To obtain a complete transcription in the format of sheet

music, more information, such as tempo, dynamics, playing

styles, or time signatures are required in addition to onset

times. This implies the importance of integrating various MIR

systems to the processing chain of ADT systems in order to

achieve the ultimate goal of full transcriptions. The research

along this direction is still relatively sparse, however, the

importance of this subject will increase as the MIR systems

mature.

ADT is a research topic that is crucial to the understanding

of rhythmic aspects of music, and has potential impact on

broader areas such as music education and music production.

We hope that this paper may serve as reference for continued

research in the field of automatic drum transcription and

automatic music transcription in general, leading towards the

realization of intelligent music systems in the near future.
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[15] M. Leimeister, D. Gärtner, and C. Dittmar, “Rhythmic classification of
electronic dance music,” in Proc. Audio Engineering Society Conf. on

Semantic Audio (AES), London, UK, Jan 2014.

[16] M. Davies, G. Madison, P. Silva, and F. Gouyon, “The effect of
microtiming deviations on the perception of groove in short rhythms,”
Music Perception, vol. 30, no. 5, pp. 497–510, 2013.

[17] C. Dittmar, M. Pfleiderer, and M. Müller, “Automated estimation of
ride cymbal swing ratios in jazz recordings,” in Proc. Intl. Society for

Music Information Retrieval Conf. (ISMIR), Malaga, Spain, October
2015.

[18] C. Dittmar, M. Pfleiderer, S. Balke, and M. Müller, “A swingogram rep-
resentation for tracking micro-rhythmic variation in jazz performances,”
Journal of New Music Research, vol. 47, no. 2, pp. 97–113, 2017.

[19] O. Gillet and G. Richard, “Transcription and separation of drum signals
from polyphonic music,” IEEE Transactions on Audio, Speech, and

Language Processing, vol. 16, no. 3, pp. 529–540, 2008.

[20] J. Paulus, “Signal processing methods for drum transcription and
music structure analysis,” Ph.D. dissertation, Tampere University of
Technology, Tampere, Finland, 2009.



2329-9290 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2018.2830113, IEEE/ACM

Transactions on Audio, Speech, and Language Processing

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. XYZ, NO. XYZ, XYZ 2017 26

[21] A. Lerch, An Introduction to Audio Content Analysis: Applications in

Signal Processing and Music Informatics. John Wiley & Sons, 2012.

[22] M. Müller, Fundamentals of Music Processing. Springer Verlag, 2015.

[23] D. FitzGerald, “Harmonic / percussive separation using median filtering,”
in Proc. Intl. Conf. on Digital Audio Effects (DAFx), Graz, Austria,
September 2010, pp. 246–253.

[24] W. A. Schloss, “On the Automatic Transcription of Percussive Music
- From Acoustic Signal to High-Level Analysis,” Ph.D. dissertation,
Stanford University, 1985.

[25] F. Gouyon, F. Pachet, and O. Delerue, “On the use of zero-crossing
rate for an application of classification of percussive sounds,” in Proc.

Intl. Conf. on Digital Audio Effects (DAFx), Verona, Italy, 2000.

[26] D. FitzGerald, B. Lawlor, and E. Coyle, “Sub-band independent
subspace analysis for drum transcription,” in Proc. Intl. Conf. on Digital

Audio Effects (DAFx), Hamburg, Germany, 2002, pp. 65–69.

[27] P. Herrera, A. Yeterian, and F. Gouyon, “Automatic classification
of drum sounds: A comparison of feature selection methods and
classification techniques,” in Proc. Intl. Conf. on Music and Artificial

Intelligence (ICMAI), Edinburgh, Scotland, UK, 2002, pp. 69–80.

[28] A. Zils, F. Pachet, O. Delerue, and F. Gouyon, “Automatic extraction
of drum tracks from polyphonic music signals,” Proc. Intl. Conf. on

Web delivering of Music (WEDELMUSIC), 2002.

[29] A. Eronen, “Musical instrument recognition using ICA-based transform
of features and discriminatively trained HMMs,” in Proc. Intl. Sympo-

sium on Signal Processing and Its Applications (ISSPA), vol. 2, Paris,
France, July 2003, pp. 133–136.

[30] D. FitzGerald, R. Lawlor, and E. Coyle, “Prior subspace analysis for
drum transcription,” in Proc. Audio Engineering Society Convention

(AES), March 2003.

[31] D. FitzGerald, B. Lawlor, and E. Coyle, “Drum transcription in the
presence of pitched instruments using prior subspace analysis,” in Proc.

Irish Signals and Systems Conf. (ISSC), Limerick, Ireland, July 2003.

[32] D. FitzGerald, “Automatic drum transcription and source separation,”
Ph.D. dissertation, Dublin Institute of Technology, Dublin, Ireland,
2004.

[33] P. Herrera, A. Dehamel, and F. Gouyon, “Automatic labeling of
unpitched percussion sounds,” in Proc. Audio Engineering Society

Convention (AES), Amsterdam, Netherlands, March 2003.

[34] C. Dittmar and C. Uhle, “Further steps towards drum transcription
of polyphonic music,” in Proc. Audio Engineering Society convention

(AES), Berlin, Germany, 2004.

[35] O. Gillet and G. Richard, “Automatic transcription of drum loops,” in
Proc. IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing

(ICASSP), vol. 4, Montreal, Quebec, Canada, May 2004, pp. 269–272.

[36] P. Herrera, V. Sandvold, and F. Gouyon, “Percussion-related semantic
descriptors of music audio files,” in Audio Engineering Society Conf.:

Metadata for Audio (AES), London, UK, June 2004, pp. 69–73.

[37] T. Nakano, J. Ogata, M. Goto, and Y. Hiraga, “A drum pattern retrieval
method by voice percussion,” in Proc. Intl. Society for Music Information

Retrieval Conf. (ISMIR), 2004, pp. 550–553.

[38] V. Sandvold, F. Gouyon, and P. Herrera, “Percussion classification in
polyphonic audio recordings using localized sound models,” Proc. Intl.

Society for Music Information Retrieval Conf. (ISMIR), pp. 537–540,
2004.

[39] D. V. Steelant, K. Tanghe, S. Degroeve, B. D. Baets, M. Leman, J.-P.
Martens, and J. P. Martens, “Classification of percussive sounds using
support vector machines,” in Proc. Annual Machine Learning Conf. of

Belgium and The Netherlands (BENELEARN, 2004, pp. 146–152.

[40] D. V. Steelant, K. Tanghe, S. Degroeve, B. D. Baets, M. Leman, and J.-P.
Martens, “Support vector machines for bass and snare drum recognition,”
in Classification?the Ubiquitous Challenge. Springer, 2005, pp. 616–
623.

[41] A. Tindale, A. Kapur, G. Tzanetakis, and I. Fujinaga, “Retrieval of
percussion gestures using timbre classification techniques,” in Proc. Intl.

Society for Music Information Retrieval Conf. (ISMIR), 2004.

[42] K. Yoshii, M. Goto, and H. G. Okuno, “Automatic drum sound
description for real-world music using template adaptation and matching
methods,” Proc. Intl. Society for Music Information Retrieval Conf.

(ISMIR), 2004.

[43] ——, “Adamast: A drum sound recognizer based on adaptation
and matching of spectrogram templates,” Annual Music Information

Retrieval Evaluation eXchange (MIREX), 2005.

[44] ——, “Drum sound recognition for polyphonic audio signals by
adaptation and matching of spectrogram templates with harmonic
structure suppression,” IEEE Transactions on Audio, Speech, and

Language Processing, vol. 15, no. 1, pp. 333–345, 2007.

[45] S. D. Sven, K. Tanghe, B. D. Baets, M. Leman, and J.-P. Martens,
“A simulated annealing optimization of audio features for drum
classification,” in Proc. Intl. Society for Music Information Retrieval

Conf. (ISMIR), 2005, pp. 482–487.

[46] O. Gillet and G. Richard, “Drum track transcription of polyphonic
music signals using noise subspace projection,” in Proc. Intl. Society

for Music Information Retrieval Conf. (ISMIR), London, UK, 2005.

[47] ——, “Automatic transcription of drum sequences using audiovisual
features,” in Proc. IEEE Intl. Conf. on Acoustics, Speech, and Signal

Processing (ICASSP), vol. 3, Philadelphia, Pennsylvania, USA, March
2005, pp. 205–208.

[48] A. Hazan, “Towards automatic transcription of expressive oral percussive
performances,” in Proc. Intl. Conf. on Intelligent User Interfaces, San
Diego, California, USA, 2005, pp. 296–298.

[49] J. Paulus and T. Virtanen, “Drum transcription with non-negative
spectrogram factorisation,” in Proc. European Signal Processing Conf.

(EUSIPCO), Antalya, Turkey, 2005.

[50] K. Tanghe, S. Degroeve, and B. D. Baets, “An algorithm for detecting
and labeling drum events in polyphonic music,” in Proc. first MIREX,
London, UK, 2005.

[51] G. Tzanetakis, A. Kapur, and R. I. McWalter, “Subband-based drum
transcription for audio signals,” in Proc. Workshop on Multimedia Signal

Processing, Shanghai, China, 2005.

[52] J. P. Bello, E. Ravelli, and M. B. Sandler, “Drum sound analysis for
the manipulation of rhythm in drum loops,” in Proc. IEEE Intl. Conf.

on Acoustics Speech and Signal Processing (ICASSP), vol. 5, Toulouse,
France, May 2006.

[53] O. Gillet and G. Richard, “Supervised and unsupervised sequence
modelling for drum transcription,” in Proc. Intl. Society for Music

Information Retrieval Conf. (ISMIR), Vienna, Austria, September 2007,
pp. 219–224.

[54] A. Moreau and A. Flexer, “Drum transcription in polyphonic music
using non-negative matrix factorisation,” in Proc. Intl. Society for Music

Information Retrieval Conf. (ISMIR), Vienna, Austria, September 2007,
pp. 353–354.

[55] P. Roy, F. Pachet, and S. Krakowski, “Improving the classification of
percussive sounds with analytical features: A case study,” in Proc. Intl.

Society for Music Information Retrieval Conf. (ISMIR), Vienna, Austria,
September 2007, pp. 229–232.

[56] E. Pampalk, P. Herrera, and M. Goto, “Computational models of
similarity for drum samples,” IEEE Transactions on Audio, Speech,

and Language Processing, vol. 16, pp. 408–423, 02/2008 2008.

[57] D. S. Alves, J. Paulus, and J. Fonseca, “Drum transcription from
multichannel recordings with non-negative matrix factorization,” in Proc.

European Signal Processing Conf. (EUSIPCO), Glasgow, Scotland, UK,
Aug 2009, pp. 894–898.

[58] J. Paulus and A. Klapuri, “Drum sound detection in polyphonic music
with hidden markov models,” EURASIP Journal on Audio, Speech, and

Music Processing, vol. 2009, no. 14, 2009.

[59] S. Scholler and H. Purwins, “Sparse coding for drum sound classification
and its use as a similarity measure,” in Proc. Intl. Workshop on Machine

Learning and Music (MML), 2010, pp. 9–12.

[60] A. Spich, M. Zanoni, A. Sarti, and S. Tubaro, “Drum music transcription
using prior subspace analysis and pattern recognition,” in Proc. Intl.

Conf. on Digital Audio Effects (DAFx), Graz, Austria, 2010.

[61] U. Şimşekli, A. Jylhä, C. Erkut, and A. T. Cemgil, “Real-time
recognition of percussive sounds by a model-based method,” EURASIP

Journal on Audio, Speech, and Music Processing, vol. 2011, 2011.

[62] E. Battenberg, V. Huang, and D. Wessel, “Live drum separation using
probabilistic spectral clustering based on the Itakura-Saito divergence,”
in Proc. Audio Engineering Society Conf. on Time-Frequency Processing

in Audio (AES), Helsinki, Finland, 2012.

[63] E. Battenberg, “Techniques for machine understanding of live drum
performances,” Ph.D. dissertation, University of California at Berkeley,
2012.

[64] M. A. Kaliakatsos-Papakostas, A. Floros, M. N. Vrahatis, and N. Kanel-
lopoulos, “Real-time drums transcription with characteristic bandpass
filtering,” in Proc. Audio Mostly: A Conference on Interaction with

Sound, Corfu, Greece, 2012.

[65] H. Lindsay-Smith, S. McDonald, and M. Sandler, “Drumkit transcription
via convolutive NMF,” in Proc. Intl. Conf. on Digital Audio Effects

(DAFx), York, UK, September 2012.

[66] M. Miron, M. E. P. Davies, and F. Gouyon, “An open-source drum
transcription system for pure data and max MSP,” in Proc. IEEE Intl.

Conf. on Acoustics, Speech and Signal Processing (ICASSP), Vancouver,
BC, Canada, May 2013, pp. 221–225.



2329-9290 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2018.2830113, IEEE/ACM

Transactions on Audio, Speech, and Language Processing

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. XYZ, NO. XYZ, XYZ 2017 27

[67] ——, “Improving the real-time performance of a causal audio drum
transcription system,” in Proc. Sound and Music Computing Conf.

(SMC), Stockholm, Sweden, 2013, pp. 402–407.
[68] E. Benetos, S. Ewert, and T. Weyde, “Automatic transcription of pitched

and unpitched sounds from polyphonic music,” in Proc. IEEE Intl. Conf.

on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy,
May 2014, pp. 3107–3111.
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[70] A. Röbel, J. Pons, M. Liuni, and M. Lagrange, “On automatic drum
transcription using non-negative matrix deconvolution and itakura saito
divergence,” in Proc. IEEE Intl. Conf. on Acoustics, Speech and Signal

Processing (ICASSP), Brisbane, Australia, April 2015, pp. 414–418.
[71] V. M. A. Souza, G. E. A. P. A. Batista, and N. E. Souza-Filho,

“Automatic classification of drum sounds with indefinite pitch,” in Proc.

Intl. Joint Conf. on Neural Networks (IJCNN), Killarney, Ireland, Jul
2015, pp. 1–8.

[72] M. Rossignol, M. Lagrange, G. Lafay, and E. Benetos, “Alternate level
clustering for drum transcription,” in Proc. European Signal Processing

Conf. (EUSIPCO), Nice, France, August 2015, pp. 2023–2027.
[73] C.-W. Wu and A. Lerch, “Drum transcription using partially fixed non-

negative matrix factorization,” in Proc. European Signal Processing

Conf. (EUSIPCO), 2015.
[74] ——, “Drum transcription using partially fixed non-negative matrix

factorization with template adaptation,” in Proc. Intl. Society for Music

Information Retrieval Conf. (ISMIR), Malaga, Spain, October 2015, pp.
257–263.

[75] N. Gajhede, O. Beck, and H. Purwins, “Convolutional neural networks
with batch normalization for classifying hi-hat, snare, and bass percus-
sion sound samples,” in Proc. Audio Mostly: A Conference on Interaction
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