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Abstract This article reviews bandlet approaches to geometric image repre-
sentations. Orthogonal bandlets using an adaptive segmentation and a local
geometric flow well suited to capture the anisotropic regularity of edge struc-
tures. They are constructed with a “bandletization” which is a local orthogonal
transformation applied to wavelet coefficients. The approximation in these
bandlet bases exhibits an asymptotically optimal decay for images that are
regular outside a set of regular edges. These bandlets can be used to perform
image compression and noise removal. More flexible orthogonal bandlets with
less vanishing moments are constructed with orthogonal grouplets that group
wavelet coefficients alon a multiscale association field. Applying a translation
invariant grouplet transform over a translation invariant wavelet frame leads
to state of the art results for image denoising and super-resolution.

Keywords Orthogonal bandlets · Wavelets · Image compression ·

Image denoising · Super-resolution · Texture synthesis

1 Geometry of images and textures

Taking advantage of geometrical structures in natural images is crucial to
improve the state of the art in image processing. But geometry is also the
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bottleneck in other scientific areas and similar ideas emerge in various fields
such as turbulence in fluid dynamics or visual coding in the cortex. At a first
glance, geometry might seems restricted to a well defined set of curves along
which the image is singular. Figure 1a shows an example of such a simple
geometric image where the relevant information is only carried along a set of
edges. Natural images are however much more complex than cartoon images
such as the one depicted on Fig. 1b. They carry a textural content that is neither
pure noise nor regular edge curves, see Fig. 1c. Natural phenomenons such as
seismic, wood growth or fluids dynamic is often responsible for the emergence
of this textural content. They lead to turbulent dynamics that creates most of
the complexity of these geometric textures, see Fig. 1d–f.

Geometric structures exist in a lot of signal modalities and carry most of
the perceptual information. The motion of objects in a movie is described
using an optical flow that follows the 3D geometry of the signal, see Fig. 2a,b.
Natural sounds also exhibit geometric patterns in the time-frequency plane
where evolving harmonics follows geometric paths, see for instance a bird
sing spectrogram, Fig. 2c. All these geometric cues are essential for human
perception and should be exploited by modern signal processing methods.

From a mathematical point of view, classical tools from differential geom-
etry can characterize the geometry of contours when the edge curves are well
defined. However, for natural images with a varying blurring and turbulent
textures, the local description of geometric regularity is ill-posed and cannot
lead to robust and efficient algorithms. Thanks to the wavelet transform,
harmonic analysis brings a first answer to the representation of the regular

a b c
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Fig. 1 Examples of images with varying geometric complexity. a simple geometric image.
b cartoon image. c natural image. d seismic image. e wood texture. f vorticity field of a fluid



Numer Algor

a b c

Fig. 2 a Sample image of a movie. b Corresponding optical flow. c Spectrogram of a bird’s sing

parts of images and texture patterns. This is the reason why orthogonal
wavelets bases are at the heart of JPEG2000, the latest image compression
standard. Wavelets are however sub-optimal to compress the geometrically
regular part of images as explained in Section 2.

Bridging the gap between geometric representations and harmonic analysis
is a major issue in image processing. A compact representation of geometric
structures would have applications for traditional image processing tasks such
as inverse problems or compression, but would also ease learning algorithms
in computer vision. Compressing with minimum loss the geometry of images is
at the heart of industrial problems. Satellite imaging requires compression of
urban geometric patterns with increasing resolution and medical imaging re-
quires a fine rendering of vessels and other tubular structures. High-definition
numeric video requires the upsampling of movies where the 3D geometry is
crucial to solve the aliasing problem.

Section 2 studies the wavelet representation and explains its inefficiencies
on geometric images. Both the finite elements and the curvelets schemes,
exposed in Sections 3.1 and 3.2 enjoy a better approximation rate than orthog-
onal wavelets on geometrical images. The orthogonal bandlet approximation
scheme is explained in Section 4. Bandlet bases are obtained through a
hierarchical cascade of orthogonal elementary operators. The geometry pa-
rameterizes these operators to adapt the representation to the local anisotropy
of geometric images. This hierarchical cascade leads to fast algorithms that
compute the decomposition of an image in an adapted bandlet basis. The opti-
mality of the adapted bandlet representation is proved for the approximation,
compression, and estimation of geometrically regular images.

An orthogonal bandelet basis has a constrained geometry that is a source of
inefficiency to capture the turbulent geometry of natural textures. This issue
is solved with a multiscale association field that drives an adapted grouplet
transform, presented in Section 5. This transform can be implemented in
a translation-invariant manner and over coefficients of a multiscale wavelet
transform. This leads to a tight frame of adapted grouping-bandlets. This
tight frame gives state of the art results in denoising and super-resolution
applications and can be used in computer graphics applications such as texture
synthesis and image inpainting.
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2 Image representation in a wavelet basis

Decomposing a function in an orthogonal basis allows to define a sparse
representation using a simple wavelet thresholding. In particular, orthogonal
wavelet bases define optimal approximations for classes of piecewise regular
functions. In this section we review the main properties and limitations of
wavelets to approximate geometrical singularities.

The best approximation fM of a function f with M coefficients in an
orthogonal basis B = {gμ}μ is computed using the largest M coefficients above
some threshold T:

fM
def.=

∑

|〈 f, gμ〉|>T

〈 f, gμ〉 gμ with M
def.= Card

{
μ

∖
|〈 f, gμ〉| > T

}
, (1)

where 〈·, ·〉 is the inner product. The approximation error is then:

|| f − fM||2 =
∑

|〈 f, gμ〉|≤T

|〈 f, gμ〉|2.

A signal model defines a set � such that f ∈ �. Optimizing the representation
is then equivalent to maximizing the decay of the error || f − fM||2 when M

increases, for all f ∈ �. Asymptotically, one looks for bases B such that
|| f − fM||2 = O(M−β) for the largest possible β.

If some basis B reaches an optimal error decay on �, one can prove that
a compression algorithm (resp. a denoising algorithm) that quantizes (resp.
thresholds) the coefficients in this basis is optimal on �. The approximation
problem is thus at the heart of both compression and restoration problems.

2.1 1D wavelets bases

A wavelet basis B of L2([0, 1]) is obtained by dilating and translating a function
ψ [6, 17, 21, 22]

B
def.=

{
ψ j,n

∖
j ≤ 0, n = 0 . . . 2− j − 1

}
with ψ j,n(x)

def.= 2− j/2 ψ(2− jx − n),

with slight modifications for functions ψ j,n whose support intersect the bound-
ary of [0, 1]. Wavelet are oscilating function with vanishing moments. A
wavelet has p vanishing moments if it is orthogonal to polynomials up to
degree p − 1:

∀ k ≤ p − 1,

∫ 1

0

ψ(x) xkdx = 0.

Daubechies [5] shown that one can build such a wavelet that has a compact
support and that generates an orthogonal basis The support of ψ j,n is thus
proportional to 2 j and is localized around 2 jn ∈ [0, 1].

The construction of multiresolution spaces shows the simplicity of the
wavelet transform [15, 22]. The existence of a fast algorithm comes from
the fact that this transform can be factored in a product of elementary
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Fig. 3 Function f , wavelet transform and approximation fM obtained by keeping the 10% largest
wavelet coefficients

orthogonal operators. These operators are computed numerically with discrete
convolutions with quadrature mirror filters that are dilated by inserting zeros.
The cascade of these orthogonal filtering steps implements the fast wavelet
transform that requires O(N) operations for a signal of length N [16].

Figure 3 shows a piecewise regular function together with its wavelet
coefficients 〈 f, ψ jn〉. One can see that there are few large coefficients localized
in the neighborhood of singularities. Indeed, if f is Cα in an interval that
contains the support of a function ψ j,n then the wavelet coefficient is small
for small scale 2 j: |〈 f, ψ j,n〉| = O(2 j(α+1/2)). If f is piecewise Cα and has a
finite number of singularities, one can show that the approximation fM in (1)
obtained with the largest M wavelet coefficients satisfies

|| f − fM||2 = O(M−2α). (2)

This asymptotic decay is optimal and is equal with the one obtained if f has
no singularity. The existence of a finite number of singularities thus does not
affect the asymptotic precision of a wavelet approximation. Figure 3 shows fM

computed with the 10% largest wavelet coefficients.

2.2 2D wavelet bases

Wavelet bases of L2([0, 1]2) are obtained by translating and dilating three
elementary wavelets {ψ H, ψV, ψ D} which oscillate in the horizontal, vertical
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Fig. 4 Example of a 3-tuple of wavelets in 2D

and diagonal directions. These wavelets are separable products of mono-
dimensional wavelet functions. Figure 4 shows an example of 2D wavelets of
compact support.

A wavelet orthogonal basis of L2([0, 1]2) can be written as

B =
{
ψk

jn(x) = 2− j ψk(2− jx − n) = 2− j ψk(2− jx1 − n1, 2− jx2 − n2)

}k=H,V,D

j<0,2 jn∈[0,1]2
.

Figure 5b,c shows the wavelet coefficients along the three directions. These
coefficients have been thresholded in order to keep only the 10 and 2% largest
coefficients in (b) and (c). One can see on the zoom on fM that with only 10%

of the coefficients, one gets an accurate reconstruction and that the quality
gets lower when the number of coefficients diminishes. The JPEG2000 image
compression standard decomposes an image in a wavelet basis and performs a

Fig. 5 Approximation of an image in a wavelet basis with a varying number of coefficients.
a Original image and zoom below. b 10% largest coefficients and zoom of the reconstruction.
c 2% largest coefficients and zoom
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quantization and an entropic coding of the coefficients in order to optimize the
binary code.

Figure 6 shows an application of wavelet bases to the denoising of images.
Figure 6b is corrupted with a gaussian white noise W of variance σ . Figure 6c
is a linear estimate obtained using a convolution with an optimized filter.
Such a linear estimation suppresses a part of the noise but also smoothes the
image singularities which creates a blurry image. Figure 6d shows the wavelet
coefficients of the noisy image. These coefficients are thresholded at a level
T = 3σ in order to keep only the largest coefficients. The restored Fig. 6f is
obtained using the inverse wavelet transform of thresholded coefficients. As
one can see, the noise has disappeared in homogeneous regions and edges
are better reconstructed because their wavelet coefficients are kept by the
thresholding.

The asymptotic accuracy of estimation and compression algorithms in an
orthogonal wavelet basis depends upon the approximation power of this basis.
If f ∈ L2([0, 1]2) is a Cα image, then its approximation fM in (1) with M

wavelet coefficient satisfies:

|| f − fM||2 = O(M−α). (3)

This result is however no more valid if f is discontinuous along an edge. If f

is piecewise regular meaning that it is Cα (α > 1) outside a set of curves with
finite length (contours), then the error decay satisfies only:

|| f − fM||2 = O(M−1). (4)

Fig. 6 Denoising with a thresholding in a wavelet basis
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a b c

Fig. 7 A geometrically regular image together with its wavelet coefficients. For wavelet coeffi-
cients, gray corresponds to a coefficient near zero, white to a large positive value and black to a
large negative value

Unlike the mono-dimensional case, the existence of singularities controls the
asymptotic decay of the error, which becomes much slower. The result (4) is
a special case of a general result for functions with bounded variations [4].
Figure 7 shows the wavelet coefficients of a piecewise regular image. Large
coefficients are localized along the contours (black and white coefficients),
so the number of these coefficients is proportional to the length of contours.
These coefficients are responsible for the slower decay of the approximation.

The goal of a geometric representation is to take advantage of the geometric
regularity of the image “singularities” to enhance the approximation result
(4). In particular, one would like to obtain an approximation that satisfies
|| f − fM||2 = O(M−α) as if there was no singularity in the image. This is indeed
the result (2) obtained for piecewise regular one dimensional functions.

3 Geometric representations of images

A simple model of geometrically regular images is defined as a function f

that is uniformly Cα outside a set of curves which are themselves Cα with
α > 1. Figure 8a shows an example of such a geometrically regular image.

a b c

Fig. 8 a A geometrically regular image. b Approximation with a triangulation. c Approximation
with a wavelet basis (only the support of the basis functions used for the approximation are
displayed)
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Fig. 9 Approximation with finite elements on a triangulation for a function without and with
additional blurring

These curves correspond to the contours of objects that create occlusions.
To model diffraction phenomena, the singularities of f can be blurred by an
unknown convolution kernel. The triangles images of Fig. 9 are examples of
geometrically regular images.

3.1 Finite elements

A thresholding in a wavelet basis is equivalent to an approximation with finite
element having a square support, such that the size of the elements is refined
near the singularities, as shown on Fig. 8c. To enhance the performance of
this kind of approximation, it is necessary to adapt the geometry of the finite
elements, using for instance an anisotropic adaptive triangulation.

Given a triangulation of [0, 1]2 with M triangles, one can define an ap-
proximation f̃M of f which is the best piecewise linear approximation on this
triangulation. The goal of an adaptive triangulation is to optimize the shape
of the triangles in order to minimize the approximation error || f − f̃M||. Near
a discontinuity, the triangle should be thin and stretched along the singularity
curve, as displayed on Fig. 10. The lengths of the triangles should be of order
M−1 and their widths should be of order M−2. If f is C2 outside a set of C2

contours, then one has for such an adapted triangulation

|| f − f̃M||2 = O(M−2). (5)

This construction can be generalized by replacing triangles by higher order
geometric primitives whose boundaries are polynomial curves of degree α, as
shown on the right side of Fig. 10. The adapted approximation using polynomi-
als defined on M such higher order primitives leads to an approximation error
|| f − f̃M||2 = O(M−α) for a function f that is Cα outside a set of Cα contours.

Adaptive triangulations have proven very useful in numerical analysis
where shocks or boundary layers require anisotropic refinement, see for
instance the work of Aguilar and Goodman [1]. However, it exists currently no

Fig. 10 Finite elements for
the approximation around a
singularity curve
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Fig. 11 Aspect ratio of triangles for the approximation of a blurred contour

algorithm that can guaranty such an approximation result as (5) for functions as
complex as images [7]. Indeed, the connectivity and shape of the triangulation
should adapt itself to the local regularity of the image. When an image is
smoothed by an unknown kernel of width s, the triangulation should depend
on s in order to get the result of (5), as shown on Fig. 11. To reach an error
decay of O(M−2), in the neighborhood of a contour smoothed by a kernel of
width s, the triangle should have a length of order s1/4 M−1/2 and a width of
order s3/4 M−1/2. The scale s is most of the time unknown and one thus need an
automatic algorithm to devise the size of the triangles.

This analysis shows that it is possible to reach approximation error bounds
that decay faster that wavelets approximation by adapting the representation
to the geometry of the image. However the finite element approach does not
yet comes with algorithms that can handle complex images.

3.2 Curvelets

The curvelets basis of Candès and Donoho [3] brings a mathematical and
algorithmic solution to the problem of approximating geometric images whose
contours are C2. Unlike wavelets, curvelets are functions whose support are
elongated like the anisotropic triangles of Fig. 9b. A curvelet is a function
ψθ, j,u(x) whose support is centered around u, with length proportional to 2 j, a
width proportional to 22 j and an orientation θ . Figure 12 shows some examples
of curvelets.

Candès et Donoho have build a Riesz basis of L2([0, 1]2) using curvelets. If
f is C2 with C2 contours, they have shown that a thresholding of the curvelets

Fig. 12 Examples of curvelets
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coefficients defines an approximation fM that satisfies

|| f − fM||2 = O(M−2(log M)3).

Up to a log(M) factor, one recovers the result (5) obtained using an optimal
triangulation, but this time with an algorithmic approach. The beauty of this
result comes from its simplicity. Unlike an optimal triangulation that has to
adapt the aspect of its elements, the curvelets basis is a priori fixed and the
thresholding of the curvelets coefficients is enough to adapt the approximation
to the geometry of the image. This simplicity however has a downside. The
cuvelets approximation is only optimal for piecewise Cα functions with α = 2,
but it is no more optimal for α > 2 or for less regular functions such as bounded
variation functions. For now, it does not exist orthogonal basis of curvelets,
which makes them less efficient than wavelet to compress natural images.

3.3 Adaptative representations

Many adaptive geometric representations have been proposed recently with
good results in image processing. Instead of decomposing an image in a
fixed a priori basis, an adaptive algorithm modifies the representation using
a geometry computed from the image. The wedgelets of Donoho [8] segments
the support of the image in dyadic adapted squares. On each square, the image
is approximated with a constant value on each side of a straight edge. The
direction of this estimated edge is optimized using the local content of the
image. This approach is generalized by Shukla et al. [27] that replace constant
values by polynomials and the straight edges by polynomial curves. This kind
of approach is efficient as long as the geometry of the image is not too complex
and edges are not blurred.

To enhance wavelets representations, Wakin et al. [29] and Dragotti and
Vetterli [11] have proposed to approximate the wavelet coefficients using
adaptive vector quantization techniques. Following the work of Matei and
Cohen [20] on adaptive lifting schemes, new lifting algorithms have also been
proposed to predict wavelet coefficients from their neighbors. These works
are mostly algorithmic and do not provide mathematical bounds. They use the
fact that wavelet coefficients inherit some regularity from the image geometric
regularity. Similar ideas are at the core of the bandlets construction.

4 Orthogonal bandlets

A sparse representation takes advantage of some kind of regularity of the
function to approximate. Wavelet bases exploit the isotropic regularity on
square domains of varying sizes. Geometric regularity along edges in images
is an anisotropic regularity. Although the image may be discontinuous across a
contour, the image can be differentiable in a direction parallel to the tangent of
the edge curve. The bandlet transform exploits such an anisotropic regularity
by constructing orthogonal vectors that are elongated in the direction where
the function has a maximum of regularity.
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The first bandlet bases constructed by Erwan Le Pennec [13, 14] have bring
optimal approximation results for geometrically regular functions. Later works
have enriched this construction thanks to the use of a multiscale geometry
defined over the coefficients of a wavelet basis [23, 26]. These multiscale
bandlet bases are described in Section 4.3.

4.1 Regularity of wavelet coefficients

The wavelet transform can be factored in a product of elementary orthogonal
operators, obtained by dilating “quadrature mirror filters.” Orthogonal ban-
dlet bases are obtained from a wavelet basis by using an additional cascade of
orthogonal operators parameterized by the local geometry of the image.

The wavelet representation is both sparse and structured. For a geomet-
rically regular image, Fig. 13 shows that for each scale the large coefficients
are localized near the singularity curves. If K is the size of the support of the
wavelets functions ψk, the large coefficients are localized in tubes of width K,
as shown on Fig. 13. Those coefficients are compressed using an orthogonal
“bandletization” operator that exploits the underlying geometric regularity.

Wavelet coefficients of f can be written as uniform samples from the
function f regularized with a wavelet kernel ψk

j whose support has a width
of 2 j:

〈 f, ψk
jn〉 = f j(2

jn) where f j(x)
def.= f ∗ ψk

j (x) and ψk
j (x) =

1

2 j
ψk

(−x

2 j

)
.

The convolution guarantees that f j is at least as regular as ψk
j . The function f j

also inherits the regularity of f in the direction parallel to the edge. Figure 13
shows an example of a set of coefficients near an edge. In order to derive an
adapted approximation of the wavelet coefficients, we now study the regularity
of f j by bounding its derivatives.

In the following we study the regularity of f j on some small square S ⊂
[0, 1]2 of width λ. If f is a Cα function outside a Cα edge curve parameterized
horizontally by x2 = γ (x1), then one can control the derivatives of f j along a
vector field (1, γ̃ ′(x1)) close to (1, γ ′(x1)). The same construction applies for

Fig. 13 Wavelet coefficients at a given scale 2 j are uniformly sampled from a regularized function
f ∗ ψk

j (x) shown on the right
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ba c

Fig. 14 a Wavelets coefficients and geometric flow γ̃ ′. b Sampling position and geometric flow.
c Warped sampling position and warped constant flow (horizontal)

vertically parameterized geometries. Figure 14a shows an example of such an
approximate flow γ̃ ′. This flow defines a warping operator w

(̃x1, x̃2) = w(x1, x2)
def.= (x1, x2 − γ̃ (x1)), where γ̃ (x1) =

∫ x1

0

γ̃ ′(t)dt.

(6)

As shown on Fig. 14b,c, this warping modifies the sampling location and
aligns the geometrical flow with the horizontal direction. The regularity of f j

along the flow can be formulated using the derivatives of the warped function
f jW(̃x)

def.= f j(w
−1(̃x)) in the horizontal direction. Indeed, if the approximated

flow γ̃ ′ is close from the original flow γ ′

∀ (x1, x2) ∈ S, |γ ′(x1) − γ̃ ′(x1)| ≤ (1 + ||γ ||Cα ) λα−1, (7)

then the resulting warped wavelet coefficients f jW(̃x)
def.= f j(w

−1(̃x)) satisfy

∀ i1, i2 ≤ α, ∀ x̃,

∣∣∣∣∣
∂ i1+i2 f jW

∂ x̃
i1
1 ∂ x̃

i2
2

(̃x)

∣∣∣∣∣ ≤ C 2 j (1 + ||γ ||αCα ) 2− j(i1/α−i2). (8)

where C is a constant that depends only on f . The bound of (8) states the
anisotropic regularity of a set of wavelet coefficients.

4.2 Polynomial approximation of wavelets coefficients

In order to capture the regularity stated by (8), one can use a piecewise
polynomial approximation f̃M j

of f j defined on M j small bands of length λ

and width μ that follow locally the approximated flow γ̃ ′. Figure 15c shows an
example of layout of bands that follows the geometry of the image. Note that
at a distance farther than K from any edge curve, one does not need to define
bands since the wavelet coefficients are close to zero and for small scale 2 j one
can approximate these coefficients 〈 f, ψk

jn〉 by f̃M j
(2 jn) = 0.
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Fig. 15 a Geometric image. b Wavelets coefficients. c Layout of bands of length λ and width μ.
d Layout of bands inside a dyadic subdivision (bandlet approximation)

A local Taylor approximation of f j in each band of length λ and width μ

proves that the error of a polynomial approximation in each band can be made
as low as

| f j(x) − f̃M j
(x)| ≤ C

∣∣∣∣
∣∣∣∣
∂α f jW

∂ x̃α
1

∣∣∣∣
∣∣∣∣
∞

λα + C

∣∣∣∣
∣∣∣∣
∂α f jW

∂ x̃α
2

∣∣∣∣
∣∣∣∣
∞

μα, (9)

where C is a constant that depends only on f .
In order to optimally capture the anisotropy of f j, one needs to scale the

length λ and the width μ of these bands according to
∣∣∣∣
∣∣∣∣
∂α f jW

∂ x̃α
1

∣∣∣∣
∣∣∣∣
∞

λα =
∣∣∣∣
∣∣∣∣
∂α f jW

∂ x̃α
2

∣∣∣∣
∣∣∣∣
∞

μα =⇒ 2− j λα = 2− jα μα. (10)

This optimal aspect ratio of the band is exactly the one derived in Section 3.1
for the finite element approximation of contours, but this time for a geometric
image smoothed by a kernel ψ j of width 2 j. As detailed in [26], the approxima-
tion error of such a polynomial approximation satisfies || f j − fM j

|| = O(M−α
j ).

To approximate the original image f , its wavelets coefficients 〈 f, ψk
jn〉 are

approximated using fM j
for each scale 2 j. The resulting approximated function

f̃M can be shown to satisfies || f − f̃M|| = O(logα(M)M−α), where M is the
total number of bands used to define the polynomial approximations for each
relevant scale 2 j.

4.3 Orthogonal bandlets approximation

The polynomial approximation scheme presented in the previous section is
able to recover, up to a log(M) factor, the optimal approximation rate one
would have for an uniformly regular image. It is very similar to the finite
elements scheme presented in Section 3.1, except that the approximation
is now defined over the wavelet domain. This scheme does not provide an
algorithm to compute the approximation, which is needed for applications.

The bandlet approximation scheme [26] solves this issue by computing the
polynomial approximation by a thresholding in an orthogonal Alpert basis
[2]. The Alpert transform can be thought as a polynomial wavelet transform
adapted to an irregular sampling such as the one depicted on Fig. 14c. It is
obtained by orthogonalizing multiresolution space of polynomials defined on
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the irregular sampling grid. The resulting vectors are not samples of a regular
function but have vanishing moments on the sampling grid, which is the
relevant property to approximate the warped wavelet coefficients. A vector
corresponding to a sampling of a function with an anisotropic regularity is well
approximated with a few vectors from the Alpert basis. This bandletization
of wavelet coefficients using an Alpert transform defines a set of bandlet
coefficients. These coefficients can be written as inner products 〈 f, b k

j,ℓ,n〉 of
the original image f with bandlet functions that are linear combinations of
wavelet functions

b k
j,ℓ,n(x) =

∑

p

aℓ,n[p]ψk
j,p(x) .

The aℓ,n[p] are the coefficient of the Alpert transform, which depends on the
local geometric flow γ̃ ′ since this flow defines the warped sampling locations
depicted on Fig. 14c. The bandlet function is defined at some location n and
scale 2 j. The Alpert transform introduces a new scale factor 2ℓ > 2 j which
defines the elongation of the bandlet function. The bandlet bj,ℓ,n(x) inherits
the regularity of the wavelets ψk

j,p(x).

Approximated segmented flow The family of orthogonal bandlets depends
on the local adapted flow γ̃ ′ defined over small squares S ⊂ [0, 1]2 for each
scale 2 j and orientation k. This parallel flow is characterized by an integral
curve γ̃ , already defined in (6), that one can see in dashed plot on the left of
Fig. 14. As stated by (7), this integral curve does not need to be strictly parallel
to the contour. This is due to the bidimensional regularization introduced by
the smoothing of f j = f ∗ ψk

j with the wavelet ψk
j . Locally, it is thus enough to

use a polynomial approximation γ̃ ′ of γ ′ that will ensure that condition (7) is
satisfied.

In order to approximate the geometry by a polynomial flow, one needs to
segment the set of wavelet coefficients in squares S. For each scale 2 j and
orientation k of the wavelet transform, this segmentation is obtained using a
recursive subdivision in dyadic squares of various sizes, as shown on Fig. 16.
Such a subdivision defines a quadtree that specifies if a square S should be

Fig. 16 a Wavelet coefficients of the image. b Example of segmentation of on scale of the wavelet
transform in dyadic squares of varying sizes. An adapted flow γ̃ ′ is computed over each square
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further subdivided in four sub-squares of size twice smaller. If there is no
specific direction of regularity inside a square, which is the case either in
uniformly regular regions or at the vicinity of edge junctions, then there is no
geometric directional regularity to exploit. It is thus not necessary to modify
the wavelet basis. In this case, no flow is defined, and it corresponds to the
“regular” and “corner” squares of Fig. 16. One only needs to compute the
adapted flow γ̃ ′ in “edge” squares in order to obtain a bandlet basis that
exploits the anisotropic regularity of the image. In the following we denote by
Ŵk

j the segmentation together with the adapted flows γ̃ ′ chosen in each square
S of the segmentation.

A different geometry Ŵk
j can thus be chosen for each scale 2 j and orientation

k in order to adapt to the evolution of the geometric structures through scales.
The set of all geometries Ŵ = {Ŵk

j }k
j consists of all the quadtree segmentation

and the adapted flow inside all the squares of the segmentation. Each potential
geometry Ŵ corresponds to a bandlet basis B(Ŵ) and the set of bandlet bases
D = {B(Ŵ)}Ŵ defines the bandlet dictionary. In order to approximate a function
up to some predefined precision T on the bandlet coefficients, this dictionary
can be kept of size polynomial in T−1. We now explain how to compute a basis
B(Ŵ⋆) adapted to some function f with a fast algorithm.

Best bandlet approximation A bandlet basis B(Ŵ) depends on the geometry Ŵ

of the local flows defined by a dyadic segmentation of the wavelet coefficients
and the choice of a polynomial flow inside each square (or no flow in regular
and corner squares). The goal being to optimize the approximation of f , the
best geometry Ŵ⋆ is the one that produces the approximation fM of f with the
lowest error for a fixed number M of parameters needed to describe fM.

Let Mg be the number of parameters needed to specify the geometry Ŵ of
the flow. This includes the parameters of the quadtree for each scale 2 j and
orientation k and the parameters of the polynomial flow γ̃ ′ for each square.
This geometry defines a bandlet basis B(Ŵ) = {bν}ν of L2([0, 1]2), where ν =
(k, j, ℓ, n) indexes each bandlet function. Let Mb be the number of bandlet
satisfying |〈 f, b k

ℓ, j,n〉| > T for some threshold T. The approximation

fM =
∑

|〈 f, bν 〉|>T

〈 f, bν〉 bν

is defined by M = Mb + Mg parameters. Among all geometries and thus all
bandlet bases, one needs to find a bandlet basis that minimizes the error || f −
fM||2 for a fixed number M = Mb + Mg of parameters. This problem of “best
orthogonal basis search” can be solved by minimizing the Lagrangian:

L(B(Ŵ), f, T) = || f − fM||2 + M T2 =
∑

|〈 f, bν 〉|≤T

|〈 f, bν〉|2 + M T2. (11)
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An approximation theorem [23, 26] shows that if f is uniformly Cα outside
a set of curves that are themselves Cα then the best bandlet basis B(Ŵ⋆) that
minimizes the Lagrangian (11) defines an approximation fM that satisfies

|| f − fM||2 = O(M−α). (12)

This result is still valid if f is regularized by a smoothing kernel that models the
effects of diffraction during image acquisition. One can notice that the bandlet
approximation does not require to know the value of α as long as α < p, where
p is the number of vanishing moments of the wavelet and Alpert bases. This
adaptivity is the key to the efficiency of bandlet for natural images.

A best basis search algorithm allows to compute the best bandlet basis B(Ŵ⋆)

adapted to an image f in O(N T−(p−1)2

) operations where N is the number of
pixels in the image [13, 26]. This algorithm relies on the embedded structure of
the dyadic segmentation and on the fast Alpert transform algorithm.

4.4 Applications of orthogonal bandlets

Compression of images and surfaces Image compression in a bandlet basis
B(Ŵ) = {bν}ν is a straightforward application of bandlet approximation. Simi-
larly to the compression in wavelet bases, it requires to quantize uniformly the
bandlet coefficients with a quantization step T

fR
def.=

∑

ν

QT(〈 f, bν〉) bν, (13)

where R is the number of bits needed to specify fR and QT is a uniform
quantizer defined by

QT(x) = q T, if (q − 1/2)T ≤ x ≤ (q + 1/2)T. (14)

The distortion of this coding scheme is Db (R) = || f − fR||2 and for a given
bit budget R one thus needs to find the best bandlet basis B(Ŵ⋆) that give the
lowest distortion. Similarly to the bandlet optimization for function approxi-
mation, this can be achieved by minimizing the lagragian L of (11). Using the
approximation result (12) one can show [13, 26] that if f is Cα outside a set of
Cα curves, then the distortion in the adapted bandlet basis B(Ŵ⋆) satisfies

Db (R) = || f − fR||2 = O(R−α | log(R)|α) .

In a wavelet basis, the approximation (4) leads to a coding error that decays
asymptotically much slower: Dw(R) = O(R−1 | log(R)|), see [19].

Figure 17 compares the compressed image fR obtained with an average of
R = 0.2 bit per pixel for a coding in a wavelet and a bandlet basis [24]. The
distortion is lower in a bandlet basis than in a wavelet basis, which can be seen
on the better reconstruction of the geometrical structures of the image. For
the compression of 3D surfaces used in computer graphics, surfaces are locally
parameterized on a 2D plane [12], and classical schemes from image processing
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Fig. 17 Comparison of the compression using wavelets and bandlets at 0.2 bits/pixel

can be used to compress them. Bandlet bases [25] adapt themselves to the
geometry of the surface to compress, which typically exhibits both sharp fea-
tures and smoothed edges. Figure 18 compares the reconstruction of surfaces
in wavelets and in bandlets and shows the corresponding enhancement of the
PSNR as a function of the number of bits R. Note that the error for surfaces
is measured with the Hausdorff distance, which is the relevant distortion for
computer graphics applications.

Image denoising The enhancement of the approximation performances using
bandlet bases has also applications in image denoising [10]. In denoising
applications, one seeks to recover f from an observation Y = f + W where W

Fig. 18 Comparison on two examples of the Hausdorff distortion for surfaces compression using
wavelets and bandlets
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is a gaussian white noise of variance σ . A thresholding algorithm in a bandlet
basis B(Ŵ) = {bν}ν defines an estimator of f

f̃
def.=

∑

ν

ST(〈Y, bν〉)bν

where the threshold is set to T = λσ and where the thresholding is defined as

ST(x) =
{

x if |x| > T,

0 otherwise.

Donoho and Johnstone [9] proved that λ =
√

2 loge(N), where N is the number
of pixels, is asymptotically optimal when N increases.

This estimator can be computed in a best bandlet basis B(Ŵ⋆) computed
using the minimization of a Lagragian similar to (11) but with a multiplier T

that is tuned to reach the optimal risk decay. If the function f is Cα outside a
set of Cα edges, then one can prove [10] that this estimator in the best basis
B(Ŵ⋆) has an average risk that satisfies

E(|| f − f̃ ||2) = O
(
| log(σ )| 1

2α+1 σ
2α

2α+1

)
. (15)

This decay of the risk is asymptotically optimal up to a log(σ ) factor for
the class of geometrically regular functions. This best bandlet basis estimator
corresponds to a model selection process where the model is defined by an
adapted geometry.

Image restoration Inverse problem are others applications where geometry
plays an important role. The inversion of the tomography operator R is
an important problem in medical imaging. The measuring process can be
modeled as

Y = Rf + W

where R is the Radon transform and W is an additional gaussian white noise
of variance σ 2. The radon transform is defined as

(Rf )(t, θ) =
∫

f (x) δ(x1 cos θ + x2 sin θ − t) dx.

so that the value (Rf )(t, θ) sums the contributions of the original function f

along lines parameterized by its slope θ and abscissa t. The inverse operator
R−1 is unbounded and makes the inverse problem of recovering f ill-posed.
A direct inversion of the Radon operator R−1Y = f + R−1W considerably
amplifies the noise R−1W. A thresholding algorithm in a best bandlet basis
B(Ŵ⋆) = {bν}ν defines an estimator of f

f̃
def.=

∑

ν

STν
(〈R−1Y, bν〉)bν .
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For the tomography inversion, the thresholds Tν depends upon the scales 2 j in
order to match the amplification of noise R−1W. For an index ν = ( j, k, n, ℓ),
the threshold is set to Tν

def.= σ2− j/2. If f is Cα outside a set of Cα curves, one can
prove that the average risk E(|| f − f̃ ||2) of this estimator has the asymptotic
decay (15) which is optimal up to a | log(σ )| factor [10] .

5 Grouping bandlets

The geometry Ŵ of orthogonal bandlets is described by a locally parallel flow
γ̃ ′ over each square of a dyadic segmentation. Such a geometry is suitable
for the approximation of geometrically regular images, but lacks flexibility
to represent the complex geometry of turbulent textures. Junctions are not
explicitly modeled and require a fine recursive segmentation to be isolated
from the remaining contours. Furthermore, the segmentation in small square
areas forbid to take advantage of the long range regularity of fine elongated
structures such as the hair texture or the wood patterns in Fig. 19.

Grouplets [18] are constructed using a geometry inspired from the Gestalt
theory [30]. This theory states a set of grouping laws that are supposed to be
applied recursively during the human perception of a natural scene. Similarly,
a grouplet transform uses a multiscale association field in order to group
together coefficients in the direction specified by the flow. These recursive
groupings allow to take into account junctions and long range regularities.

Similarly to the orthogonal bandlets introduced in Section 4.3, this grouplet
transform can be used to define grouping bandlets. The grouplet scheme
is applied over a set of wavelet coefficients and performs a bandletization
operation similar to the directional Alpert transform, but this time along an
association field and not a locally parallel geometric flow. This process defines
grouping bandlet functions that are combinations of the wavelet functions
located along the association field using a multiscale transformation similar
to the Haar transform. This scheme can be orthogonal if the critical sub-
sampling is performed during the wavelet and the grouplet transforms or it
can be translation-invariant if the transforms are not sub-sampled.

Fig. 19 Example of textures with complex geometric pattern with long range regularity
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5.1 Orthogonal grouplets

Haar transform At the first scale 2ℓ = 1, the Haar transform of a signal a[n]
groups each odd coefficient a[2n + 1] with the even neighboring coefficient
a[2n] and associates to this pair a mean and a difference:

M =
a[2n] + a[2n + 1]

2
, D =

a[2n] − a[2n + 1]
√

2
.

An “in place” transform stores the mean by replacing the even coefficients
s[2n] = M and the difference by replacing the odd coefficients s[2n + 1] = D.
This orthogonal elementary operator is applied in a hierarchical manner on
the mean coefficients by doubling the scale 2ℓ at each iteration. At a scale 2ℓ,
the mean already computed in positions a[2ℓ2n] and a[2ℓ(2n + 1)] are grouped
together in order to compute new means and details:

M =
a[2ℓ2n] + a[2ℓ(2n + 1)]

2
, D = (a[2ℓ2n] − a[2ℓ(2n + 1)])

√
2(ℓ−1),

and these values are stored in place: s[2ℓ2n] = M and s[2ℓ(2n + 1)] = D. At
this stage, M is equal to the mean of the signal values over the inveral
[2ℓ+1n, 2ℓ+1n + 2ℓ+1[ and D is proportional to the difference of the means on
[2ℓ+1n, 2ℓ+1n + 2ℓ[ and on [2ℓ+1n + 2ℓ, 2ℓ+1n + 2ℓ+1[.

Bandletization with a multiscale grouping A bandletization by grouping
applies this Haar transform over pairs of points that are neighbors according
to some association field. Although this field could link arbitrary computed
means, this field should group together points that have similar neighborhoods
in order to exploit the geometry of the signal.

For a multidimensional signal (image or video), the sampling grid G0 is
divided in two pre-defined sub-grids that we call the “even sub-grid” G1,e and
the “odd sub-grid” G1,o, in analogy to the one dimensional case. A weight s[n]
is initially set to 1 for points n ∈ G0. This weight represents the number of
coefficients aggregated by the means computed during the computation. Each
point mo ∈ G1,o of the odd grid is associated to a point me ∈ G1,e of the even
grid. This association is optimized so that the value of a[n] for n in the vicinity
of me are as close as possible to the value s[p] for p in the vicinity of mo.
The vector A1[mo] = me − mo is the association field that dictate the grouping
between each point of the odd grid and some point in the even grid. In practice,
the associated point me can be computed with a best fit of radius P:

me = argmin
m∈G1,e

∑

|n|<P

∣∣∣a[m − n] − a[mo − n]
∣∣∣
2

. (16)

This kind of “block matching” association is used in video processing to
compute the movement of structures in movies. This is the so-called optical
flow, see Fig. 2a,b, but one could use other schemes to optimize the asso-
ciation field.
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Like in a Haar transform, a weighted mean and a weighted difference are
computed between the values of the signal that are grouped together:

M =
s[me] a[me] + s[mo] a[mo]

s[me] + s[mo]
(17)

D = (a[me] − a[mo])
√

s[me]s[mo]√
s[me] + s[mo]

(18)

The “in place” transform stores the differences on the odd grid and the means
on the even grid, with a weight that sums the weight of the to associated points:

a[mo] = D, a[me] = M with s[me] = s[me] + s[mo]. (19)

One can check [18] that the matrix that transforms (a[me], a[m0]) is orthogonal
and the difference coefficient a[m0] = D is the inner product of the original
signal with an unit-norm vector having one vanishing moment and a support
equal to s[m0]. As for the Haar transform, this process is repeated iteratively
by doubling the scale at each step.

At some grouplet scale 2ℓ, a mean signal a[m] has been computed during the
previous iterations on an even grid Gℓ,e. This grid is sub-divided in an “even
sub-grid” Gℓ+1,e and an “odd sub-grid” Gℓ+1,o. Each point mo ∈ Gℓ+1,o of the
odd grid is associated to a point me ∈ Gℓ+1,e of the even grid, which is optimized
so that the values a[n] near n = me are close to the values near n = mo. This
association field is denoted as Aℓ[mo] = me − mo. One can use for instance a
block matching similar to (16) to compute this association between mo and
me. One then computes new means and differences using (17) and (18). Those
values are respectively stored in the even sub-grid Gℓ+1,e and the odd sub-
grid Gℓ+1,o, together with an update of the weights using (19). This cascade
of orthogonal operators decomposes the original signal in an orthogonal basis
called grouplet basis that is adapted to the signal geometry. Figure 22c shows
examples of grouplet vectors which have 1 vanishing moments.

The splitting Gℓ,e = Gℓ+1,e ∪ Gℓ+1,o can be performed freely and one can
devise a scheme for any targeted application. Figure 20 shows an example
of horizontal associations where the “even sub-grid” G1,e is the set of even

Fig. 20 Column embedded
grids subsample the columns
of Gℓ−1 to define the grid Gℓ

(empty circles) and the
complementary grid G̃ℓ (filled

circles). The association field
groupings are illustrated by
arrows
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Fig. 21 Grouping of an association field at scales 21, 22 and 23 computed by block matching for a
seismic image shown in transparency

columns (black dots) and the “odd sub-grid” G1,o is the set of odd columns
(white circles). This kind of splitting scheme is relevant for 2D signals where
the geometric structures propagate in the horizontal direction. This is indeed
the case for seismic imaging, as one can see on the association fields computer
in Fig. 21. For other applications, one can design a more isotropic splitting
scheme that does not favor any orientation.

On Fig. 22, one can see the grouplet coefficients obtained by transforming
the image according to the associations fields displayed on Fig. 21. The detail
coefficients require the same amount of storage as the original image, but for
a better understanding of their structure, Fig. 22b rearranges them from the
coarse scale 2ℓ = 2 to fine scales from left to right. One can see that most of
these transformed coefficients are gray (near zero) which was not the case
of the original image. It means that the transform has been able to exploit
the anisotropic regularity of the seismic image in order to reach a sparser
representation than the pixel values. It is however unclear how to adjust the
complexity of the association fields so that it can be coded with few bits to
reach good compression results with grouplets.

A denoising of the image can be performed by using the thresholding
technic defined in (13). Grouplet coefficients below the noise level are thresh-
olded to zero. The association fields {Aℓ}ℓ, which define the geometry of the
transform, are computed over the noisy image. Thanks to the block matching

Fig. 22 a Original seismic image. b Orthogonal grouplet coefficients over six scales, displayed with
the same dynamic range as in a. c Example of grouplet vectors
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Fig. 23 a Original image. b Noisy seismic image (PSNR = 26 dB). c Orthogonal grouplet coef-
ficients. d Thresholded grouplet coefficients. e Image reconstructed from thresholded orthogonal
coefficients (PSNR =27.3 dB). f Image reconstructed from thresholded tight frame coefficients
(PSNR = 29.5 dB)

procedure of (16) the estimation can be made robust by choosing a radius P

large enough. This thresholding denoising is equivalent to performing auto-
matically an adaptive averaging of the signal along the directions of regularity
estimated by the association fields. Figure 23 gives an example from [18] for
denoising a seismic image.

5.2 Translation invariant grouplet tight frame

For denoising and computer graphics applications, the strict orthogonality of
the grouplet transform is a source of inefficiencies since it forbids a translation
invariant processing of the image. In order to solve this issue, one should
remove the sub-sampling of the Haar transform in order to have a stable
redundant transform. The same ideas carry over the grouplet setting by
replacing the splitting of the grids by a partial ordering m ≺ m′ of the points
m, m′ ∈ G0 on the original grid. This ordering can be thought as a 1D traversal
of the grid points that ensures that a point m satisfying m ≺ m′ is processed
before m′ during the grouplet computations.

For each scale 2ℓ, the current mean values a[m] is defined on the whole
grid G0. Each grid point m ∈ G0 is associated to a point m̃ ∈ G0 located before:
m̃ ≺ m. The association field is defined Aℓ[m] = m − m̃ and the optimization
of m̃ is carried using a block matching similar to (16) under the restriction that
m̃ ≺ m. We further require that |m − m̃| ≈ 2ℓ in order to force the averaging
of the grouping process to be performed over an increasing distance. This
grouplet transform is not computed “in place” since it increases the number
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of coefficients. The grouped points (m, m̃) are processed in order to update “in
place” the weight s and mean a values and to extract a new detail coefficient
dℓ[m] that are stored in a different array.

dℓ[m] = (a[m] − a[m̃])
√

s[m]s[m̃]
√

s[m] + s[m̃]

a[m̃] =
s[m] a[m] + s[m̃] a[m̃]

s[m] + s[m̃]
s[m̃] = s[m] + s[m̃].

Once the process has been performed over L grouplet scales, the recursion is
stopped and the remaining coarse scale layer is kept with a renormalization
aL[m] = a[m]

√
s[m]s[m]. The translation invariant grouplet transform maps

the original signal a[m] to the set of coefficients {dℓ, aL}m∈G0

ℓ≤L . The overall
process is stable and one can prove [18] that is satisfies an energy conservation:

||a||2 =
∑

m∈G0,ℓ≤L

1

2ℓ
|dℓ[m]|2 +

∑

m∈G0

1

2L
|aL[m]|2. (20)

This means that {dℓ[m], aL[m]}1≤ℓ≤L
m∈G0

can be interpreted as the signal coeffi-
cients in a grouplet tight frame. A thresholding can be applied over these
tight frame coefficients in order to perform denoising. Figure 23 shows that
the translation invariance brings a significant improvement with respect to the
original orthogonal grouplet denoising and improves the PSNR by 2.2 dB.

5.3 From grouplets to bandlets

A grouping bandlet transform is obtained by applying the grouplet bandle-
tization process to the set of coefficient of a multiscale representation. One
applies the orthogonal grouplet transform over each scale 2 j and orientation
k of an orthogonal wavelet transform in order to get the decomposition of the
image on an orthogonal basis B(Ŵ) = {bν}ν of grouping bandlets. The index
ν = ( j, k, ℓ, m) refers to the wavelet scale 2 j, wavelet orientation k, grouplet
scale 2ℓ and grouplet position m. Similarly to the original orthogonal bandlet
exposed in Section 4.3, the cascade of the orthogonal wavelet transform and
the orthogonal grouplet transform defines an orthogonal grouping bandlet
transform. The geometry Ŵ = {A

j,k
ℓ } j,k

ℓ is now composed of the association
fields A

j,k
ℓ computing during the grouplet transforms for each wavelet scale

2 j, orientation k and grouplet scale 2ℓ.
Another option is to use a translation invariant wavelet tight frame and

to apply the translation invariant grouplet tight frame over each scale and
orientation. Similarly to the orthogonal bandlet bases, the set of association
fields is denoted as Ŵ. Those geometries parameterizes the grouping bandlet
transform whose coefficients are the inner product with bandlet function {bν}ν .
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Fig. 24 Multiscale association fields for various scale and orientation of a translation invariant
wavelet transform. Left: original image. Center: horizontal details. Right: vertical details

The cascade of the wavelet and grouplet tight frames defines a grouping
bandlet tight frame of L2([0, 1]2). Figure 24 shows an example of such a
decomposition, where the association fields are displayed for various wavelets
orientation and scales. For such application of the bandlet translation invariant
transform, the partial ordering ≺ is set in order to match the direction k of the
wavelet (either horizontal, vertical or diagonal), see [18].

The grouping bandlet bases are more flexible than the orthogonal bandlet
bases exposed in Section 4.3. If one impose multiscale association fields that
follow the integral lines of a locally parallel vector field γ̃ ′, then the grouplet
transform is equivalent to the original Alpert bandletization with 1 vanishing
moment. However, the bandletization with grouping is more general since the
association fields can deviate from the integral lines in order to converge to
singularity points such as junction or crossings. The following applications to
denoising and synthesis show that this flexibility is indeed crucial when one is
not concerned with image compression.

5.4 Applications of grouplets

Image denoising The flexibility of the association process of grouping ban-
dlets makes it efficient for the denoising of textures with a complex geometry.
Figure 25 compares the denoising obtained on the textured hat of the Lena
image using a thresholding in wavelet and grouping bandlet tight frames. The
bandlet transform is able to recover the fine structures of the texture, which is
not possible with wavelets that perform an isotropic regularization not suited
to the directional oscillations of the texture.
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Fig. 25 Comparison of the
denoising with a translation
invariant wavelet transform
and a translation invariant
grouping bandlet transform

Original image Noisy images

Wavelet denoising Bandlet denoising

Texture synthesis To perform texture synthesis one can exploit the sparsity
of the representation of a given input texture f in a grouping bandlet frame
B(Ŵ) = {bŴ

ν }ν , where the association fields Ŵ are computed during the grouping
bandlet transform of f . The texture synthesis is performed by modifying the
original geometry Ŵ into Ŵ̃ using some user interaction. Figure 26, left, shows
some examples of vector fields defined by the user that can be used to construct
associations fields along integral line of the flow. This new geometry defines a
new bandlet frame B(Ŵ̃) adapted to the texture to synthesize. Figure 26, right,
shows some example synthesis f̃ where the coefficients 〈 f̃ , bŴ̃

ν 〉 are realizations
of a random variable whose histogram matches the one of the original texture
coefficients {〈 f, bŴ

ν 〉}ν , using an algorithm introduced in [23].

Image inpainting In inpainting applications, one needs to fill some hole � ⊂
[0, 1]2 where pixels of an image f are missing. One thus looks for an image
f̃ such that f̃ (x) = f (x) for x /∈ � and the overall function f̃ should have the
same geometrical regularity as f outside �. This is enforced by imposing that
the bandlet image representation is sparse which is obtained by minimizing
the ℓ1 norm of bandlet coefficients. This solution is thus calculated with the
following minimization

f̃ = argming,Ŵ

∑

ν

|〈g, bŴ
ν 〉| subject to ∀ x /∈ �, f̃ (x) = f (x), (21)
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Fig. 26 Left: original texture, whose adapted bandlet frame is B(Ŵ). Center: geometrical flow
used to define the multiscale association field Ŵ̃ for the synthesis. Right: texture synthesized as
a realization of a random field over the coefficients in the bandlet frame B(Ŵ̃)

with some additional constrained on Ŵ that can be enforced by using a large
enough radius P during the block matching computation (16) of the association
fields Ŵ. The minimization of (21) is hard to solve and in practice, one can use

Fig. 27 Iteration of the
inpainting process that
modifies the image to obtain
a sparse representation in an
adapted grouping bandlet
basis
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an iterative thresholding procedure similar to the morphological component
analysis of Starck et al. [28]. The resulting algorithm fills the hole with some
random noise and perform iterative denoising using a decreasing threshold
T. Between each iteration, the known values f̃ (x) = f (x) of the pixels x /∈ �

are enforced. Figure 27 shows an example of this inpainting process.
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