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Abstract: Centrifugal microfluidic or lab-on-a-disc platforms have many advantages over other
microfluidic systems. These advantages include a minimal amount of instrumentation, the efficient
removal of any disturbing bubbles or residual volumes, and inherently available density-based sample
transportation and separation. Centrifugal microfluidic devices applied to biomedical analysis
and point-of-care diagnostics have been extensively promoted recently. This paper presents an
up-to-date overview of these devices. The development of biomedical centrifugal microfluidic
platforms essentially covers two categories: (i) unit operations that perform specific functionalities,
and (ii) systems that aim to address certain biomedical applications. With the aim to provide a
comprehensive representation of current development in this field, this review summarizes progress
in both categories. The advanced unit operations implemented for biological processing include
mixing, valving, switching, metering and sequential loading. Depending on the type of sample to
be used in the system, biomedical applications are classified into four groups: nucleic acid analysis,
blood analysis, immunoassays, and other biomedical applications. Our overview of advanced unit
operations also includes the basic concepts and mechanisms involved in centrifugal microfluidics,
while on the other hand an outline on reported applications clarifies how an assembly of unit
operations enables efficient implementation of various types of complex assays. Lastly, challenges
and potential for future development of biomedical centrifugal microfluidic devices are discussed.

Keywords: centrifugal microfluidics; lab-on-a-disc (LOAD); biomedical; point-of-care diagnostics;
cells; blood; nucleic acid; immunoassays

1. Introduction

In past few decades, the lab-on-a-chip system, which aims at integrating laboratory work into
a chip platform, has attracted a great deal of attention. The miniaturization of the lab-on-a-chip
system allows bioassays to be implemented with decreased reagent use, a decreased total processing
time, and increased abilities for parallel processing. In addition, the automation of lab-on-a-chip
devices requires no skilled worker, and the absence of error-prone manual laboratory protocols
makes the result of these assays consistent. Table 1 compares the different fluidics manipulation
strategies in microfluidics. According to the source of the manipulating forces, these manipulation
strategies can also be categorized as active and passive types. Active manipulation strategies, such
as centrifugal microfluidics, electrokinetic microfluidics, magnetic microfluidics, optofluidics and
surface acoustic wave microfluidics, rely on external force fields, whereas passive technologies depend
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entirely on the channel geometry or intrinsic hydrodynamic forces, such as capillary-driven test strips
and inertial microfluidics. As one branch of the lab-on-a-chip system, centrifugal microfluidic or
lab-on-a-disc (LOAD) platforms exploit the centrifugal field to manipulate microfluidics. As the
inherent centrifugal force exists everywhere on the disc and the direction is always radially outward, it
acts just like a “gravity field”. This presents many advantages. For fluid transportation, centrifugal
pumping requires only a compact motor and no external instrumentations. The fluid transportation in
centrifugal microfluidic devices is also highly efficient and leaves no disturbing bubble or residual
volume. In addition, density-based sample separation is inherently available. These advantages have
not only contributed to an increase in centrifugal microfluidic research activity, but also attracted many
companies to develop products based on centrifugal microfluidics. “Panasonic, Roche, Samsung, 3M,
and Abaxis already have centrifugal microfluidic-based products on the market” [1].

Current reviews on the LOAD platforms are mainly focused on a specific topic in centrifugal
microfluidics, for example handling and analysis of cell or bioparticles [2,3], molecular diagnostics [4],
optical detection strategies [5] and detection methods [6]. While these reviews provide detail
descriptions of specific developments in this field, a review on the overall development of LOAD may
offer readers a concise summary of current development in centrifugal microfluidics. This is especially
important for researchers who wish to extract information of the current development of the whole
field. Until now, two comprehensive overviews on the topic of centrifugal microfluidic platforms have
been published by Gorkin et al. [7] and Strohmeier et al. [1]. Despite that the second one was published
at a time as recent as early 2015, a number of new biomedical centrifugal microfluidic devices and
systems have been published since then. The new items include novel valving platforms (especially
membrane deformation based valves and dissolvable films based valves), thermocycler based PCR
platforms, CD4+ cells isolation and counting platforms, and isothermal amplification based platforms
(especially loop mediated isothermal amplification and recombinase polymerase amplification based
platforms), and centrifugal microfluidic techniques have also been used by researchers for detecting
the dengue virus. This paper provides a comprehensive and up-to-date account on recent advances in
biomedical centrifugal microfluidic platforms. Based on our analysis, we have come up with a list of
challenges and outlooks that might inspire potential interests.

Figure 1 summarizes the distribution of publications among current topics in biomedical LOAD
platforms. It can be seen that NA (nucleic acid) based assays and valving systems are currently
the most important topics. This signifies that researchers place equal emphasis on applications and
device development. As the database suggests, exploration efforts are roughly classified into two
categories: (i) unit operations that perform specific functionalities, and (ii) systems that aim to address
certain biomedical applications. First, our overview on unit operations explains the basic concepts
and mechanisms involved in centrifugal microfluidics. This is followed by an outline of biomedical
applications that clarifies how an assembly of unit operations may enable efficient implementation
of various complex assays. We have systematically classified biomedical applications based on the
sample being used in the platform. This will help readers appreciate the rationale behind the choice of
certain device strategies.

In centrifugal microfluidics, improvement of the complex bioassay devices depends largely on
the development of several unit operations, including mixing, valving, flow switching, metering,
and sequential loading. Effective sample mixing methods facilitate the physical or chemical reaction
and decrease the time of the assay. Microvalves and flow switches make the fluid flow on the chip
controllable and promise more possibilities and functionalities for the platform. Reagent volume
metering makes the assays more accurate and repeatable. However, sequential loading of reagents is
required in many biomedical applications such as immunoassays and DNA extraction. In this review,
we introduce the development of these unit operations in detail. As centrifugal microfluidics primarily
aims to address biomedical applications, reported efforts on nucleic acid analysis, blood analysis,
immunoassays, and other biomedical tests are also covered. Finally, we present a conclusion to
highlight recent research as well as outlook for future improvement.
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Table 1. Comparison of different fluidic manipulation strategies in microfluidics in recent years.

Fluidic Manipulation
Strategies

Principles Applications Strengths Challenges

Capillary-driven test strips
Passive liquid transport via capillary
forces within the capillaries of a fleece or a
microstructured layer.

Diabetes testing; pregnancy testing;
PH measurement; immunoassays;
point-of-care diagnostics.

Cheap, small, and disposable; does
not need any energy supply.

Precision of the assay is limited;
stability of coating and or surface
activations cannot be guaranteed
after longtime storing [8].

Centrifugal microfluidics Using centrifugal forces to process
samples and reagents.

Nucleic acid analysis; blood
analysis; immunoassays;
point-of-care diagnostics.

Minimal amount of
instrumentations; efficient removal
of any disturbing bubbles or
residual volumes; parallelization is
available.

Large-scale integration is difficult;
contact-free interface is not
applicable during the assay [1,7,8].

Electrokinetic platforms
Based on surface forces and gain impact
within the micro-dimensions due to the
increased surface-to-volume ratio.

DNA and protein quantification;
analytical chemistry field.

Pulse-free pumping without any
moving part; enables the
automation and parallelization
of tests.

Need for high performance
detection technologies and high
voltages [8].

Droplet based microfluidic
platforms

Use of single droplets as reaction
confinements for biological assays or
chemical reactions.

Fabricate special materials; screen
and analyze biomedical or chemical
reaction products.

Decreasing reagent and sample
consumption; many same-size
droplets means test can be repeated.

Device fabrication is difficult;
manipulation droplet flexibility is
tough; better understanding of the
dynamics in droplets is needed [9].

Digital microfluidics Use electrostatic forces to manipulate
discrete droplets.

Sample preparation or extraction;
blood analysis; DNA analysis; cell
analysis; immunoassays.

Enables precise, real time and high
flexible control without need for
pumps, valves.

Fail at high temperatures and
pressures; manipulating
concentrated samples is difficult;
dielectric breakdown with high
voltage usage [10–13].

Surface acoustic wave
microfluidics

Use of 10–1,000 MHz acoustic waves to
manipulation microscale fluid.

Biomolecular and cellular
manipulation and detection, drug
delivery, biomaterials synthesis, and
point-of-care diagnostics.

High biocompatibility, fast fluid
actuation, versatility, compact, and
inexpensive; delivers a complete
microfluidics solution at the
microscale.

Physics of SAW microfluidics are
not understood completely;
unsolved problems in practical
applications, e.g., deformation of
the fluid interface [14,15].

Inertial microfluidics
Use inertial migration and secondary flow
caused by the inertia of the fluid to
manipulate particles.

Cellular sample processing; blood
plasma extraction; particles sorting.

Enables high-throughput, simple,
precise and low cost manipulation.

Quantitative design rules are still
lacking for channels; separation
resolution and processing speed
should be improved [16–20].
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Figure 1. Distribution of topics covered by papers (total of 46) published within the theme of
lab-on-a-disc in 2015.

2. Physics in Centrifugal Microfluidics

To better understand the principle of the manipulations in centrifugal microfluidics, we introduce
the basic physical background for this topic as follows.

Centrifugal force, which acts radially outward on the disc, provides the centripetal acceleration
during the rotation process. The centrifugal force is:

fce “ mω
2r (1)

where m is the mass of sample in the channel, r is the position on the disc, and ω is the angular
rotational frequency. The pressure at the far end of a radial column of incompressible fluid (density ρ)
extending from radius r1 to r2 is:

pce “

ż r2

r1

ρω
2rdr “

1
2
ρω

2
´

r2
2 ´ r2

1

¯

(2)

In centrifugal microfluidics, there are two other forces based on rotation: the Coriolis force ( fco)
and Euler force ( fe). The Coriolis force is velocity dependent and given by:

fco “ ´2mω ˆ v (3)

The Euler force is given by:

fe “ ´m
dω

dt
ˆ r (4)

It is proportional to the angular acceleration and exists only when the rotation acceleration is
not zero.

In addition to these three forces, viscous, capillary, and fluidic inertia force are not based on
rotation but play important roles in centrifugal microfluidics. The pressure corresponding to these
three forces ∆pvi, ∆pca, and ∆pin are given by [1]:

∆pvi “ ´Rhydq (5)

∆pca “ σκ (6)

∆pin “ ´ρℓa (7)
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Rhyd is the hydraulic resistance and is proportional to the dynamic viscosity, q is the volumetric
flow rate, σ denotes the surface tension of a processed liquid, κ denotes the curvature of its meniscus,
ℓ is the length of a fluidic channel filled with the liquid, and a is the acceleration of the liquid.

On the disc, the laminar flow fluids often experience repeated transporting, mixing, and
recombination in the channels or chambers. We often want to know the velocity vector of the fluid
flow in addition to the concentration distribution in the channels or chambers. The velocity vector and
concentration distribution can be calculated using Equations (8) and (9), respectively [21].

ρ

˜

B
Ñ

u

Bt
`

Ñ

u ¨∇
Ñ

u

¸

“ µ∇
2Ñ

u ´ ∇p `
Ñ

F (8)
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´

Ñ

u C
¯

“ D∇
2C ` Rg (9)

ρ is the density of the fluid,
Ñ

u denotes the velocity vector of the fluid, µ is the dynamic viscosity of the

liquid, ∇ p is the pressure gradient,
Ñ

F is the external force field applied to the fluid (e.g., centrifugal

force), ∇¨

´

Ñ

u C
¯

denotes convective mass flux, D∇2C denotes diffusive mass flux (D is the diffusion
coefficient), and Rg is the net rate of the species generation.

3. Advanced Unit Operations

The unit operations refer to the basic building blocks used in centrifugal microfluidic complex
applications. An introduction of the advanced unit operations should give readers deeper insight into
their mechanisms and pave the way for a better understanding of the later complex applications. The
advanced unit operations include sample mixing, valving, switching, metering, and sequential loading.
The merit of these unit operations makes the centrifugal microfluidic platform more powerful.

3.1. Mixing

Mixing is performed to reach a sufficient homogeneity and increase the contact surface area of
reaction reagents, thereby decreasing the reaction time. On the centrifugal microfluidic platform,
because the scale of the channel is very small and mixing efficiency depends largely on the contact
area, purely diffusive mixing in not enough for applications [1,22,23]. Conventional diffusive mixing
in chambers that are several millimeters wide typically takes place on a timescale of minutes [24],
and effective mixing methods usually reach homogeneity within several seconds [25]. Therefore,
methods for increasing the efficiency of mixing on the centrifugal microfluidic platform have attracted
increasing attention. We classify these methods into two groups: those based on intrinsic forces and
those based on external perturbations.

3.1.1. Mixing Based on Intrinsic Forces

Intrinsic forces including centrifugal force, the Coriolis force, and the Euler force are induced
merely by the presence of centrifugation. Effective mixing is often accomplished using the Euler and
Coriolis forces.

Grumann et al. demonstrated a mixing method based on the Euler force. Here, Euler force was
induced by changing the rotation speed of the disc periodically. As a result, a shear-driven advective
current arose within the chamber. This strategy decreased the mixing time from about 7 min for mere
diffusion to less than 5 s [22].

Haeberle et al. demonstrated a mixing method based on the Coriolis force. Two liquids were
initially injected into two separated channels and then merged in a Y-shaped channel. The Coriolis
force acted perpendicular to the flow direction and then caused transversal convection in the channel,
which accelerated the mixing process [26]. Kuo et al. combined channel geometry and the Coriolis
force to make a more efficient mixing method. Numerical simulations were performed to investigate
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the mixing performance of three CD microfluidic mixers with square-wave, curved, and zigzag
microchannels with the help of the Coriolis force, and the square-wave microchannel was found to
exhibit the best mixing performance [27].

3.1.2. Mixing Based on External Perturbations

In addition to the mixing methods based on intrinsic forces during centrifugation, some mixing
methods have been based on external perturbations.

Noroozi et al. demonstrated a micro-mixing method based on bidirectional flow. In this system,
centrifugal acceleration leading a liquid element to extrude air first generated and then stored
pneumatic energy. The pneumatic energy was released by a reduction of the centrifugal speed
and then the direction of the liquid flow was reversed (Figure 2A). In this way, the bidirectional flow
was achieved. This system decreased the processing time and reagent consumption by one order of
magnitude [28]. To make the pneumatic energy storage more effective, Aeinehvand et al. presented
a system that used a latex micro-balloon to pump liquid against the centrifugal force (Figure 2B).
It proved that the micro-balloon could operate at lower rotational speeds and could pump a larger
volume of liquid toward the center of the disc [29]. However, these two methods depended too much
on the change of the centrifugation speed. Kong et al. demonstrated a technique that allowed mixing
without the need to alter the rotational frequency or direction. Here, an external air stream was also
used to agitate liquids and then facilitate the mixing process [25]. Grumann et al. presented a method
using magnetic beads to accelerate the mixing process. A deflection of the magnetic beads was induced
by “a set of permanent magnets equidistantly aligned at spatially fixed positions in the lab-frame” [22].
Burger et al. also presented a bubble mixing LOAD platform (Figure 2C). Here, air (oxygen) was
generated by the decomposition of hydrogen peroxide and mixing was improved by the rupture of the
bubbles which caused a strong buoyancy in centrifugal field [30].

 

Figure 2. (A) Bidirectional flow caused by pneumatic energy and centrifugal force. Figure reprinted
with permission from [28]. (B) Conventional pneumatic pumping and latex micro-balloon pumping.
Figure reprinted with permission from [29]. (C) Buoyancy driven bubble mixing. Figure reprinted with
permission from [30].
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3.2. Valving

Valving is one of the most important basic functions in centrifugal microfluidics. It is used to
control the fluid movement in the following channel networks. In complex application devices, valves
are often used to realize the sequential loading of pre-stored reagents. We group the valves into
capillary, hydrophobic, siphoning, centrifugal-pneumatic, and active valves.

3.2.1. Capillary and Hydrophobic Valves

The capillary valve is based on the competition between two forces: centrifugal force and the
capillary force. When the centrifugal pumping pressure is smaller than the capillary barrier, the fluid
will not pass the capillary valve. Therefore, an increase or decrease in the rotation speed can switch
the capillary valves in the practical applications on or off. These capillary valves are used in a variety
of biochemical applications [8,31–34]. Many researchers have also investigated the influence of the
microchannel dimensions, surface tension, and contact angle of the liquid in capillary valving [35–38].

Al-Faqheri et al. presented pneumatic assisted capillary centrifugal microfluidic valving system.
At low rotation speed, as the capillary pressure, centrifugal pressure, and pneumatic pressure were
balanced, liquid was stopped in the valve. At high rotation speed, the increased the centrifugal
pressure drove the liquid into the subsequent chamber [39].

Local hydrophobic surface coatings are sometimes applied or a channel is suddenly narrowed to
increase the capillary pressure. These valves are often called “hydrophobic valves” and have been
the subject of much research [40,41]. For some other reagents, local hydrophilic surface coating is
sometimes applied or a channel is suddenly widened to increase the capillary force. These valves are
correspondingly known as “hydrophilic valves”.

3.2.2. Siphoning Valves

As siphoning relies on the priming of liquid into a siphon channel due to the capillary action, the
siphon channel surface must be hydrophilic [7]. The system in a siphoning valve spins at a high speed
to prevent capillary priming. When the rotation speed decreases, the capillary pressure exceeds the
pressure caused by centrifugal force and the fluid passes the crest point of the siphon. Consequently,
the siphon valve is switched on.

Siegrist et al. introduced a novel serial siphon valve that relied on multiple inline siphons to
provide for a sequential loading of fluids (Figure 3A). This design allowed the fluids to be subsequently
distributed to a designated area through multiple acceleration and deceleration operations [42].
Burger et al. presented an overflow siphon valve where liquid filled the chamber and was held
back by the outlet siphon until the crest point of the siphon was reached [43]. Godino et al. presented a
centrifugo-pneumatic siphon system. Siphon priming was achieved via the release of pneumatic
energy from an enclosed and compressed air bubble [44] (Figure 3B). Keller et al. reported a
centrifugo-thermopneumatic (CTP) siphon valve. The cartridge was used in an off-the-shelf centrifugal
thermocycler to control the global temperature. When the temperature increased, gas expanded and
drove the liquid to pass the crest point of the siphon. In this paper, CTP two-stage aliquoting was also
demonstrated [45].

Zehnle et al. presented three pneumatic siphon valving platforms: rotational frequency-triggered
vacuum valve (RFT-VV), rotational acceleration-triggered vacuum valve (RAT-VV), and rotational
acceleration-triggered compression valve (RAT-CV). In RFT-VV, the increased centrifugal force drove
the liquid level in the siphon to reach the siphon crest. In RAT-VV, because of Euler force which was
induced by fast acceleration, the siphon was primed. While, in RAT-CV, the siphon valve was open by
the combination of pneumatic force and Euler force [46].
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3.2.3. Active Valves

Active valves are valves that can be switched on or off by external means during an experiment.
The most commonly used active valves are paraffin wax valves. In this kind of valving system, the
channel is barred by paraffin wax, which can be melted easily. Stationary infrared sources are often
used to heat the wax and thus switch on these valves during experiments. Park et al. presented a
novel paraffin wax valve in which iron oxide nanoparticles were mixed into the wax, allowing for
valve actuation via low-power lasers (1.5 W) and a response time of only 0.5 s [47]. In addition to the
paraffin wax valve, laser-beam-activated valves have been introduced into centrifugal microfluidic
platforms. Chen et al. demonstrated a type of optofluidic valving that used laser beams to illuminate
the water meniscus and forced the water to burst into the subsequent channel [48] (Figure 3C).

Swayne et al. presented a hydrocarbon gel-based valve. Liquid flow was restricted by the
hydrocarbon gel plug. A modified pneumatic system was used to disperse the plug and rendered
opening of the valve [49]. Cai et al. fabricated a membrane deformation based valving platform. At
low spinning frequency, spring plungers were compressed against the bottom membrane of the valve
and the valve was closed. When the spinning frequency increased, flyball governor drove the spring
plungers away and got the valve open [50,51]. The same group also reported a similar magnetically
actuated membrane deformation based valving system. Here, the valve was first sandwiched between
two permanent magnets. At low spinning frequency, because of the magnetic force, the top membrane
of the valve was compressed and the valve was closed. At high spinning frequency, the bottom-side
magnet was driven away by fly ball governor and the valve was open [52]. Al-Faqheri et al. also
reported a similar valving system based on membrane deformation, with the exception that the spring
plunger or permanent magnet was replaced by air pressure to compress the membrane [53].

 

Figure 3. (A) Sequential loading of fluids by serial siphon valves. Figure reprinted with permission
from [42]. (B) Centrifugo-pneumatic siphoning. Figure reprinted with permission from [44].
(C) Optofluidic valving. Figure reprinted with permission from [48].
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Aeinehvand et al. presented a reversible thermo-pneumatic valves (RTPV). This RTPV consisted
of an air chamber and a liquid transition chamber. The air chamber was enclosed by a latex membrane,
and when the trapped air volume was heated, this membrane expanded into the liquid transition
chamber and sealed the inlet. With this operation, trapped air volume was heated or cooled to make
RTPV closed or open, respectively [54].

Dissolvable films (DFs) sacrificial valving systems have attracted much attention. DFs will
breakdown when a liquid is introduced to their surface, eventually allowing liquid to pass through
the valve. This operation principle makes DFs valving independent of the rotation speed and
manufacturing tolerances. Gorkin et al. presented an advanced DFs valving system in which a
pneumatic chamber was used in combination with DFs. Here, when the rotation speed reached a
critical value, the liquid could break the barrier of the air in the pneumatic chamber and wetted the DF
membrane [55]. Kinahan et al. presented a centrifugo-pneumatic DF valving system which consisted of
a pneumatic chamber sealed by two DFs: the load film (LF) and the control film (CF) (Figure 4A). The
pneumatic chamber closed by CF membrane was used to prevent the restrained liquid from contacting
and dissolving the LF at typical spin speeds. However, when an ancillary liquid was introduced, the
CF membrane would be dissolved and the restrained liquid would enter the pneumatic chamber, wet
and dissolve the LF and thus would open the valve. Furthermore, based on this centrifugo-pneumatic
DF valving scheme, AND-condition actuation was also suggested. In AND-condition actuation, CF
membrane could only be wetted by the presence of the aggregate volume of at least two ancillary
liquids. Lastly, event-triggered valving system in which the arrival of liquid from the first valve at
defined locations prompted the opening of the second valve was also proposed [56]. However, in
this event-triggered valving system, the interval between subsequent valve actuations was not suffice
for some laboratory unit operations such as extended mixing or biological incubation steps. To solve
this problem, this same group suggested another paper imbibition event-triggered system. Here,
ubiquitous paper strip was used to transport liquid to the CF and because of the material-specific
speed of imbibition, the interval between valve openings was defined by the spacing between CFs [57].
Schwemmer et al. also presented a timed valving and pumping LOAD platform (Figure 4B). The timer
was based on the time delay in releasing compressed air [58].

 

Figure 4. (A) Basic event triggered valve and AND-condition valve. Figure reprinted with permission
from [56]. (B) Microfluidic timer. Figure reprinted with permission from [58].

3.3. Flow Switching

In many complex centrifugal microfluidic biomedical applications, reagents must often be directed
into one of several channels or chambers. On this occasion, flow-switching technology is essential.
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The most common flow-switching method is based on the Coriolis force [59–61]. The switching
of the fluids often takes place in Y-shape channels and depends on the rotation direction and the
corresponding Coriolis force. However, there are also active flow-switching methods.

Zehnle et al. presented a rotational acceleration-triggered compression switching system. Here,
the switching was based on the magnitude of Euler force, not the direction of Euler force [46].
Kong et al. presented an active flow-switching method using a regulated stream of compressed
gas. This pneumatic flow-switching method allows for flow control at a T-shaped junction between
one inlet channel and two outlet channels [62]. Chen et al. demonstrated an optofluidic switching
method, according to which the fluidic channel was blocked by two valves along the “Y” junction
and then one chosen valve was opened by a 20-mW 785-nm laser beam [48]. Although these active
switching methods can be carried out successfully, they often require external devices, which makes
the assay complex and difficult to implement.

3.4. Metering and Sequential Loading

The reagent volume often greatly influences the diagnostic result. Furthermore, the repeatability
of the system and valving process depends largely on the reagent volume. Thus, liquid volume
metering plays an important role in centrifugal microfluidics. Metering in centrifugal microfluidics is
often achieved based on a structure in which an overflow waste chamber is connected to a metering
chamber with a defined volume [1]. However, the metering accuracy of this structure often deteriorates
due to the wicking effects at liquid interfaces caused by capillary forces. Steigert et al. introduced
design principles to counteract this effect and achieved a metering of 300 nL with a 5% variability
coefficient [63]. Schwemmer et al. presented a platform in which liquid metering, aliquoting of multiple
liquids and subsequent pairwise combination were demonstrated with the help of centrifugal forces
and pneumatic forces (Figure 5). Here, at a high rotation frequency, air in pneumatic chambers was
compressed and liquid in the metering chamber was metered. When rotational frequency was quickly
decreased, the compressed air pushed the metered liquids into the mixing chamber [64].

 

Figure 5. Principle of centrifugo-pneumatic metering. Figure reprinted with permission from [63].

Sequential loading is also an essential function in centrifugal microfluidics, as the reagent-adding
sequence is of great importance in many reactions or diagnosis, especially in nucleic acid extraction
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and immunoassay protocols. Sequential loading means that the fluids are driven into a designated
chamber in a defined order. In Section 3.2.2, we present a sequential release of fluids based on multiple
inline siphons (Figure 3A).

Park et al. presented a system in which different dimensional microfluidic channels (120, 40, and
20 µm) were used as passive capillary valves with different thresholds. Centrifugal force controlled
the loading of the reagents in sequence. This sequential loading system was used for H1N1 viral RNA
purification [65]. Jung et al. presented a similar system using capillary valving and a siphon channel
simultaneously to realize the sequential loading [66].

Ukita et al. recently presented a water-clock-based autonomous sequential release of reagents
in a steadily rotating centrifugal microfluidic device. The flow modes to the sample chambers were
switched by supplying the air to the sample chambers [67]. However, in this method, transparent
adhesive tape must be used to seal all of the chambers before the assay.

4. Current Biomedical Applications Based on Centrifugal Microfluidics Technology

4.1. Nucleic Acid Analysis

Conventional bench-top nucleic acid analysis is often time consuming and requires skilled workers
and relatively expensive equipment. With the development of centrifugal microfluidics technology, all
of these bench-top workflows can be integrated into one disc-like chip, decreasing the laboratory time
and reagent and equipment costs to a large extent. This technology also makes the point-of-care based
on nucleic acid analysis more accessible, as it requires minimal resources and no special laboratory
training. The review in this section is presented based on two major steps in nucleic acid analysis:
nucleic acid extraction and amplification.

4.1.1. Nucleic Acid Extraction

The extraction of nucleic acid often involves two steps: lysis of eukaryotic or bacterial cells and
nucleic acid purification.

Various forms of lysis systems are used and can be roughly classified into two main methods:
chemical/biological and physical methods. For the chemical/biological methods, alkaline buffers [68]
or enzymes are often used to decompose the membranes or cell walls to release DNA. As no external
device is needed, chemical/biological methods are the simplest to implement. However, these methods
often leave behind residual substances that inhibit subsequent processes. Microfluidic physical lysis
methods including electrical, laser, and mechanical methods often require additional instrumentation.
Like the commonly used physical method, mechanical lysis leaves behind little or no residual reagents
and is faster and more efficient, especially for Gram-positive microbes, which have thick cell walls.

Kido et al. demonstrated a mechanical method that used the relative motion of ferromagnetic
metal discs and grinding matrices in a liquid medium within individual chambers of the disc. In this
system, an oscillating magnetic field that produced mechanical impaction and shear forces disrupted
cells within the chamber. Glass beads were also integrated into each lysis chamber within the disc
to make the lysis more effective. This system yielded clarified lysates from E. coli and S. cerevisiae

using up to 70 µL of the substrate [69]. Kim et al. presented a beads beating lysis system in which the
rotation direction was alternated to enhance the collisions and shearing between the beads and cells in
the chamber [70]. Cho et al. introduced a rapid cell lysis system using laser irradiation on magnetic
particles [71]. The instantaneous change in temperature induced by the laser facilitated the lysis of
the cell.

Park et al. demonstrated a microsystem for automatic RNA purification. In this system, the
virus sample, washing solution, and elution buffer were sequentially loaded into the sol–gel chamber
and then viral RNA captured by the sol–gel solid phase was purified and eluted in 5 min. The RNA
capture yield was measured as 80%, and the H1 and M genes were successfully amplified from the
recovered purified H1N1 viral RNA by reverse-transcriptase PCR [65]. Jung et al. presented a similar
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sequential loading system to purify the influenza A H3N2 viral RNA. In that case, the sol–gel solid
phase was replaced by a microbead-bed microchannel to capture the RNA. Overall, 81% of the RNAs
were successfully captured and purified in 440 s [66]. Dimov et al. presented a solvent-selective routing
technique for RNA purification. Here, the routing operation was realized based on the combination of
hydrophobic membrane valve (HMV) and dissolvable film valve (DFV) [72].

Strohmeier et al. presented a gas-phase transition magnetophoresis system for DNA purification
from a dilution series of a L. innocua lysate and from a lambda phage DNA standard (Figure 6). In
this system, a stack of stationary permanent magnets was used to help transport magnetic beads
between three microfluidic chambers on a centrifugal microfluidic cartridge [73]. This method did
not require any human interaction and could be adjusted for other applications easily. Later, the same
group reported a platform capable of performing lysis and nucleic acid purification within the same
cartridge [74].

 

Figure 6. Gas-phase transition magnetophoresis system for DNA purification. Figure reprinted with
permission from [73].

4.1.2. Polymerase Chain Reaction (PCR)

As a sensitive and specific method, nucleic acid-based detection offers several advantages over
traditional microbiological detection for point-of-care clinical diagnostics or on-site detection of
environmental, foodborne, and water-borne pathogens [75]. However, the limitation of the amount of
nucleic acids in the target often impedes detection in the early stages.

As a nucleic acid amplification method, polymerase chain reaction (PCR), which requires different
temperatures that typically range between 55 and 95 ˝C, is widely accepted because monitoring it in
real time allows for the highly sensitive quantification of DNA down to the single molecule level [1].
Through the PCR process, the target nucleic acid is amplified into quantities large enough for detection
by fluorescence or electrochemical methods [76,77].
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In recent years, the integration of PCR into centrifugal microfluidic cartridges has attracted
much attention, as the enclosed microsystems decrease the risk of cross-contamination and the
miniaturization decreases the volume of expensive amplification reagents and the thermal mass
to ensure precise temperature control. Based on the thermocycling mechanism, the centrifugal
microfluidic PCR system can be divided into two groups: chamber stationary PCR, where the target
gene is amplified in a designate microchamber with a heater [78,79], and flow-through PCR, where the
PCR occurs when the reagents circulate in different chambers at different temperatures [80].

Jung et al. presented a rotary PCR genetic analyzer to perform reverse-transcription PCR by
combining the characteristics of the stationary PCR and flow-through PCR. Here, the PCR microchip
was sequentially rotated on the three thermal blocks (the denaturation, annealing, and extension
blocks) by a stepper motor to complete one cycle of PCR (Figure 7A). The fine tuning of the thermal
block temperature and rapid rotation of the microchip between the thermal blocks enabled the target
gene amplification in 25.5 min [81]. Stumpf et al. presented a sample-to-answer influenza A H3N2
virus detection platform in which the complete pathogen lysis, nucleic acid extraction, real-time reverse
transcription polymerase chain reaction were demonstrated in less than 3.5 h [82].

Czilwik et al. presented a similar sample-to-answer molecular diagnostic platform for detection of
bacterial pathogens [83]. Furutani et al. reported a LOAD platform to detect S. enterica in Food. Here,
because of its low concentration, S. enterica was cultured on the same chip before PCR, which made
the detection more sensitive and cheaper [84]. Keller et al. later presented a PCR platform based on
a centrifugal real-time PCR thermocycler. Based on this platform, a PCR assay for identification of
forensic animal family was demonstrated [85].

Wang et al. presented a solution for localized temperature cycling in PCR: an inertial mechanical
system in which springs and magnets (Figure 7B) were used to achieve the bidirectional flow by
changing the rotation speed. They also suggested adopting a lab-in-a-droplet bioassay strategy. With
the help of this inertial mechanical structure, the bidirectional flow of the sample droplet between
two temperature zones was demonstrated while the disc was spinning. The real-time heating in the
designated area depended on a wireless power supply system that also made wireless programmable
functionality possible [86]. Miao et al. also reported a double-shaft turntable LOAD platform to realize
flow-through PCR and bidirectional flow [87].

 

Figure 7. (A) PCR microchip sequentially rotated on the three thermal blocks to complete one PCR
cycle. Figure reprinted with permission from [81]. (B) Speed actuated inertial mechanical structure:
(a) low speed state, (b) high speed state. Figure reprinted with permission from [86].
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In PCR, it is often the case that the system should be fully closed to avoid vapor loss and
cross-contamination. Amasia et al. presented a centrifugal microfluidic system using ice valving to
seal the thermocycling chamber and decrease fluid loss due to evaporation. The system was validated
via amplification of a B. anthracis gene [77]. Furthermore, to solve the overpressure caused by high
temperature evaporation in a closed thermocycling chamber during PCR, Czilwik et al. presented a
method in which a microchannel was integrated as a vapor-diffusion barrier (VDB) to separate the
liquid-filled PCR chamber from an auxiliary air chamber. In such configurations, as the process of
vapor diffusion through the VDB was slowed down, the propagation of vapor from the PCR chamber
into the auxiliary air chamber was limited. This system proved that at a temperature increase from 23
to 95 ˝C, overpressure decreased from more than 80 kPa to only 35 kPa with the use of the VDB [88].

4.1.3. Isothermal NA Amplification Methods

Although PCR has the advantage of high sensitive and accuracy quantification, the thermal
cycling makes the integration process difficult and expensive. To solve this problem, isothermal
application methods such as loop mediated isothermal amplification (LAMP), recombinase polymerase
amplification (RPA), rolling circle amplification (RCA), and helicase dependent amplification (HDA)
are suggested.

LAMP is a simple and sensitive NA amplification method that amplifies target genes at 60–65 ˝C
within 1 h using polymerase enzyme and primer sets [89–91]. For the detection of the amplification
products in LAMP, the usage of gel electrophoresis, turbidity or fluorescence signals, and colorimetric
detection have been reported [6,89–91]. Among them, the rather cheap and simple colorimetric
detection has been widely employed [89,91]. Oh et al. presented a foodborne pathogen identification
platform which utilized LAMP for NA amplification and Eriochrome Black T (EBT) for colorimetric
detection. Here, zigzag-shaped microchannels were used for sequential loading of the reagents [89].
Regarding the detection of virus, reverse transcriptase loop-mediated isothermal amplification
(RT-LAMP) in which reverse transcriptase enzymes are added has also been developed. The same
group demonstrated an integrated rotary genetic analysis microsystem in which RNA extraction from
the influenza viral lysates, RT-LAMP, and real-time fluorescence detection were serially operated.
Firstly, capillary calves and a siphon channel were used for sequential loading in RNA extraction.
Then, the isolated RNA was driven into RT-LAMP reaction chamber by changing the rotation direction.
In this system, using influenza A H1N1, H3N2, and H5N1 viral samples, the target gene (H1
and M genes) amplification was detected within 47 min [90]. This group also presented a similar
influenza A virus identification platform in which immunochromatographic strip (ICS) was used for
colorimetric detection instead of fluorescence detection to make the system more compact and portable
(Figure 8A) [91].

Uddin et al. presented a LAMP detection system in which emitted florescence from labeled LAMP
amplicons was detected by color sensor and the detection results were displayed on liquid crystal
display (LCD) [92]. Santiago-Felipe also presented a real time LAMP monitor system. Here, LAMP
was demonstrated on a standard audio-video disc and real time detection of the amplification products
was done with the use of a disc readout laser [93].

RPA is another fast and simple DNA amplification technique which works at a constant
temperature of ~39 ˝C [94]. However, quantitative measurements in RPA have still been a difficult
problem so far. To solve this problem, Schuler et al. presented a first digital droplet recombinase
polymerase amplification (ddRPA) platform. In this system, the number of copies with ddRPA
was measurable as it was concordant to the number of copies measured with digital droplet PCR
(ddPCR) [95]. While Tortajada-Genaro et al. presented a platform which performed isothermal RPA
on digital versatile discs (DVDs) (Figure 8B). In this work, the presence of amplification products
modified the light intensity of the scanning laser of the DVD drive, which made the amplification
products detection possible [96].
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Figure 8. (A) RT-LAMP-ICS microdevice. Figure reprinted with permission from [91]. (B) Microfluidic
DVDs for solid-phase RPA. Figure reprinted with permission from [96].

4.1.4. DNA Hybridization

DNA hybridization has been an important tool for genetic analysis and diagnostics. Centrifugal
microfluidics has been used in dynamic DNA microarray hybridizations to decrease reagent
consumption and facilitate target diffusion to the substrate surface.

Peytavi et al. presented a centrifugal microfluidics-based DNA hybridization system that increased
the hybridization signal about tenfold compared with a passive system. In this system, capillary valves
were used to achieve the sequential release of sample, wash buffer, and rinse buffer by increasing the
rotation speed. The authors successfully discriminated four clinically relevant Staphylococcus species
that differed by a single-nucleotide polymorphism in only 15 min [97]. Jia et al. similarly presented a
hybridization microfluidic system in which self-assembled DNA oligonucleotide monolayers on gold
pads patterned on glass slides were used for capture probes and enzymatic-labeled fluorescence was
used for detection. Capillary valves were also used to achieve the sequential reagent loading. The
fluorescence intensity increased up to threefold compared with the passive hybridization assays [98].

Peng et al. presented a DNA hybridization system based on numerous radial and spiral channels.
The radial channels were used for the first step of DNA probe immobilization, and the spiral channels
were used for the second step of DNA hybridization [99]. These increased channel dimensions led to a
high hybridization rate.

Roy et al. presented a highly integrated platform in which thermoplastic elastomer (TPE) was
used for disc fabrication instead of PDMS. Because of the low-temperature and pressure-free assembly
and bonding properties, regents storage and loading can be operated more easily on this kind of
cartridges. Here, a complete assay including cellular lysis, PCR, amplicon digestion, and microarray
hybridization was demonstrated on a single disc, thus proving that integrated biomedical assays can
be operated well on this kind of chips [100]. TPE is now recognized as an alternative material for
centrifugal microfluidics.

Geissler et al. presented a novel articulated centrifugal platform for a colorimetric DNA detection
based on cloth-based hybridization array system (CHAS) (Figure 9). In this articulated LOAD
platforms, the orientation of the chip with respect to the centrifugal force field could be changed.
Based on this platform, new siphon valving and fluid relocation were also demonstrated [101].
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Figure 9. Articulated centrifugal platform. Figure reprinted with permission from [101].

4.2. Blood Analysis

Parameters such as glucose, electrolytes, proteins, and lipids in blood can provide much
information about the condition of the human body. Integrating the measurement of such parameters
into a centrifugal microfluidics cartridge makes point-of-care possible and hasten blood-based
diagnoses. In addition, the decreased turnaround time for laboratory tests offers the opportunity to
better monitor a patient’s health and decrease unnecessary treatments and hospital costs [102]. We
divide blood analysis based on centrifugal microfluidics into two parts: blood plasma separation and
blood-based clinical applications.

4.2.1. Blood Plasma Separation

Human blood, which is composed of leukocytes or white blood cells, erythrocytes or red blood
cells, and platelets and plasma, contains critical information about how a body is functioning [103,104].
As blood cells may provide a great level of noise that falsifies the results of a biochemical test, most
blood tests are performed using plasma or blood serum [105]. Therefore, the extraction of plasma from
whole blood is the first preparative step in many assay protocols and of major importance in medical
diagnostics. Traditional separation methods such as centrifugation or sedimentation are typically time
consuming and require large blood volumes (mL) [106]. These separation processes also fail to allow
seamless integration with subsequent assay steps to avoid expensive interconnection techniques and
manual intervention.

The methods for microfluidics-based blood plasma separation can be classified into three groups:
centrifugation [71,107,108]; inertia force [109], such as the Zweifach-Fung effect [17,110,111] or pinch
flow effect [112]; and filtration involving microparticles [113], membranes [114], micropillars [115],
and narrow channels [116]. Specifically, for the two passive separation methods based on inertial
force, Zweifach-Fung effect stipulates that as the red blood cells flow through a bifurcation region they
tend to travel into the faster flow rates channels. On the other hand, pinch flow effect ensures that
as blood and another liquid flow are continuously introduced into a microchannel having a pinched
segment blood cells will be separated perpendicularly to the flow direction according to their sizes.
However, all of these methods have drawbacks. For the first method, the efficiency of the decantation
of purified plasma is often not very high. For the second method, the microfluidic channel usually
must be long and narrow and have a high flow rate. For the filtration method, clogging of the blood
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cells caused by filtration units often leads to a high percentage of damaged cells. To make the plasma
separation techniques more suitable for point-of-care applications, the system should not require any
sophisticated or cumbersome equipment and maybe passive separation techniques are a better choice.
However, generally passive systems may not provide high separation efficiency.

Kuo presented a plasma separation and preparation centrifugal microfluidic platform. Here,
plasma was first separated from the whole blood based on inertial force. The separated plasma was
then aliquoted into two branches and a creatinine test was demonstrated in the detection chamber [117].

4.2.2. Clinical Applications Based on Blood

Nwankire et al. presented a liver function screening system. Blood plasma was separated
from finger-prick samples. Centrifugo-pneumatic valving was then used for plasma metering and
aliquoting the plasma into separate reaction chambers. The reactions were quantified via colorimetric
measurements, and the entire liver assay panel was completed in less than 20 min [118].

Riegger et al. presented a hematocrit level determination system that involved three steps:
priming, metering, and sedimentation. The hematocrit was indicated at the sharp phase boundary
between the plasma and segregated cellular pellet on a disc-imprinted calibrated scale. Hematocrit
determination of human blood was conducted within 5 min at a high degree of linearity and accuracy
with the use of this system [119]. Lin et al. presented a prothrombin time (PT) test system. In this
system, plasma was extracted from whole blood samples and a rapid mixing of plasma and PT reagent
was conducted within 1 s. The test results were gathered within 2 min [120]. Later, the same group
reported another PT test platform in which alternating clockwise and counter-clockwise rotation was
used to extract plasma form whole blood [121]. Kuo et al. presented a LOAD platform for plasma
separation and subsequent plasma mixing with suitable regents. Rectangular corner feature mix
channels were used to improve the mixing efficiency. The researchers conducted PT test with this
platform [122].

Circulating tumor cells (CTCs) have been associated with clinical outcomes in various
malignancies, and the isolation of CTCs from whole blood has attracted a great deal of research
attention. Park et al. presented a CTC isolation system that used a density gradient medium (DGM)
(Figure 10). Here, CTCs were bound to the microbeads covered with anti-EpCAM to discriminate
the density of the CTCs and blood cells and thus were settled only under the DGM layer. Active
laser-actuated ferrowax microvalves were used for fluidic routing [123]. Lee et al. presented a
size-selective system that isolated CTCs from whole blood samples using a thin membrane with a
pore size of 8 mm [124]. Nwankire developed a system for cancer cell quantification. In this paper,
plasma was first separated from the whole blood and cancer cells were extracted from the plasma
subsequently. The captured cancer cells were detected with the use of an electrochemical method as
cell capture resulted in a shift in the impedance between two electrodes [125].

As HIV virus primarily infects the CD4+ T lymphocytes, isolation and counting CD4+ cells is the
most important test used in HIV diagnosis and treatment. Ramachandraiah et al. presented a single
cell resolution imaging LOAD system in which CD4+ cells isolated from whole blood were counted for
rapid and low-cost HIV diagnostics. Here, the CD4+ cells were first captured by discs modified with
antibodies. With the help of improved DVD-based laser scanning microscope (DVD-LSM), based on
the increased light scattering of captured biomolecules, the imaging with a resolution down to 1mm
was demonstrated successfully [126]. Glynn et al. also demonstrated a centrifugo-magnetophoresis
platform for CD4+ cells insolation from the whole blood. In this system, CD4+ cells bound with
paramagnetic microparticles were deflected into a designated reservoir by the lateral magnetic field
while unbound cells followed the radial vector. The reported separation efficiency was up to 92% [127].
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Figure 10. Triangular obstacle structure disc for CTC isolation. Figure reprinted with permission
from [123].

4.3. Immunoassays

Based on the highly specific affinity of antibodies to antigens, immunoassays have become
important tools in clinical diagnostics, biological and biochemical disease studies, drug development,
and environmental analyses [1]. For the most commonly used immunoassays format, the antibody or
antigen is bound to the solid phase. When the fluid containing the analyte flows through the surface of
the solid phase, the analyte is captured by the antibody or antigen. After this, the secondary antibody
or antigen labeled with a tracer is often used to bind the captured analyte to build up a sandwich-type
structure. The binding tracer involved in fluorescent or enzymatic labels, colloidal gold, radioisotopes,
or magnetic labels is quantified to quantify the captured analyte.

Although immunoassays have been successfully performed in laboratory, the tests can be labor
intensive and consist of a large number of manual processing steps. “Long incubation times are a
bottleneck for the process, and the tedious and lengthy protocols often result in errors and inconsistent
results.” [7] As platform-based automation helps to decrease costs and ensure consistent results, the
integration of immunoassays into centrifugal microfluidic platforms is very attractive. Simultaneous
parallel immunoassay analyses are also performed easily on centrifugal microfluidic platforms.

4.3.1. Enzyme-Linked Immunosorbent Assay (ELISA)

As a very important format for immunoassays, the enzyme-linked immunosorbent assay (ELISA)
uses an enzyme as a tracer. In an ELISA, the enzymatic reaction product yielded from a substrate
solution within a designated time is often measured to quantify the amount of the enzyme.

Lai et al. presented a centrifugal microfluidic cartridge for ELISA-based immunoassays where
the sequential loading of sample, washing, conjugate, and substrate solutions was carried out via
a capillary valving system. The detection was achieved using an inverted fluorescence microscope.
Analysis of rat immunoglobulin G from a hybridoma culture showed that the microchip-based ELISA
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had the same detection range as the conventional method on the 96-well microtiter plate with less
reagent consumption and shorter assay time over the conventional method [33].

Lee et al. presented a fully automated ELISA system to test infectious diseases from whole
blood. In this system, laser irradiated ferrowax microvalves were used for sequential loading and
shake-mode mixing was implemented to mix beads with the plasma, detection probe, and washing
buffers. The concentrations of the antigen and antibody of Hepatitis B virus, HBsAg, and Anti-HBs
were measured in parallel on a single cartridge [128]. Lee et al. presented another fully integrated
device to perform both multiple biochemical analysis and sandwich-type immunoassay simultaneously
on a disc. In this device, a lipid test panel composed of six different kinds of biochemical analyte was
demonstrated to detect CK-MB (muscle and brain fraction of creatine kinase) as a biomarker for recent
heart attacks [129].

Park et al. presented a centrifugal microfluidic layout to simultaneously detect high sensitivity
C-reactive protein, cardiac troponin I, and N-terminal-pro-B-type natriuretic peptide based on a
bead-based sandwich-type ELISA. Active laser-actuated microvalves were used to isolate the fluidic
channels after the reaction chambers were flushed with common liquids simultaneously. Compared
with the conventional ELISA, this assay had a similar limit of detection and dynamic range but
required a smaller sample volume and shorter process time [130]. Kim et al. presented a bead-based
ELISA using the electrochemical detection method. In this ELISA, the horseradish peroxidase enzyme
was conjugated to a secondary antibody and catalyzed the reaction of tetramethylbenzidine from
its reduced form to its oxidized form, after which amperometry was used for detection. The limit
of detection of this device for the C-reactive protein proved to be a 17 times improvement over
quantification by optical density [131].

Lee et al. developed an electrospun TiO2 nanofiber LOAD system for the detection of serum
proteins. Here, the high specific surface area enabled TiO2 nanofiber to capture more antibodies and
then improved the sensitivity of the detection [132].

Hosseini et al. reported a microsphere based centrifugal microfluidic ELISA platform for the
detection of dengue virus (DV) (Figure 11). Here, microspheres with large specific surface area were
used to facilitate biorecognition and microballoon mixing was used to ensure more target analyte to be
bound on the surface [133].

 

Figure 11. Microfluidic design of microsphere based DV detection ELISA platform. Figure reprinted
with permission from [133].

4.3.2. Other Immunoassay Formats

In addition to the ELISA, fluorescent immunoassays that apply colored beads as the solid phase
have also been introduced in centrifugal microfluidics. Riegger et al. presented color-multiplexed
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fluorescent immunoassays. First, a monolayer of color-encoded beads identified by incorporated
color tags (dyes or luminescing quantum dots) was aggregated into a detection chamber. The
reaction-specific fluorescence signal was then quantified by an optical read-out device. Hepatitis
A and tetanus assays were successfully demonstrated in this system [134]. Burger et al.

presented a combination of color-coded multiplexing with beads, captured in V-shaped cups [135].
Czilwik et al. presented a human C-reactive protein (CRP) magnetic chemiluminescent immunoassay
(MCIA) centrifugal microfluidic platform [136]. Here, the same gas-phase transition magnetophoresis
method, which was first reported in [73], was used to transport magnetic capture microparticles
between adjacent chambers.

Hemmi et al. demonstrated label-free immunoassays on a centrifugal cartridge. In this
system, a CD-type surface plasmon resonance sensor was successfully used in an immunoassay
of immunoglobulin A [137].

4.4. Other Biomedical Applications

There are also many cell-based assays in the centrifugal microfluidic platforms. These cell-based
assays often involve cell isolation or capture and subsequent analysis of the isolated cells [138–140].
Cell isolation enables researchers to study and analyze single cells in a defined environment and holds
much promise as a research tool, especially in the pharmaceutical field [1,7]. Specifically, Espulgar et al.

developed a LOAD platform for single-cell level cardiomyocyte-based drug profiling and screening.
Here, isolated single and groups of neonatal rat cardiomyocytes was trapped by centrifugation in one
chip. After stopping the centrifugation, the cells were observed under a microscope and movies of
the beat motion were also recorded [141]. The same group also presented a similar LOAD system to
monitor cell–cell interaction of rat cardiomyocytes [142].

Ren et al. presented a simulation of an emulsification and separation LOAD platform which
enabled different kind of cells to be encapsulated and incubated by droplets [143]. This work has given
a theoretical reference for the design of this kind of platforms. Ouyang et al. presented a multilayer
polyester film centrifugal platforms in which protein level in human blood plasma were quantified.
This platform also made parallel aliquoting, reciprocating mixing and larger scale integration more
easily in centrifugal microfluidics [144]. Wang et al. presented a LOAD platform for screening
protein crystallization conditions. In this device, vapor diffusion often used in conventional protein
crystallization was realized with the help of capillary valves and vapor-diffusion champers [145].
Schuler et al. implemented a high internal volume fractions droplet generation platform [146].
Biomedical and chemical applications such as drug delivery, clinical diagnostics and material synthesis
may benefit from this method.

Aeinehvand et al. presented a system which was used to detect the DV with the help of
microballoon mixers. It proved that the effect of microballoon mixing enhanced the sensitivity of
DV detection [147]. Additionally, Antunes et al. reported a centrifugal microfluidic platform to
quantify the NS1 dengue biomarker in serum. Here, coated magnetic nanoparticles were used to bind
target antigen NS1 and then form nanoclusters. Later, the amount and size of the nanoclusters was
measured to quantify the target concentration [148]. While, Koh et al. developed a sensitive botulinum
toxin detection system. In this system, toxins were first bound to antibody-laden capture particles.
These particles were then sedimented through a density-media and were quantified by laser-induced
fluorescence [149]. Schroder et al. presented a LOAD platform for rapid and sensitive detection
of bacteria from urine [150], while Kim et al. used their LOAD system for on-site quantification of
microalgal lipids [151].

5. Conclusions and Outlook

This paper gives an overview of the development of centrifugal microfluidics technologies based
on advanced unit operations and their biomedical applications. The advanced unit operations include
mixing, valving, flow switching, metering, and sequential loading. Their biomedical applications
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include nucleic acid analysis, blood analysis, immunoassays, and other biomedical applications. This
introduction should give readers a clear picture of the current development of centrifugal microfluidics.

Although centrifugal microfluidics has developed rapidly over the past decades, it faces many
challenges. In terms of point-of-care diagnostics, as the rotation system is cumbersome compared
with the disc-shape chip, centrifugal microfluidic devices have to sacrifice its portability to some
extent. Considering the widely used fluorescence detection methods for which bulky optical devices
are required, the situation may become worse in centrifugal microfluidics. Many efforts have been
made to solve this problem. For example, LabTube system with the help of laboratory centrifuges
(Figure 12A) [152,153] and lab on DVDs system using DVD discs and commercial drives [96,126]
have been suggested to make centrifugal microfluidic devices more universal and portable. In NA
analysis, simple and compact colorimetric detection is used instead of fluorescence detection in some
cases as a result of the development of isothermal amplification methods [89,91]. When it comes to
cost-related issues, considering that the rotation system is reusable, the actual running cost for buying
molded plastic discs should not be high. However, the cost of manufacturing the disposable chip,
especially for the parts that contains temperature control modules often used in NA analysis, has to
be considered. Furthermore, the techniques of storage of reagents should also be improved to ensure
that the devices can function well in some extreme environmental conditions. According to the review
of reagent pre-storage in microfluidics [154], high precision, low-cost manufacturing, and longtime
storage of reagents are still issues not fully resolved. Large-scale integration of the disc-shaped chip is
also difficult due to its distance away from the rotation center, flow direction and radius limitations.
Although one may argue that this issue can be solved by pumping liquids from a radially outward
direction to a radially inward direction [29,50,83,155], the number of the workflows requiring different
pre-stored reagents along the radial direction is still limited due to the finite length of the radius. This
problem may be solved through the introduction of multi-layer LOAD.

 

Figure 12. (A) LabTube system for centrifugal microfluidics. Figure reprinted with permission
from [152]. (B) Active pneumatic control of centrifugal microfluidic flows. Figure reprinted with
permission from [156].

In the future, the development of centrifugal microfluidics may focus on improving the unit
operations to widen their applications and promote their integration ability. One of way to improve
unit operations is to integrate multi-manipulation strategies into one platform. Clime et al. presented a
good example in which a regulated pressure pump and a programmable electromechanical valving
system were integrated into the centrifugal microfluidic platform (Figure 12B) [156]. Burger et al. also
presented a good example for integrating the optical manipulation strategy into the LOAD system [138].
However, as mentioned earlier, the use of optical devices may sacrifice the advantage of compactness
and portability. More microelectronic devices can also be integrated into the centrifugal microfluidic
platform in order to increase its versatility. However, the cost of integrating microelectronic devices
has to be considered with care.
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