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A Review of Block Designs for Test Treatments – Control(s) Comparisons 
 

1N. R. Abeynayake and 2Seema Jaggi 
 

 
ABSTRACT 

 In practice there may arise experimental 
situations where it is desired to compare several 
treatments called the test treatments to a 
standard treatment called control. The main 
interest here lies in making test treatment-control 
comparison with as much precision as possible 
and comparison within the test treatments are of 
less importance. For example in agricultural 
experiments, the aim of the experimenter is to 
test a set of new varieties of a crop with an 
already existing variety and to determine which 
of the varieties perform better in comparison to 
the existing variety. Balanced Treatment 
Incomplete Block (BTIB) designs have been 
defined for this situation. The designs are 
balanced with respect to test treatment-control 
comparisons. The concept of BTIB is further 
extended to define Balanced Two Disjoint Sets of 
Treatments (BTDT) designs when there are more 
than one control. Some methods of constructing 
these designs are presented here. Some class of 
row-column designs, which are balanced for test 
treatments vs. control comparisons, referred to as 
the Balanced Treatment vs. Control Row-
Column (BTCRC) designs are also described 
when heterogeneity is to be eliminated in two 
directions.  
 
Key words: Balanced Treatment 
Incomplete Block (BTIB) design, Balanced 
Two Disjoint Sets of Treatments (BTDT) 
design, Balanced Treatment vs. Control 
Row-Column (BTCRC) design. 
  
 

INTRODUCTION 

esigns are usually characterized by 
the nature of grouping of 

experimental units and the procedure of 
random allocation of treatments to the 
experimental units. Block (Row-Column) 
designs are useful in experiments requiring 
elimination  of  heterogeneity  in one   (two) 
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direction. These designs are useful in 
agricultural experiments for situation where 
the experimenter is interested in making 
comparison of all possible treatment pairs. 
The design adopted should be such that it 
allows these comparisons to be made with 
as high a precision as possible. However, in 
practice there may arise experimental 
situations where it is desired to compare 
several treatments called test treatments to 
standard treatment called control. For 
example, in screening experiments or in the 
beginning of a long-term experimental 
investigation, where it is initially desired to 
determine the relative performance of new 
test treatments with respect to the control. 
Let there be v treatments (such as new types 
of hybrid varieties, method of cultivation, 
pesticides, herbicides etc.) and an existing 
(old) one is to be replaced by one of these 
newer kinds. In such situations, the 
experimenter is not interested in making 
comparisons among all the treatments, but 
the main interest is to compare the new 
(test) treatments with the old (control) 
treatment and thus a higher precision is 
desired for these estimates. 
 The earliest work on this problem 
was carried out by Dunnett (1955). He 
posed (but did not solve) the problem of 
optimally allocating experimental units to 
control and test treatment so as to maximize 
the probability associated with the joint 
confidence statement concerning the many-
to-one comparison between the mean of the 
control treatment and the mean of the test 
treatments. This optimal allocation problem 
was solved by Bachhofer and his coworkers 
(1969, 1970, 1981).  
 In all the above papers, it was 
assumed that a Completely Randomized 
(CR) design has been used. However, many 
practical situations may require the 
blocking of experimental units in order to 
cut down on bias and improve the precision 
of the experiment. If the block size is large 
enough to accommodate one replication of 
all the test treatments and additional control 
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treatments as well, then the design of 
experiment can be carried out using the 
optimal allocations described in Bechhofer 
(1969) and Bechhofer and Nocturne (1970) 
with only the usual modifications.  
 
2. Balanced Incomplete Block 

Designs for Comparing Test 
Treatments with Control  

 

 The situation that commonly occurs 
in practice is when the block size is less 
than the total number of treatments. 
Bechhofer and Tamhane (1981) introduced 
a general class of incomplete block designs 
appropriate for the problem called Balanced 
Test Treatment Incomplete Block (BTIB) 
designs. The designs are balanced with 
respect to test treatment-control 
comparisons. 
 Let the treatments be denoted by 
0,1,…,v with 0 denoting the control 
treatment and 1,2,…,v denoting the v ≥ 2 
test treatments. Let k < v + 1 be the size of 
each block and b the number of blocks for 
experimentation. If treatment i is assigned 
to the hth plot of jth block (0 ≤ i ≤ v, 1 ≤ h ≤ 
k, 1 ≤ j ≤ b), then the usual additive linear 
model is, 

yijh = µ + αi + βj + eijh, 
 yijh denote the corresponding 
response variable, µ is the grand mean, αi is 
ith treatment effect and βj is jth block effect. 
The eijh are assumed to be iid N(0, σ2) 
random variables.  
 
Definition 2.1: [Bechhofer and Tamhane 
(1981)]. For given (v, b, k), consider a 
design with the incidence matrix N = ((nij)), 
where nij is the number of replications of 
the ith treatment in the jth block. Let λii' = 
Σnijni'j denote the total number of times the 
ith  treatment appears with the i'th  treatment 
in the same block over the whole design 
(i≠i'; 0 ≤ i, i' ≥ v). Then the necessary and 
sufficient conditions for a design to be 
BTIB are 

λ01 = λ02 = ,…, = λ0v = λ0 (say) 
λ12 = λ13 = ,…, = λv-1,v = λ1 (say) 

 In other words, each test treatment 
must appear with (i.e. in the same block) 
the control treatment the same number of 

times (λ0) over the design, and each test 
treatment must appear with every other test 
treatment same number of times (λ1) over 
the design. As a consequence of this 
definition of BTIB design, N is the (v+1) x 
b incidence matrix, given as 






=
n

NN 1 , 

 where N1 is a (v x b) incidence 
matrix pertaining to v test treatments and n 
is a (1 x b) incidence matrix pertaining a 
control treatment. The vector of replication 

is ( )'0
'
v rr

1
1 and vector of block sizes is 

(k1,…,kb)', r and r0 being the replication 
number of test treatments and control 
treatment respectively. Therefore the 
information matrix is given by 
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 2.1  Construction of (BTIB) designs 
 

In this section, some methods of 
constructing BTIB designs for comparing a 
set of test treatment to a control treatment 
are given. The designs are balanced with 
respect to test treatments-control treatment 
comparisons according to Definition 2.1. 
 
Method 2.1.1: Consider a BIB design with 
parameters (v, b, r, k, λ), then adding one 
control in each block of this design results 
in a reinforced BIB design or a BTIB 
design with parameters v, b, r, r0 = k, k, λ0 
= 1 and λ1 = 1. 
 
Example 2.1.1: Consider a BIB with 
parameters v = 7, b = 7, r = 3, k = 3, λ = 1. 
By adding the control treatment (0) to each 
block, following BTIB design is obtained: 

























0000000

3217654

1765432

7654321
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Method 2.1.2: Start with a BIB design with 
t > v treatments in b blocks. Replace the 
treatments v + 1, v + 2, …, t to zeros. A 
BTIB design with parameters v, b, r, r0 = 
r(t-v), k, λ0 = (t-v)λ and λ1= λ is obtained.  
 
Example 2.1.2: Consider the following BIB 
design with parameters (7, 3, 1): 

















2176543

6543217

7654321

 

 Replacing the 6’s and 7’s by zeros, 
the following BTIB design with parameters 
v=5, b=7, r=3, r0=6, k=3, λ0 = 2 and λ1 = 1 
is obtained:  

















2100543

0543210

0054321

 

 If treatment 5 is also replaced then 
the following BTIB design would be 
obtained with parameters 4, 7, 3, 9, 3, λ0 = 
3, λ1 = 1. 













2100043
0043210
0004321

 
 
Method 2.1.3: Suppose that for given (v, k) 
there is a design D1 with λ0 > 0. Then new 
design D2 for the same (v, k) can be 
obtained by taking a “complement” of D1 in 
the following way. Separate the blocks of 
D1 in different sets so that each block in 
given set has zero assigned in an equal 
number of plots (0 times, 1 time etc.). For 
example, consider the above design the 
blocks of which can be separated into three 
sets as follows: 

















=
421.433.4

000.321.2

000.000.1

D1  

      
 For each set of D1 write its 
“complementary” set (with zero assign in 
the same number of plots) which will result 
in a BTIB design. These complementary 
sets for above are  

















443

332

211

,  
















442

211

000

 ,  
















3

0

0

; 
This is a BTIB design with parameters 4, 7, 
4, 5, 3, λ0 = 2, λ1 = 2. 
 
3. Balanced Block Designs for 

Comparing Two disjoint Sets of 
Treatments  

Section 2 gives the concept of BTIB design 
for comparing a set of treatments to single 
control treatment. But there are situations in 
which more than one control treatment is 
required. The problem is that there are two 
sets of treatments [Majumdar (1988), Jaggi 
(1992), Jaggi et al. (1996)]. One set T of 
cardinality v1, containing test treatments 
denoted by 1,2,…,v1 and the second set S of 
cardinality v2, containing standard or 
control treatments denoted by (v1+1),…,v, 
where v = v1 + v2 ≥ 4 and T ∩ S = φ. The 
primary interest of experimenter is to 
estimate the contrast (τt - τs) with as much 
precision as possible, where t ∈ T and s 
∈S. The comparisons between the 
treatments within the set are not of interest.  
The concept of BTIB design is extended to 
compare a set of test treatments to a set of 
control treatments. The designs for 
comparing two disjoint sets of treatment are 
called as Balanced Two Disjoint Sets of 
Treatments (BTDT) designs. The two sets 
of treatments are disjoint in the sense that 
there are no common treatments between 
the two sets.  
 These designs are balanced with 
respect to test treatments-control treatments 
comparisons. Let N be a (v1 + v2) x b 
incidence matrix, given as 






=
n

NN 1

 
 where N1 is a (v1 x b) incidence 
matrix pertaining to v1 test treatments and n 
is a (v2 x b) incidence matrix pertaining to 
v2 control treatments. Also 

( )''
vc

'
vt 21

rr 11r = and k = (k1,…,kb)’, rt and 

rc being the replication number of test 
treatments and control treatments 
respectively and k is the vector of block 
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sizes. Therefore, the information matrix is 
given by 
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3.1 Construction of BTDT Design  
 
Method 3.1.1: This method is developed by 
the Jaggi in 1992. Let N1 be the incidence 
matrix of a partially balanced incomplete 
block (PBIB) design with two associate 
classes and with parameters v1, b1, r1, k1, 
λ11, λ12, m, n, and N2 be the incidence 
matrix of another PBIB design with the 
same association scheme (m,n) and 
parameter v1, b2, r2, k2, λ21, λ22, m, n.  
 
Case (A): 

If  λλλλλ
=+

+
=+

+ 2

22

21

12

2

21

21

11

kvkkvk
, then 






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
=

011

NN
N '

bv

21

12

 

 
 is the incidence matrix of a BTDT 
design for comparing v1 test treatment to v2 
control treatments with parameters v=v1+v2, 
b=b1+b2, ( )[ ]'

v1
'
v21

'

21
brr 11r +=   

( )[ ]'
b2

'
b21

'

21
kvk 11k += . 

 
Case (B): 
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+

+
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=
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is the incidence matrix of a BTDT design 
for comparing a set of v1 test treatments to a 
set of v2 control treatments with parameters 
v=v1+v2, b=b1+b2,  

( )[ ]'
v21

'
v21

'

21
)b(brr 11r ++=  , 

( )[ ]'
b22

'
b21

'

21
)v(kvk 11k ++= . 

 
Example 3.1.1: Consider a semi-regular 
GD design (SR6) with parameters v1 = 6,  

b1 = 9, r1 = 3, k1 = 2,  m = 2, n = 3, λ11 = 0, 
λ12 = 1 and another regular GD design 
(R94) with v1 = 6, b2 = 6, r2 = 4, k2 = 4, m = 
2, n = 3, λ21 = 3, λ22 = 2, both the designs 
having the same association scheme. The 
design obtained by taking the blocks of 
these two designs together and augmenting 
two new treatments (v2 = 2) in each block 
of first design, gives following BTDT 
design with the parameters v = 8, b = 15, r 
= 7, r0 = 9, k = 4: 
(1, 2, 7, 8); (3, 4, 7, 8); (5, 6, 7, 8); 
(1, 6, 7, 8); (3, 2, 7, 8); 
(5, 4, 7, 8);  (1, 4, 7, 8); (3, 6, 7, 8); 
(5, 2, 7, 8); (1, 2, 4, 6); 
(2, 3, 5, 1);  (3, 4, 6, 2);  (4, 5, 1,3);  
(5, 6, 2, 4);  (6, 1, 3, 5); 
 
Method 3.1.2: This method of construction 
of design for making comparisons between 
two sets of treatments is derived from the 
use of variance balanced block designs with 
equal and unequal replications and equal 
and unequal block sizes. Using this method, 
design with equal as well as unequal block 
sizes, and equal and unequal replications 
can be constructed.  
 Consider any variance balanced 
block design with unequal replication 
numbers and unequal block sizes. The 
design obtained by deleting one block from 
this design is a BTDT design. Then the 
information matrix C is 
 

( )



















−−

−







−−−

=

−−−−

−

'
kvkvkv

'
kkv

'
kvk

'
kk

1
k

11111

1111

v

θ
θ

v

θ

v

θ

k

1

v

θ
1θ

11I11

1111I
C

 

 
Example 3.1.2: Consider the following 
variance balanced design with unequal 
replication and unequal block sizes and 
with parameters v = 6, b = 11, 

[ ]'
2

'
4 54 11r = ,   [ ]'

9
'
2 24k 11=  

 
1 1 1 1 2 2 3 3 4 4 5 
2 2 5 6 5 6 5 6 5 6 6 
3 3          
4 4          
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The design obtained by deleting the first 
block i.e. (1, 2, 3, 4) is a BTDT design with 
unequal replication numbers, v1 = k1 = 4, v2 
= v – k1 = 2, b = 10, [ ]'

2
'
4 53 11r = ,  

[ ]'
924 1k = . 

 
4. Row-Column Designs for 

Comparing Test Treatments with a 
Control 

 
 This section considers the designs 
for comparing several treatments with a 
control when heterogeneity is to be 
eliminated in two directions. Row-column 
designs, which are balanced for test 
treatments vs. control comparisons referred 
to as the Balanced Treatment vs. Control 
Row-Column (BTCRC) designs has been 
proposed by Majumdar and Tamhane 
(1996).  
 Suppose v ≥ 2 treatments, labeled 
1,2,…,v are to be compared with a control, 
labeled 0, in a row-column design with a ≥ 
2 rows and b ≥ 2 columns. Assume that 
only one treatment is applied in each of the 
a b plots. Let yijk be the observation on the 
ith treatment applied in the jth row and kth 
column (0 ≤ i ≤ v, 1 ≤ j ≤ a, 1 ≤ k ≤ b). 
Fixed-effects additive linear model assumed 
is as follows: 

ijkkjiijk εγβαµy ++++=
, 

 where µ is the grand mean, αi is the 
ith treatment effect, βj is the jth row effect, γk 
is the kth column effect and εijk are 
uncorrelated random error with zero mean 
and constant variance σ2.  
 Here again the interest is to estimate 
the treatments vs. control contrasts α0 - αi, i 
= 1,…,v. Let the row-column design have 
mij incidences of the ith treatment in the jth 
row and nik incidences of the ith treatment in 
the kth column (0 ≤ i ≤ v, 1 ≤ j ≤ a, 1 ≤ k ≤ 
b). Let M = {mij} and N = {nij} denote the 
row and column incidence matrices, 
respectively. Further, let 

∑ ∑
= =

==
a

1j

b

1k
ijiji nmr be the number of 

replications of the ith treatment, 
'

v10 )r,...,r,(r=r  and 

∑
=

=
a

1j
jiijii '' mmµ  and ∑

=
=

b

1k
kiikii '' nnv  

 
Define 

[ ]'''' iiiiiiii
rrbvaµ

ab

1
λ −+=  

 
Definition 4.1: The necessary and sufficient 
conditions for a row column design to be 
BTCRC is that  λ01 = λ02 = ,…, = λ0v = λ0 
(say) ,   λ12 = λ13 = ,…, = λv-1,v = λ1 (say) 
 
4.1   Construction of BTCRC Designs 
 
Method 4.1.1: [Notz (1985)]. Start with a 
Latin Square of order w ≥ v and replace 
symbols v+1,…,w by the symbol 0 
(control). The resulting design is a BTCRC 
with parameters v, a = b =w, r = w, r0 = (w-
v)w, µii' = vii = w, µ0i = v0i = (w-v)w, λ0 = 
w-v, λ1 = 1. 
 
Example 4.1.1: Consider the 5 x 5 Latin 
Square Design. Replacing symbols 4 and 5 
to 0, the following design with three test 
treatments is obtained: 
 



























03210

32100

21003

10032

00321

 
 

Here µii' = vii' = 5. This design is row as 
well as column balanced with λ0 =2 and 
λ1=1. 
 
 Method 4.1.2: Construct a Pseudo-Youden 
design (PYD) introduced by Cheng (1981). 
Thus a BTCRC design can be constructed 
from a PYD in w symbols by changing 
symbols v + 1, …,w  to 0. 
 
Example 4.1.2: Consider a 6 x 6 PYD for 9 
treatments. Replacing symbols 7, 8 and 9 
by 0’s, the following BTCRC design for six 
test treatments with µi0 = 7 and  vi0 = 8 and 
µii’  = 3, vii’ = 2 for 1 ≤ i ≠i' ≤ 6 is obtained: 
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





























120405

314060

052630

463152

000213

506004

 
The design has λ0 = 7/6, λ1 = 7/18. 
 
Method 4.1.3: The transversal of a Latin 
Square of order v is a set of v cells such that 
each row, column and symbol is 
represented exactly once in this set 
[Hedayat and Seiden (1974)]. Changing all 
symbols in a transversal to 0, a BTCRC 
design with a = b = v, r1 = …= rv = v-1 and 
r0 = v is obtained. 
 
Example 4.1.3: Consider the following 
Latin Square of order 4 with a transversal 
parenthesized:  

( )
( )

( )
( ) 
























3412

1234

2143

4321

 
Replacing the parenthesized treatments by 0 
gives the following BTCRC design with µii’  
=  vii’  = 2, µi0  = vi0 = 3: 

























3402

1230

0143

4021

 
This design has λ0 = 3/4, λ1 = 7/16. 
 
Method 4.1.4: Two transversals in a Latin 
Square of order v are called parallel if they 
have no cell in common. Suppose such 
parallel transversals are identified. First 
apply Method 4.1.3 to obtain a v x v 
BTCRC design using the first transversal. 
Then take horizontal and vertical 
projections (Hedayat and Seiden 1974) of 
the second transversal, and add a 0 to 
complete the design.  
 
Example 4.1.4: Consider the following 4 x 
4 Latin Square with two parallel 
transversals, one parenthesized and other 
square-bracketed: 

[ ] ( )
[ ] ( )

( ) [ ]
( ) [ ]
























3412

1234

2143

4321

 
Replace the parenthesized transversals by 
0’s to obtain the following BTCRC design 
using Method 4.1.3: 

[ ]
[ ]

[ ]
[ ]























3402

1230

0143

4021

 
Next project the square-bracketed 
transversals horizontally and vertically and 
use the sum composition methods to 
complete the following square BTCRC 
design: 



























03241

30402

21030

40103

14020

 
This design has λ0 = 34/25 and λ1 = 14/25. 
 
Method 4.1.5: This method of Kiefer 
(1975) can be used to construct large 
BTCRC designs from smaller ones as 
shown with the following example: 
 
Example 4.1.5: BTCRC design with 4 test 
treatments with 9 x 9 array can be 
constructed as follows: 









32

'
21

dd
dd

 
where d1 is 6 x 6 BTCRC design with v = 4 
obtained from a Latin square of order 6 by 
changing symbols 5 and 6 to 0. 

























=

004321
100432
210043
321004
432100
043210

d1

 
d2 is BTCRC design belonging to the 
“Euclidean family” of Hedayat and 
Majumdar (1988). 













=
310024
102430
024301

d2
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And d3 is a 3 x 3 matrix of all 0’s. Then 
design is, 









32

'
21

dd

dd
= 









































000310024

000102430

000024301

310004321

102100432
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This design has λ0 = 40/9,  λ1 = 14/9. 
 
 

CONCLUSIONS 

 A general class of incomplete block 
designs that are appropriate for use in the 
comparison of test treatment-control 
problem have been described. These 
designs are referred as BTIB designs. BTIB 
designs are balanced with respect to test 
treatments-control treatment comparisons. 
The concept of BTIB designs is extended to 
compare a set of test treatment to a set of 
control treatments. The designs for 
comparing two disjoint sets of treatment are 
called as Balanced Two Disjoint Sets of 
Treatments (BTDT). A class of row-column 
designs, which are balanced for test 
treatments vs. control comparisons referred 
to as the Balanced Treatment vs. Control 
Row-Column (BTCRC) can be used for 
comparing several treatments with a control 
when heterogeneity is to be eliminated in 
two directions. 
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