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ABSTRACT The understanding of body measurements and body shapes in and between populations is
important and has many applications in medicine, surveying, the fashion industry, fitness, and entertainment.
Body measurement using 3D surface scanning technologies is faster and more convenient than measurement
with more traditional methods and at the same time provides much more data, which requires automatic
processing. A multitude of 3D scanning methods and processing pipelines have been described in the
literature, and the advent of deep learning-based processing methods has generated an increased interest
in the topic. Also, over the last decade, larger public 3D human scanning datasets have been released. This
paper gives a comprehensive survey of body measurement techniques, with an emphasis on 3D scanning
technologies and automatic data processing pipelines. An introduction to the three most common 3D scan-
ning technologies for body measurement, passive stereo, structured light, and time-of-flight, is provided, and
their merits w.r.t. body measurement are discussed. Methods described in the literature are discussed within
the newly proposed framework of five common processing stages: preparation, scanning, feature extraction,
model fitting, and measurement extraction. Synthesizing the analyzed prior works, recommendations on
specific 3D body scanning technologies and the accompanying processing pipelines for the most common
applications are given. Finally, an overview of about 80 currently available 3D scanners manufactured by
about 50 companies, as well as their taxonomy regarding several key characteristics, is provided in the
Appendix.

INDEX TERMS Body measurement, 3D surface scanning, body shape, anthropometry, deep learning.

I. INTRODUCTION

Anthropometry, a subfield of applied metrology, is the study
of how to measure humans. General anthropometry includes
the complete process of data collection, documentation, sum-
marization, and analysis [174]. In a narrower sense, anthro-
pometry can be defined as the science of body measurement,
where lengths, breadths, heights, and circumferences are used
to numerically describe body segments and the overall body
shape [11]. Body measurement is essential in quantifying the
variations in and between populations of different countries,
ethnicities, cultures, and ages [26], [137], and it strongly
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impacts medicine [46], [68], surveying [56], [174], the fash-
ion industry [174], fitness [32], and entertainment [38].

Body dimensions may be measured in various ways, e.g.,
they can be obtained manually using traditional tools such
as calipers and tape measures [174] or automatically using
3D scanners where the measurements are extracted from the
obtained data. To ensure both comparability and repeatabil-
ity, body measurements are standardized via the definition
of measurement postures and body landmarks [74], [75].
Although manual measurement is the gold standard, several
reports suggested that human expert measurers and 3D scan-
ners achieve comparable accuracies and that the repeatability
is generally better for 3D scanners [82], [85], [109]. Another
advantage of using 3D scanners over expert measurers is the
measurement speed [91]: the duration of an automatic scan is
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FIGURE 1. The proposed body measurement framework. All measurement methods include the scanning and
measurement extraction stages and one or more of the remaining stages.

often under a few seconds and may go up to 30 seconds for
high-quality scans.1 Therefore, although the first commercial
3D body scanners appeared in the 1990s [39] andwere expen-
sive, requiring trained personnel and extensive manual post-
processing [114], the scanning technology is currentlymature
and is comparable in performance to human measurers [24],
[64], [175].
There are three commonly used scanning technologies

for human body data acquisition: (a) passive stereo (PS);
(b) structured light (SL); and (c) time-of-flight imaging
(ToF). PS uses images from multiple viewpoints to recon-
struct the 3D body surface using the triangulation princi-
ple [63]; it fails in the case of low or no texture. SL extends the
PS approach by projecting known light patterns, which mit-
igates the main drawback of PS. In SL, the 3D body surface
is reconstructed from the deformations of the projected light
pattern [54]. Regarding SL, we distinguish projector- and
laser-based methods. In ToF modulated light is projected
onto a person and the 3D body surface is directly obtained
by measuring the travel time of the modulated light [70].
Considering the multitude of data acquisition and processing
methods that have been described in the literature, there exists
an increased interest in the topic, which is also substantiated
by many large public 3D human body datasets [3], [8], [24],
[64], [175] released over the last decade.
In this work we provide a comprehensive review of body

measurement based on 3D scanning, starting from a review
of 3D scanning technologies and ending by describing the
most recent advances in pose and shape estimation. We pro-
pose to divide the body measurement processing pipeline
into five stages: (1) preparation, (2) scanning, (3) feature
extraction, (4) model fitting, and (5) measurement extraction
(Fig. 1). In the preparation stage (stage 1), markers that
identify standard body landmarks may be placed on the body

1See Appendix A for more details.

[3], [24], [166]. The person is asked to take a pre-defined
pose [75] and to hold still until the scan ends. Scanning
(stage 2) produces a 3D point cloud or depth map(s), along
with a set of images, if RGB cameras are used. In stage 3,
features such as keypoints and silhouettes are extracted from
a 3D scan and images. Based on the features or raw image
data [84], in stage 4, the optimal human 3D template mesh2

is estimated. The primary advantage of fitting the template
mesh (a model) to the 3D scan is that any measurement may
be easily and conveniently determined from the semantics
of the model. Mesh fitting techniques enable the creation of
statistical body models, as described in Sec. IV-D. The statis-
tical models enable template mesh regression directly from
images and image features. Finally, body measurements are
extracted from the processed data (3D scan, images, features,
and template mesh) in stage 5. Note that stages 2 and 5 are
mandatory, while stages 1, 3, and 4 are optional.

The remainder of this paper is structured as follows:
Prior review works on body measurements and on 3D scan-
ning are briefly listed in Sec. II. The three most common
scanning technologies (PS, SL, and ToF) are described in
Sec. III. The proposed body measurement framework and
the five processing stages are introduced and discussed in
more detail in Sec. IV. In Sec. V, a methodology for the
comparison of the reviewed methods is described, and the
methods are discussed w.r.t. their limitations and introduced
measurement errors. We also recommend specific scanning
technology and the most suitable measurement pipeline for
selected anthropometric applications. Finally, Appendix A
provides an overview of currently available commercial body
scanners, and Appendix B lists currently available mobile
applications for body scanning.

2A templatemesh is a graphicalmodel, comprised of vertices and surfaces,
which depicts a standard human, usually in a T-pose, with a known number
of parameters that control the appearance of the mesh (sex included).
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II. PRIOR REVIEWS

We briefly describe prior reviews in a chronological order.
The review covers 3D scanning technology and body
measurement.
3D scanning technology. One of the first reviews on

3D scanning technology for anthropometry was done by
Daanen and Van de Water [39] in 1998, covering 8 com-
mercially available full-body scanners. The most developed
scanning technology at that time was laser line-based scan-
ners with vertically moving scanning heads, projecting a
horizontal line over the human body. A review on 3D body
scanners for the apparel industry [76] (2001) distinguishes
laser, LED SL, and white-light SL scanners. Based on their
analysis, the scanning time of laser scanners is usually higher
than the latter two, but SL scanners have longer data pro-
cessing times. Olds and Honey [114] claimed in 2005 that
structured light 3D scanners using white light are generally
cheaper and faster than their laser counterparts, but they
produce lower quality scans. A review by D’Apuzzo from
2007 [43] focuses on 3D body scanning technology and its
application in the fashion and apparel industry. The paper
distinguishes SL and the photogrammetry (passive stereo)
approach. ToF sensors were still not commercially used for
3D scanning in 2007. Even though scanning systems were
becoming smaller in size, there were no commercial hand-
held or mobile scanners dedicated to anthropometry. Another
review from 2007, by Treleaven and Wells [156], analyzes
the 3D scanning technology and methodology for various
medical applications, like skin analysis and burn treatment,
deformity detection, and obesity treatment.
The updated review by Daanen and Van de Water, from

2013 [40], points out that 3D scanning technology improved
in terms of transportation (mobility), speed, price, and accu-
racy, especially regarding SL scanners. Around that time, ToF
scanners appeared on the market. The review focuses on sta-
tionary 3D scanners. A book on 3D cameras [56], from 2018,
describes and provides in-depth comparisons of ToF, SL and
photogrammetry-based (PS) 3D cameras. Finally, a survey
by Haleem and Javaid [61] from 2020, similar to the one by
Treleaven and Wells [156], is focused on 3D scanning tech-
nology in medicine. The difference is that they also take into
account X-ray, CT, MRI, and ultrasound, analyze strengths
and limitations, and discuss the specific applications of each
technology.
Body measurement. A body measurement review by

Wang et al. [164] from 2000 is focused on the measurement
and analysis of body length, width, circumference, and skin-
fold thickness to predict body fat percentage. The main issue
in their survey that still has not been completely solved is the
lack of standardization in body measurement. A review by
Lescay et al. [91] compares different anthropometric mea-
surement techniques, including traditional anthropometry,
structured light, photogrammetry, and mobile applications,
based on precision, the number of measurements, speed, and
price. Another review by Heymsfield et al. from 2019 [68]
describes the process of acquiring 3D human body scans,

creating and processing meshes, validating the acquired data,
and the applications of the obtained data in anthropometry
and medicine. It also distinguishes between SL and ToF scan-
ners in terms of data acquisition techniques andmentions sev-
eral stationary scanner models. A review by Dianat et al. [44]
focuses on the methodology and applications of anthro-
pometry in ergonomics. Their paper mostly mentions mea-
surement methods in terms of traditional anthropometry
and covers the existing 3D scanning technology on a high
level only.

Taking into account prior work on 3D scanning technology,
we detect in the reviews a lack of existing handheld and
mobile scanners, as well as a lack of reviews of existing
mobile applications for 3D scanning and especially anthro-
pometry. To the best of our knowledge, we are the first to
provide a complete and modern overview of body measure-
ment based on 3D scans and RGB images.

III. 3D SCANNING TECHNOLOGIES

Several 3D scanning technologies have been proposed over
the years. As mentioned in the Introduction, we distinguish
between three common approaches, passive stereo, structured
light, and time-of-flight imaging, which we now describe in
more detail.

A. PASSIVE STEREO

Passive stereo is a measuring technique for 3D reconstruction
from multiple camera views. Photogrammetry is the sci-
ence of measuring objects from photographs. Passive stereo
and photogrammetry are sometimes used interchangeably in
the context of 3D scanning [41], [48], [135]. For clarity,
we use the term passive stereo in the remainder of the paper.
PS-based 3D scanners use RGB cameras to obtain color
images. PS assumes that multiple cameras are pointing to
a person. Under passive stereo, in this section, we describe
stereo and monocular reconstruction principles, as well as
motion capture systems.

Stereo reconstruction. The simplest PS configuration is a
binocular stereo, a configuration of two horizontally or ver-
tically aligned RGB cameras (see Fig. 2). The reconstruction
is based on the correspondences found on the images and
triangulation [63]. The point P in the 3D scene projects to
pixels p1 in the first image and p2 in the second image (for
example, as in Fig. 2). However, for a fixed pixel location p1,
the corresponding pixel location p2 is not known a priori. The
location p2 is determined by matching an image block around
p1 with the most similar block along the epipolar line l [63].
The difference between the corresponding pixel coordinates3

|p1 − p2| (the disparity), is used to triangulate the depth of a
point P [63]. The stereo approach can be extended to more
than two cameras by coupling pairs of cameras [147] or by
using multi-view-stereo techniques [52].
Monocular reconstruction. A monocular moving-

camera-based 3D reconstruction is a special case of stereo

3Note that the images first need to be rectified [101].
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FIGURE 2. Passive stereo approach. Point p2 is the most similar image
pixel to point p1 along the epipolar line l , as described in Sec. III-A.

reconstruction, where each viewpoint (frame) is considered
a separate camera [52]. The general monocular approaches
[21], [146], [179] jointly reconstruct a 3D scene and estimate
camera locations in every frame. First, the keypoints are
detected [10], [104], [138], [139] and matched between the
images [36] to find the correspondences. The correspon-
dences are then used for the initial 3D reconstruction and
camera parameter estimation, usually followed by bundle
adjustment (BA) refinement [157]. Human 3D scanning is
usually simpler, as camera locations can be obtained prior
to the reconstruction. This is implemented in a way such that
either the camera is rotating around the person or the person is
standing on a rotating platform, mimicking camera rotation.
Note that the person needs to stay still during the quasi-static
scanning. The relative camera positions with respect to the
subject are extracted based on timestamps. To acquire a dense
3D reconstruction, the principles of stereo reconstruction
described above can be used.
Motion capture. MoCap is a (semi-) passive stereo tech-

nique that uses body markers visible under standard or near-
infra-red light. The MoCap markers are usually small, round
objects with reflective surfaces. MoCap produces sparse 3D
reconstructions and is usually used for motion tracking. The
number of body markers is between 30 [72] and 300 [121].
Multiple markers are often used to estimate the location of a
single keypoint (joint), as markers can only be placed on the
surface of the body.
Human body scanners using PS. Commercial 3D scan-

ners use either a rotating monocular system or multiple fixed
cameras. For example, Texel PortalMX, Fit3D, and BodyGee
Orbiter rotate a person that is standing on a platform, while
Texel Portal BX circles around a static body. A few exam-
ples of fixed-camera scanning systems are Bootscan Neo,
TC2-21B, and 3IOSK by Mantis Vision, which uses from
several to more than 50 RGB cameras to obtain the recon-
struction. There are several advantages of fixed multi-camera
over single-camera scanners. The first advantage is reduced
scanning time, because neither the cameras nor the person
need to move. The second advantage is the ability to scan
people in motion over a period of time, also called 4D scan-
ning (Move4D scanner by IBV). Thirdly, it is possible to
reconstruct multiple people at once, if the scanning area is

FIGURE 3. Structured light (projector based) approach.

large enough to avoid occlusions, for example, as in Panoptic
Studio [78].

Based on the images and the reconstruction described in
this section, a mobile device camera can be considered a spe-
cial case of a monocular PS-based scanner, where a camera
is moved around a person to record a video or take individual
images. For a comprehensive overview of the commercial 3D
scanners, please refer to Appendices A and B.

B. STRUCTURED LIGHT

To address the poor 3D reconstruction quality of PS in
the case of low or repeating texture, the usual approach is
to project a textured pattern over the scene. Active stereo
(AS) [59], [60], [71], [100] upgrades PS by projecting a
light pattern onto the body to improve the correspondence
search between views. Structured light approaches [17], [89],
[142], [160], on the other hand, search for the camera-
to-light-pattern correspondences. In the remainder of this
section, we focus on SL technology and methods.

FIGURE 4. Structured light (laser based) approach.

Technology. We distinguish two scanner types based on
SL technology — laser and projector scanners. Laser scan-
ners [9], [47], [100], seen in Fig. 4, use a laser to project
dot or stripe patterns over the scene. Laser scanners present
sub-millimeter accuracy [22], [161], [174] and a simpler
decoding procedure with respect to projector-based scan-
ners [39]. However, laser scanners usually suffer from a slow
scanning time, since the laser line needs to sweep the whole
body [43]. Projector-based scanners are usually faster than
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laser scanners [160], since more complex 2D patterns can be
projected and the whole body can be scanned at once from
one view. Additionally, projector-based scanners present less
safety constraints compared to laser scanners [136]. Even
though projector-based scanners are not as accurate as laser
scanners, their accuracy range (µm-mm) is sufficient for
high-quality body measurement (see Sec. V).
In general, many classifications of the projected light

patterns have been proposed: they may be based on the
number of projected patterns (single- or multi-shot), color
(achromatic or colored), transitions (discrete or continuous),
or structured form (stripes, grids, dot arrays, gradients, etc.)
[54], [118], [143], [144], [160], as seen in Fig. 5. For
(quasi-) static human 3D scanning, short-duration achromatic
multi-shot patterns are usually used, presenting a trade-off
between acquisition speed and reconstruction accuracy [160].
For dynamic scenes where fast acquisition is needed (see
Sec. IV-B), single-shot patterns are more suitable [81].

FIGURE 5. Structured light pattern examples.

Reconstruction. The camera-to-light-source correspon-
dences are found depending on the light and pattern projected.
Laser-based approaches mostly use pattern detection algo-
rithms to find the (monochromatic) light projections in the
image [50], [53]. Visible-light scanners, on the other hand,
have more complex pattern decoding mechanisms [115],
[129], especially in the case of multiple projectors and light
interference [115], [154]. For more details, we refer readers to
the relevant survey papers [144]. After the correspondences
have been obtained, ray-to-ray or ray-to-plane triangulation
can be applied [54], [56], [89], [100] to reconstruct the 3D
human body.
Human body scanners using SL. Commercial SL scan-

ners either rotate around a person or have a fixed multi-sensor

configuration that surrounds them. Stationary scanners, such
as the HP Pro S3, 4DDynamics EOS, TC2-105, or Hexagon
Aicon Primescan, rotate around the body to obtain awhole 3D
scan. Another way to move around the body is to use hand-
held scanners, such as the Artec Eva, TechMed3D BodyScan
Scanner, Mantis Vision F6 Smart or ScanTech Axe B17.
Stationary scanners with fixed sensor positions, such as the
Artec Shapify Booth, botscan Neo, botscan OptaONE+,
TC2-105, and 4D Dynamics IIID Body Scan, showcase a
booth filled with cameras and projectors in fixed positions
that surround the scanned subject. Solutions to avoid light
interference [163] from multiple projectors have been pro-
posed, but in practice, every projector illuminates the subject
in its designated time interval. Hence, the acquisition time is
prolonged and proportional to the number of scanners. For
a comprehensive overview of the commercial 3D scanners,
please refer to Appendix A.

C. TIME-OF-FLIGHT

ToF scanners, shown in Fig. 6, measure the time needed for an
emitted light signal to travel from the illumination source to
the 3D scene and back to the sensor. The distance information
is directly proportional to the time of flight of the light signal
[51], [56], [70], [92].

FIGURE 6. Time-of-flight approach. The black arrow indicates the
emanated light signal path. The red arrow indicates the received light
signal path.

Technology. The main components of a ToF scanner are
the light emitter and the photodetector [56]. The light emitter
uses a laser or an LED to send a modulated beam of light,
typically in the NIR range [92]. The lens is used to spread
the light from the emitter over the whole scene. The pho-
todetector usually uses a matrix of point-wise sensors [70].
For human 3D scanning, CCD/CMOS matrix sensors are
usually used.

Reconstruction. Two reconstruction methods can be
distinguished: pulsed-light (direct) and continuous-wave
(indirect) [56], [70]. Continuous-wave (CW) methods indi-
rectly measure the round-trip time of an emitted light
pulse and collect the time-dependent intensity information
of the signal [51], [126]. The distance of a point is then
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TABLE 1. Main properties of the three 3D scanning technologies with respect to human body scanning.

retrieved (demodulated) from the phase shift of the emitted
and received light signals by their cross-correlation [70],
[130]. The emitted illumination signal amplitude is usually
modulated using a sine or square wave [18]. The periodicity
of the waves implies a maximum scanning range at half of the
modulation wavelength, after which an ambiguity problem
arises [65]. Increasing the modulation frequency increases
the measurement accuracy but shortens the maximum range
[70]. The range can be extended using multiple modulation
frequencies [57], [125]. Fortunately, this does not usually
present a problem in the anthropometry application, since
human bodies are scanned from close range. Pulsed-light
(PL) methods directly measure the round-trip time of an
emitted light pulse using time-to-digital (TDC) or time-
to-amplitude (TAC) circuitry [70], [126]. Since the speed
of light is very fast, PL methods require extremely precise
timing information, on the order of picoseconds, to obtain a
millimetric distance range [56], [92], [126]. Hence, PL is not
usually used for 3D body scanning.
ToF cameras present low-cost, compact-size, accu-

rate, and reliable sensors with lower power consumption
[51], [65], [67]. Compared to SL, ToF does not have a
spatially separate light source and camera, avoiding occlu-
sion problems between views. Additionally, it is texture-
independent, with a minimal post-processing time and
lower-light capabilities [151]. Even though fast frame rates
that are suitable for dynamic scanning can be achieved [51],
[151], the biggest problem of single ToF camera scanners
is a low scanning resolution [51]. It is possible to increase
the resolution by using multiple ToF cameras [167], but
complex light interference issues then need to be addressed
[130]. Therefore, ToF is still less applicable for (quasi-) static
scanning and body measurement.
Human body scanners using ToF. Most of the commer-

cial human body scanners, such as the SizeStream SS20,
Styku S100, and TC2-30R, are based on indirect ToF meth-
ods. In general, ToF as a standalone solution is unable to
provide high-quality 3D human body scans due to its lower
resolution. Hence, it is usually used in combination with
RGB cameras. Noticeably, a bigger percentage of stationary
scanners, such as the TC2-19R, Naked scanner, and BodyGee
Orbiter, come with a turntable on which subjects take a
standard scanning position. This alleviates the problem of
light interference caused by having multiple cameras. Note
that all mini scanners are ToF-based and therefore used for

3D data acquisition in mobile applications (see Appendix B).
For a comprehensive overview of the commercial 3D scan-
ners, please refer to Appendix A.

D. SUMMARY OF SCANNING TECHNOLOGIES

A comparison of the three scanning technologies is provided
in Table 1. Regardingmethodology, PS and SL rely on finding
the correspondences between the views to triangulate 3D
points in space, while ToF uses time-to-distance conversion
and thus avoids the correspondence search problems. The
common challenge for the triangulation approaches is the
potential (self-) occlusions between the views, which might
result in holes in the 3D point cloud [52]. A way to cope
with these occlusions is to use more cameras or viewpoints
(achieved by rotating the subject or the scanner) and to use
the T-pose where self-occlusions are mitigated.

SL and ToF use light sources. In one way, this helps SL in
low-textured body areas, but it also limits its applications to
specific indoor lightning conditions. For multi-ToF scanners,
light causes interference problems. Regarding the scanning
ranges, SL and ToF are limited by the illumination source.
The PS scanning range is, in theory, only limited by the optics,
but in practice it is several meters. All the scanning ranges are
suitable for human body scanning.

With regard to the scanning of moving subjects (dynamic
scanning), PS is the most suitable because of its fast acquisi-
tion time, good overall reconstruction performance, and lack
of light interference issues. ToF has a high reconstruction
frame rate, making it applicable for dynamic applications
[62], [152]. SL can also be used for dynamic scanning with
single-shot patterns, but for scanning slower movement only.
Moreover, single-shot patterns offer a lower reconstruction
accuracy compared to multi-shot patterns.

Finally, SL offers the best accuracy4 and resolution,5 mak-
ing it the method of choice for quasi-static scanning and body
measurement. This can also be seen in the number of com-
mercial SL scanners.6 PS and ToF have similar accuracies
and resolution ranges (see Table 1), but ToF generally has a
lower resolution.

4Accuracy is the distance between the reconstructed location and true
location of a 3D point in space.

5Resolution is the minimal distance of two points in space that can be
differentiated and reconstructed.

6See Appendix A for more details.
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IV. BODY MEASUREMENT

We describe our proposed body measurement framework
(Fig. 1), dedicating subsections to each of the five process-
ing stages: preparation, scanning, feature extraction, model
fitting, and measurement extraction. The first two stages are
the acquisition stages, and the latter three are the processing
stages (see Fig. 1). In the acquisition stage, the subjects are
prepared and the data in the form of 3D point clouds, depth
maps, or 2D images are obtained. There are two acquisition
protocols — static and dynamic. In the processing stage,
the collected input is used for body measurement. Body
measurement can be done directly on the given inputs, but
usually the features are extracted first, and the body model is
fitted based on these features or the inputs.

A. PREPARATION

The standardization of body landmarks, measurements, and
postures is the first step to ensure the comparability of mea-
surements between the body measurement surveys [174] and
to compare the scientific results. Body landmarks represent
the same semantics for every measured subject (Fig. 7A) and
some of the body measurements can be directly derived from
landmarks (see Sec. IV-E). The landmarks are defined on the
skin to reduce the ambiguity in their locations between the
subjects. In practice, markers that represent the landmarks are
manually placed on the human body. The markers are useful
in the feature extraction (stage 3); however, marker placing is
a tedious and error-prone process, so successful marker-less
systems have been proposed [79], [106].

FIGURE 7. Body landmarks according to ISO 7250-1:2017 [75] standard
and two standing postures according to 20685-1:2018 [74]. Left axilla
point posterior (#12) is not shown.

Standardization. ISO standard 7250-1:2017 [75] specifies
a list of body landmarks andmeasurements. The complete list
of body landmarks is given in Table 2 and the corresponding
points are shown in Fig. 7 (left). The complete list of body
measurements is given in Table 3 and the corresponding
Fig. 11. There are two standard standing poses recommended
by the ISO standard 20685-1:2018 [74] (Fig. 7). The person is
asked to take one of the two poses, hold their breath during the
scanning, and try to keep as calm as possible [106]. In the first
pose (I-pose), the subject stands upright with the shoulders
relaxed and the arms hanging down naturally and the feet

TABLE 2. The list of human body landmarks according to ISO
7250-1:2017 standard [75]. The numbers correspond to the numbers
in Fig. 7 (left). The letters R and L abbreviate right and left.

together. In the second pose (A-pose), the feet are 20 cm
apart, the arms form a 20◦ angle with the torso, the elbows
are straight, and the palms face backward [174]. Using the
standard or fixed body postures is not always required for
body measurement, but usually it is when creating datasets
that capture shape variations [3], [8], [12], [24], [64], [72],
[175]. Another pose that is also often used for scanning is the
T-pose, as seen on a neutral template mesh in Fig. 9.

B. SCANNING

Regarding the acquisition protocol when using 3D scanners,
the human body may be measured in a stationary position [3],
[6], [8] or in motion [2], [108], [158]. In static scanning, a per-
son is asked to take a pre-defined pose and to hold still until
the scan ends. For 3D scanners that have longer acquisition
times, e.g., scanners with rotating heads or handheld scan-
ners, subjects may unintentionally move during acquisition,
which introduces artifacts, so we may distinguish such situa-
tions as quasi-static scanning. Static scanning is the method
of choice to obtain the most precise body measurements and
is routinely used in the production of relatively large and
diverse public 3D human body datasets [3], [8], [24], [64],
[175]. Scanning in motion usually limits the technology to
either PS or ToF. The most common systems are motion
capture (MoCap) systems [12], [103], [107], [108], [158],
which are PS-based and use markers attached to the body
to track movement. Other dynamic 3D scanning systems [2]
record a person in motion to analyze soft-tissue deformations
over time [128].

Scanning usually produces a 3D point cloud, one or more
depth maps, or a set of RGB images. In the case of dynamic
scanning, so-called 4D scans are obtained [2]. In the process-
ing stage, some or all of these data are used to extract the
measurements.

C. FEATURE EXTRACTION

Two types of features that are usually extracted from 3D
scans and images are keypoints and silhouettes. The locations
of keypoints7 can be determined based on markers or can

7Note that keypoints are called landmarks if they refer to standardized
body locations [75].
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TABLE 3. An example list of 44 standardized human body measurements [75]. The measurements consist of distances (lengths, breadths, depths, and
heights), circumferences, and soft biometrics (weight, height, BMI).

FIGURE 8. An example of 2D keypoints and their corresponding 3D scan
keypoints. The typical keypoint extraction algorithm finds between 13
(green) and 21 keypoints (other colors). The blue keypoints represent the
neck and pelvis, the red ones two spinal points, and the pink ones details
on the face and feet. The images are adapted from the Human3.6M
dataset [72]. Note that the keypoints are manually annotated and do not
necessarily reflect the H36M dataset ground truth locations.

be estimated automatically from a 3D scan [79], [106]. The
keypoints usually represent a selected subset of human joints
(see Fig. 8). Silhouettes may represent 3D points or pixels of
the whole human body or body segments.
Keypoint extraction. Most of the keypoint estimation

algorithms detect human joints from single or multiple
images. The joints can be represented by 2D pixel coor-
dinates in an image or 3D points in a scene. If there is a
moving person, the time component can be exploited, and
temporal smoothness can be applied to improve the estima-
tion accuracy [124]. Therefore, keypoint estimation meth-
ods can be divided into single-image [14], [30], [31], [111],
[176], multi-frame [124], and multi-view methods [66], [73],
[133] for 2D [14], [30], [31], [153], [176] or 3D [66], [73],
[111], [124], [133] keypoint estimation. The keypoint esti-
mation algorithms usually find between 14 and 21 keypoints,
as shown in Fig. 8. Most of the state-of-the-art keypoint
estimation methods are deep learning-based, due to the avail-
ability of large, annotated datasets [72], [110], [132], [148],
[162]. In practice, the extracted 2D and 3D keypoints are used
for mesh fitting [23], [83], [116] (see the next subsection)
and are typically not combinedwith landmark extraction from
3D scans.

Motion capture [158] is a movement tracking technique
that enables the direct acquisition of precise ground truth 2D

and especially8 3D keypoint locations. Most of the previously
mentioned keypoint estimation algorithms take advantage of
the ground truth data obtained using motion capture. Exam-
ples of MoCap datasets are the Human3.6M [72] (Fig. 8),
HumanEva [148] (Fig. 10), and TotalCapture [158] datasets.
The disadvantage of motion capture systems is that they are
impractical for in-the-wild scenarios.

Regarding keypoints from a 3D scan, Lu and Wang [106]
proposed a system for marker-less 3D scan keypoint detec-
tion. A body scan is firstly cleaned by removing the outlier
points, and then it is segmented into five parts: head and torso,
left arm, right arm, left leg, and right leg. The initial keypoint
locations are derived from the anthropometric database [165]
and then refined using four algorithms: silhouette analysis,
minimum circumference determination, grayscale detection,
and human body contour plots. The results of the four algo-
rithms are combined to determine the final keypoint locations
and body measurements.

Silhouette extraction. Silhouette extraction methods sep-
arate pixels that represent an object of interest (the human
body) from other pixels in an image [15]. There are three
approaches to silhouette extraction: background subtraction
[19], semantic segmentation [168], and multi-view segmen-
tation (visual hull) [90]. In the work by Lin and Wang [99],
two silhouettes are extracted using background subtraction,
from front and side input images, and 60 feature points in total
are detected on the edge of the silhouette, based on the curve
distance between them [98]. The extracted feature points are
directly used for approximate body measurement extraction
(see Subsec. IV-E).
State-of-the-art semantic segmentation methods [33], [49],

[93], [96], [171], similar to human pose estimation, are also
deep learning-based. In addition to whole-body segmentation
[97], [112], there are also body-part-segmented datasets [95],
[178]. Both whole body and body part segmentation prob-
lems are particularly interesting in terms of silhouette and
body measurement extraction, as they achieve a relatively
high accuracy,9 even on difficult examples. A visual hull is

8Another way to obtain 2D pose estimation data is to manually label
human joints on a large number of images. However, this is impractical and
unreliable in the case of 3D data.

9The accuracy is measured as a mean IoU (intersection over union).

67288 VOLUME 9, 2021



K. Bartol et al.: Review of Body Measurement Using 3D Scanning

reconstructed by applying background subtraction or seman-
tic segmentation for multiple images of a fixed object from
different views [52]. A visual hull can be used as an initial
solution for mesh fitting.

D. MODEL FITTING

Model fitting is a set of techniques for finding a 3D template
mesh that best represents a given input. The given input
can be a 3D scan, 2D or 3D keypoints, or silhouette(s).
The advantage of using template meshes in the context of
body measurement estimation is that the number of vertices
is fixed, and corresponding vertices have the same seman-
tics for all the registered meshes in the dataset. Once body
measurements are obtained for a single mesh, they can be
obtained in the same way for all the meshes. We distinguish
two model fitting techniques — mesh fitting (registration or
deformation) and mesh regression using statistical models.
In this Subsection, we describe mesh fitting, statistical model
creation, and mesh regression from 3D scans and images.
Mesh fitting. Mesh fitting is an optimization process

deforming an initial, template mesh to the 3D scan.10 Mesh
fitting consists of pose and shape fitting [12], [69], [102],
[116], [123]. Before the optimization, a 3D scan is usually
subsampled so that the number of points is the same or larger
than the number of vertices in the template mesh [12], [172].
First, the landmarks are used to roughly align the 3D scan and
mesh [127]. Next, pose fitting is done by rigging [16] the body
skeleton parts of the template mesh and then skinning the
surface points, using linear blend (LBS) [12], [102] or dual
quaternion skinning (DQS) [116]. Once the pose satisfies the
convergence criterion, shape fitting is done using a non-rigid
registration, minimizing a loss function that usually consists
of three components: a landmark term, a smoothness term,
and a data term. The landmark term minimizes the distance
between the corresponding landmarks of the template mesh
and the 3D scan. The smoothness term minimizes the dif-
ference between the spatial transformations of the neighbor-
ing vertices. Finally, the data term minimizes the distances
between the corresponding vertices. Note that the correspon-
dence is determined at the beginning of a shape fitting phase.
Pose and shape fitting is usually done alternately multiple
times, until the final convergence [127]. Some works also
take texture into account [24], which improves fitting. The
described fitting is a method of choice for almost-complete
3D scans, obtained using high-quality scanners. For partial
3D scan fitting, a method based on implicit functions [37]
has shown promising results on the SHARP 2020 (SHApe
Recovery from Partial textured 3D scans) challenge [141].
The result of fitting is a clean mesh that fills up the holes
in the original, noisy 3D scan.
Statistical models (SMs). Statistical models represent

the population of human bodies with respect to pose
and shape variations, usually represented by the principal

10For simplicity, we only describe mesh fitting on 3D scans, but similar
techniques can be applied to features or images [84].

components (PCs). To create a statistical model, a mesh
fitting procedure needs to be applied to each scan in a dataset.
The work by Hirshberg et al. proposed simultaneously fit-
ting meshes while creating the body model [69]. One of the
advantages of the simultaneous fitting and creation of the
model is that the occluded 3D scan regions are properly fitted
based on the scans of different poses where these regions
are not occluded. To describe pose and shape variations in
the set of fitted template meshes, principal component anal-
ysis (PCA) is used. The purpose of PCA is to compress
the dataset of registered meshes by finding pose and shape
principal components that explain the maximal variance of
the dataset. An important advantage of PCA is that the PCs
can be used to generate novel template meshes [107], [122],
[149], [177] from a pose-shape parameter space. The datasets
commonly used for building SMs are CAESAR [3], Size-UK
[8], ScanDB [64], and possibly other datasets containing 3D
scans [12], [24], [72], [148], [175].

SCAPE [12] is the first SM for both pose and shape
deformations, as well as pose-dependent shape changes (for
example, muscle contractions in different poses). They use
a set of initial, physical markers and the correlated corre-
spondence algorithm [13] to generate around 150 additional
markers. Then they apply non-rigid registration to obtain the
articulated human model. One of the main disadvantages of
SCAPE is that each body part is independently rotated, which
introduces artifacts near joints. To that end, BlendSCAPE
[69] smooths SCAPE body part segmentations across part
boundaries, which solves the artifacts problem. A disad-
vantage of both BlendSCAPE and SCAPE is that they use
triangle deformations for the PCA. One of the most popu-
lar statistical models, SMPL [102], showed that using ver-
tex instead of triangle transformations improves the final
SM. SMPL also enforces body symmetry to produce models
that are visually more pleasing for animation. Enforcing the
symmetry, however, sacrifices realism in particular poses.
An improvement over SMPL is the STAR [116] model, which
enforces spatially local and sparse pose corrective blend
shapes and is independent of the symmetry optimization com-
ponent. STAR is the most expressive SM, partly due to the
fact that it is built using the largest database, a combination of
the CAESAR [3] (4000 scans) and SizeUSA [6] (9000 scans)
datasets.

Mesh regression from 3D scans using SMs. Once a
statistical model is built, it can be used for mesh regression.
The idea of mesh regression is to find the pose and shape
parameters of the SM that best fit a given input. An example
of such an approach is done by Kwok et al. [88], consisting of
iteratively selecting the mesh from the statistical pose-shape
space and fitting the clothes to match the input 3D scan.
Prokudin et al. [131] propose a deep learning model for
template fitting, supervised by SMPL templates fitted to the
dataset before learning. The learning is based on the distances
between the set of 3D scan features, called the basis point set,
and the ground truth template mesh. The advantage of using
the features to find the optimal parameters is that the (slow)
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FIGURE 9. An overview of a mesh fitting process for the creation of statistical models. For every 3D scan in the scanning dataset, a neutral template mesh
is registered to the scan, producing a dataset of registered template meshes. Based on the shape and pose variations of the registered templates, PCA can
be applied to create the statistical model. The principal components can be used to generate novel 3D meshes from the pose-shape space. The 3D scans
and template meshes are retrieved from the FAUST dataset [24]. The novel 3D meshes are generated using SMPL-X [123].

FIGURE 10. An example of a SMPL-X [23] mesh regression approach
based on 2D keypoint estimation. Note that yellow keypoints represent
the hands and face, which are usually modelled separately. The image is
adapted from [123].

rendering step that is needed to verify the parameters is
avoided.
Mesh regression from images using SMs. There is a

group of methods that use extracted image features (body
pose or silhouette) or RGB images directly and exploit the
SMs for mesh regression. A large body of these methods
are based on the SMPL statistical model [23], [84], [150].
For example, SMPLify [23] is a deep learning model for
3D shape and pose estimation from 2D keypoints. The
keypoints are detected using a 2D pose estimation algo-
rithm [31]. Using sex-specific SMPL models, SMPLify
simultaneously estimates 3D pose and shape parameters
and produces a template mesh (see Fig. 10). The main
disadvantage of the SMPLify approach is that it does not
exploit image information. A multi-task learning approach
by Smith et al. [149] uses front- and side-view silhouettes
and feeds them into a convolutional model to estimate 3D
joints, mesh volume, shape parameters, and pose angles
(the angles between the adjacent joints), using SMPL as an

underlying statistical model. The results, as seen in Sec. V,
show that silhouette-based approaches can be used to obtain
accurate body measurements. However, the major issue of
silhouette-based approaches is the clothed-people scenario,
where it is difficult to estimate the underlying body shape.
A recent method by Kolotouros et al. [84] uses raw pixels
and deforms an initial mesh based on a graph CNN [169].
The most similar mesh from the SMPL pose-shape space can
then be matched to the deformed mesh. Note that graph CNN
approaches can also be interesting for mesh-from-3D-scan
regression.

E. MEASUREMENT EXTRACTION

Body measurements can be extracted from a 3D scan, tem-
plate mesh, or image features. We focus on two measurement
types — distances (lengths, breadths, depths, and heights)
and circumferences. For other measurement types, such as
surface area measurement, we refer readers to [155]. A sub-
set of the standardized body measurements [75] is listed
in Table 3.
Measurements from the template mesh.When the fitted

or regressed template mesh is obtained, the number of ver-
tices is known, and their semantics are the same across all
samples [102]. To calculate distance measures, for example,
elbow-wrist, hip breadth, or chest depth, the distance between
the semantically corresponding vertices can be used. The
circumferences, for example, the waist, thigh or calf circum-
ference (see Fig. 11, left), can be calculated as the extent of
an intersection between the mesh and a plane.

Measurements from the 3D scan. The measurements can
also be extracted directly from a 3D scan. The landmarks
can help to obtain distances and some of the circumferences
[166]. In the work by Lu and Wang [106], the circumfer-
ences are calculated from a point cloud using a convex hull
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FIGURE 11. Body measurements on a 3D mesh (left) and corresponding
feature points on front- and side-view silhouettes (right). The feature
points can be used to approximate the measurements. The mesh is
generated using the SCAPE model [12].

FIGURE 12. The convex hull polygonal approximation method.

polygonal approximation method. The circumference points
are obtained by slicing the point cloud with a perpendicular
plane. The algorithm starts at the point with the highest X
coordinate (Fig. 12b). The next point is selected as the point
with the minimal angle between the Y-axis and the line con-
necting the current point X and the next point, in the counter-
clockwise direction (Fig. 12b). The process is continued until
the polygon is closed. The circumference is approximated as
the sum of the line lengths between the selected points.
Measurements from image features. If the front- and

side-view silhouettes are extracted [77], [98], [99], the mea-
surements can be approximated using the distances between
the feature points on the silhouette (see Fig. 11). The circum-
ference can be approximated by a circle or an ellipse. For
example, the waist breadth is the distance between F1 and F2,
and the waist depth is the distance between S1 and S2. The
distance between F1 and F2 and the distance between S1 and
S2 can be used as a major and a minor axis, respectively,
to approximate the hip circumference.

V. DISCUSSION

We discuss the main limitations and issues of current scan-
ning technology and the body measurement framework,
as well as the gathered state-of-the-art results from Table 4.
Based on the presented framework and the scanner types
introduced in this section, we recommended pipelines for
particular body measurement applications (see Fig. 15).

A. LIMITATIONS AND CHALLENGES

Absolute scale. An important practical challenge for some
body measurement approaches, in particular, the monocular

and self-calibrated [63] PS methods, is the unknown absolute
scale. The simplest way to obtain the scale is to use a cali-
brated 3D scanner data as input. Selected body measurement
methods [7], [64], [159], [172], compared in Table 4, use 3D
scans on the absolute scale as input. Another way to recover
the scale is to place an object of known size (the calibra-
tion object) next to the subject, since, to recover absolute
body measurements, it is sufficient to retrieve the scale of
a single measurement. Usually, the body height is the most
convenient body measure. Selected approaches presented
in Table 4 use either the height [45], [149], [173] or cam-
era parameters [25], [170] to scale images or silhouettes in
order to extract anthropometric measurements on the absolute
scale. Finally, some of the approaches [34], [80] presented
in Table 4 do not know the height prior to body measure-
ment. Hence, they estimate the camera parameters as a part
of the learning procedure to infer the absolute scale. While
[80] uses an encoder and regression approach, [34] uses a
Gaussian process latent variablemodel to estimate the camera
parameters.

Evaluation measures. There are multiple evaluation mea-
sures concerning accuracy, precision, and reliability [113]
that are usually reported [29], [87], [172]. This lack of stan-
dardized evaluation measures complicates straightforward
comparisons of different body measurement methods, since
the different error measures cannot be converted from one to
the other. To compare selected methods, we focus on a single
reported measure, the mean absolute error (MAE), since it is
mostly reported for the published body measurement meth-
ods. The MAE is a measure of accuracy, and it is calculated
between the body measurement method estimation, Eest , and
the ground truth, Egt , as follows:

MAE =
1

N

∑N

i=1
| Eest − Egt | (1)

for every subject i from the dataset. The ground truth is
usually obtained bymanual measurement, as noted in the ISO
20685-1:2018 [74] standard.

Allowable error. The allowable error (AE), based on the
ANSUR study [58], defines an upper bound on the accept-
able MAE for a measurement method. The study reports the
median absolute deviation between measurements made by
human experts, which are considered to be the gold standard
in anthropometry, and the ground truth for the body mea-
surements. This indicates the limitation of anthropometric
measurement methods since the ground truth is never exactly
known. Additionally, note that the AE measure represents
the median, while the MAE represents the mean absolute
deviation from the ground truth. Hence, the MAE is affected
by possible outlier measurements and can present higher or
lower values than the AE.

Datasets. While most methods are evaluated on the CAE-
SAR dataset, there is a fair number of methods that eval-
uate their results using their own data [27], [35], [85],
[94], [99], [105], [172]. Additionally, methods evaluated
on the CAESAR dataset tend to use its random subsets

VOLUME 9, 2021 67291



K. Bartol et al.: Review of Body Measurement Using 3D Scanning

TABLE 4. MAE in millimeters for different measurement methods for measurements shown in Fig. 13. The measurements are grouped into
circumferences, lengths, and breadths. All the methods are evaluated on some sample of the CAESAR [137] dataset with the exception of Yan et al. [172]
(denoted with †). The results of each method were extracted from the corresponding paper listed in the ‘‘From’’ column. The table is split into three parts:
2D-based methods, 3D-based methods (further split into published and commercial methods), and the allowable error (AE) [58] for some of the body
parts. The best results are bolded for both the 2D and 3D categories. The mean MAE for every method is provided.

[149] or gender specific subsets [159]. This lack of a stan-
dardized benchmarking dataset presents problems for the
direct comparison of measurement methods. We present and
compare the results of different body measurement meth-
ods evaluated on different datasets in Sec. V-B, assuming
that the quality and variability of each dataset are similar
enough.
Body measurements. Different body measurement meth-

ods can be compared on standardized measurements defined
in the ISO 7250-1:2017 [75] standard. However, different
methods tend to report their evaluations for different mea-
surements, which are not always equal, as can be seen by
the missing values in Table 4. This hinders a comprehensive
comparison of each method.

B. METHODOLOGY COMPARISON

In Table 4, we gather the MAEs of different anthropomet-
ric measurement methods for measurements from Fig. 13,
addressing the lack of literature on body measurement
method evaluations and comparisons. We classify each
method depending on its input (2D or 3D) and highlight the
best obtained results. Additionally, we group the measure-
ments into three categories, namely circumferences, lengths,
and breadths, to compare their performance on different mea-
surement tasks.

The 2D methods presented in Table 4 can be divided into
two groups. One group of methods [23], [45], [80], [149],
[173] uses images or silhouettes to estimate a 3D point cloud
or learn the shape and pose parameters of a SMPL model.
As can be seen, these methods outperform the second group
[25], [34], [170], which tries to map a 2D PCA space into a
3D PCA space using a Gaussian process latent variable model
[25], [34] or simply a linear regression [170]. Additionally,
methods that try to estimate the absolute scale [34], [80],
in parallel to estimating the body measurements, seem to
perform worse in their appropriate groups.

FIGURE 13. Body measurements reported in Table 4 abbreviated
accordingly: C stands for circumference, L for length and B for breadth.
The image is adapted from: [149].

The 3D methods presented in Table 4 are based on fit-
ting the SCAPE model to a 3D scan and extracting body
measurements from the fitted model. In general, there are
fewer 3Dmethods than 2Dmethods, probably because image
data is more accessible that the 3D scanning datasets.

Based on the presented results, 3D-based methods are
generally better, but do not outperform 2D-based methods by
a large margin. Intuitively, 3D scans hold more information
about the shape of the human body than 2D images, and hence
obtain better circumference measures. On the other hand, 2D
methods slightly outperform 3D methods in length estima-
tions, as seen from the shoulder-wrist measure (measure M
in Table 4), which may be easier to estimate in 2D. Breadth
measurements are unfortunately not comparable, since mea-
surements from 3Dmethods are not provided, confirming the
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limitations noted in Sec. V-A. The best 2D [149] and 3D [172]
methods are both based on the SMPL [102] model. While
Smith et al. [149] (2D) use a deep learning model to predict
the shape and pose parameters of a SMPL model, Yan et al.
[172] (3D) fit an initial SMPL template to a 3D scan using an
iterative closest point (ICP) [20].
Compared to the commercially available anthropometry

software Anthroscan [7], 3D methods present slightly better
results. Anthroscan predicts measurements directly from a
3D scan in the standing pose and is frequently used as a
body measurement approach [42], [87], [159]. It achieves an
average MAE of 1.5mm, worse than the 3D method from
Yan et al. [172].
In the third part of Table 4 we show the allowable

error (AE) for measurements for which the AE was measured
[58]. While we can observe that the MAE is decreasing with
more recent measurement methods, none of the presented
methods are within the allowable error, indicating that auto-
matic body measurement methods are still lagging behind
human anthropometers. However, this does not indicate that
the assessment methods are insufficient for real-world appli-
cations [28]. Additionally, there are commercially available
3D scanners with 3D anthropometry software [86] that claim
to obtain results lower than the AE and can hence be used in
applications that require greater accuracies, such as medical
and surveying applications.

C. RECOMMENDATIONS

Based on the presented technologies, the proposed measure-
ment framework, and the previous discussion, we finally
provide practical recommendations for body measurement,
as shown in Fig. 15. First, the scanner classification is intro-
duced. Next, specific pipelines are proposed with respect
to their input. Finally, the requirements for the applications
are described along with the introduced scanner types and
pipeline recommendations.
Scanner types.We classify scanners based on their mobil-

ity/size into following categories: (a) stationary; (b) hand-
held; (c) mini; and (d) mobile camera.11 Stationary scanners
(see Fig. 14a) are usually installed in a fixed location, e.g.,
a lab or a medical facility. They are usually SL or PS-based.
Compared to other scanner types, they are the most accurate
and reliable and are therefore typically used to obtain ground
truth data, e.g., stationary scanners were used to create 3D
body scanning datasets like CAESAR [3], SIZE-UK [8],
Scan DB [64], and FAUST [24]. Handheld scanners (see
Fig. 14b) are designed to be moved around the imaged body
area by hand. Most of the existing handheld 3D scanners are
SL-based. Mini-scanners (see Fig. 14c) are embedded in or
attached to mobile devices like smartphones and tablets to
enable 3D data acquisition. Most mini-scanners are ToF- or
SL-based. Finally, we distinguish mobile RGB cameras as
a separate scanner type, because they are widespread and

11For more details on the currently available scanners on the market see
Appendix A.

FIGURE 14. Three types of 3D scanners in terms of mobility and size:
stationary (a), handheld (b) and mini-scanners (c).

convenient for non-demanding users, and usually rely sim-
ply on monocular measurement estimation techniques.12 The
four scanner types represent the data acquisition techniques
for body measurement, as shown in Fig. 15.

Pipelines. We propose and distinguish three possible
pipelines for body measurement, as shown in the right part
of Fig. 15. The first pipeline, sufficient for the majority of
applications, consists of preparation, 3D scanning, and mea-
surement extraction. The second pipeline is more flexible and
consists of 3D scanning (without prior subject preparation),
feature extraction with or without mesh fitting, and measure-
ment extraction. In both pipelines, 2D images acquired using
RGB cameras are often useful for improving the reconstruc-
tion [120]. Finally, the third and usually the least precise
pipeline only takes 2D RGB images as input. These images
are then used for feature extraction, mesh fitting, and mea-
surement extraction.

Applications. We recommend specific measurement
pipelines and scanner types for different anthropometric
applications: medicine, surveying, the fashion industry, fit-
ness, and entertainment.

For medical applications [46], [68], it is usually desirable
that high-quality body measurements are obtained. There-
fore, 3D scanning using stationary or handheld scanners,
along with the preparation stage (marker placement), is rec-
ommended (see the first pipeline in Fig. 15). The mea-
surements can then be directly extracted from the 3D scan
(see Sec. IV).

The second application is surveying, a systematical mea-
surement of a population sample for the purpose of analyzing
and tracking the properties of human bodies over time [56],
[174]. High-quality surveys sometimes release their data pub-
licly [3], [8], which allows for the creation and improvement
of statistical models [12], [69], [79], [102], [116], [127]. Sur-
veying is usually done using stationary scanners, and markers
are sometimes placed on the body to improve and simplify the
measurement [56].

For fashion industry applications (garment and cloth-
ing design), all four of the data acquisition techniques are
used. For individually designed garments, stationary scanners
are preferable [174]. For less reliable measurements and

12For more details on mobile devices and applications for body measure-
ment assessment, see Appendix B.
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FIGURE 15. The diagram of practical body measurement recommendations.

mass-produced clothes, other data acquisition techniques are
sufficient.
For fitness and entertainment applications (gaming, AR,

VR, etc.), low-budget solutions using mini scanners and
mobile cameras are ideal for individual users. For fitness
applications, body measurements are used for tracking phys-
ical progress over time. As seen in Appendix B, there are
a few fitness-based mobile applications that estimate body
measurements. Most of them use one or two RGB images
from different views. For gyms or fitness centers, stationary
3D scanners might be more convenient. Regarding entertain-
ment, a 3D human pose [73], [124] in an AR setup allows the
creation of a rigged character [16]; therefore, only a rough
estimate of body measurements is needed.

VI. CONCLUSION

Anthropometry is a very important, interdisciplinary area of
research, still strongly entangled with 3D scanning technol-
ogy for the purpose of body measurements. We have con-
cisely reviewed the fast developing and improving scanning
technologies, which are therefore becoming more applicable
for automatic body measurements. As a consequence of this
development, larger and more diverse body scanning datasets
became publicly available. This work has also proposed
and discussed different processing stages of the body mea-
surement framework. It was pointed out that a particularly
important processing stage is model fitting, which includes
mesh fitting and mesh regression, since it allows the develop-
ment of the expressive statistical body models that describe
the pose and shape variances of a human population sam-
ple. The 3D and 2D measurement methodologies and pub-
lished works have been compared and the main challenges
and limitations have been identified; based on this, several

measurement pipelines have been proposed for various appli-
cations. Reflecting on the future, we recall that pose and
shape estimation from images is increasingly becoming a
very active area of research. Consequently, it is now possible
to estimate human pose and shape from an RGB image only,
to a large extent due to the advances in deep learning research
and optimization. Combining those advances with improve-
ments in scanning technology, primarily that scanners are
becoming smaller and more convenient while maintaining a
high reconstruction accuracy, we conclude that the accuracy
and reliability of bodymeasurements from 3D as well as from
2D data will be significantly improved in the near future.

APPENDIX A - 3D SCANNERS

Table 5 presents an overview of the commercial 3D scanners
that have the ability to scan human bodies, excluding scanners
that are not fit for the task, such as the Revopoint Tanso S1 [4],
used to reconstruct smaller objects. We provide more than
80 currently available 3D scanners manufactured by more
than 50 companies, as well as their taxonomy regarding
several key characteristics: their mobility, method of recon-
struction, price, resolution, accuracy, number of sensors,
dimensions, provided texture, scanning time and provided
anthropometric software. Additionally, we comment on their
effect on human body scanning.

We observe an equal amount of stationary (booth-like) and
handheld scanners, whereas only a few mini scanners are on
the market. While handheld scanners offer a quicker scanning
setup time in new environments, stationary scanners are more
ideal for fixed scenarios, omitting (almost) entirely the setup
process. Naturally, the mobility of a scanner is correlated
with its dimensions. Stationary scanners are large and bulky,
while mini scanners are compact and portable. Hence, mini
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TABLE 5. The existing 3D scanners on the market capable of scanning the human body in its entirety. Each scanner is described by its respective mobility
gradation: mini, handheld, and stationary, with mini scanners being the most portable. ‘‘Method’’ describes the 3D reconstruction approach as discussed
in Sec. III. Additionally, we denote laser-based SL approaches with ‘‘SL’’* and projector-based SL approaches with ‘‘SL’’. ‘‘Acc’’. and ‘‘Res’’. define the
reconstruction capabilities of the scanners in terms of accuracy and resolution. The measures are given in millimeters. ‘‘No. Sens’’. reports the number of
cameras and lighting sensors in the given scanner. The ‘‘Dims’’. column reports the dimensions of the scanner in centimeters. The dimensions can be
given as a product of the height, width, and depth, or as a product of the diameter and the height of the scanner. The ‘‘Scan. Time’’ column reports the
scanning duration in seconds of one single working volume. ‘‘Anthropo’’. reports if anthropometric measurement extraction is available in the given
software. The remaining ‘‘Link’’, ‘‘Price’’, and ‘‘Texture’’ columns are self-explanatory.
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TABLE 5. (Continued.) The existing 3D scanners on the market capable of scanning the human body in its entirety. Each scanner is described by its
respective mobility gradation: mini, handheld, and stationary, with mini scanners being the most portable. ‘‘Method’’ describes the 3D reconstruction
approach as discussed in Sec. III. Additionally, we denote laser-based SL approaches with ‘‘SL’’* and projector-based SL approaches with ‘‘SL’’. ‘‘Acc’’. and
‘‘Res’’. define the reconstruction capabilities of the scanners in terms of accuracy and resolution. The measures are given in millimeters. ‘‘No. Sens’’.
reports the number of cameras and lighting sensors in the given scanner. The ‘‘Dims’’. column reports the dimensions of the scanner in centimeters. The
dimensions can be given as a product of the height, width, and depth, or as a product of the diameter and the height of the scanner. The ‘‘Scan. Time’’
column reports the scanning duration in seconds of one single working volume. ‘‘Anthropo’’. reports if anthropometric measurement extraction is
available in the given software. The remaining ‘‘Link’’, ‘‘Price’’, and ‘‘Texture’’ columns are self-explanatory.

and handheld scanners offer better applicability to the task
of the distributed data collection process [174] since they
present higher portability. On the other hand, stationary scan-
ners offer faster scanning times, in the range of seconds,
while handheld scanners offer scanning times in the range
of minutes, presenting a trade-off between their dimensions
and applicability. Since breathing and fidgeting causes human
bodies to move during the scanning process, faster scanning
times are more desirable. Nevertheless, the performance of
handheld scanners does not seem to lag behind stationary 3D
scanners, as seen by their accuracy.
The mobility and scanning time of a scanner seem to

mostly drive its price. Smaller scanners tend to be cheaper,
while scanners offering faster scanning times tend to be
pricier, indicating that the market is still more apprecia-
tive towards stationary scanners. Most of the scanners use

structured light (SL) to reconstruct the human body since it
offers the best reconstruction accuracy within the methods
presented in Sec. III. Additionally, they present the lowest
resolution, followed by passive stereo (PS) and time-of-flight
(ToF), respectively. Hence, they allow dense 3D human body
reconstructions, appropriate for the anthropometric appli-
cation. To this end, we additionally report if the scanner
comes with an anthropometry software that can automatically
extract body measurements from a 3D scan. While texture
does not directly impact the scanning process, arguments
have been made in favor of the greater usecase for textured
3D human body models [140].

The market is moving towards handheld and mini scan-
ners. Mini scanners are particularly important for the future
of tablet and smartphone scanning, because they can be
attached to or even embedded into devices. For example,
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TABLE 6. The existing 3D body measurement mobile applications for iOS and Android. We distinguish between the apps based on the company, main
application, scanner, and OS. Note that the main applications specified in the table are retrieved based on the app description, and the actual purpose
might differ in reality. The applications that use 2D input data only are listed above the double line; those ones that also use 3D data are listed below the
line. The scanner that is used for data acquisition is specified within the ‘‘Scanner’’ column. The values denoted with ‘‘-’’ are not available.

FIGURE 16. A common mobile application body measurement pipeline is
to take front and side images, estimate a 3D human mesh, and assess the
body measurements from the mesh. Image credits: [1].

the Occipital sensors can be attached to a smartphone device,
while the Apple iPhone 12 has an embedded LIDAR sensor
(see Appendix B). Mini scanners are usually ToF-based,
which can be seen from Table 5. As the computing capa-
bilities of mobile devices improve further and ToF-based
mini scanners increase their resolution, we expect that mobile
devices will become more reliable and accurate 3D scanners.

APPENDIX B - MOBILE APPLICATIONS

Mobile phones have become an emerging market for mak-
ing 3D scanners more approachable. Multiple cameras [55],
new ToF sensors [5], and the general development of said
phones have made the implementation of 3D scanning tech-
niques easier. Additionally, stationary scanners are relatively
bulky and pricey. Hence, mobile 3D scanning technology
has become important, particularly for the distributed data
collection process [174]. In this appendix, we present a com-
prehensive list of available applications for 3D human body
measurement estimation (see Table 5).
The majority of the existing applications use a sin-

gle RGB camera for computing body measurements. The

most common approach (as seen in MeThreeSixty, Meepl,
3DAvatarBody, and many others) is to fit a template mesh
to a front and side image of the subject (see Fig. 16).
The measurements can then be extracted from the template
mesh, as described in Sec. IV. Some of the applications
extract the measurements from a single image (Nettelo), and
some take multiple images from different angles and rely
on photogrammetry for 3D reconstruction and measurements
(3DCreator, Qlone, Scann3D, 3DAvatarBody, Two Pictures
3DBODYSCAN,Mobile Scanner, SizeYou, 3D Scanner Pro,
BodyGee Coach App). A few applications use a 3D Occip-
ital scanner attached to the smartphone device (ItSeez3D,
TechMed3D, Occipital original app), while one (Scandy Pro)
uses Apple’s embedded LIDAR sensor to directly retrieve 3D
human scans.
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