
A review of breast tomosynthesis. Part II. Image reconstruction, processing
and analysis, and advanced applications

Ioannis Sechopoulosa)

Department of Radiology and Imaging Sciences, Hematology and Medical Oncology and Winship Cancer
Institute, Emory University, 1701 Upper Gate Drive Northeast, Suite 5018, Atlanta, Georgia 30322

(Received 13 June 2012; revised 16 November 2012; accepted for publication 16 November 2012;
published 4 January 2013)

Many important post-acquisition aspects of breast tomosynthesis imaging can impact its clinical per-
formance. Chief among them is the reconstruction algorithm that generates the representation of the
three-dimensional breast volume from the acquired projections. But even after reconstruction, ad-
ditional processes, such as artifact reduction algorithms, computer aided detection and diagnosis,
among others, can also impact the performance of breast tomosynthesis in the clinical realm. In this
two part paper, a review of breast tomosynthesis research is performed, with an emphasis on its med-
ical physics aspects. In the companion paper, the first part of this review, the research performed
relevant to the image acquisition process is examined. This second part will review the research on
the post-acquisition aspects, including reconstruction, image processing, and analysis, as well as the
advanced applications being investigated for breast tomosynthesis. © 2013 American Association of
Physicists in Medicine. [http://dx.doi.org/10.1118/1.4770281]
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I. INTRODUCTION

The companion paper provided a review of the medical
physics research performed on all aspects of the digital breast
tomosynthesis (DBT) image acquisition process. This paper
will review all relevant post-acquisition aspects, including im-
age reconstruction, artifact reduction, and other image pro-
cessing and analyses, in addition to reviewing the research
performed on advanced applications and implementations of
DBT, including multimodality imaging, in which DBT is
combined with other imaging technologies.

II. TOMOSYNTHESIS RECONSTRUCTION

An in-depth overview of the history and principles of to-
mosynthesis reconstruction algorithms has been previously
published by Dobbins and Godfrey,1 so these aspects will not
be discussed here. This discussion will be focused on the dif-
ferent reconstruction methods currently in use or under de-
velopment in DBT, and the many improvements for each that
have been proposed lately.

II.A. Filtered backprojection

The most commonly known analytical algorithm for to-
mosynthesis reconstruction is filtered backprojection (FBP),
normally used in computed tomography (CT). As in CT, the
choice of filters applied to the projection data before the back-
projection is performed can drastically affect the quality of
the reconstruction. Mertelmeier et al. presented a general the-
ory for FBP applied to DBT with linear (or arc) x-ray tube
motion, in which, in addition to the usual ramp-type and
apodization filters, the authors introduce a slice thickness fil-
ter that dampens the impact of the incomplete sampling of

the frequency space due to the limited angular range used in
tomosynthesis, therefore controlling the impact of out-of-
plane artifacts on image quality.2 By deriving, validating and
using a three-dimensional (3D) cascaded linear system model
for DBT, Zhao et al. determined, among other results, that the
use of this slice thickness filter reduces aliasing and improves
3D DQE.3, 4 Using task-based analysis, Wang et al. showed a
small improvement in mass detectability in the central slice of
the lesion, but qualitatively found a decrease in out-of-plane
artifacts.5 Orman et al. introduced the concept of an additional
filter to avoid the zeroing out of the low frequencies by the
ramp filter, thereby introducing an undesirable “flatness”6 to
the image.7 The resulting modification of the ramp-type filter
was clearly shown by Zhou et al. (Fig. 1).8

II.B. Iterative reconstruction algorithms

Attempting to combine the benefits of an iterative recon-
struction method [the simultaneous iterative reconstruction
technique (SIRT); Ref. 9] with the speed of FBP, Ludwig
et al. estimated the impulse response of SIRT reconstruction
in DBT and used it to develop a filter in the frequency domain
that could be combined with the other filters used to prepro-
cess the acquired projections before backprojection in FBP.10

This filter, which was found to be weakly projection angle de-
pendent, could be fit to a fourth-order polynomial, yielding a
smooth function. The authors found that the use of this filter
with FBP results in an important modification of the charac-
teristics of the reconstructed images. Whereas the FBP images
present a reduction of the low frequency contrast, resulting in
decreased visualization of large area contrast of dense tissue,
the images with this iterative-based filter have an overall feel
more similar to standard mammograms. In contrast, however,

014302-1 Med. Phys. 40 (1), January 2013 © 2013 Am. Assoc. Phys. Med. 014302-10094-2405/2013/40(1)/014302/17/$30.00

http://dx.doi.org/10.1118/1.4770281
http://dx.doi.org/10.1118/1.4770281
http://dx.doi.org/10.1118/1.4770281
http://crossmark.crossref.org/dialog/?doi=10.1118/1.4770281&domain=pdf&date_stamp=2013-01-04


014302-2 Ioannis Sechopoulos: Breast tomosynthesis review. II. Reconstruction, processing, and analysis 014302-2

FIG. 1. Modification of ramp filter to maintain the low frequency infor-
mation in FBP reconstructed DBT images. Reprinted with permission from
Zhou et al., “A computer simulation platform for the optimization of a breast
tomosynthesis system,” Med. Phys. 34(3), 1098–1109 (2007). Copyright c©
2007, American Association of Physicists in Medicine (AAPM).

the excellent skin line visualization and sharpness of FBP is
somewhat lost with the application of this filter.

In a study relevant to any DBT reconstruction algorithm
involving backprojection, Chen et al. investigated the impact
of the x-ray tube moving in an arc during acquisition while
using a traditional shift-and-add (SAA) type algorithm for
backprojection, in which the pixels are shifted only in the di-
rection parallel to the x-ray tube motion.11 As shown by the
authors, the slight but non-negligible shift in the projection of
each voxel in the direction perpendicular to the tube motion
needs to be taken into account to avoid blurring of fine fea-
tures, which is especially important in the characterization of
morphology of microcalcifications.

In a different implementation of FBP, Claus et al. pro-
posed that the pre-backprojection filtering be performed tak-
ing into account the size of the features included in the projec-
tions, with dimensionally dependent filtering. This method of
filtration, combined with an order statistics based algorithm
for out-of-plane artifact reduction, was shown to yield results
similar to iterative reconstruction methods but with a substan-
tial decrease in computation time.12

Various algebraic methods have been investigated for the
general problem of reconstruction. In general, these methods
set up a system of simultaneous linear equations, and dif-
fer in how this linear algebra problem is solved using itera-
tive methods, such as the algebraic reconstruction technique
(ART),13 the SIRT,14 and the simultaneous algebraic recon-
struction technique (SART).15 Zhang et al. implemented the
SART method for DBT imaging and compared it to stan-
dard backprojection (BP) using both homogeneous and struc-
tured phantoms.16 While BP performed similarly or better
than SART for some lesions in one of the homogeneous phan-
toms tested, for the more realistic structured phantom the lat-
ter yielded better results, both in terms of in-plane image
quality and vertical resolution. Lu et al. have proposed two
different methods of noise regularization for SART to im-

prove microcalcification visibility without affecting mass de-
tail visibility: one based on selective diffusion17 and, more
recently, another based on wavelet decomposition for multi-
scale regularization.18

A different algebraic reconstruction method, matrix in-
version tomosynthesis (MITS), was introduced for DBT by
Chen et al.19 MITS was shown to be good at removing out-
of-plane artifacts and handling high frequency information,
but was also shown to perform poorly with low frequency
information.20 To ameliorate this, Chen et al. proposed a
hybrid reconstruction algorithm that incorporates the high
frequency response of MITS and the good low frequency
behavior of FBP, and denoted it Gaussian frequency blend-
ing (GFB).20 With GFB, the authors were able to obtain
reconstructed images with improved representation of high
frequency signals, e.g., microcalcifications, with enhanced
representation of the overall breast tissue characteristics,
avoiding the commonly found “flat” breast image in which
large area density information is lost.

Other iterative reconstruction methods consisting of two
steps per iteration, in which the tomosynthesis acquisition
process is modeled in a forward step and the reconstructed
object is updated in a backward step, have also been pro-
posed for DBT. The most commonly studied method in DBT
is the maximum likelihood expectation maximization method
(MLEM) Ref. 21 introduced for DBT by Wu et al.22

With most iterative reconstruction methods, the computer
processing time required to perform the reconstruction is a
concern. Wu et al. discussed that after two to three iterations
detailed features are conspicuous, and that radiologists com-
municated satisfaction with the results after eight to ten it-
erations, with no further improvement in image quality af-
ter ten iterations.22 In early developments, a method to ac-
celerate the MLEM reconstruction algorithm was proposed
by Wu et al. in which the reconstructed volume is broken
up into oblique sections that can be reconstructed by sepa-
rate threads of a multiprocessor computer or multiple nodes
of a computer cluster.23 This method was then modified for
implementation with graphics processing unit (GPU)-based
hardware.24 With the advances in this type of hardware, in-
cluding an ever-increasing number of computing cores and
amount of memory,25 the reconstruction time has continued to
drop, rendering the many “tricks” needed to avoid the mem-
ory issues encountered in the early implementations unnec-
essary. Implementations of some iterative algorithms opti-
mized for running on a workstation-level GPU card can now
just take a few seconds per iteration for a complete patient
breast case.

In studying the order in which the acquired projections are
processed in each iteration by iterative methods, Wu et al.
found that the use of sequences other than that matching the
acquisition order can substantially improve the resulting re-
construction quality.26 In this study, the authors used a mod-
ified ML-convex algorithm that uses pairs of projections at
a time to modify the reconstructed volume, and they found
that all three different ordering schemes investigated result
in image quality improvement compared to the conventional
ordering.
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II.C. Novel reconstruction methods

Many additional novel reconstruction algorithms have
been proposed for DBT with varying levels of testing,
success, and continued development. Given their infancy,
most of these algorithms are not yet used in any sys-
tem that is commercially available or close to this stage.
Among the proposed algorithms, there are algorithms
based on total variation regularization,27, 28 total p variation
regularization,29–31 joint entropy regularization,32, 33 adaptive
diffusion regularization,34 iterative penalized maximum like-
lihood (especially to improve microcalcification visibility),35

iterative maximum a posteriori statistical reconstruction,36

and Bayesian inference.37 In a very different approach, Wu
et al. proposed a reconstruction algorithm that results in
spherically symmetric “voxels” as opposed to the traditional
cubic voxel.38 Another algorithm proposes a spectral recon-
struction, in which the polychromatic nature of the x-ray
beam is taken into account by inputting the spectrum used
for acquisition and the algorithm accounts for the variation in
tissue attenuation with x-ray energy and beam hardening.39

II.D. Comparison of reconstruction algorithms

Many studies have focused on comparing the capabili-
ties of the various reconstruction algorithms proposed for
DBT. The two earliest studies to perform a comparison of re-
construction algorithms were published by Suryanarayanan
et al.40, 41 In the first study, using a custom-made struc-
tured phantom, the authors compared the acquired pro-
jections to the reconstructions obtained with four recon-
struction algorithms: tuned-aperture computed tomography
(TACT)-backprojection, iterative TACT, an expectation max-
imization iterative method and a Bayesian-based iterative
method.40 For the comparison, Suryanarayanan et al. per-
formed a contrast-detail (CD) study with five radiologists spe-
cializing in mammography. The authors found that all re-
constructed images result in better CD characteristics than
the projections, and that the reconstructions from projec-
tions acquired with higher exposure are better than those ac-
quired with lower exposure. CD characteristic comparison
among the tomosynthesis reconstruction methods was not
performed. In the follow-up study in which the projections
were compared to the TACT-backprojection algorithm and the
nonlinear TACT-maximization and TACT-minimization algo-
rithms, the authors again found significantly better CD char-
acteristics for all tomosynthesis reconstructions compared
to the projection images.41 Among the reconstructions, the
TACT-backprojection was only marginally statistically better
than the TACT-maximization, with all other algorithm differ-
ences not being statistically significant. In another compar-
ison study, Wu et al. tested the standard BP, filtered back-
projection and the iterative MLEM reconstruction methods.42

Using phantoms and patient images, the authors found that
the BP algorithm resulted in the best in-plane image quality
of low contrast, larger features, but suffered from out-of-plane
artifacts. The FBP algorithm, as expected, performed better
than BP for high frequency features. Finally, the MLEM algo-

rithm provided a good balance of image quality between the
low and high frequency features. A comparison of the noise
power spectra (NPS) of the SAA, FBP, and MITS algorithms
by Chen et al. showed MITS performed best at middle fre-
quencies, while FBP did better at high frequencies, due to the
Hamming and Gaussian low pass filters used.43 Zhou et al.
compared the detectability of a low contrast lesion in a simu-
lated breast reconstructed with the EM, SART, and BP algo-
rithms with five human observers and found that the EM algo-
rithm had the superior detectability, with SART being some-
what inferior and BP being very inferior.44 Rakowski et al.
compared the BP algorithm, with and without an iterative
subtraction (IS) algorithm, and an algebraic reconstruction
(AR) algorithm.45 Using objective metrics for image qual-
ity, the authors found that the BP with the IS algorithm re-
sulted in the highest SNR, but the AR algorithm resulted in
the highest normalized signal difference and the best ASF.
In another comparison study, Zhang et al. compared the BP,
SART, and MLEM algorithms using breast phantoms.46 For
both iterative methods, the authors used the result of the BP
reconstruction as the initial guess of the reconstructed vol-
ume, to improve computational efficiency. When using ho-
mogeneous phantoms, the BP algorithm resulted in recon-
structions with lower noise and higher CNR, while the iter-
ative methods were superior in all other image quality met-
rics studied. In particular, with clinically more relevant struc-
tured phantoms, BP was again found to lack the ability to
reduce out-of-plane artifacts, while both SART and MLEM
did reduce these artifacts. In general, SART and MLEM re-
sulted in very comparable image quality, but SART was found
to require fewer iterations than MLEM to achieve these re-
sults. Zhou et al., as part of a larger study, compared FBP
and MLEM using computer simulations and concluded that
although MLEM consistently outperformed FBP, the latter
can achieve comparable image quality to the former with
an optimized acquisition geometry and reconstruction filter.8

Bliznakova et al. used monochromatic synchrotron radiation
to image a custom-made structured breast phantom and com-
pared four reconstruction methods: the multiple projection al-
gorithm (MPA, equivalent to BP),47 FBP with a ramp filter
and with a ramp and hamming window, and the MPA with
noise mask subtraction algorithm48 (MPA-NM).49 Overall,
the MPA-NM method was found to be superior due to it being
either better than or equivalent to the other algorithms in all
tests conducted. By comparing the impulse response of SAA,
BP, and FBP, Balla et al. found that BP and FBP performed
similarly and better than SAA.50 Using a dedicated breast
CT image of an uncompressed patient breast, Van de Sompel
et al. simulated a tomosynthesis acquisition and compared the
reconstruction obtained with the FBP, SART, and MLEM.51

As metrics, Van de Sompel et al. used the CNR and a numer-
ical observer to estimate the area under the receiver operating
characteristic (ROC) curve for detection of a lesion. Among
other results mentioned in other sections of this review pa-
per, Van de Sompel et al. performed a comprehensive anal-
ysis of the impact of the different reconstruction parameters
relevant to each algorithm on the final image quality. The au-
thors again confirmed that SART converges more quickly than
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MLEM, while the noise amplification of MLEM is lower than
that of SART. Overall, SART outperforms MLEM and FBP
when tested with noiseless simulations, while MLEM obtains
higher metrics in the simulations with noise present.

II.E. Reconstruction artifacts

Given the very limited sampling of the frequency domain
involved in DBT acquisition due to the narrow angular range
of the x-ray source motion, this imaging modality is very sus-
ceptible to artifacts of various kinds. Most common among
these are the presence of shifted and repeated versions of
high-contrast features located in adjacent planes. Various new
methods and modifications to existing reconstruction algo-
rithms have been proposed to reduce or eliminate this and
other types of artifacts that appear commonly in DBT.

Wu et al. proposed an addition to the MLEM algorithm
to reduce the presence of artifacts due to high contrast sig-
nals present outside the in-focus plane (Fig. 2).52 In this al-
gorithm, four methods of detecting which projections con-
tain the appropriate information to contribute to the forma-
tion of each voxel were tested. The projections that are deter-
mined to contain “abnormal” information from out-of-plane
artifacts are not used to update the reconstructed voxel. Of
the four different “voting” methods investigated to achieve
this identification, it was determined that their performance

FIG. 2. Typical reconstruction artifacts found in DBT from out-of-plane
high contrast objects (left) and the result of the correction proposed by Wu
et al. (right). These examples show artifacts from a localization needle (top)
and large microcalcifications (bottom). Reprinted with permission from Wu
et al., “Voting strategy for artifact reduction in digital breast tomosynthesis,”
Med. Phys. 33(7), 2461–2471 (2006). Copyright c© 2006, American Associ-
ation of Physicists in Medicine.

varies depending on the type of artifact present. The combi-
nation of two of these methods, the “projection segmentation”
and “one-step classification” methods, results in an algorithm
that can successfully remove artifacts due to both large and
small calcifications. Ge et al. also proposed an algorithm to
reduce the artifacts introduced by high contrast objects (large
or dense microcalcifications, metal inserts) by estimating the
shift variant impulse response of the system, applying it to the
isolated object, and subtracting the resulting estimated artifact
from the reconstruction.53, 54 Another method to remove arti-
facts due to calcifications was proposed by Erhard et al., in
which a hysteresis thresholding method is applied to the ini-
tial reconstruction to isolate the microcalcifications, which are
then removed from the projections by interpolation and the
results reconstructed.55 Finally, the identified microcalcifica-
tions are added back into the reconstruction at their estimated
locations. Sun et al. developed an algorithm to reduce the visi-
bility of out-of-plane signals using a 3D nonlinear anisotropic
diffusion filter that showed promising results.56

Zhang et al. proposed the use of a breast boundary de-
tection method not only to remove the artifacts commonly
seen in the periphery of the reconstructed breast, but also
to increase the reconstruction speed (Fig. 3).57 By perform-
ing breast boundary detection, the SART reconstruction can

FIG. 3. Result of the correction proposed by Zhang et al. to remove the
breast boundary artifacts (arrows) from DBT reconstructions. Reprinted with
permission from Zhang et al., “Application of boundary detection informa-
tion in breast tomosynthesis reconstruction,” Med. Phys. 34(9), 3603–3613
(2007). Copyright c© 2007, American Association of Physicists in Medicine
(AAPM).
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FIG. 4. Diagram of a typical DBT acquisition showing the source of two
reconstruction artifacts. The gray areas show portions of the breast tissue that
cause artifacts near the borders of the reconstructed volume (dashed box) in
the x-ray tube motion direction. Examples of both of these artifacts can be
seen at the top of the left image in Fig. 5; the bright area is due to the gray
portion of breast tissue on the left of the diagram, while the horizontal stripes
are due to the gray portion of breast tissue on the right.

be performed only within the volume occupied by the breast,
considerably decreasing the reconstruction time. In addition,
the inclusion of only the volume occupied by the breast in
the reconstruction allows for the removal of the artifact in the
breast periphery, which appears due to the breast projection
covering one area of the detector in some projection angles
and not covering it for other projection angles.

Other common artifacts in DBT are truncation artifacts
close to the detector edges due to the finite size of the de-
tector and x-ray beam. The finite size of these items causes
two different phenomena, described in Fig. 4, that result
in bright horizontal lines and a bright area, as shown in
Fig. 5 (left). Different algorithms have been proposed to cor-
rect these artifacts, showing promising results. To correct the
horizontal line artifact due to wider projections not including
portions of tissue (right gray area in Fig. 4), Li et al. proposed
an algorithm for FBP,58 actually tested on chest tomosynthe-
sis images but relevant to DBT. In this algorithm, the num-
ber of rays that pass through each voxel in the volume be-
ing reconstructed is counted, resulting in a 3D “count map.”
This map is then used to weigh the corresponding intensities
of the backprojected image. Zhang et al. corrected these ar-
tifacts when applied to SART reconstructions (Fig. 5).59 To
correct the same artifact as that addressed by Li et al., the al-
gorithm proposed by Zhang et al. updates the voxels in the
reconstructed volume that are not covered by the projection
being processed with the mean value of the neighboring re-
gion that is covered by the projection. To correct the artifact
that appears as a bright area due to the tissue present out-
side the reconstructed field of view (left gray area in Fig. 4),
Zhang et al. proposed to first detect which rays have traveled
through tissue, rather than air, outside the reconstructed vol-
ume using a predetermined threshold. Upon identification of
these rays, their contribution to the reconstruction is modified
by assuming that the tissue outside the reconstructed volume
consists of breast tissue with “average” attenuation. As can

FIG. 5. Result of the algorithm proposed by Zhang et al. to reduce the detec-
tor boundary artifact commonly seen in DBT reconstructions. Reprinted with
permission from Zhang et al., “Artifact reduction methods for truncated pro-
jections in iterative breast tomosynthesis reconstruction,” J. Comput. Assist.
Tomogr. 33(3), 426–435 (2009). Copyright c© 2009, Lippincott Williams &
Wilkins.

be seen in Fig. 5, the algorithms result of Zhang et al. in a
correction of the artifacts, although in some cases the second
algorithm over-compensates for the attenuation outside the re-
constructed volume, resulting in a dark area in the final result
[white arrow in Fig. 5 (right)]. In a recent follow up study, Lu
et al. of the same group improved these correction methods
and have been able to remove the dark area artifact in their
processed images by refining the method used to estimate the
path length traveled by the identified problematic rays within
the breast tissue included in the reconstructed volume.60

II.F. Reconstructed slice thickness

Tomosynthesis reconstruction is normally performed to
yield in-focus slices 1 mm apart or 1 mm thick slices. Which
of these two theoretical descriptions is applicable depends
on the reconstruction algorithm used. Diekmann et al. stud-
ied three different methods to combine ten 1 mm slices to-
gether to improve image quality mainly by reducing noise.61

The algorithms tested in their work were: maximum inten-
sity projection (MIP), simple averaging, and a novel algo-
rithm called softMIP, which provides a weighted average of
the pixels being combined. Using objective metrics, the au-
thors found that MIP works best for microcalcifications, while
averaging results in the best image quality for masses, with
softMIP performing in between for both types of lesions. In
addition to image quality improvement, merely reducing the
number of slices that require interpretation while maintaining
image quality would be a great contribution to DBT, given
the concern for increased reading time of screening DBT
images compared to mammography. Van de Sompel et al.
also compared reconstructing thicker slices with SART and
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ML with post-reconstruction binning of thin slices, although
the method for this binning was not specified.51 The authors
found that post-reconstruction binning results in improved
image quality compared to reconstructing thicker slices, with
a maximum improvement being achieved at different thick-
nesses, depending on the reconstruction algorithm used. In
this study, however, only masses were investigated, so the im-
pact of binning on microcalcification visibility was not ad-
dressed.

II.G. Geometric calibration

Except for TACT-based reconstruction, all reconstruction
algorithms rely on an accurate and complete understanding of
the geometry used to acquire the projections to generate an
optimal reconstructed volume. As determined by Mainprize
et al., of all the possible errors in acquisition geometry input,
the only fixed error (same offset present in all projections) that
affects image quality is detector yaw (relative angle between
detector edge and x-ray source motion).62 However, random
variations of all kinds during the acquisition process result in
both a loss of contrast and error in lesion localization.

To determine the geometrical parameters with ease and
accuracy, Li et al. proposed to perform geometrical calibra-
tion using a phantom with a number of high contrast spheri-
cal markers with known locations.63 From acquisition of pro-
jections of this phantom, matrix decomposition can yield the
projection matrix that relates the volumetric locations to the
projection locations. From this projection matrix, the x-ray
source and central ray positions can be determined. In this
work, Li et al. also showed the sensitivity of small detail to
an accurate knowledge of the geometry, by introducing sim-
ulated errors in the geometric information and reconstructing
a phantom with microcalcifications. In a follow-up study, Li
et al. determined that, in practice, reconstruction errors due to
sensitivity to the accuracy in the geometric calibration could
be avoided by using many more markers than the minimum
theoretically required (6), and by distributing them so that a
large portion of the imaging volume is covered.64

III. IMAGE ANALYSIS AND PROCESSING

III.A. Synthetic mammograms

Currently, the single DBT system approved for clinical use
in the U.S. by the Food and Drug Administration (FDA) is la-
beled for acquisition of a tomosynthesis image only combined
with a mammographic image. Of course, this results in a radi-
ation dose penalty of approximately double the dose of a sin-
gle mammogram or tomosynthesis acquisition.65 The need,
correct or not, to always acquire a mammogram along with
a DBT image results mainly from the suspicion that micro-
calcification detectability in DBT is inferior to that in mam-
mography. Of the many studies comparing microcalcification
detectability, some have found this inferiority,66–68 while oth-
ers have not.69–73 To avoid this penalty, research is ongoing in
creating a synthetic mammographic image from a tomosyn-
thesis acquisition. In the only study on this matter, Gur et al.

FIG. 6. (a) Digital mammogram (MLO view) of a patient showing two ma-
lignant masses, (b) synthetic mammogram constructed from the DBT data,
(c) DBT slice. Reprinted with permission from Gur et al., “Dose reduction
in digital breast tomosynthesis (DBT) screening using synthetically recon-
structed projection images: An observer performance study,” Acad. Radiol.
19(2), 166–171 (2012). Copyright c© 2012, Association of University Radi-
ologists (AUR).

reported on an observer study to compare the performance of
DBT combined with either an actual mammogram or a syn-
thetic mammogram (Fig. 6).74 With 114 cases and 10 readers,
the authors found that combining the DBT image with the
synthetic mammogram resulted in a loss of sensitivity with
equivalent specificity. Therefore, the synthetic mammograms
from tomosynthesis data used in that study were not capa-
ble of replacing actual mammographic acquisitions. However,
the algorithms to synthesize these images are still being de-
veloped, and preliminary (unpublished) evaluations of more
recent synthetic mammograms have shown substantial
improvement.75

III.B. Texture and glandular tissue analysis

Although not fully three-dimensional as dedicated breast
CT images, DBT images do provide more information on
breast tissue localization than mammography. The utility of
this additional information for various tissue analysis aspects
has been investigated. In two separate studies, Kontos et al.
reported on the use of DBT images to determine any correla-
tions between parenchymal texture features and breast glan-
dular areal density or risk estimates.76, 77 In the initial study,
Kontos et al. first analyzed the correlation between several
texture feature metrics (skewness, coarseness, contrast, en-
ergy, homogeneity, and fractal dimension) from DBT and
mammography images to the Gail and Claus risk models,
finding overall low correlation.76 However, a significant cor-
relation was found between some of the texture feature met-
rics and glandular density, both with mammography and DBT,
with the latter resulting in stronger correlations. This finding
was repeated in the follow-up study with a larger number of
patient cases.77 It seems that being able to perform the anal-
ysis of the parenchymal texture without the effect of over-
lapping tissue present in mammograms could provide more
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reliable information on characteristics that may be related to
breast cancer development risk. It should be noted, however,
that in another study Kontos et al. found that the values of
different feature metrics may vary with acquisition parame-
ters (angular range, number of projections). So although this
allows for optimization of acquisition parameters for this type
of texture analysis, it also means that care should be taken to
note the source of images used for feature analysis and inter-
image comparisons.78

Engstrom et al. studied tomosynthesis projections and re-
constructions of 55 patient breasts to determine the power law
coefficient (β in the equation PS(f) = k/fβ) associated with the
power spectrum of normal breast tissue background.79 In this
study, the authors found that β for the tomosynthesis projec-
tions had a mean of 3.06, while for the reconstructions the
value of β was 2.87, with the difference being statistically
significant. In a more recent study, Chen et al. found that
the mean values of β of 23 patients in dedicated breast CT,
DBT, and mammography images were 1.75–1.83 (3 orthogo-
nal views in breast CT), 3.06–3.10 (CC and MLO in DBT),
and 3.17–3.30 (CC and MLO in mammography).80 Although
small, the difference in β between tomosynthesis and mam-
mography was statistically significant for all comparisons but
one (MLO from tomosynthesis and CC from mammography).
Hu et al., however, found that the values of β for the tomosyn-
thesis reconstructions could vary substantially depending on
the filters used during FBP reconstruction.81 In previous stud-
ies, a smaller value of β has been related to improved mass
detectability.82

Bakic et al. compared the breast glandular areal den-
sity estimation from mammograms and the central (0◦)
tomosynthesis projections using previously validated semi-
automated density estimation software.83 Although the ac-
quisition geometry of these two images is essentially equal,
two major differences negatively impact the image quality of
the central tomosynthesis projection compared to the corre-
sponding mammogram. In the first place, the tomosynthesis
projection will be considerably noisier, given that the expo-
sure used to acquire it is only a fraction (in this case an aver-
age of 22%) of that used for mammogram acquisition. In ad-
dition, the overall contrast can be expected to be lower, since
currently DBT is acquired without an x-ray scatter grid, and
therefore the full impact of the scatter signal on the image
contrast is included in the tomosynthesis projection. To per-
form this comparison, three experienced independent readers
used a density estimation software (CUMULUS, version 4.0;
University of Toronto, Toronto, Canada)84 involving several
manual steps. Each reader obtained a glandular density esti-
mate from all 39 cases twice, with each repeated analysis sep-
arated by 2 months. Although the density estimation results
obtained by Bakic et al. between the mammography images
and tomosynthesis projection images were highly correlated
(ρ = 0.91), the latter-based estimations were slightly but
significantly higher.83 In addition, the intrareader correla-
tions were slightly, but not significantly, higher for the
mammogram-based analysis.

Tagliafico et al. compared the density estimation from
mammograms to the average of the estimation of all 15 to-

mosynthesis projection images acquired in 50 patients.85 Us-
ing two different methods, the authors found that the den-
sity estimation from mammograms was significantly higher
than from tomosynthesis projections. Given that no indepen-
dent truth is available, it is unclear if mammography over-
estimated or tomosynthesis underestimated the density. In
another study, Bakic et al. compared the mammographic den-
sity estimation to the 3D density estimation from DBT using
a semiautomated thresholding technique and found moderate
agreement.86 They also found that, on average, DBT results
in lower density estimates than mammography.

Although several classification algorithms to identify the
different breast tissues present in dedicated breast CT images
have been developed,87–91 classification based on DBT im-
ages was first proposed by Kontos et al.92 and a method com-
pletely developed by Vedantham et al.93 Kontos et al. inves-
tigated the use of different texture features (e.g., skewness,
coarseness, etc.) to identify regions in DBT reconstructions
as dense or fatty. The authors hypothesized that image clas-
sification could be achieved using this type of region-based
analysis. To test the feasibility of their approach, Kontos
et al. performed ROC analysis on the ability of these differ-
ent metrics to differentiate between the two tissue types, find-
ing that for DBT reconstructions the fractal dimension results
in the highest area under the ROC curve. Vedantham et al.
on the other hand used a fuzzy c-means based segmentation
method, among other processing steps, to perform the tissue
classification.93 The method proposed by the authors is capa-
ble of classifying breast skin, adipose, and glandular tissues,
in addition to muscle and, with some input from the user, sus-
picious lesions. Such a classification method could be useful
for reconstruction, computer aided detection (CADe), breast
glandular volumetric density, and registration, which may be
useful for comparison of current acquisitions with priors.

III.C. Image evaluation with numerical observers

The use of numerical observers in medical imaging re-
search is advantageous since it allows for comparison of im-
age quality for specific tasks which include a very high num-
ber of cases and/or imaging parameters without undergoing
costly or unfeasible human observer studies. However, for to-
mosynthesis research, the use of numerical observers is cur-
rently challenging due to a lack of models that incorporate the
additional pseudo-3D information provided in this imaging
modality. As an example of this limitation, some optimiza-
tion studies, some of which have been mentioned above, have
used 2D numerical observers to analyze only the slice that
crosses the center of the signal of interest. Although this may
be the case, it has not been shown that optimization based on
this single tomosynthesis slice perfectly correlates with one
based on the entire or portion of the reconstructed volume.
It could be expected that for lesions that span more than a
single slice, the quality of the representation of that lesion
throughout the entire lesion volume does not necessarily cor-
relate perfectly with the quality of the lesion presentation of
the center slice. Young et al. proposed to use a numerical ob-
server model to analyze the tomosynthesis projections, not the
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reconstructions, incorporating into the model the spatial cor-
relations present due to acquisition of the same volume from
different projection angles.94 The authors showed that the
results of the observer model analysis of the projections
are different if these spatial correlations are taken into ac-
count. By performing the analysis on the projection space
rather than the reconstruction space, the authors suggest that
the results obtained provide an upper-bound on the perfor-
mance results, without introducing additional variability from
the reconstruction algorithm methods and parameters. Park
et al. proposed a 3D ideal observer model that can be ap-
plied to tomosynthesis reconstructed images to analyze lesion
detectability.95 A study comparing the 3D observer model to
the 2D model, applied both to the slice including the lesion
and in projection space, would be of great interest.

Gang et al. derived a 2D detectability index from a 3D
cascaded systems analysis and compared its predictions to
human observer performance for lesion detection with vary-
ing acquisition parameters.96 The authors found reasonable
correspondence between model predictions and observer per-
formance, allowing for the use of their developed model for
optimization in 3D imaging such as DBT.

III.D. Computer aided detection of masses

The use of CADe in digital mammography has become
common practice in the clinical realm. It could be expected
that similar systems, if available, would be adopted for DBT,
especially considering the larger amount of data presented to
the reader in a DBT image compared to a mammogram. In an
early study, Reiser et al. proposed a CADe method for mass
detection based on detection and segmentation of suspicious
lesions using a radial gradient index method.97 Inclusion of
the vertical direction information did not improve classifica-
tion performance based on gradient analysis, but it did im-
prove performance based on shape analysis. Overall, the sen-
sitivity for the proposed algorithm was 76% with 11 false pos-
itives per exam. In another early study, Chan et al. also pro-
posed a CADe method for mass detection, which they tested
on 26 patient DBT cases.98 The method, which involved in-
terpolation of the reconstructed image to obtain cubic voxels
with 0.1 mm sides, gradient field analysis to identify candi-
date lesions, segmentation via 3D region growing, and feature
analysis, resulted in an 85% sensitivity with 2.2 false posi-
tives per exam and 80% sensitivity with 2.0 false positives per
exam, depending on the operating point setting. In a follow-
up study, Chan et al. investigated how the performance of this
algorithm was affected by the number of projection views and
the dose level used to acquire the DBT image.99 For this, they
analyzed a set of patient images reconstructed by using either
all 21 projections acquired or only 11 of the 21 projections
(which resulted in about half the radiation dose). Although
the performance of the classifier was unaffected by the lower
number of projections and dose, the overall area under the
ROC curve was lower for the 11 projection images, due to an
increase in the false positive rate.

In a different approach, Reiser et al. proposed to per-
form automated mass detection by analyzing the acquired

tomosynthesis projection images as opposed to the recon-
structed images.100 By using the projections, the authors ar-
gue that any artifacts introduced by the reconstruction algo-
rithm are avoided. In their method, only an intermediate step
involves analysis in reconstruction space, in which the algo-
rithm attempts to identify and eliminate the suspicious le-
sions due to tissue superposition. The initial lesion identifica-
tion and final lesion classification is performed in projection
space. With their limited data set, the authors found a sensitiv-
ity of 90% with 1.5 false positives per exam. Chan et al. later
compared the performance of CADe for mass detection under
three conditions: when the algorithm performs all analysis on
the reconstructed images only, when the algorithm performs
the lesion identification and classification on the projection
images and then applies a decision threshold on the distribu-
tion of mass likelihood scores obtained from the projections
and backprojected to reconstruction space, or, finally, when
the algorithm combines the likelihood scores of both methods
described above to arrive at a final decision.101 The authors
found that taking advantage of the most information available,
i.e., using the approach that combines the 2D and 3D-based
results, yields the highest performance, with a false positive
rate of 1.23 and 2.04 per exam at sensitivities of 80% and
90%, respectively. Singh et al. also proposed to perform the
initial lesion identification in projection space with the rest
of the algorithm performed in reconstruction space.102 As op-
posed to the previous algorithms proposed, however, the le-
sion classification performed by Singh et al. was not feature-
based, but used information theory-based analysis with mu-
tual information as the metric of choice and three different
ways of constructing a knowledge base for training of the sys-
tem. The authors found that although there was no statistically
significant difference in the performance of the system when
trained by either of the three knowledge bases, the inclusion
in the knowledge base of true and false positive regions of in-
terest (ROI), identified by the first stage of the CADe process,
yielded the highest area under the ROC curve. However, the
authors argue that a knowledge base consisting of only true
positive and normal ROI may be more robust and generaliz-
able, since it does not depend on the performance and charac-
teristics of the first stage of the system. In a subsequent study,
Mazurowski et al. demonstrated that a mutual information
based algorithm, trained solely with mammographic images,
can perform comparably in detecting masses in DBT images,
with a simple preprocessing of the DBT reconstructions in
which an area close to the breast edge is masked out.103

III.E. Computer aided diagnosis of masses

A computer aided diagnosis (CADx) system for charac-
terization of suspicious masses was developed and tested by
Chan et al. on both the tomosynthesis reconstructions and
the projections.104 After a ROI was marked by the reader
in a reconstructed slice, the location of the ROI in the ac-
quired projections was identified, and the same CADx algo-
rithm with few modifications processed both image spaces
independently. The authors found that reconstruction-based
performance is significantly higher than projection-based
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performance, with the area under the ROC curve as the fig-
ure of merit.

III.F. Computer aided detection and diagnosis of
microcalcifications

For automated detection of microcalcification clusters, in
an early preliminary study, Peters et al. proposed to use
wavelet filtering and fuzzy processing of the acquired pro-
jections to avoid performance variations due to different re-
construction algorithms and parameters.105 Reiser et al. also
proposed a method that performs the initial suspicious lesion
identification and final feature-based classification in projec-
tion space, while using reconstruction space in an interme-
diate step to eliminate suspicious areas that appear in few
projections.106 In this preliminary study with a limited data
set, the authors obtained a sensitivity of 86% with 1.3 false
positives per exam, yielding a poorer performance than cur-
rent digital mammography CADe algorithms for microcalci-
fications. In another study, Park et al. studied the use of a
modified version of an existing CADe algorithm for microcal-
cification detection in mammography in DBT.107 For this, the
authors added a clustering method to the existing algorithm to
determine if the calcifications identified in the acquired pro-
jections (when the algorithm was applied to projection space)
or reconstructed slices (when applied to reconstruction space)
belong to the same cluster. Upon identification of the potential
clusters, four different methods to arrive at the final identifica-
tion were compared. The authors found that the best method
for projection based analysis yielded a sensitivity of 70% with
4.0 false positives per exam, while the reconstruction based
analysis resulted in 88% sensitivity with a 15.9 false positive
rate. Using a reconstruction based CADe method for micro-
calcifications derived from an algorithm for mammography,
Bernard et al. obtained promising results, with a sensitivity
of 85% with 1.4 false positives per exam.108 The authors note
that this performance level is lower than that obtained with
the similar algorithm used for mammography (86% sensitiv-
ity with 0.95 false positives per exam), again demonstrating
that further work is required for tomosynthesis-based CADe
to match the performance in mammography in identifying mi-
crocalcifications. Sahiner et al., using an algorithm that pro-
cesses only the reconstructed images, obtained a sensitivity
for microcalcification detection of 85% with 3.8 false posi-
tives per exam in an abnormal case set and with 3.4 false pos-
itives per exam in a normal case set.109 Finally, in early work,
Ho et al. have proposed CADe and CADx of microcalcifica-
tions for DBT using epipolar curves.110–112

III.G. Image registration

Several clinical applications for registration of DBT im-
ages have been identified and methods for each are being in-
vestigated. In the first place, comparison of DBT acquisitions
with mammographic priors will be required if DBT replaces
mammography as a screening technology. For this, as initial
first steps, Bakic et al. performed registration of mammo-
grams with the central (0◦) tomosynthesis projection113 and

with a set of tomosynthesis projections,114 using a previously
described non-rigid registration algorithm, resulting in a cor-
rection of ≥90% of the per pixel intensity differences origi-
nally existing between the image pairs.

Van Schie et al. have proposed that when interpreting two
views of the same breast during DBT screening, either by a
human reader or a CAD system, there will be a need to de-
termine corresponding locations in the two views.115 For this,
the authors proposed a model in which the breast, compressed
for acquisition of the first view, is decompressed, rotated, and
re-compressed for acquisition of the second view. By charac-
terizing the translation of locations with this model, the au-
thors developed an analytical solution for the transformation,
yielding a fast method to perform this location matching. Us-
ing two-view patient cases in which different features were lo-
cated by hand in each view, the method developed was tested
and found to yield a median 3D distance between the actual
and predicted location of 14.6 mm, with about half of the pre-
dictions being one or fewer slices away from the truth. Zhang
et al., in an initial study, developed an automated method to
detect corresponding feature locations in two tomosynthesis
projection images, which allowed for subsequent non-rigid
registration.116 Although the authors tested only registration
of projection pairs from acquisition of contra-lateral breasts
or from different projection angles of the same breast, the ap-
plication of the same method for temporal registration would
be possible. Since Sihna et al. successfully tested the registra-
tion of two DBT images acquired at separate time points by
manually identifying matching feature locations,117 it seems
that incorporating the feature selection process using an al-
gorithm like that proposed by Zhang et al. could result in a
successful fully automated temporal registration method.

In a different approach to the registration of two DBT
acquisitions separated temporally, Yang et al. proposed to
perform the registration of the two volumes during their re-
construction from the acquired projections, using an iterative
approach in which the optimization of the registration trans-
formation between the two volumes is also included in each
iteration step.118 Using simulated data from a phantom and
from a patient breast MRI acquisition, the authors found im-
proved reconstruction and registration performance when the
two tasks are performed combined rather than sequentially.

III.H. Quantitative breast tomosynthesis

Due to its very limited angular sampling, it is not appar-
ent that DBT can provide quantitative information on the tis-
sues present in the imaged volume. To investigate the fea-
sibility of quantitative analysis in DBT, Shafer et al. used
simulated and physical phantoms with varying layers of tis-
sues and signals with a range of fractions of adipose and
glandular tissue mixtures.119 Their investigation involved the
application of a background uniformity correction to the
acquired images and analyzed how the presence of scat-
ter, variation in background tissue composition, lesion ver-
tical location, and x-ray spectrum used for acquisition im-
pacted the estimated glandular density of the inserts. The au-
thors found promising results for the quantitative potential of
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tomosynthesis, but the use of overall homogeneous phantoms
limits the generalizability of the results, calling for further in-
vestigation with more realistic breast phantoms and clinical
cases. Richard and Samei developed a model to predict esti-
mation task performance based on frequency based analysis,
similar to the detectability analysis commonly used to predict
signal visibility, but for tasks involving quantitative analysis,
e.g., area and volume estimation.120, 121 This model was used
to determine the optimal geometrical acquisition parameters
that would maximize the precision of area and volume esti-
mation in DBT reconstructions.

IV. ADVANCED APPLICATIONS

IV.A. Contrast enhanced breast tomosynthesis

As with contrast enhanced digital mammography, DBT
imaging with iodinated contrast enhancement aims to in-
terrogate the vascular characteristics of the imaged breast
to improve malignant lesion detectability. Contrast-enhanced
image characteristics that could help detect and diagnose ma-
lignant breast lesions include degree of enhancement, location
of enhancement, and, with multi-acquisition dynamic proto-
cols, enhancement kinetics.122 Given the high in-plane spatial
resolution and short acquisition time of DBT compared to dy-
namic contrast-enhanced breast magnetic resonance imaging
(DCE-MRI), it seems that this imaging modality could prove
useful in determining enhancement details in terms of both lo-
cation and time. However, acquisition of enhancement kinetic
curves with a high number of time points is a potential lim-
itation for contrast-enhanced DBT (CE-DBT) given the use
of ionizing radiation during acquisition. This results in an up-
per limit of probably three or four time points that can be
used for constructing a kinetic curve, even with the most ad-
vanced CE-DBT technologies discussed below. In contrast,
with DCE-MRI, acquisition of more than ten time points for
kinetic curve analysis has been recently reported.123, 124 How-
ever, the need for more than a few time points to construct
a kinetic curve is still being investigated.125 Therefore, given
the high spatial resolution and the high temporal resolution
(although with few time points) achievable, CE-DBT has been
studied extensively. If the limited number of acquisition time
points possible with this imaging modality is a true limitation
is a clinical question that seems yet to be answered.

IV.B. Contrast enhanced breast tomosynthesis:
Temporal subtraction

Carton et al. were the first to propose performing CE-
DBT.126 In their approach, they used temporal subtraction,
in which acquisition is performed before and after injection
of the contrast agent, and the resulting reconstructions sub-
tracted from each other. Using empirical data and theoretical
modeling, the authors investigated the quantification of iodine
concentration and the impact of the presence of x-ray scat-
ter, patient motion, and detector stability. For this, the x-ray
spectrum had to be modified to increase the fluence of x-rays
above the K-shell of iodine (33.2 keV). Therefore, the authors

used a tube voltage of 49 kVp and an added copper filter 0.27
mm thick, resulting in a first HVL of 3.06 mm Al. The au-
thors found that the concentration of iodine could be under-
estimated due to scatter by 28%–54% for breast thicknesses
ranging from 20 to 80 mm, respectively, while detector in-
stability could introduce up to an 8% error in quantification.
Patient motion between image acquisitions could result in an
additional error depending on the amount of displacement and
the iodine concentration in the location of interest. Finally, as
expected, patient motion also results in subtraction artifacts
visible in the resultant iodine only image. In another study on
temporal CE-DBT, Chen et al. imaged 13 patients, of which
11 had malignancies proven by pathology, using light breast
compression so as to not affect the flow of blood (and con-
trast agent) in the breast.127 The authors found that CE-DBT
resulted in enhancement of suspicious lesions in 10 of the
11 malignancies and no enhancement in the remaining two
benign cases.

IV.C. Contrast enhanced breast tomosynthesis:
Dual energy

To minimize patient motion issues, Carton et al. suggested
the use of dual energy subtraction, in which both acquisi-
tions are performed post-contrast injection, with one acqui-
sition using an x-ray spectrum with most or all x-rays below
the iodine K-shell energy and the other acquisition with an
x-ray spectrum with most or all x-rays above this shell en-
ergy, rather than temporal subtraction.126 Subsequent investi-
gations on CE-DBT used this approach. Glick and Didier sim-
ulated the acquisition of the high and low energy images of a
structured breast phantom using the x-ray spectra produced
by a tungsten target with a tube voltage of 60 kVp, filtered
with 0.4 mm of cerium, and 0.6 mm of tin, respectively.128

The computer simulations showed that the lowest iodine con-
centration tested, 1.0 mg I/cm3, could be seen in the sub-
tracted image. In another study Puong et al. also proposed
dual energy CE-DBT, but, as opposed to Glick and Didier
who first reconstructed the low and high energy images and
then performed weighted subtraction, this study proposed to
first combine the acquired projections to obtain an iodine only
projection set using a novel algorithm developed for contrast
enhanced mammography,129 and then reconstruct using the
SART algorithm.130 In addition to showing feasibility, Puong
et al. performed an optimization of the x-ray spectra to be
used for acquisition, and studied the effect of x-ray scatter
on the quantification of iodine. In a subsequent optimization
study, Puong et al. compared the image quality obtained using
different target/filter combinations, and found that a Rh/Rh
target/filter combination spectrum with a tube voltage of
27 kVp and a Mo/Cu spectrum with 49 kVp and a 0.48:0.52
dose ratio, respectively, results in the lowest image noise.131

In addition, the authors proposed corrections for the quantifi-
cation of iodine in the presence of scatter, nonconstant breast
thickness at the breast borders, and limited vertical resolution.
Later on, this same research group introduced a regularization
to the SART reconstruction specific to iodine only reconstruc-
tions, showing improved image quality.132
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FIG. 7. ROI of a contrast enhanced DBT reconstruction of a patient with a malignant mass. (Left) Dual energy subtraction; (right) temporal subtraction.
The presence of motion in the temporal subtraction is apparent. Reprinted with permission from Carton et al., “Dual-energy contrast-enhanced digital breast
tomosynthesis: A feasibility study,” Br. J. Radiol. 83(988), 344–350 (2010). Copyright c© 2010, The British Institute of Radiology.

In the first dual energy studies involving patients, Carton
et al. imaged patients with suspicious findings using both tem-
poral subtraction and dual energy subtraction.133, 134 For this,
after one pre-contrast injection acquisition to perform tempo-
ral subtraction with a high energy spectrum (49 kVp, 25 μm
Rh + 0.25 mm Cu, 3.36 mm Al HVL), the authors acquired
two sets of two images post-injection, each with a low en-
ergy spectrum (30 kVp, 25 μm Rh, 0.44 mm Al HVL) and
the high energy spectrum. The dual energy approach resulted
in less motion artifacts than the temporal subtraction (Fig. 7),
which is an expected benefit of the former, but the authors
proposed that with adequate motion correction, temporal sub-
traction may ultimately result in better image quality due to
better background subtraction and lower noise. The same re-
search group developed and validated a theoretical model to
optimize the acquisition parameters to be used for dual energy
CE-DBT with a photon counting, scanning multi-slit imaging
system.135, 136 In this study, the authors aimed to perform ac-
quisition of the low and high energy images simultaneously
by selectively filtering the x-ray beam incident on adjacent de-
tector slits. This necessitates the use of the same tube target,
voltage, and current-exposure time product for both images,
allowing only for a change in the beam filtration. Therefore,
the authors investigated the optimization of the thicknesses
of the two filter materials (tin for the low energy beam and
copper for the high energy beam), the number of slits cov-
ered by each of the filter materials, and the weight factor wt

that is used in the equation to obtain the enhancement-only
subtracted image:

IDE = ln (ICu) − wt ln (ISn) from Ref. 134, (1)

where IDE, ICu, ISn are the subtraction, high energy copper-
filtered and low energy tin-filtered images, respectively. As
the figure of merit, Carton et al. used the signal difference to
noise ratio (SDNR) normalized by the square root of the mean
glandular dose, a common metric for this type of optimization
study. The investigators found that a 2:1 copper and tin slit as-
signment is optimal, which can be translated in other system
designs to assigning 2/3 of the available total exposure to the
high energy image, combined with 0.16 mm tin and 0.23 mm
copper filters. For this setup, the optimal weight factor varies
with breast thickness and the breast tissue glandular fraction

aimed to be suppressed. Of course, using a different weight
factor for each breast thickness is not challenging, but it is for
varying glandular fraction pairs. Overall, the authors found
that a weight fraction of between 0.52 and 0.60, depending
on the breast thickness, is optimal. Although the system this
optimization model was based on is not being further devel-
oped, the methods and results of this investigation are still rel-
evant for dual energy CE-DBT performed with other system
designs. In a recent optimization study, Samei and Saunders
also investigated the optimal weight factor, exposure distri-
bution between the two images, and the x-ray spectra shape,
using computer simulated acquisitions of a breast phantom.137

One important distinction between this work and the work of
Carton et al. was that the latter performed the logarithmic sub-
traction of the reconstructed images, while Samei and Saun-
ders found that for their setup this method introduces arti-
facts, which are avoided if the subtraction is performed on the
projections and the result used for reconstruction. Although
Samei and Saunders investigated the use of different tube volt-
ages for the two images, they found that a tube voltage of
49 kVp is optimal for both acquisitions, a very important sim-
plification of the required hardware. In terms of filtration, the
optimal thicknesses were found to be 92.5 μm of copper and
95 μm of tin for the high and low energy acquisitions, respec-
tively. For this combination of filters, the optimal weight fac-
tor and dose distribution is 0.61 and 0.54 (high energy image
dose to total dose fraction), respectively.

In a different approach to dual energy acquisition taking
advantage of new technology, Schmitzberger et al. reported
on a study that used an energy discriminating photon count-
ing multi-slit tomosynthesis system.138 The detector used in
this system can discriminate between detected x-rays with en-
ergy below and above a certain threshold.139 Of course, for
iodinated contrast-enhanced imaging, the threshold is set at
the K-shell energy of iodine, and therefore a single DBT ac-
quisition can be performed that still results in a low energy
and a high energy image. This guarantees perfect tissue reg-
istration, so no subtraction artifacts due to patient motion are
possible, and it can result in lower total glandular dose per
exam. In this study, the glandular dose delivered per acqui-
sition was 0.42 mGy, and three acquisitions at three different
time points were performed for each patient to obtain dynamic
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data. In phantom imaging with a contrast agent concentration
of 3 mg I/cm3, the smallest simulated lesion that could be de-
tected was 5 mm diameter (the next smallest lesions present
were 1 and 2 mm diameter). The preliminary patient study
included in this work showed promising results.

In a study on how contrast dynamics and acquisition tim-
ing affect iodine quantification, Hill et al. found that the
tomosynthesis-based results will reflect the average concen-
tration during acquisition, but that a correction factor for dif-
ferent lesion sizes is needed to obtain accurate quantification
results.140 In addition, the same research group found that the
most accurate quantitative assessment is obtained when both
the low and high energy projections are acquired in a single
x-ray source sweep with fast tube voltage switching.141

IV.D. Multimodality imaging

The combination of several imaging technologies with
DBT has been investigated. Given that DBT as stand-alone
technology has only recently been introduced to the clinical
realm, it is not surprising that multimodality approaches are
still at a very infant stage. One research group has investi-
gated the combination of DBT with electrical impedance to-
mography for characterization of suspicious lesions, showing
promising results with a small number of patient cases.142–144

Combining DBT with ultrasound has also been investigated,
with the development of a prototype system that acquires
the tomosynthesis image and immediately afterwards posi-
tions and scans an ultrasound probe across the compressed
breast, obtaining a co-registered 3D ultrasound image.145, 146

The combination of morphological information with func-
tional information is also being developed by a group that
is investigating combining DBT with limited angle Tc-99m
sestamibi-based single photon emission computed tomog-
raphy (SPECT).147–149 The preliminary patient study per-
formed showed that adding the functional information can
improve the performance of DBT, especially in improving
specificity.149 Finally, DBT combined with diffuse optical to-
mography for interrogation of the hemoglobin and oxygen
saturation state has been also investigated, with the optical
characteristics of malignant lesions having been found to be
different than benign lesions and normal tissues.150–152 There-
fore, it seems that diffuse optical tomography could provide
useful additional information to help characterize lesions with
DBT.

IV.E. Phase contrast tomosynthesis

Phase contrast imaging has been investigated for various
modalities due to its potential to improve contrast and en-
hance feature edges.153–155 Given the promising results for
applications such as radiography, mammography and CT, the
possibility of performing phase contrast DBT is intriguing.
Using a benchtop system, Hammonds et al. developed and
tested the combination of phase contrast radiography with
tomosynthesis imaging on phantoms.156 In their study, the
authors determined that this edge enhancement is retained

during tomosynthesis reconstruction, therefore making phase
contrast DBT feasible and promising.

IV.F. Tomosynthesis elastography

From ultrasound imaging, it is known that benign and ma-
lignant breast lesions exhibit differences in their elasticity.
To assess elasticity or differences in elasticity, one theoreti-
cally simple method especially applicable to DBT could be
to measure strain, in this case defined as the change in le-
sion size in one direction under varying levels of compression
force. To investigate this potential new application for DBT,
Kim et al.157 and Engelken et al.158 proposed to perform elas-
tography using a DBT system by acquiring subsequent im-
ages of the breast undergoing different amounts of mechanical
breast compression. In the preliminary phantom study using
DBT performed by Engelken et al., promising results were
obtained.158

IV.G. Therapy

In image-guided radiation therapy, patient positioning pre-
irradiation is of utmost importance to ensure accurate dose
delivery to the tumor and sparing of the healthy tissue. The
introduction of on-board cone-beam CT (CBCT) allowed for
3D verification of patient positioning, but raised concerns of
the dose involved during imaging, in addition to extended im-
age scan time and gantry rotation issues. To address these
limitations, on-board tomosynthesis imaging using the kV
source and planar detector used for CBCT has been proposed.
Of course, compared to on-board radiography, tomosynthesis
provides improved soft tissue contrast and partial information
in the third dimension, while reducing the dose, acquisition
time, and gantry travel involved in on-board CBCT. As with
the diagnostic imaging application, the research performed
on DBT for therapy has focused on optimizing the acqui-
sition geometry159–163 and characterizing the radiation dose
involved,160, 164 in addition to therapy-specific issues, such as
comparison to reference images165 and localization of surgi-
cal clips.

V. CONCLUSIONS

The breast tomosynthesis process does not end with acqui-
sition of the projection images. In addition to the obvious im-
portance of the reconstruction process, many algorithms may
be used to further improve the resulting images and to extract
additional information from them. Due to the infancy of DBT
in the clinical realm, some of these additional processes and
analyses have had a limited chance of being tested in large
clinical patient data sets, hampering our ability to gauge their
true performance. Future research will surely involve the test-
ing of these algorithms on larger clinical data sets for fur-
ther characterization and optimization of their performance.
In parallel, the introduction of DBT to the clinic will continue
to motivate the development of advanced versions and appli-
cations of this imaging technology in addition to its combined
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use with other modalities that can provide functional and/or
physiological information of the breast.
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