
C, Cp 

E. 
E 
h 
Hp 

H 
iii 

m', 
n 
n. 
Qd 
Q 
qo'± 

q.'± 
r 
Ro 
T; 
T. 
T, 
Tc 
X a, i. 
X T _, X T 

X p_, Xp 

E 

h 

hp, h. 
p. 

Pp, P 

pc 
r 

n, n. 

'" (-) 
( )' 

( ). 

A Review of Calculations for Unsteady Burning 

of a Solid Propellant 

F. E. C. CULICK 

California Institute of Technology, Pasadena, Calif. 

Nomenclature 

A = E(1 - Ti) 
admittance function, Eq. (1) 
sensitivity of gas phase to pressure changes 
specific heats of solid and gas 
activation energy for surface reaction 
E = E,/RT. 
enthalpy 
latent heat for surface reaction; Hp > 0 for exo-

thermic surface reaction 
H = Hp/cT 
average mass flux 
fluctuation of mass flux at the surface 
index in the linear burning rate law, r = apn 
index in the surface pyrolysis law, Eq. (25) 
average heat release (per unit volume) in solid 
heat release in gas phase 
fluctuations of heat transfer at the average position 

of the surface, x = 0 
fluctuations of heat release at the burning surface 
linear burning rate 
universal gas constant 
initial temperature of propellant, x ->- - 00 

temperature of burning surface 
flame temperature 
average chamber temperature, x ->- + 00 

surface displacement, velocity 
functions defined in Eqs. (22) and (27) 
functions defined in Eqs. (22) and (27) 
stands for p'/p 
Eqs. (17-20) 
thermal conductivities of solid and gas 
stands for (m,'/iii), 
density of solid propellant and gas phase 
average density in chamber 
normalized temperature or a time lag 
dimensionless frequency parameters for the solid 

and gas phases; Eqs. (18) and following Eq. (34) 
real angular frequency 
mean value 
fiuctuating value 
evaluated at the solid-gas interface 

)o± evaluated on the gas (+) or solid (- ) side 
)o± evaluated on the gas or solid side of the mean 

position of the burning surface 
), evaluated at the flame, or just downstream of the 

flame 
), real part 
). imaginary part 

Introduction 

THE numerous oscillatory and transient motions that 
have been found in solid propellant rocket motors share an 

obvious feature; their existence depends ultimately on some 
kind of coupling between the motion and combustion. Al­

though it is possible that residual chemical reactions within 

the gas phase may, under some circumstances, be important, 
it appears at the present time that they may be ignored. A 

truly significant interaction occurs principally in a relatively 

thin region near the burning solid surface. The coupling may 

be associated, in general, with either changes of pressure or of 
velocity parallel to the surface. By far, most of the attention 

given to this problem has been concerned with pressure 

coupling, and the emphasis of this paper is set accordingly. 

However, there is evidence that "velocity coupling" may be 
important in some cases.os 

Perhaps the simplest problem that requires knowledge of 

the response of a burning surface is that involving small 
amplitude acoustic waves. This was the earliest case 

treated, and hence the term "admittance function," borrowed 
from acoustics, is commonly used. In the analysis of acoustic 
waves in a chamber,I-3 it is necessary to specify the com­

ponent of velocity normal to the boundary. Following tra­

ditional acoustics practice, it has usually been assumed that 

the fluctuation of velocity u' is proportional to the fluctuation 
of pressure p at the surface; the coefficient of proportionality, 

in suitably normalized form, is the admittance function Ab 
for the burning surface. The definition used here is 
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where a is the average speed of sound, p is the mean pressure 
and l' is the ratio of specific heats. The Mach number and 
speed of the mean flow leaving the surface are Mb and u. 
This is in fact a natural definition so far as the burning process 
is concerned, since, in response to a pressure change, there is 
a change in the rate at which solid is converted to gas, and 
this must appear partly as a velocity fluctuation. 

It is generally easier to compute the small change m' of 
mass flux (m = pu where p is the gas density) in response to 
a small change of pressure. Obviously, since m' pu' + 
p'u, (1) gives 

Ab = Mb [(m'/m) - (p'/p) ] 
(p'hp) (p'hp) 

(2) 

("-') denotes time averaged quantities and ( )' denotes fluc­

tuations. The bracket is evaluated just downstream of the 
burning region so that, if one assumes that the oscillations are 
isentropic, P "-' p'Y, the second term is unity. Further re­
marks on this point will be offered later. The real part of the 
first term is often given the symbol 'Y(j1/~), 

j1/~ = (Re[(m'/m)/(p'/p)] (3) 

and much of the later discussion will be concerned with j1/~ or 
the entire complex ratio, rather than A b• 

The function Ab is, in general, a complex quantity, de­
pending on the properties of the materials involved as well as 
frequency. It is helpful to think in terms of harmonic mo­
tions and to measure phases with respect to the pressure 
oscillation. The real part of Ab gives that fraction U'T which 
is in phase with the pressure. Consequently, the instantane­
ous rate at which work is done by the surface region on the 
waves in the chamber is U'rP' = ('Yp/a)Ab(r)p", Ab(r) being 

the real part of A b• Hence the attenuation, or growth con­
stant for steady waves, has a part proportional to Ab(r) such 
that the waves are driven if Ab(r) is positive. A larger value 
of Ab(r) implies a greater tendency for combustion to drive the 

waves. Although it is a useful relative measure, the ad­
mittance function alone is not sufficient to describe the sta­
bility of waves in a given chamber; there is a further con­
tribution of comparable magnitude due to interaction be­
tween the fluctuating and mean flows at the surface. 3,4 A 
valid statement of the stability of waves must be based on a 
proper accounting of all energy losses and gains. 

A similar interpretation of the admittance function arises 
in connection with the reflection of a traveling wave from a 
surface. Consider, for example, a plane wave traveling to 
the left and reflected from a flat surface oriented normal to the 
direction of propagation. If the interaction between the 
mean flow and the fluctuations is ignored, then it is quite easy 
to show that the complex amplitude (i.e., both magnitude 
and phase are included) of the reflected wave is (1 + Ab)/(1 
- A b) times the amplitude of the incident wave (see Eq. 
(A7) of Ref. 18). 

For the classical acoustic modes, therefore, the velocity 

fluctuation v' parallel to the surface does not enter in a 
natural, direct way. However, it may clearly be important 
because of its possible erosive influence on the burning rate, 
thereby causing a fluctuation of velocity normal to the sur­
face. A difficulty arises because the surface responds to the 
magnitude of the total velocity parallel to the surface, which 
includes the mean flow. Moreover, there may be a threshold 
to the magnitude of the net velocity, below which the erosive 
response is essentially zero. The analysis in any case be­
comes nonlinear.57 Since these questions have not been 
thoroughly treated analytically, and there seems to be limited 
usable relevant data in the literature, they will not be dis­
cussed here. 

On the other hand, an increasing amount of experimental 
information is being obtained for the case of pressure coupling. 
Unfortunately, systematic interpretation of the data is lag­
ging considerably. One would like to be able, eventually, to 
classify propellants, at least roughly, according to correlations 

between composition and the admittance function. This 
will probably be accomplished, if at all, only if one under­
stands something of the effects that changes of composition 
have on the various steps in the unsteady combustion process. 
Hence, it is clear that analytical work is a necessary guide to 
interpretation of the experimental work, even though precise 
quantitative results cannot be expected. 

Soon after it had been recognized that the admittance or 
response function must be known for the study of oscillations 
in rocket chambers, a laboratory apparatus, the T-burner, 
was devised5-8 for measuring this quantity without firing a 

complete rocket. Full usefulness of this technique has not 
yet been realized, partly because there is not available a 
thorough analysis of the T -burner itself, which is required for 
indirect determination of the admittance function from the 

direct measurement of pressure only. More recently,9-14 it 
has become apparent that a different device, the L*-burner, 
can also be used to measure the admittance function. Al­
though this provides again an indirect measurement, the 
analysis used is considerably simpler and probably more 
accurate. To cover the entire frequency range of interest, 
both kinds of measurement seem to be necessary. One 
therefore has a means of experimentally determining a 
boundary condition required for analytical treatment of 

waves in a chamber. 
The subject of this review is consequently of considerable 

importance, not only in application to problems encountered 
in rocket motors, but also for the treatment of laboratory 
data that should eventually be useful in the design of solid 
propellant rockets. Calculation of the admittance functions 
is by no means a closed subject at the present time, and, in­
deed, it is only now becoming possible (maybe) to extract 
sufficient information from observations that one may select 
the "correct" or "valid" analyses. Thus, the comparison of 
theory and experiment included in the present work is rela­
tively brief. 

In a very rough way, the various analyses fall into three 
categories: time-lag theories, pure heat-transfer theories, 
and (more or less) "complete" calculations. The first two 
classes are practically obsolete now, but should be placed in 
perspective and hence are given more than passing mention. 
Following a summary of time-lag theories, the complete 
linearized problem is discussed to exhibit those features which 
are common to all calculations. The remaining analyses are 
subsequently discussed within a common structure based on 
splitting the problem into separate treatments of the solid 
and gas phases. These are matched through the energy 

balance at the interface. 
The main difference between the calculations lies in ap­

parently distinctive results for the heat transfer from the gas 
to the solid phases. However, it will be seen that in fact a 
majority of the results found for the response function have 
exactly the same form, Eq. (43). This is a consequence of 
four basic assumptions: 1) one-dimensional analysis of a 
homogeneous solid phase; 2) no condensed phase reactions; 
3) simple pyrolysis of solid to vapor, independent of pressure; 
4) quasi-static behavior of gas phase. Failure of one or more 
of these assumptions is probably the reason that there is 
quite unacceptable agreement between Eq. (43) and some 

experimental results. 
Much of this work has appeared since Cheng15 published 

his useful survey of the subject. Geckler16 and Schultz et 
al,17 have also prepared brief summaries. This review is 

necessarily terse at certain stages; some of the points are dis­
cussed in greater detail in Ref. 18. 

Tillle-Lag Theories 

It appears that the earliest published treatment of acoustic 
oscillations in a solid propellant rocket chamber is that of 
Grad. 19 Although his analysis of the stability problem is un­
necessarily complicated and yields some incorrect quantita-
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tive results (particularly the prediction that the most un­
stable modes are of much higher order than those actually 
observed), the formulation of the over-all problem is par­
tially similar to those now used. Moreover, he is led naturally 
to introduce an admittance function in the following way. 
Suppose that the mass flux leaving the solid (see Fig. 1) is a 
given function f(p, T) of the pressure and temperature down­
stream of the burnt gases; f(p, t) = pu is the result one would 
obtain by steady-state measurements. Let m be the actual 
mass flux under unsteady conditions and assume that the rate 
of change of m with time is proportional to the difference be­
tween the actual mass flux and that which would exist in 
steady state for the same pressure and temperature: 

dm/dt = (1/7)(f - m) (4) 

The relaxation time, or time constant, or time lag is 7, and (4) 

is merely a statement that the burning process tends to re­
turn the mass flux to its instantaneous equilibrium value (f). 
Thus, for a step change off (due to a change of pressure, say), 
the mass flux changes as e- t/ T

• Both f and m may be repre­
sented as sums of mean values (independent of time) and 

fluctuations: f = 1 + l' and m = m + m'; in steady burn­
ing,] = m. 

For harmonic fluctuations having frequency w, an expres­
sion for the mass flux response function is easily found from 
Eq. (4): 

(m'/m)/(p'/p) = [b7(p/m)l/(1 + iW7) (5) 

Grad treats 7 and b as independent quantities, neither a func­
tion of frequency; b is determined from the dependence of f 
on pressure and temperature, supposed known. However, 
if (5) is to correspond to the correct low-frequency behavior 
of real propellants, band 7 must be related. Usually, the 
linear burning rate r varies as a power of pressure, r ""' pn. 
Hence, for a very slow, small change of pressure, r'/f = 

n(p' /p), and, since m = ppr where Pp is the density of the 

solid, 

m'/m = n(p'/p) (W ~ 0) (6) 

in the limit of zero frequency. This limit will be used many 
times; it amounts to satisfaction of the surface energy 
balance in steady burning. 29 Application of (6) to (5) gives 

7 = nm/bp, and (5) becomes 

(m'/m)/(p'/p) = n/(1 + iW7) (7) 

Typical numerical values lead to 7 "" 10-5 sec. It is perhaps 
useful to exhibit 7 explicitly as a time lag by rewriting (7) as 

m' p' n(1 - iW7) 

P 1 + W
2
7

2 

where f is the amplitude of the pressure oscillation. 

(8) 

More to the point, however, is the behavior of (7) as a func­
tion of frequency. The real part is n/(1 + W 2

7
2

) which starts 
at n for W = 0 and vanishes as W ~ en. All measurements 
that have been reported show a definite peak in /1/f at some 
moderate frequency, generally less than a few thousand 
cycles per second. Hence, this very simple picture, perhaps 
the most elementary one can devise, is wholly inadequate to 
describe the interaction between pressure waves and the 
burning. The essential reason for the failure is that the 
"time lag" 7 is in fact a very strong function of frequency 
which, in the more detailed computations discussed later, can 
apparently be determined to a rather good approximation for 

some cases. 
Much more extensive work was done by Cheng15

,20-24 

using the idea of a time lag, although defined quite differently 
from Grad's response time. The formulation was in this 
case strongly influenced by, and is quite similar to, the ex­
tensive development of the time lag for analysis of instabili­
ties in liquid propellant rocket motors. 25

-
27 For a given 

amount of propellant, 7 is now the time lag between the 

HEATED 

SOLID 

DECOMPOSIT:ON 

REGION 

Fig. I Sketch of the nlOdel used. 

moment of pyrolysis at the surface and combustion in the 
homogeneous flame region. Let ms(t - 7) denote the in­
stantaneous mass flux at the surface, so that ms(t - 7 )d(t - 7) 

grams of solid are converted to gas in the interval d(t - 7) at 
time t - 7; this later burns in the interval dt at the time t and 
at the rate m(t), the same mass flux appearing in the definition 
of the admittance function. Thus, the conservation of mass 

implies 

met) = [1 = (d7/dt)]ms(t - 7) (9) 

Now the essential assumption is made that, before burning 
(i.e., in the interval 7), the propellant absorbs a fixed amount 
of energy and that this is related to the pressure according to 

(t pp(t')dt' = const 
Jt-T 

It may be noted, as later remarks will amplify, that, in all 
computations of the admittance function, the pressure may 
be assumed uniform, through varying in time, in both the 
solid and gas phases. The further assumption is made that 
the instantaneous surface mass flux is related to the in­
stantaneous pressure, with no phase or time lag, according to 

ms(t - 7) = const [pet - 7)]n = (m/pn) [p(t - 7)]" 

the second equality following in order to satisfy the condition 
that in steady burning ms = m, and of course p = p at all 
times. (Cheng15 also includes dependence on erosion, but 
that will be ignored here.) Suitable combination of the pre­

ceding equations gives 

m(t)/m = (1/pn){pP(t)/[p(t - 7)]p-n} (lO) 

which is Eq. (5) of Ref. 20. Roughly, then, n is interpreted 

as the index in the linear burning rate law r ""' pn and v is an 
index associated with the gas phase reactions. 

As before, a relation between m' and p' can be found; for 

harmonic fluctuations, 

m'/m 
-- = v - (v - n)e- iWT 
p'/p 

(
n/{1 + (v - n)[-1 +~-.iWT]}) (11) 

v - (v - n)e 'WT 

Note that for W ~ 0, (11) tends to the correct limit if n is 
interpreted as suggested previously. Comparison of (11) 
and (7) shows that the time lags defined by Grad and Cheng 

are not related in a particularly simple way. 
The real part of (11) is 

/1/f = /I - (v - n) COS(W7) (12) 
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Fig. 2 Control volumes for the interface conditions. 

As a function of frequency, for fixed 'T (again assumed to be 
independent of frequency), (12) exhibits infinitely many 
peaks. Figures 2-4 of Ref. 15 show some numerical results 
computed by Cheng. By proper choice of v and by letting 'T 

vary with frequency (Cheng chooses 'T ,....., W- 2/ 3), it is possible 
to force only a single peak. This is clearly an unsatisfactory 
situation; one is merely fitting a curve and is not in a position 
to predict results or to interpret given results in any detail, a 
short-coming thoroughly recognized by Cheng. 

The result (11) was used in studies of the stability of waves 
in chambers20

-
23 for various configurations and types of pro­

pellants. However, statements about stability depend 
rather strongly on the shape of the admittance function (or 
fl/e) as a function of frequency. Hence, conclusions based on 
formulas such as (7) or (11) are suspect. 

As in the case of Grad's computation, the representation in 
terms of a time lag is evidently oversimplified. One gain,19 
however, is that (11) does not vanish as n -+ 0, whereas (7) 
does. Even if n = 0, so that the burning rate is insensitive 
to pressure changes in the low-frequency limit, there is no 
reason to expect a similar result at high frequencies. More 
detailed analyses support this contention. 

Moore and Maslen27 also introduced a time lag in their dis­
cussion of the stability of waves. Their final result, ex­
pressed in their Eq. (16) for the growth constant, shows that 
their assumptions are equivalent to the statement that the 
admittance function is a complex number. 

In terms of the magnitude and phase cp of Ab, Ab = IAbl 
exp( - icp), a time lag 'T can be defined as W'T = - cpo Ac­
cording to the definition (1), 'T evidently represents the lag be­
tween pressure and velocity fluctuations. A more direct 
comparison with Eqs. (7) and (11) can be made by solving (2) 
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Fig. 3 Comparison of Eqs. (43) and (51) with some experi­
mental results for a composite propellant (A_35),64 

The low-frequency limiting condition has been applied; at 
W = 0, when Ab = AbO, the condition implies AbO = Mb( ,,(n' 

- 1). In fact, (13) is not especially useful or enlightening; 
the only point is that, so far as the relation between velocity 
and pressure fluctuations at the surface is concerned, the 
natural time lag is defined in terms of the real and imaginary 
parts of the admittance function. 

It appears that Moore and Maslen used a definition of T like 
that of Eq. (13). However, it was introduced arbitrarily, 
following quite a different approach, and they had no way of 
computing or estimating it. Once again, 'T is a strong func­
tion of frequency as well as the properties of the propellant. 

Three distinct definitions of a time lag have been discussed 
in this section; more will arise shortly. They all suffer from 
the inevitable weaknesses of any ad hoc hypothesis: that 
they are known only by a more detailed analysis (in which 
case they become trivial definitions) or they must be measured. 
If a time lag is used in a complete analysis of waves in a cham­
ber, then an inverse problem must be solved: if all other 
quantities are known, what values of 'T (and perhaps ad­
ditional parameters) lead to unstable waves? This has been 
a reasonably successful approach for liquid rockets (Ref. 25, 
for example,) principally, it seems, because the time lag is at 
most a very slow function of frequency; the dependence on 
combustion parameters (fuel/oxidizer ratio particularly) may 
be inferred from observation of the stability boundary. This 
happens to be a fortunate situation, since there exists no 
way of computing 'T for a liquid rocket. On the other hand, 
the situation in a solid propellant rocket is just reversed; al­
though 'T is a function of frequency (and therefore geometry 
and mode), it may, possibly, not only be measured but 
calculated. 

Formulation of the More Complete Problem 

Although it is easy to classify those analyses which rely 
heavily on some sort of arbitrary time lag, there is a great 
deal of overlap among the remaining treatments-in fact, 
much more than one would gather from a brief perusal. It 
therefore seems advisable to construct at this stage a rather 
broad description of the problem, providing a reference frame­
work. There is fairly obvious and general agreement con­
cerning the gross aspects of the combustion process: cold 
solid is heated, perhaps decomposes in a region near the solid­
gas interface, vaporizes (the "pyrolysis" reaction), and burns 
in the gas phase. These features are sketched in Fig. 1. 

Naturally, there are many more details which must be ac­
counted for: differences between composite and double-base 
propellants, burning of metallic particles, influence of ballistic 
additives, inhomogeneities of the various regions, and' the 
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complicated character of the gas phase. Some of these will 
be treated subsequently; some have yet to be studied ade­
quately. 

It happens, however, that all calculations with which the 
author is acquainted may be treated as "three-region" 
the solid phase, the gas phase, and the interface region. The 
last is generally collapsed to a plane and provides a very im­
portant matching condition between the solid and gas 
phases. Except for one recent calculation, the solid has been 
treated as a single homogeneous layer up to the interface, and 
there is virtual unanimity on the solution for the condensed 
phase. Hence, the analyses differ importantly only in regard 
to handling the gas phase. 

The problem will be analyzed in one-dimensional form, and, 
unless otherwise specified, all material properties are averaged 
over the chemical composition. Three-dimensional proper­
ties, such as those necessarily present in the composite pro­
pellants, are therefore hidden; at present, there is no way of 
treating such complications, and the problem may perhaps 
best be regarded as one of determining the appropriate averag­
ing procedure. There are several attempts to approximate 
the difference between composite and double-base (i.e., 
homogeneous) propellants, but inhomogeneities in the inter­
face and the influence of metal particles have not been studied. 

During unsteady burning the interface moves relative to its 
mean position; when the pressure oscillates harmonically, the 
surface does so as well. In all but two works,28,29 a coordinate 
system attached always to the burning surface is used; this is 
not an inertial system. The author prefers an inertial sys­
tem, with origin fixed to the average position of the burning 
surface, which moves at rate r in the laboratory. This sys­
tem, which is similar to the choice made in thin airfoil theory, 
was first used in this problem by Williams;28 the equivalence 
of results obtained in the two systems is easily demon­
strated.I8 Thus, in Fig. 1, the solid appears to be moving 
from the left at the steady linear burning rate r. Since the 
actual burning surface oscillates about the origin, some care 
must be taken with the boundary conditions. 

Solid Phase 

Because the conservation of mass and momentum is trivially 
satisfied, the energy equation alone, written for the tempera­
ture, needs to be considered in the solid phase: 

Al,c02T /ox2) - mc(oT lox) - ppc(oT lot) = -Qd (14) 

where Qd is the rate of generation of heat per unit volume 
accompanying decomposition. Only in Ref. 29 is Qd taken 
to be nonzero in a finite region, so for simplicity here only the 
case Qd = 0 will be treated in a detailed manner. With di­
mensionless variables, T = T/Ts> ~p = mcx/Ap, (14) is 

(02T/O~p2) - (OT/O~p) - (Appp/m2c)(oT/ot) = 0 (15) 

The normalized mean temperature is 

(16) 

meeting the conditions T = Ts at the surface and T = Ti far 
downstream in the cold propellant. 

For harmonic motions T' '" exp(iwt) , the spatial dependence 
is easily determined from (15) to be exp(A~p); A satisfies the 
equation 

A(A - 1) = i[2 (17) 

where [2 now stands for the important dimensionless fre­
quency parameter 

(18) 

In order that T' ->- 0 for x ->- - OJ, the solution of (17) with 
positive real part must be used; A = AT + iAi, and 

AT = !II + [1/(2)1/2][(1 + 16[22)1/2 + 1)1/2) (19) 

Ai = [1/2(2)1/2][(1 + 16[22)1/2 - 1)1/2 (20) 

It will be apparent shortly that what one really needs is a 
formula for the fluctuation of heat transferred from the solid­
gas interface to the solid; in dimensionless form this is 
q's- = (Ap/mcTs)(oT /ox)'s-. When the motion and vaporiza­
tion of the surface are properly accounted for, the result is 
(e.g., Appendix B of Ref. 18): 

q's- = [A + (A/A)e-iwTl]T'. + (ns/A)e- iwT2 (p'l'fi) (21) 

where A = Es(1 - Tt)/R/rs contains the activation energy 
associated with surface pyrolysis. The time lags Tt, T2 are 
defined in Eq. (26). If a decomposition region of finite thick­
ness within the solid phase is included, then q's- has the 
form,29 

(22) 

but the coefficients of T's and p' /p are considerably more 
complicated. 

Solid-Gas Interfacial Region 

Conservation of mass and energy and the law for conversion 
of solid to gas give three important relations. The first two 
are easily found by considering a small control volume placed 
about the true burning surface which is located at x = x. and 
moves with speed xs.29 Thus, if the region can be collapsed 
so that negligible amounts of mass and energy are continued 
within it, one finds "jump" conditions associated with total 
unsteady mass and energy transfer on the upstream (8+ ) and 
downstream (8-) sides: 

- [1 - (j>/pp)](m's/m) "'" -(m's/m) (23) 

[Ap(oT/ox)]s_ + m[1 -

(ppxs/m)] (-Hp) (24) 

The mean gas density p near the surface is always much 
smaller than the solid density in the cases of current interest, 
so the term p/pp will hereafter be dropped. The enthalpy 
change Hp = hs- - hs+ accompanying the surface reaction 
is positive for an exothermic reaction; note that [Ap(oT lox) ]s­
is the heat fluxjrom the interface to the solid, and [Ag(oT /ox) ].+ 
is the heat flux to the interfacejrom the gas phase. 

Usually, an Arrhenius law has been assumed for the con­
version of solid to gas, giving the total surface mass flux 

(25) 

In most cases, the dependence on pressure has been ignored 
(ns = 0). A general perturbed form of (25), to first order of 
small quantities, is 

(26) 

with E = Es/RoTs the dimensionless activation energy for the 
surface reaction. The time lags Tt, T2 are arbitrarily intro­
duced to represent the lag (or lead) between the fluctuations 
of surface temperature and pressure, and the corresponding 
contributions to the fluctuation of surface mass flux. At the 
present time, there is no way of computing them on the basis 
of known chemical kinetics. Hence, they will be ignored for 
the most part, but they have been included as unknown 
parameters in several of the works discussed later. 

So far as a linearized problem is concerned, the assumption 
of an Arrhenius law (25) has little significance. What 
matters is the statement that the surface mass flux responds 
to be surface temperature and pressure changes; the linear 
relation (26) must then hold. If one chooses to deduce (26) 
from (25), then this merely provides a familiar interpretation 
of the parameters E and ns. Incidentally, the use of (26) 
is not universal; in some of the work of McClure and co­
workers, it was assumed that the mass flux was sensitive to 
heat-transfer fluctuations [see Eq. (37)]. 
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In some way, all calculation" must involve the aforemen­
tioned conditions, although perhaps in slightly modified 

forms which will be noted as required. Since the various 

studies differ mainly in respect to the treatment of the gas 
phase, it seems best to use the linearized form of (24) as the 

pivotal matching condition. If, in addition, (26) is as­

sumed, one has 

(cp/c)q's+ = q's- + XTT's + Xp(p'/p) (27) 

where 

X T = (cp/c) - 1 - EHe- iwT1 (28)* 

Xp = -n.lle- iwT' (29) 

The right-hand side of (27) is the formula for q's+ which 
accounts for the behavior of the solid phase and conservation 

of energy at the interface. Once q's+ provided by the gas 
phase has been determined by solution of the gas phase 
problem, then the analysis is effectively complete, for then 

(27) will give T's/(p'/p), and (m's/m)/(p'/p) can be found 
from (26). Solution of the problem in the gas phase will also 

provide a relation between m's and the value of m' at the 
downstream boundary required in the admittance function, 
Eq. (2). For subsequent use, the normalized form of the 

mean energy balance at the surface is obtained from (24) and 

(16) : 

(cp/c)/is+ = qs- - H = 1 - Tj - H (30) 

Gas Phase 

This is by far the most involved part of the problem; not 

only are the equations more difficult to handle, but it is not 

clear what approximations are appropriate for which propel­
lants. Thus, practically, the limited success achieved to the 

present time has been gained with the simplest analyses. 
An essential reason for this is that much of the behavior in the 
frequency range of interest is evidently dominated by the re­

sponse of the solid phase, and it appears that the straightfor­
ward solution leading to (21) is adequate. Hence, the gas 

phase can be simplified considerably without destroying cer­
tain major features of the problem. It remains to be seen 
just how simple yet representative it can be, but there are 

indications that some results are oversimplified. 
If diffusion of the separate species is accounted for, familiar 

forms for the conservation equations of mass, concentration, 

and energy are 

Cop/at) + (om/ox) = 0 (31) 

p(okJot) + pu(ok;/ox) - (%x)[pD(ok;/ox)] = Wi (32) 

~ (~~) + 
ox cp ox 

oh oh 
p-- + pu-

ot ox 

op 0 [Ag Oki] -- + - -~ (Le - l)~hj -
ot ox Cp ot 

(33) 

where the enthalpy for each species is hi and h = ~kihi' The 
only calculations28,3o,31 including diffusion explicitly do so for 

Lewis number Le equal to unity, in which case the energy 

equation (50) can be written 

o ( OT) oT oT . op 
5;; Ag bx - mcp ~ - pCp ~ = -Q - ~ (34) 

The local rate at which heat is released per unit volume is Q. 
The equation for conservation of momentum reduces to the 

statement that the pressure is approximately uniform through­
out the region treated, but varies with time. This is a conse­

quence of the low speeds and long wavelengths involved; a 
closer estimate may be found in Ref. 28, p. 3160. 

Apart from the obvious complications if diffusion is ac­

counted for, the truly serious obstacle to solving the equa­
tions for the gas phase is that in general (31) and (33) or (34) 

* The fiuctuation of H pis H' p = (c - cp)T' ,. 

are coupled through the density in op/ot. The "implm;t and 
usual means of avoiding the difficulty is to assume that the 
frequency is sufficiently "small", that all time derivatives in 

the gas phase can be ignored; this is the quasi-static or low­
frequency approximation and (31) gives simply m ."'" ms. 
For example, if (33) is written in terms of dimensionless 

variables with ~g = mCpx/Ag corresponding to ~p in the solid 
phase, then the frequency parameter for harmonic oscilla­

tions is ng = Agpcw/m2cp. That is, the terms involving time 

derivatives in (31-33) contain ng as a factor and are assumed 
negligible for ng «1. Some representative properties are 

shown in the list of symbols; with those values and p < 100 

atmospheres, ng < w/100. Also, however, w "'" !/40r2 where! 
is the frequency (cps) and r is the linear burning rate (cm/­
sec). For r = 1 cm/sec and! < 1000 cm/sec, no is small but 
certainly not negligible. See Ref. 1 for further comments on 

this point. 
The ratio ng/n is effectively a measure of the ratio of the 

thermal response time in the gas to that in the solid; the gas 

responds more quickly because, owing to a lower density, the 
volumetric heat capacity is much smaller. Since for many 

(but certainly not all) chemical reactions the response time is 
also much less than the thermal response time for the solid 

phase, one might expect the quasi-static approximation to be 

fairly good under some conditions. Brief discussions of this 
simplification will also be found in some of the references (e.g., 

1, 28-30, 32). Bird, et a1. 32 found thatfor their treatment of 

the gas phase the approximation seems to be quite good up to 

104 cps. The accuracy of the approximation cannot be verified 
without having more elaborate solutions, but the only work 
in which the assumption of quasi-static behavior is not 

eventually made is Ref. 1. Experimental results cited later 
suggest that the aSlmmption may fail at frequencies lower 

than one would expect on the basis of crude estimates. 
Practically all of the following discussion will not involve 

explicit time derivatives in the gas phase. This means that 
expressions found for q's+ required in Eq. (27) will be inde­
pendent of frequency. Hence, variations of m's and the ad­

mittance function with frequency will be solely consequences 
of the relatively slow response of the solid, i.e., due to the 

propagation of thermal waves inward from the solid-gas inter­

face. 

InterIllediate Theories 

As formulated here and, indeed, as treated in the literature, 

the problem reduces principally to computation of q's+, the 
fluctuation of heat transfer from the gas phase in the inter­
face. Except for those labelled earlier as time-lag theories, 

all of the computations focus essentially on heat transfer and 

are perhaps justly called "thermal theories" in the sense that, 
whatever might be claimed at the beginning of an analysis, 

diffusion of mass eventually winds up very much in a minor 

position. However, the calculations covered in this section 
fall, in a more or less loose sense, somewhere between the time 
lag theories and those treated later as the most complete 

calculations available. 
Some of these involve fluctuations of velocity parallel to the 

surface so that they are, in effect, concerned with velocity 
coupling rather than pressure coupling. However, they are 

not concerned with the nonlinear aspects of velocity coupling 
which, as noted carlier, seems to be the distinctive features of 

that problem. Moreover, certain qucstions such as "self­

excited" oscillations were first raised by them. 

In particular, two papers by Green33 and Nachbar and 
Green34 generated interest. 15, 17, 35,36 The relevant part of 

Green's33 work consists first in the assumption of an Arrhenius 
law [Eq. (26)] here, with ns = 0 but non-zero time lag Crt) be­
tween mass flux and surface temperature fluctuations. The 

total heat transfer to the surface [Green's Eq. (1)] is as­

sumed to be expressed in terms of a film thickness 0 or heat­
transfer coefficient h, qs+ = (Ag/o) (T f - Ts) = h(T f - Ts) in 
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dimensional form, with T t the flame temperature. The 
argument is then offered that the film thickness must increase 
if the mass flux from the surface increases; thus h is assumed 
to have the form h = F /r where F is an unknown factor, 
roughly expressed as F = AqpV / ppl, l being the distance from 
the downstream stagnation point in a rocket chamber (i.e., 
the distance for development of a boundary layer) and v being 
the velocity parallel to the burning surface. 

Green assumes that F = F + F' may fluctuate as a conse­
quence of fluctuations of the local velocity parallel to the sur­
face, but the flame temperature is assumed constant. The 
principal results of the analysis is then the formula for q'.+, 
which, when combined with the pyrolysis law, the matching 
condition (22), and ep = e, gives his resultI8 

(Tt - l)F'/mer 
T's = ----------~--~~~~--~--------------~ 

A + (A/A)e-;wn + (F/mer) + E(l - T; - 2H)e-;WTl 

(35) 

from which m's/m can be found. For large w, T's (= !J.T./Ts 
in his notation) appears as Eq (20) of Ref. 33, and for w unre­
stricted it appears as Eq. (13) of Ref. 34. 

Green and Nachbar sought conditions under which the de­
nominator of (35) vanishes, and identified this with the oc­
currence of "resonance," presumably by analogy with the be­
havior of a simple second-order system. If all other quanti­
ties are fixed, the condition, if it can be satisfied, gives par­
ticular values ("eigenvalues") of the frequency w; actually, 
they choose to permit both the frequency and time lag Tl to 
vary and sought the critical values for zeros of the denomina­
tor. Since then T'. and hence the mass flux change becomes 
infinitely large even for vanishingly small values of the 
"driving force" (F'), it was supposed that this condition cor­
responds to the existence of pressure oscillations (resonant 
burning) leading to observable increases in the burning rate 
and mean chamber pressure. It is now recognized that this 
is a very narrow view of the problem to be discussed in the 
section on self-excited or "intrinsic" instabilities; oscillations 
may very well occur even if the denominator is not zero, or 
even near zero. 

For the sake of comparison with later work, it should be re­
marked that for T! = 0, Eq. (35) leads to a formula for m'./m 
which is, apart from p' replaced by F', identical with that 
produced by other calculations. This is shown in Table 1. 
The analysis by Green and Nachbar of the zeros of the de­
nominator is then exactly the same as the computation by 

Denison and Baum 30 for the conditions under which self­
excited motions arise. A non-zero value of T! modifies 
quantitative results but is not an essential feature. 

The preceding calculation has yielded no quantitative re­
sults either for the response function or for the stability of 
waves in a chamber. Mainly this is a consequence of pre­
occupation with the very special aspect of intrinsic instabili­
ties which were first noted by Green. Barrere and Bernard37 

tried to generalize the computation by introducing additional 
time lags and also by permitting a continuous distribution of 
time lags. Their hope was to find a means of representing the 
behavior of composite propellants, a problem which remains 
unsolved. A slightly later consideration of the same problemai 

also makes use of a time lag, but defines it differently. 
Akiba and Tann09 proposed a modification to Green's 

analysis for use in their experimental study of low-frequency 
(also called L* or "nonacoustic") instability. Two im­
portant changes were made: 1) the phase lag WTl is set equal 
to zero because of the low frequencies involved and 2) the 
heat transfer from the gas phase to the solid-gas interface 
[their Eq. (8) 1 is written in terms of a pressure-dependent 
heat-transfer coefficient h = kp", where k is a constant and n 
is again the index in the linear burning rate law. (In their 
notation, the index is n/2 and k = ky/L for r = bpn.) The 
flame temperature is again taken to be fixed. After the 
normalized fluctuation of heat transfer is used in the energy 
matching condition (27), with X p_ = Xp = 0 and m's/m re­
lated to T's by (26) with Tl = n. = 0, one finds easily 

m's/m 
p'/p 

nkpnHE/me 

A + (A/A) + Xr + (kp"/me) 
(36) 

Application of the limiting condition for w .... 0 eliminates Xr 
and yields the two-parameter form shown in Table 1; see also 
Eq. (43). Sehgal and Strandll based their discussion on ideas 
introduced by Akiba and Tanno; neither paper contains ex­
plicitly the two-parameter formula for the response func­
tion, although it is of course implied. 

This response function involves an unsatisfactory assump­
tion for the heat-transfer coefficient, thereby introducing 
pressure coupling rather than the velocity coupling proposed 
by Green. The form of the response function is exactly that 
found by later works (B and A being adjustable parameters 
independent of frequency), but the basis of the calculations 
and hence the interpretations of B will be more convincing 
than in the case just discussed. 

Table 1 Summary of response functions with the quasi-static approximation for the gas phase 

Reference 

33 

!) 

1,32 

42 

30 

47 

52 

49 

29 

[em' /m)/n(p' /p)] 

E(Tf - 1)~ 

nmci' (p'/p) 

x + (A/X) - (1 + A) + AB 

AB 

X + (A/X) - (1 + A) + AB 

AB 

X + (A/X) - (1 + A) + AB 

AB + (n./n)(X - 1) 

X + (A/X) - (1 + A) + AB 

AB 

X + A - (1 + A) + AB 

A(B - 9./A) 

X + (A/X) - (1 + A) + A(B - 9./A) 

AB 

X + (A/X) - (1 + A) + AB 

PI +~ 
X r - - Xr+o + [PI/(l - n./n)] n 

Equation no. 

(63) of Ref. 18 

(68) of Ref. 18 

(43) 

(51) 

[(53) also Eq. (108) of Ref. 18] 

(125) of Ref. 18 

Meaning 

F': Eq. (58) of Ref. 18 
B: Eq. (64) of Ref. 18 
A = E(1 - Ti) 

R 
FJkpn+l (if - 1) 

mc 1 - Ti 

Ti 

j(1 - Ti) 

T;/j(1 - Ti) 

T;/T. 

11 = a 

a = (cp /c)/[(1 - Ti)S] 

S (T./Tf)[n + 1 + (E!l2RoTf)] 

9.: after Eq. (53) 

B = 1 + [(cp/c) - EH)]/A (Ref. 52) 

= 2[1 - H(E/A)] + (I/E) (Ref. 49) 

See Table Vof Ref. 18 (This reduces to 
Eq. (43) for no decomposition and 

n. = 0.) 
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Another calculation concerned with intrinsic instabilities 
rather than the complete response function is the work of 
Shinnar and Dishon,37 who did not produce any numerical re­
sults. They reduce the problem eventually to a calculation 
of characteristic values which corresponds to determining the 
zeros of the denominator noted previously. The formulation, 
however, is incorrect and will not be discussed here (see Ref. 
18 for a more complete criticism). 

Finally, there are two other works37,38 that are sometimes 
referred to but are now rendered wholly obsolete by more re­
cent work. Smith and Sprenger,39 in a paper which contains 
one of the first experimental verifications that increases in 
mean chamber pressure often accompany oscillations, sug­
gested that the coupling was due to the influence of pressure 
changes on heat release in the gas phase. However, they 
ignored the important role of heat transfer in the solid phase 
and assumed that the surface recedes at uniform speed. No 
calculations were carried out. Smith 40 assumes that the 
surface temperature is constant and that the heat transfer 
from the gas phase (q's+) is in phase with the pressure oscilla­
tions. Both of these approximations are unacceptable, and 
the subsequent computations are bound to be seriously in 
error. 

More Complete Calculations 

The remaining analyses covered here are characterized by 
more concern with the structure of the flame in the gas 
phase, and in some instances chemical reactions in the 
vicinity of the solid-gas interface are considered. So far as 
the flame is concerned, only the very simplest representations 
have been used. Several works are based essentially on a 
planar "flame-front" model, and, in those cases where dis­
tributed combustion has been considered, rather severe ap­
proximations have been used. It will be seen that the same 
two-parameter form of the response function is found, no 
matter what assumptions are made in respect to the detailed 
structure of the flame. The results can be distinguished only 
by different formulas for the parameter B. However, if the 
assumption of quasi-static behavior is relaxed or if the equa­
tions are not linearized, then differences in the models for the 
gas phase flame will affect the response function significantly. 

Since publication of the work of Hart and McClure,l more 
emphasis has, properly, been placed on computing the ad­
mittance functions and its variation with frequency rather 
than simply a concern with its poles. Reference 1 is the first 
attempt to treat the entire process from the viewpoint de­
scribed here and contains also the only calculation (albeit for 
a simplified model) of the gas phase valid for frequencies out­
side the quasi-static range. 

There is an important difference in the pyrolysis law used 
in Ref. 1 leading to a dependence of mass flux on heat transfer 
rather than on pressure only. In the notion used here, Eq. 

(36) of Ref. 1 is 

(37) 

with a found to be -1. This result is based initially on the 
assumption that the solid material decomposes internally at a 
rate given by the Arrhenius law and that the conversion of 
solid to gas is the integrated result of the decomposition. 
One might expect that the mass flux could, under some con­
ditions, be related to the heat transfer, but (37) shows the 
peculiar (and unexplained in the references cited) result that 
the mass flux decreases, if a = -1, with an increase of heat 
transfer. However, other features of the calculation mask 
this difficulty and will be more important. 

References 1, 32, 41, and 42 will be considered together, al­
though the last represents somewhat of a break from the 
earlier three; it does not involve the direct dependence of 
m's on q's+ (i.e., a = 0). Very few details will be included; 
the coverage in Ref. 18 is somewhat more extensive and con-

tains a table showing the correspondence for the more im­
portant symbols used. 

The solution for the solid phase is the same as that quoted 
previously, in the form 

q's- = Ar's + [(1 - rJ/A](m's/m) (38) 

This may be extracted from the last equation of the Ap­
pendix of Ref. 1, but it should be noted that the equation 
there is for the total heat transfer, qs+ + q's-. 

The gas phase in Refs. 1,32,41, and 42 is based on the as­
sumption of a flame front or slightly modified forms. A 
boundary condition is set at the downstream edge of the 
flame region (which is effectively collapsed to a plane) so that 
the conservation equations are solved without heat release 
included except as it affects the boundary condition at T = 

T /; diffusion is also ignored. In Ref. 1, the coupled con­
tinuity and energy equations (with Q = 0) are solved by 
transforming the independent variables from (x, t) to (T, t) 

without the strict quasi-static assumption. The dependent 
variable iI>(T, t) is essentially the perturbation of plhx 

where x is the position at which the temperature is T and 
time t. Motion of the flame relative to the burning surface is 
accounted for and leads to a relatively involved boundary 
condition there. Eventually, the continuity and energy 
equations can be combined to give a single second-order 
equation for T [Eq. (20) of Ref. 1], but at the expense of 
losing interpretation of the formal analysis. From the solu­
tion iI>(T, t) the fluctuation of mass transfer can be found by 
use of the continuity equation and boundary conditions. 

It is perhaps useful to note that a quantity J appears in all 
four papers; it arises first in Eq. (6a) of Ref. 1, which is a 
formula for the total heat transfer from the gas phase to the 
solid. It can be shown18 that the formula for J is 

J /eTs = [(q's- - r's)/(ms' /m)] - (1 - Ti) (39) 

in which r' is found by combining the pyrolysis law and the 
perturbed part of the energy matching condition. In the 
special case a = 0, 

J /eTs = (l/E){ [A + (A/A)] - (1 + A)} (40) 

Although the quasi-static assumption is not made in the 
differential equations, an "adiabatic" approximation is used 
to determine formulas for fluctuations in the burning rate 
both for the pyrolysis law and for the burning rate in the gas 
phase [cf. Eq. (7) and following remarks of Ref. 1]. In this 
way, a comprehensive treatment of the flame region is 
avoided. It appears, however, that this approximation, re­
ducing the flame to a plane surface, may be very restrictive 
and probably not at all applicable to composite propellants. 

The formula for j1/"i is lengthy and will not be reproduced 
here. Evidently, numerical calculations were carried out for 
much wider ranges of parameters than reported in Ref. 7, for 
the existence of large peaks (i.e., zeros of the denominator as 
discussed in connection with Green's work) was noted. 
However, the numerical results actually given exhibit only 
broad, rather low peaks. The values of E (34-42) are rather 
high; more reasonable values are 10-15, that is, Es = 20-30 
k cal/mole. The failure to obtain higher peaks, closer to ob­
served results, with acceptable values of the parameters led 
subsequently to inclusion of thermal radiation41 and the de­
pendence of the surface reaction on pressure. 42 

In Ref. 32, two main points are important. First, it was 
found that the effect of propellant compressibility appears to 
be negligible. This is the only discussion of compressibility, 
and since it appears to be unimportant it will not be discussed 
further here. The more interesting result is that a true 
quasi-static calculation of the gas phase was given; in all 
other respects the calculation was the same as in Ref. 1. 
Numerical results showed that the quasi-static analysis 
agreed with the more involved treatment of Ref. 1 to within 
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10% for frequencies up to 10,000 cps, somewhat higher than 
one could reasonably have expected. This, of course, is the 
only available check of the quasi-static approximation, but it 
is valid only for that particular treatment of the gas phase. 

The formula found in Ref. 32 [Eq. (23)] for q'8+ in the 
quasi-static limit is 

(41) 

where ao and bo are functions of propellant properties. Equa­
tion (41) is the quantity required from solution to the gas 
phase, and combination of the pyrolysis law, the solution for 
the solid phase, and the energy matching condition (25) gives 

(m'8/m)/(P'/p) = n/[l +j(J/cTt )] (42) 

where j is the index in the burning law m 1'.1 pnTii. It is 
particularly interesting to examine the case where the direct 
dependence of mass flux on heat transfer is absent (ex = 0), 
for which the function J is given by (40). Then Eq. (42) is 
easily put in the form 

1 ms' /m 
---

n p'/p 
AB 

(43) 
A + (A/A) - (1 + A) + AB 

with B = 7dj(1 - 7t) dependent only on the solid phase. 
This is the form already found, Eq. (36), and it will appear 
shortly as the result of several other calculations as well. 

It is quite easy to show from Eq. (43) that large peaks in 
this function will occur only for quite unrealistic values of 
surface activation energy18 if B is given by the formula just 
shown. One must conclude then, as the original authors 
found in their numerical work, that with the treatment of 
the gas phase used in these papers it may be difficult to find 
large values of the admittance function for realistic values of 
frequency and surface activation energy. The trouble seems 
to lie not so much with the treatment of the flame as a thin 
region as with the handling of the boundary conditions on the 
gas phase region and subsequent manipulations. It is clear 
from (43) that these have been set in such a way that the final 
result contains no parameter characterizing the gas phase. 

The preceding discussion applies to the case ex = 0; for 
ex ~ 0 the formula for il/e is much more complicated. Judg­
ing from the results given in Refs. 1 and 32, it appears that 
the difficulty is not avoided either by taking ex ~ 0 or by re­
laxing the assumption that the gas phase behaves in a quasi­
static manner. The calculations of Ref. 41 are also based on 
the model and analysis used in Refs. 1 and 32 but with some 
account taken of thermal radiation by the burnt combustion 
gases. Radiation was included as a perturbation about a 
quasi-static analysis of the gas phase. This complication was 
added in an attempt to obtain larger values of il/e with 
reasonable values of E and other parameters. It was found 
that the response was indeed slightly enhanced at the lower 
frequencies; a discussion of the results was also given in 
Ref. 46. 

The last paper of this series constitutes another attempt to 
predict larger responses in the lower-frequency range. The 
principal change is that the pyrolysis law contains no de­
pendence on heat transfer from the gas phase (ex = 0) but it 
does have a dependence on pressure: 

(44) 

This formula is based partly on the idea that "active con­
stituents" in the gas near the solid surface may return to the 
surface and thereby alter the reaction rate. From kinetic 
theory, the flux of particles in one direction through a plane 
is proportional to p/(T)1/2 which accounts for the factor in 
(44). Not all such collisions lead to reaction, and the weight­
ing factor exp( - E8/RoT8) enters. Thus, the added sensi­
tivity to pressure is associated with an "autocatalytic effect." 

Once again the gas phase is treated quasi-statically, but 
other assumptions and details differ in certain respects from 
those used in Refs. 1, 32, and 41. The response function [see 

Eq. (20) of Ref. 42, but note that J a corresponds to -J here) 
is included here in Table 1 [cf. also Eq. (51) here]; it differs 
from (43) only in the factor n.(A - 1) in the numerator (in 
Ref. 42, n. = 1). Although numerical calculations do show 
higher peaks and relatively good agreement with data (for 
one double-base propellant) is obtained, the values of E 
used are still low. A good discussion of this point as well as 
certain relevant aspects of steady burning is included in 
Ref. 42. 

It is fairly clear, even from such a brief coverage, that the 
last paper, like the other three, contains little information 
about the gas phase; this part of the problem seems to be too 
simplified. Thus, the results shown in Table 1 for the quasi­
static treatment (which were found to be in good agreement 
with the nonquasi-static form of the analysis1 for frequencies 
up to 10,000 cps) contain no parameter characterizing the gas 
phase. It will be evident shortly that this is contrary to re­
sults found elsewhere for which interpretation of B is different. 

The only elaborate attempt to treat diffusion is that by 
Williams. 28 However, not only is the quasi-static approxima­
tion made, but the final result for the response function m's/m 

goes to zero for w -+ 0; that is, it is valid only for n = 0, a 
restrictive case at best. This unfortunate result originates 
mostly in approximations used to treat the steady-state be­
havior of the gas phase, but possibly also in the handling of 
the quasi-static approximation; it is not clear just where. 
In view of this serious failing, although the results might be 
valid if n = 0 (i.e., mesa propellants) and because the analysis 
is lengthy and differs from others only in the treatment of the 
gas phase, it will not be discussed here. 

That the response function in simplest form contains, be­
sides the dimensionless frequency, only two parameters 
(here denoted by A and B) was first shown by Denison and 
Baum. 30 They use the quasi-static assumption for the gas 
phase, and, although diffusion is ostensibly included, its in­
fluence does not appear in the final results because the Lewis 
number is taken to be unity. However, they unjustifiably 
use a result found in adiabatic laminar flame theory for pre­
mixed gases. It had earlier been shown, by von Karman for 
example, that the eigenvalue problem for a simple laminar 
flame, effectively a flame front according to the approxima­

tions used, leads to 

(45) 

where K, 1'1, and 1'2 are constant, depending on the initial 
composition and state of the reactant gases, and E! is the 
activation energy for the gas phase reaction. A calculation44 

for the more realistic case of a flame front burning in the gas 
phase adjacent to a solid surface gives 

m = KpvlT/'[1 - (cp/Qg)(Tf - T.)j1/2e-E//2RoT/ (46) 

in which Qg is the heat released per unit mass in the gas phase 
reaction (Qg = ~rQr in Ref. 30). Equation (46) shows a de­
pendence on surface temperature as one might expect, but it 
must still be regarded as a rough approximation so far as the 

chemical aspects are concerned. 
The procedure for using a result of this sort, which is really 

the approximate solution to the gas phase problem, is com­
mon to several works. Energy conservation applied to the 
region between the solid surface and a position just down­
stream of the flame gives quite generally 

If fluctuations in Qg are ignored, the linearized form of (47) 

gives 

q'.+ = (m' /m)[1 - 1'f + (Qg/cpTs)] + 7'. - 7'! (48) 

Linearization of (45), (46), or a similar result gives a relation­
ship between m', p', T's> and 7' f, which may be shown sym­

bolically as 
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m'/m = V1(P'/P) + YIT'. + YfT'f (49) 

For example, TT = 0, Y f = 8, and VI = n/2 in the notation of 
Ref. 30. 

Since m "" m. within the quasi-static approximation (49) 
may be used as an equation giving the fluctuations of flame 
temperature; substitution into (48) with m'. determined by 
the pyrolysis law leads to 

q'.+ = (c/Cp)XT+T'. + (c/cp)Xp+(p' /p) (50) 

which is the heat transfer provided by the gas phase. This 
must be equated to (27), the fluctuation of heat transfer re­
quired by processes in the gas phase. Eventually one can 
find T'./(p'/p) and hence the response function. The result 
for T1 = T2 = X p_ = 0 is once again the familiar form 

1 m's/m 
---

n p'/p 

AB + (n./n)(A - 1) 
(51) 

A + (A/A) - (1 + A) + AB 

in ~hich, since ns ~ 0, pressure dependence of the pyrolysis 
law IS accounted for, and now the parameter B is 

B = [Xp+ - X p_ - n.(l - Tt)]j[(n - ns)(l - Ti)] (52) 

In Ref. 30, ns = 0 and B is denoted by 0:; AB corresponds to 
P of Ref. 18. Note that in (51) the correct behavior for 
w ....... 0 has been assured by requiring X T - - X T + = AB -
(1 + A), which places a restriction on certain of the quantities 
introduced in the model for the gas phase. The equivalence 
of the real part of (51) with ns = 0 and E times Eq. (71) of 
Ref. 30 is easily shown. 

Differences between the models for the gas phase will be 
exhibited in whatever relationship corresponds to (45) or (46). 
Upon linearization, one must always obtain m's/m linear in 
p', T'., and T' f. All coefficients are independent of fre­
quency for the quasi-static approximation, and it is evident 
that the response function must eventually have the form 
(51). 

It is particularly important, however, that the parameter B 
now depends very much on properties of the gas phase and 
not merely on the solid phase (cf. results obtained by McClure 
et al.57). The difficulty in finding large values (peaks) in m's/m 
or 11/;' for reasonable values of activation energy does not arise, 
as shown later in connection with experiments. The shape of 
the real part of the response function given by (43) is quite 
reasonable (Fig. 2), although in certain respects agreement 
with experimental results is unacceptable, even qualitatively. 

Friedly and PetersenaI have carried out a calculation that 
differs from that of Denison and Baum only by the use of a 
different, but still adiabatic, flame theory (Zel'dovitch's 
formulation). Consequently, the response function has the 
form (51) with ns = O. It appears, judging by Figs. 3 and 7 
of Ref. 31, that they did not force the limiting behavior for 
w ....... O. They have, therefore, too many parameters free to 
be specified when in fact only n, A, and B can be arbitrarily 
set. 

However, it would be surprising if a result containing only 
two parameters should work. For example, no account has 
bt'en taken of inhomogeneities, decomposition of the solid 
phase in a finite region, or of the obvious differences between 
composite and double-base propellants. Some results rele­
vant to the last question have been reported by Marxman. 47 

The computation is basically that of Denison and Baum, but 
with an attempt to include "surface-coupled" reactions, and 
thereby improves upon the simple one-step reaction implied 
by the use of simple laminar flame theory. However the 
calculation incorrectly makes use of the result (45) f~r an 
adiabatic flame and introduces further dubious points as 
well. In addition to the flame region relatively far from the 
surface, it is assumed that in the gas phase near the surface 
(effectively in the region denoted s+ here) two distinct con­
tributions to the rate of energy release can be identified: an 
amount QH dependent upon the local gas phase conditions and 

an amount QD independent of the gas phase, the latter pre­
sumably associated with solid phase reactions. These ad­
ditional sources of heat release can be incorporated either in 
the energy matching condition, Eq. (24), as Marxman chooses 
to do or as contributions to q.+ found in the solution. to the 
gas-phase problem. 

In either case the c~lculations outlined previously, with 
constant energy release m the gas phase Qu but additional con­
tributions QH, QD to the rates of "surface-coupled" energy 
release, lead to the response function 18 

m'./m 

p'/p A + (A/A) - (1 + A) + A(B - O./A) (53) 

where OH = QD/mcT., OD = QD/mcT., O. = OH(EH/RoT. -

va) + OD(ED/RoT.), and QH, QD have been assumed to have 
the forms 

Here, both A and B are the same as in Ref. 30; in particular, 

B = cpvr/nc8 = cpvr/nc(n + ! + E f/2RoT I)' The correct 
limit for w ....... 0 imposes the restriction 

n = (VI + EVaOH/A)/(B - O./A) (55) 

which is a formula for the steady-state burning index in terms 
of both kinetic and thermodynamic quantities. No evidence 
has been reported to verify (55); accurate numerical values 
~or ~ost .of the quantities involved are not available, so any 
JustIficatIOn must rest on estimates. 

If (55) does hold, then (53) is exactly the earlier result (43), 
but with a new definition of B: B' = B - O./A. Use 47 of 
(53) then rests on the supposition that B is known and 
fixed, and the response is examined as a function of 0 es­
sentially reflecting the amount of energy released in sU:lace­
coupled reactions. It is supposed that Os ~ 0 corresponds to 
composite propellants and Os = 0 to double-base propellants. 
The stability of motions in a chamber is qualitatively dis­
cussed in a manner treated in the next section. 

However, there are some serious flaws in this calculation. 
It has already been noted that the same form results whether 
the contributions QH + QD are associated strictly with surface 
energy balance or are supposed part of the heat transfer (q.+) 
from the gas phase. This means that a response function 
like (53) might also be found if one permits variable energy 
release in the gas phase. Hence it is not possible to at­
tribute conclusions based on Os ~ 0 solely to surface-coupled 
reactions. Furthermore, it follows from the over-all con­
servation of energy that for a given solid and hence final flame 
temperature one can imagine Os (i.e., QH and QD) to be varied 
only at the expense of the energy released elsewhere in the gas 
phase flame. Therefore, the assumption that Qu is fixed in 
(48) is invalid, and one must include a term Q'u/cpT •. 

Suppose that the total heat release (mQu + QH + QD) is 
at all times fixed (as suggested in the last source of Ref. 47). 
Then on~ finds ~hat the term Q'g/cpTs in q's+ exactly cancels 
a term (Q'H + Q'D)/mcTs which represents the fluctuation of 
surface-coupled energy release in the interfacial energy 
balance. Thus, contrary to the unproved supposition of 
Ref. 47, variations in Q'u are not of second order in their 
effect; the net result is that the final response function does 
not contain the parameters 0., OH, etc. In order to obtain a 
result like (55), it appears that a more careful account of the 
various contributions to the energy balance must be given, 
and in addition variations in the flame temperature due to 
variations in the total energy release must be allowed. t 

t According to Marxman (private communication), such a cor­
rection is being made with results (as yet unpublished) which are 
consistent with experimental observations. 
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Reference 48 i~ also ba8ed 011 the same kind of basic calcu­
lation, and ostensibly incorporates surface reactions not 
identifiable as simple pyrolysis. However, it contain::; the 
incorrect assumption that the heat transfer from the gas to 
the solid is in phase with the pressure fluctuations. The re­
sponse function found is exactly (43), although some regroup­
ing of symbols is necessary to show this. Some relevant ex­
perimental data (from a T-burner) are included. The 
observations are not understood at this time, but there seems 
to be evidence of the effect of surface reactions other than 
simple pyrolysis. 

All of the work discussed so far involves the assumption 
that purely solid phase reactions occur in a plane of infinitesi­
mal thickness-perhaps not a good approximation, because 
not only is the surface rough, but there are reactions in the 
solid phase (decomposition) which do take place at tempera­
tures lower than the surface temperature. The analysis of a 
decomposition region greatly complicates the calculations for 
the solid phase; the only treatment at present is in Ref. 29.t 

Decomposition and the associated heat release or absorption 
affect mainly the temperature gradients, and the response 
function is subsequently rather strongly affected. 

The gas phase is treated with the quasi-static approxima­
tion, but the further assumption is made that the tempera­
ture fluctuation just downstream of the flame zone varies 
isentropically. It is then shown that independently of the 
details of the flame structure one finds a formula like (50) and 
hence the form (51) for the response function. In effect, one 
avoids detailed considerations of the flame structure by mak­
ing the isentropic assumption. However, as later discussion 
elaborates, the issue merits more careful consideration, and 
the assumption is incorrect. The assumption of isentropic 
behavior can be dropped, but a relation like (45) or (46) is 
required to determine the perturbations of flame tempera­
ture. In any event, one ultimately finds the same form for the 
response function. 

As additional refinements are included, the number of 
parameters increases; so far, apart from Q, only B, n81 and A 
appear in (51). These three depend on particular properties 
of the propellants (such as T81 E81 T i , etc.), but the point is 
to group these into the simplest combinations. In Ref. 29, 

there are four associated with the decomposition region, two 
(besides A) for the burning surface, with only B for the gas 
phase. The interpretation but not the precise value of these 
is known. 

A recent calculation49 dealing with the problem of the 
flame structure leads once again to the form (43). The gas 
phase is modelled as a region of uniform energy release ex­
tending from the solid to some position, the flame thickness: 
Both incorrect use of a result for adiabatic flame theory and 
the assumption of isentropic temperature fluctuations at the 
edge of the flame are avoided. However, the calculation does 
involve some detailed estimates and approximations which 
need not be used. The analysis based on this model can be 
carried out "exactly"44 and leads to a formula similar to (46). 

Self-Excited or Intrinsic Instabilities 

It has already been noted that Green, Dension and Baum, 
and others have attempted to identify the occurrence of in­
finite values of (m' /ms)/ (p' /p) with the conditions for oscilla­
tions in a rocket motor. If the response is indefinitely large, 
then an infinitesimally small pressure change (unavoidably 
present in a real chamber) causes a large fluctuation in the 
mass flux, which in turn reinforces the original pressure dis­
turbance. In some earlier works this process, presumably 
leading also to increases in the mean burning rate, was called 
"resonance," as opposed to "sonance," the occurrence of 
relatively small amplitude oscillations. This usage of the 

t In a paper which was not known to the author until recently, 
S. S. Novikov and Yu. S. Ryaxantsev (PMFT, 1965, in Russian) 
have reported work similar in certain respects to that Ref. 29. 

terms has fortunately disappeared. Such an event has noth­
ing to do with oscillations in the chamber, and in fact would 
occur at frequencies determined by the propellant (see below). 
An inherent, or intrinsic, or self-excited instability of this 
sort may be possible (it has not been proven experimentally) 
but is almost certainly not the kind of instability present in 
rocket chambers. It seems quite clear that the over-all 
problem involves both strong coupling (expressed as a re­
sponse function) of the burning solid to the gas phase, and the 
geometry of the chamber. This combination mainly deter­
mines the frequency of motions, whether they be standing or 
traveling waves. 

However, it is true that the propellant most strongly drives 
oscillations in the frequency range where the real part of the 
response function is largest, and this occurs rather close (in a 
sense shown below) to the infinite values. 29 As an aid to 
qualitative argument, it is indeed useful to locate the poles of 
the response function. It happens that this is very simply 
done for the form (51). The denominator vanishes if 

A(A - 1) + AA(B - 1) - A = 0 

This gives a formula for A which, when substituted into (17), 
gives for the real and imaginary parts of Q 

Qr = ±!A(B - 1) [4A - (A - AB + 1)2)1/2 (56) 

Qi = A + tA(B - 1)(A - AB + 1) (57) 

Now Q originally appeared as the frequency of harmonic time 
variations, so that if iQ is regarded as a Laplace transform 
variable, Q i ~ 0 for stable transient motions. This condition, 
with (57) rearranged, gives 

(B + 1) z A(B - 1) (58) 

Equality holds on the boundary between stable and unstable 
motions; (56) then gives 

Qr = A(B)1/2 (59) 

This is a useful formula for estimating the location of the 
maximum in the response function. Note that the fre­
quency at which the peak occurs increases with both surface 
activation energy and B, which is a measure of the sensitivIty 
of the gas phase and surface pyrolysis to pressure perturba­
tions [cf. Eq. (52) J. 

Equation (58) is plotted as the limiting line in Fig. 1 of Ref. 
30. Marxman 47 has used the shift of this limit for changes of 
B' due to Os in Eq. (53); the shift is in different directions for 
different signs of Os. Although experimental evidence is re­
ported to support the theoretical predictions, in view of the 
discussion in the preceding section the interpretation must 
remain unconvincing until further work is done. A similar 
shift can be found from the analysis of Ref. 29, except that A 
rather than B effectively is altered. One can show that in the 
limit of small Q and lone has again (43), except that A is re­
placed by A - Ql2/2; l is the dimensionless thickness of the 
decomposition region and Q is the normalized heat release. 
D se of (58) should be regarded as a qualitative indication of 
trends and not as support of the view that the oscillations are 
self-excited. 

Isentropic or Nonisentropic? 

Several years ago, an interesting question was raised by 
Summerfield50,31 regarding the behavior of the coupled burn­
ing and pressure oscillations, particularly at low frequencies. 
Although the oscillations in the burnt gases may apparently, 
to a good approximation, be regarded as isentropic, if they 
are small amplitude waves, the assumption is less credible in 
the region near the flame. The boundary condition required 
for analysis of the chamber problem is the normal velocity 
component produced by a small pressure change. However, 
this depends also on the density (or temperature) changes 
associated with the pressure fluctuation, as shown by Eqs. (1) 
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and (2). The second term in the bracket of (2) is unity only 
if the process is isentropic at the edge of the burning region, 
which must be considered thin so far as the entire chamber is 
concerned. Moreover, the "edge" must constitute a proper 
outer boundary to solution of the unsteady combustion 
problem; for example, it is convenient to retain the assump­
tion that the pressure is uniform but varying in time within 
the region analyzed for the response function. 

The point raised by Summerfield concerns the validity of 
the common assumption that at the edge of the boundary the 
fluctuations are isentropic so that ,,(p'/p)/(p'/p) = 1. Cer­
tainly this is not the case within the flame, so that successive 
elements of the flow passing through have different values of 
entropy. The possibility exists that these entropy variations 
persist to the downstream edge of the flame region and are 
carried with the flow. If soe'iwt is the fluctuation in entropy 
at the downstream edge x = 0 of the flame, then it is easylS 
to show that the real part of the entropy perturbation is 

s' = s'o coslwt - [w(x - o)/uj} 

and as a function of x there is an entropy wave of wavelength 
27ru/w which is much smaller than the acoustic wavelength 
27rajw. 

Of course, there are dissipative actions tending to smooth 
out entropy variations so that the fluctuations s' decay as 
they propagate away from the flame. If s' is negligible at 
some plane x = x f and the region 0 < x < X f is "thin," then 
the admittance function may be computed with the isentropic 
condition and the result used as a boundary condition on the 
waves in the chamber. The damping length is quite large45 if 
only ordinary thermal conduction is accounted for; the in­
fluence of viscous stress is even less important. 

Thus, apart from the certain influence of turbulence, it 
appears that entropy waves, if they are present, are not sig­
nificantly attenuated near the surface. Arguments have been 
advanced 49

-
52 that the existence of such waves is more likely 

in the low-frequency range, although observation of them 
has only recently53 been tentatively successful. One does not, 
of course, observe the entropy waves directly, but the asso­
ciated periodic temperature variations can be measured. 

The two limiting cases are isothermal and isentropic tem­
perature variations; in the first instance s'u = -Ro(p'/pt) at 
the edge of the flame (r' f = 0), and in the second s'o = O. A 
fairly elaborate calculation exhibiting intermediate values, 
using Ref. 1 as a basis, has been given in Ref. 45. Very little 
change in the response function was found except at low fre­
quencies and at higher frequencies where the analysis is not 
valid. 

A much simpler calculation, restricted to very low frequen­
cies, appears in Ref. 52. A formula for q's+ was found simply 
by linearizing the steady-state form of the energy matching 
condition. Since the gas phase effectively is not considered, 
no parameter associated with it appears in the response func­
tion that is shown in Table 1. The more recent analysis 49 

cited previously leads very nearly to the same result (Table 
1), although as noted earlier more careful consideration is 
given to the gas phase. As one would anticipate, the re­
sponse function in both cases has the two-parameter form 
(43). 

Now a major point of those calculations was to show, as 
they did, the presence of nonisentropic temperature fluctua­
tions r' f at the downstream edge of the flame. Indeed, this is 
a necessary consequence of the scheme outlined earlier [Eq. 
(45)ff.] One has the choice of using an independent result 
like (45) or (46) for the gas phase; then the necessary values 
of r' f are found; or such a result is ignored (as in Ref. 29) and 
r' f is specified. The latter course is convenient, but incor­
rect, even though the ultimate form of the response function is 
insensitive to the alternatives. 

Correctly done, the procedure is simple. After both m' /m 
and r's have been found, r'! can be determined from either 
(45) or (49). The temperature fluctuations r' f are frequency 

dependent. Some numerical results are given in Ref. 49; 
r' f vanishes for w = 0 but is never precisely isentropic. If, 
on the other hand, one assumes r',! = kp' /p (k a real constant), 
which contains the isentropic case, then according to (49) 
with YT = 0 one has m' /m = (VI + kY !)(p' /p). However, 
VI + kY f is real, and this relation is supposed to hold always, 
in particular for all frequencies; this contradicts the result 
one finds later for the dependence of the response function on 
frequency. Hence, a priori specification of the relation be­
tween pressure and temperature fluctuations at the down­
stream edge of the flame cannot in general be reconciled with 
the global behavior of the gas phase, as expressed in a formula 
like (46). One must determine the temperature fluctuations 
as part of the calculation. 

The answer to the question posed, then, is that the motions 
are not isentropic at the edge of the flame. Correspondingly, 
there must be short wavelength entropy or (unless the flame 
edge is isothermal) temperature waves emitted from the 
flame zone. Sufficiently sensitive experimental observations 
should find them. Their properties may provide information 
about the behavior and character of the combustion region 
in the gas phase. Moreover, it should be emphasized that 
for a correct treatment of the instability of waves in a cham­
ber, one needs the admittance function, Eq. (2), not merely 
m' /p'. Thus, values of the temperature fluctuations are re­
quired in order to determine the second term in Eq. (2). 

COInparison with Experilllental Results and 

Concluding Relllarks 

From the practical point of view, the importance of the re­
sponse function arises from its central position in the problem 
of combustion instability (see Ref. 58, for example). The 
more immediate purpose of the calculations discussed here is 
to motivate interpretation of experimental results and thereby 
classify propellants according to a small number of parameters. 
Such information would clearly be directly useful in design 
and development work. Quite obviously, the problem is too 
complicated to be analyzed quantitatively in all respects. 
On the other hand, the simplest existing computations which 
have been reviewed here fall short of accommodating a sub­
stantial number of measurements. 

It has been shown here that almost all of the recent com­
prehensive analyses lead to the two-parameter form for the 
response function, Eq. (43) (see also Table 1), or three 
parameters if the surface pyrolysis is assumed to be pressure 
dependent, ns r" o. Since the response function is complex, 
both the real and imaginary parts must be taken into account 
when comparison is made with experiments. The first dis­
cussion in which this has been done appears in Ref. 54; 
measurements for three propellants (two composite and one 
double-base, JPN) are treated, with ns = O. Data can be 
interpreted only by combining the response function with an 
analysis of the laboratory device used, either a T-burner or an 
L* burner at the present time. In both cases, it is possible 
to construct a chart on which raw data (frequency and growth 
constant of the oscillations can be entered and the associated 
values of A and B may be read directly. 

Data from an L* burner, when treated in this way, give 
reasonable results only for one of the composite propellants 
(A-35). The value of A = 14 suggests a surface activation 
energy in the range commonly quoted from other pyrolysis 
measurements, and B = 0.8 is of the order one finds from 
both Refs. 30 and 42, for example. A plot of the real part of 
the response function is shown in Fig. 3, with both L* and 
T-burner data; note that the influence of including surface 
reactions dependent on pressure can be significant in the 
higher frequency range. Measurements in an L* burner for 
the other composite propellant (A-13) imply a negative value 
of A if the approach based on an L* chart is used. On the 
other hand, if one ignores the phase or imaginary part, the 
trends of the data can be roughly matched with A = 40, 
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B = 1.1 as shown in Fig. 4. It does not seem to be possible, 
however, to obtain good agreement in both the high-frequency 
(T-burner) and low-frequency (L* burner) ranges. 

Important qualitative differences are also shown by the 
double-base propellant JPN when T-burner data7 are in­
terpreted by means of the chart mentioned previously. How­
ever, as for the composite propellant A-35, it is possible to 
match the data fairly well by appropriate choice of A and B, 
if one tries to fit only the real part of the response. Such a 
treatment appears in Ref. 42 for the data of Ref. 7. 

Similar discrepancies have been found by application of the 
same method of interpretation to several other composite 
propellants,55 based on measurements in an L* burner. 
Those results also show some effects of changing oxidizer 
particle size, a feature that is not included in the calculations 
discussed here. Moreover, there is a trend with pressure 
level, shown in Fig. 4 and less in Fig. 3, which also seems to lie 
outside the validity of the calculations (see also the data of 
Ref. 7). It is true that A must vary with pressure level be­
cause the surface temperature does; as the pressure and 
hence burning rate increase, then so does the 'lurface tempera­
ture if the simple pyrolysis law (25) is valid. Hence, A de­
creases with pressure; also, B changes, but neither of these 
seems54 to accommodate the observations. For some propel­
lants, the index n is not constant with pressure level. For n 
¥- 0, this is easily handled within the calculations presented 
here, a significant effect; the case n = 0 has not been satis­
factorily treated. 

The differences between the theoretical predictions and the 
measurements seem to be much too large to be attributed to 
approximations involved in the analyses of the burners. 
Hence, the results cited constitute ample evidence that the 
form (43), even with ns ¥- 0, is not generally valid. Sig­
nificantly, however, the shape of the response function pre­
dicted by this formula is quite representative. As a function 
of frequency, as in Figs. 3 and 4 here, all measurements of the 
real part show a pronounced peak in the region of a few 
hundred to several thousand cycles per second, decaying to 
small values at higher frequencies. This qualitative behavior 
is wholly a consequence of the thermal wave in the solid 
phase, since the gas phase is assumed to behave quasi-stati­
cally. If attention is confined to the real part, then the 
analytical result appears to be acceptable; it is when the 
real and imaginary parts together are compared that the 
limitations become apparent. 

Because these analyses contain in common the four basic 
assumptions listed in the Introduction, it is reasonable to 
examine those more closely. Some of the disagreement might 
be resolved by incorporating condensed phase reactions, as in 
Ref. 29. A comparison of those calculations with data has 
not been carried out; although this probably ought to be 
done, it would be somewhat tedious because of the number of 
unknown parameters. The shape of the real part of the re­
sponse functions is not qualitatively changed, but the in­
creased freedom in fitting the data may produce reasonable 
results. 

It is the author's belief at the present time that the first and 
last assumptions listed may well be equally suspect. Before 
one can confidently apply the calculations to composite pro­
pellants, it is certainly necessary at least to show how good 
the approximation of a homogeneous solid really is. Some 
data in Ref. 55 suggest very strongly that certain three­
dimensional features are unavoidable. 

The quasi-static approximation may conceal even more. 
It is clear from the analyses reviewed here that it is difficult 
to distinguish between models of the gas phase when this as­
sumption is used. All models lead to the two-parameter form 
(43) and uncertainties in numerical values of the physical 
quantities involved tend to obscure genuine differences. 
This fact unfortunately detracts from the simplicity of the re­
sults. Moreover, the assumption itself may (as some of the 
comparisons with data indicate) fail at lower frequencies than 

the crude estimates lead one to believe. The essence of the 
approximation is that, at any instant of time, for the existing 
values of temperature and other property values (composition, 
etc.) at the boundaries of the gas phase, the profiles and 
hence in particular the heat transfer at the surface are given 
by the formulas deduced in an analysis of the steady state. 
These can then be perturbed to give T'" q's+ and so forth. 
This procedure does not mean that the heat transfer is the 
same as that for a steady state at the same pressure nor that 
the fluctuations (T'" etc.) are independent of frequency, but 
it does imply that all processes in the gas phase respond so 
rapidly that all variations with frequency are ultimately due 
to the thermal wave in the solid. It is likely that differences 
between models of the gas phase will become more obvious if 
this restriction to "low" frequencies can be relaxed. 

Nonlinear calculations should also be much more sensitive 
to the model chosen for the gas phase. At the present time 
there exists only a small amount of work 47

,49 on this aspect of 
the problem. The results so far are incomplete and there 
appears to have been no attempt to compare with measure­
ments. 

It is clear that much remains to be done before measure­
ments will be acceptably correlated and before the various 
parameters are related even in a gross way to the composition 
of the propellant. At the same time, there are several im­
portant pieces of the problem which have not been satisfac­
torily analyzed: the differences between double-base and 
composite propellants; the response of a propellant with 
metallic particles; the response of plateau (n = 0) propel­
lants; the question of a nonplanar, rough, solid surface, which 
is necessarily the case for composite propellants; velocity 
coupling; other nonlinear problems; and extension of results 
to frequencies outside the "quasi-static" range of the gas 
phase. Moreover, the connection between the dynamical 
behavior studied here and the more severe transients asso­
ciated with both ignition and extinguishment has not been 
clarified. 

On balance, however, it is quite remarkable that the simple 
formula (43) [or (51) 1 represents the measured behavior as 
well as it does. That this can be isolated as the consequence 
of the principal assumptions listed in the introduction simpli­
fies considerably the development of more complicated 
analyses. If it is clear, for example, that merely constructing 
more realistic models of the flame structure in the gas phase 
without altering one or more of the basic assumptions will 
lead to the same formula. In this sense, only one model of 
the process, defined of course by the approximations used, 
has been treated by most of the calculations reported up to 
the present time. 
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