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Abstract—In this paper, the current status of cardiac image SVD Singular value decomposition.
registration methods is reviewed. The combination of informa- ys Ultrasound.
tion from multiple cardiac image modalities, such as magnetic VIR Variance of intensity ratio.

resonance imaging, computed tomography, positron emission
tomography, single-photon emission computed tomography, and
ultrasound, is of increasing interest in the medical community for

physiologic understanding and diagnostic purposes. Registration |. INTRODUCTION

of cardiac images is a more complex problem than brain image

registration because the heart is a nonrigid moving organ inside IFFERENT imaging modalities bring complementary in-

a moving body. Moreover, as compared to the registration of formation that can be advantageously used to establish a

brain images, the heart exhibits much fewer accurate anatom- gjagnosis or assist the clinician for a therapeutic gesture. To lo-

ical landmarks. In a clinical context, physicians often mentally .
integrate image information from different modalities. Automatic cally compare two or more measurements of different nature, a

registration, based on computer programs, might, however, offer number of registration algorithms have been developed, espe-
better accuracy and repeatability and save time. cially in brain imaging.

Index Terms—Cardiac image registration, computed tomo- In the widespread ischemic heart diseases, the consequence
graphy (CT), magnetic resonance imaging (MRI), positron of reduced blood flow to the heart muscle can be studied using
emission tomography (PET), single-photon emission computed several medical imaging modalities, each of which gives a spe-

tomography (SPECT), ultrasound (US). cific view of this complex phenomenon. The first consequence
is a deterioration of the myocardial perfusion, which can be
NOMENCLATURE analyzed with nuclear medicine imaging techniques (SPECT
: - and PET) or with MRI [1], [2]. The deficit of perfusion induces
CC Correlation coefficient. metabolic changes in myocardial tissues highlighted using
cT X-ray compgted tomography. FDG PET studies [1]. A further consequence of a myocardial
ECG EIectrpcardmgraphy. ischemia is the reduced capacity of the heart to eject blood into
ED End—d|asto!|c. the body. This can be evaluated by analyzing the myocardial
ES End-systolic. contractile function using MRI or US. Recent studies have
FDG FIuor_odeoxyqucos_e. demonstrated the interest of concurrently analyzing those dif-
ICP Iterat|ve_ closest point. ferent aspects in order to assess the myocardial viability, which
LA Long axis. will determine the proper therapeutic action [3], [4]. Therefore,
LV Left ven}ncle. . . there is a growing interest in the development of cardiac image
MRI Magpetm resonance imaging. registration methods that could bring into the same anatomical
PET Positron emission tomography. reference all the available functional measurements.
ms Root mean square. Cardiac image registration is a more complex problem than
SA Short ads. . brain image registration, in particular because of the nonrigid
SAD Su_m of absolute d!ffe_rences. and mixed motions of the heart and the thorax structures. More-
SPECT Slngle-photqn emission computed tomography. over, as compared to the brain, the heart exhibits fewer accurate
SSC Stochastic sign ghangg. . anatomicallandmarks. Also, cardiac images are usually acquired
SSD Sum of squared intensity differences.

with a lower resolution than brain images. Fig. 1 illustrates a
typical acquisition protocol with ECG-gated cardiac MRI. This
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end-diastole X \E”'SySté’g cult to process automatically. Moreover, despite the existence of
e o e E5) three-dimensional (3-D) echocardiographic systems [24], two-
dimensional (2-D) image acquisitions are routinely performed.
At most, a collection of radial planes is acquired, resulting in
a quite different geometry as compared to the other imaging

short axis (SA) LV long modalities.
slice planes A axis(LA) A A
I 1 1 R
1 1
! ! ! II. CARDIAC IMAGE REGISTRATION: PRINCIPLES
! ! o AND APPLICATIONS
1 1 /’N p Q A i A
! ¢ ; A. Registration Methods Based on Geometric Image Features
diastole 1, systole 1, diastole . . ..
- . 1 T Registration methods based on geometric image features can

>
T T T T T T T T T T T T T ™

t  be divided into registration & set of pointand registration of
edges or surfaces
F'ig. 1. lllustration of a classical'acquisitior'l of SA images_with' a ECG-gated 1) Point-Based RegistrationPoint-based registration
cine MR sequence. The same slice is acquired at successive time points of the .
cardiac cycle. However, due to the motion of the heart, we do not observe {Fﬁl@thOdS often uses external markers or anatomical landmarks.
same anatomical region within the same slice. Moreover, several cardiac cyéB@rresponding point sets are usually manually defined in the
are required to reconstruct inces._W_hen possible, patients are asked to ret@fdrence and floating images. The advantages of the point-
their breath (15—-20 s) during acquisition. . . .
based registration methods are that they can be applied to any
imaging modalities where markers or landmarks are visible and
and books closely related to medical image registration and that the calculation of the registration parameters between two
sion can be mentioned, such as [11]-[17]. Very few review ppeint sets is usually fast. A noniterative least squares method
pers focusing on cardiac image registration have been publisivash be used to register corresponding point sets [12], [25].
[18], [19]. Gilardiet al.[18] reviewed the techniques and clin-The method uses an SVD of a 3 by 3 covariance matrix to
ical applications for the integration of multimodal biomedicafind a unique solution for the registration parameters between
images of the heart. Habbooshal. [19] briefly discussed the two point sets. In cardiac image registration, the method has
aspects of cardiac PET and MRI correlation. In the review aseen used, e.g., in phantom experiments for validating rigid
ticle of Maintzet al.[8], registration methods for cardiac imagesegistration error [26].
were also referenced in a separate section. Registration methods based erternal skin markergfidu-

This paper aims to provide a survey concerning cardiac imagal markers) are widely applied in medical image registration
registration, including the most recent articles and discussibgcause they allow matching of any imaging modalities in
also implementation and validation issues. For the four-dimewhich the positions of markers can be accurately defined.
sional (4-D) registration of intramodality cardiac images, thRegistration based on skin markers is independent of the
problem is often addressed in a cardiac motion tracking framedteration in the image patterns, induced by the pathologies
work. In this survey, the 4-D motion tracking problem is not cor]18]. Skin markers must be easy to use and accurate to reattach,
sidered at the methodological level. Instead, we refer to sofmgt they should not interfere with the diagnostic content of
recent papers in this field [14], [20]-[23]. the images. Since the flexibility of the body can cause errors

In this paper, cardiac image registration methods are dividadregistration, it is important to choose relatively stable parts
into two main categories: 1) those based on geometric imagfethe body for markers placement [27]. Ideally, markers
features (Section II-A) and 2) those based on voxel similarigshould not be removed between imaging sessions to ensure
measures (Section 11-B). The geometric image feature-badhd same placements in different modalities [28]. Registration
methods are divided into registration afset of pointsand of external skin markers does not guarantee registration of
edges or surfacedRegistration methods based on voxel simithe heart within the body, since heart position changes with
larity measures includmoments and principal-axes methodshody position, respiration, and cardiac contraction [29]. The
intensity difference and correlation methodsnd methods disadvantage of the skin markers is also that they cannot be
based on mutual informationAfter presenting the current utilized retrospectively. External markers have been applied
status of cardiac image registration methods, we discusspecially as a gold standard method in phantom measurements
implementation issues, such as interpolation and optimiza-validate the accuracy of rigid cardiac and thorax registration
tion (Section 1I-C). Validation of the registration methods isnethods [26], [30]-[33] and in clinical images, e.g., to validate
presented in Section Ill. The overview of cardiac and thorake accuracy of rigid registration of head images [34]. For rigid
registration methods and their main parameters are summaritgatax CT and SPECT image registration, the combination of
in Table I. Some of the brain, thorax, and abdominal imadmth external markers and landmarks has also been utilized
registration articles are referenced when methods have beer{35i, [36].
can easily be, applied to heart image registration. In landmark-based registrationgorresponding anatomical

In the reviewed papers, mainly MR, CT, PET, and SPECJoints have to be visible in both registered images. For heart
imaging modalities have been considered. There are very famages, there are usually only few spatially accurate anatomical
references related to registration with cardiac US images. Thisgaadmarks. In pathological conditions, such as ischemia, the
due to the characteristics of the US images that make them diffinctional alterations can also hide anatomical landmarks [18].

o+
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TABLE |
OVERVIEW OF EVALUATED CARDIAC AND THORAX IMAGE REGISTRATION METHODS
Reference Modalities Object Trans. Struc. Method Valid. Error Error type
Registration methods based on geometric image features
Point-based registration
Wirth et al. [42] CT-MR Thorax Elastic Landmarks  Interpolation & - - -
Elastic funct.
Thorax surface based registration
Yu et al. [33] CT-PET Thorax Rigid T&L “head-and-hat” P (x,y) 23 mm, (y) mean (rms)
3.0 mm
Cai et al. [46] CT-PET Lungs Rigid T&L Chamfer P& (x,y) 2-3 mm, (y) mean
Pa& S 3-4 mm, (rot.)1.5°
Pallotta et al. [26] PET-PET Heart Rigid T&L Chamfer P&S 3 mm, (rot.) 1 ° mean (rms)
2.19 + 0.52 mm mean (rms)=s.d.
Gilardi et al. [31] SPECT-PET Heart Rigid T&L Chamfer P & Pa. (x,y) 3 mm, 5 mm (z) (x,y) mean (rms),
(z) mean
Mikeld et al. [47] MR-PET Heart Rigid T&L Chamfer Surfaces  (x,y,2) 2.8 & 0.5 mm mean
Heart surface based registration
Faber et al. [29] MR-SPECT Heart Rigid HS “head-and-hat” P 2.7 mm mean (Tms)
Sinha et al. [40] MR-PET Heart Rigid HS “head-and-hat” L 1.95 mm + 1.6 mm mean (rms)
Nekolla et al. [57] PET-SPECT Heart Rigid HS - Surfaces 2.5 mm mean
Declerck et al. [50] SPECT-SPECT Heart Elastic HS ICP Pa. - -
Registration methods based on voxel similarity measures
Intensity difference and correlation methods
Gallippi et al. [75] MR-MR Heart Rigid & - C M 1.23 £+ 0.06 mm left-right (mean)
(time series) Elastic 3.25 + 1.04 mm anterior-poster.
(mean)
Bidaut et al. [37] MR-MR Heart Rigid - SSD L 3.0 mm (x), mean (rms)
(perfusion) 1.6 mm (y),2.2mm(z) (maximum)
Bacharach et al. [76] PET-PET Heart Rigid - cc M (x,y,oz) 1 mm, (rot.) mean
1.5
Turkingston et al. [71] PET-PET Heart Rigid - C P (x, y) 1.7 mm, (z) 42 mean
mm
Klein et al. [23] PET-PET Heart Elastic - LS P (x) 1.9 mm, (y) 2.4 mean (max.)
(4-D) mm, (z) 6.8 mm
Hoh ez al. [67] MR-SPECT Heart Rigid - SAD, SSC M (x,y)0.5+0.5mm,(z) mean =% s.d.
1.1 & 1.1 mm, (rot) 0.9
+1.1°
Dey et al. [32] CT-SPECT Heart & Rigid - SAD P 25+ 1.2mm mean (rms)
Thorax VIR P 33+ 1.3mm mean (rms)
Eberl et al. [30] SPECT-SPECT Heart Rigid - SAD P 3.1 ‘:’i: 1.7 mm mean = s.d.
1.3 ° (rot)
Slomka et al. [66] SPECT-SPECT Heart Affine - SAD P 1.5 mm(x,y,z) mean (max.)
2.0° (rot), 5.3 % (size)
Mutual information
Carrillo et al. [38] MR-MR Abdom. Rigid - MI L (x,y,2) 3.05 mm mean

Object= Main object to be registered.

Trans.= Transformation method.

Struc.= Structures used in registration & Thorax, L= Lungs, HS= heart surfaces).

Method= Method used in registration (€ cross-correlation, LS= least squares voxel difference, M mutual information).
Valid. = Validation method (P= Phantom, Pa= Patient, S= Simulated images, M= Misaligned images, |= Landmarks).
Error: rot. = Rotational error.

Error type: s.d= Standard deviation.

Landmarks have been exploited to estimate rigid registratianatomical landmarks can be difficult. Sometimes automati-
error in [30], [31], [35], [37], and [38]. Sawt al.[39] rigidly cally detected points and lines can be used as landmarks [41].
registered cardiac PET and US images by using homologdtirth et al. [42] utilized landmark-based elastic registration to
anatomical landmarks (the two papillary muscles and the infeegister a thorax MR image to the coordinates of a CT image of
rior junction of the right ventricle) of the heart. Rigid US-PETthe same subject. In this method, 36 corresponding landmarks
image registration was first performed in a plane identifieth thorax and lung surfaces were elastically matched, and the
by three landmarks. The obtained registration parameteest of the points were mapped using interpolation or elastic
were then applied to the whole PET volume. Sighhal. [40] mapping functions. The method registered corresponding
validated the rigid heart surface-based cardiac MR and PR®ints well, but general validation of the method accuracy was
image registration method by analyzing registration error usimgt performed.

cardiac landmarks (papillary muscles, the insertion point of 2) Edge- and Surface-Based Registratiofhie chamfer

the right ventricle into the septum, the most inferior aspect afatching method [43], [44] is often used to register surfaces
the septum, and the most inferior aspect of the lateral wal§nd point sets. In this method, the sum of the distances between
Identification of landmarks was prone to errors because of théile transformed points and a distance map built upon the
finite width and complex shapes. Especially in multimodaegmented surface using the chamfer distance transformation
cardiac image registration, the accurate localization of the sammeminimized [45]. For cardiac image registration, chamfer
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matching methods have mainly been utilized for rigid regnent, and the “head-and-hat” algorithm [51], [52] was used to
istration methods based on the thorax structures [26], [3fihd more accurate registration parameters. After registration,
[46], [47]. Also the ICP algorithm of Besdt al. [48] has been quadrilinear interpolation was applied to the SPECT image to
used to elastically register surfaces and lines [49], [50]. In tlodtain a temporal correlation with time frames of an MR image.
ICP method, the distances between structures are expliclinhaet al. [40] presented a method to register gated cardiac
computed at every iteration of the registration algorithm arf€DG PET images to the coordinates of gated MR images. In
the sum of distances minimized. The “head-and-hat” algoriththis method, contours of the left ventricular wall were defined
[51], [52] has also been commonly proposed to register medi¢adm both imaging modalities by using an interactive algorithm
images and was first presented to register brain images. Twish morphologic operators. Registration parameters were de-
algorithm models the contours from one of the images (usuaflped by using the “head-and-hat” surface matching approach
higher resolution) as a surface (the “head”) and the contoy#d]. In the MunichHeart software [57], endocardial and epicar-
of the other image set as a series of points (the “hat”). Tli#al contours were manually delineated from SA MR images
algorithm then determines the optimum rigid transformatiomand registered with the same contours extracted from PET or
which minimizes the mean squared deviation between tB&ECT images using the maximum count detection algorithm
points of the hat and the surfaces of the head by using §&8]. Declercket al. [49], [50] presented an automated elastic
Powell minimization algorithm [53], [54]. The “head-and-hat'tegistration method to align images from rest and stress my-
method has been applied for registering surfaces from card@mrdial perfusion SPECT studies. In this method, feature points
MR and PET images [40] and thorax CT and PET images [33]f the cardiac SPECT image surfaces were extracted using a
a) Registration methods based on thorax surfac€sr- Canny—Deriche edge detector [59], [60]. The features were then
diac image registration methods based on the registration of thgistered using the ICP method [48]. Images were also elas-
thorax surfaces have been proposed because it is often diffiidally registered with a template image by using local spline
to extract structural information from the heart surfaces directlyansformations. The method was also applied to cardiac SPECT
Thorax and lung surfaces are, in general, well visible in MR anmerfusion followup studies [61]. Thirioet al. [62], [63] pre-
CT images and in PET and SPECT transmission images. In gented a deformable model-based elastic registration method for
registration methods based on the thorax surfaces, every satramodality registration of diastolic and systolic CT or SPECT
face point that is involved in registration should have a uniqumages. Anderssogt al.[64] utilized heart edge information for
corresponding point in the other image. In practice, this usuallye cardiac PET emission images to rigidly reduce movement
means that the axial extension in the reference study mustdséifacts. The method was also applied to rigidly realign cardiac
greater than in the study to be matched [18]. Sometimes, aRET emission and transmission images [65].
ficial edges of the images have to be excluded from the regis- ) . o
tration parameters’ calculation. Surfaces from the transmissign Registration Methods Based on Voxel Similarity Measures
images have been utilized for intramodality registration of car- Registration methods based on voxel similarity measures can
diac PET images [26] and for intermodality registration of cabe divided into methods based oroments and principal axes,
diac PET and SPECT images [31], MR and PET images [4 Tihtensity difference and correlation methoded methods based
and thorax CT and PET images [33], [46], [55]. Thorax and lungn mutual information
surfaces have often been obtained using the simple thresholding) Methods Based on Moments and Principal Axésage
method of Yuet al. [33], where a threshold value of 50% ofregistration methods based on moments and principal axes
the maximum soft-tissue value was selected to segment the RISE statistical factors derived from image data [7]. Moments
and SPECT transmission images [31], [46] and thorax CT irdescribe the spatial distribution of the mass (intensity) of the
ages [33], [46]. Also, deformable models have been applieditnage. Methods based on the principal axes register images
segment thorax structures from PET transmission and MR iy bringing the principal axes of the inertia tensors of cor-
ages [47]. In this rigid registration method, chamfer matchingsponding objects in the images into coincidence. Accurate
was used to register segmented surfaces from PET transmégpistration based on principal axes requires that the entire
sion image with the MR transaxial image. Also, SA PET imebject be present in both imaging sets. Therefore, applications
ages were calculated from registered transaxial images by usiighese methods are limited. The principal-axes approach has
header information between MR transaxial and SA images. been used to initially register myocardial SPECT stress and
b) Registration methods based on heart surfacBggis- rest scans to templates [66], using SAD and SSC methods (see
tration of the heart surfaces may result in better registration éction 11-B2) to obtain more accurate registration. For the
the area of interest [31]. The choice of the surfaces to be regisgistration of thorax images, the principal-axes approach was
tered (e.g., epicardial and/or endocardial) is important. Febemproposed as an initial registration between CT and transmission
al. [29] presented a method for the intersubject rigid registrati@PECT images [32], while SAD and VIR measures (see
of 4-D gated cardiac SPECT perfusionimages to the coordinagesction 11-B2) were applied to obtain the final registration.
of the gated MR image. Left ventricular ED and ES endocardial 2) Intensity Difference and Correlation Methodémage in-
surfaces were automatically detected from both image moda#nsity difference and correlation methods attempt to determine
ties using a model-based surface detector [56]. The best sinijle best registration by maximizing the similarity between im-
transformation was searched to register SPECT ED and ES sages that differ primarily because of different image-acquisition
faces with corresponding surfaces in an MR image. Registratioonditions, like noise [7]. The assumption of these methods is
of the center of mass of the surfaces was used as an initial aligsually that pixel values in the registered images are strongly
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correlated. Therefore, these methods are particularly powerfidnsmission images, taken before and after emission imaging
for intramodality registration methods. [74]. Gallippi et al. [75] utilized modified correlation measure
a) Intramodality registration: Hoh et al. [67] compared to match local brightness statistics of the registered images. The

the SAD and SSD similarity measures for the rigid registratiamethod was applied to rigidly register intramodality cardiac MR
of cardiac PET emission images. In the SAD method, registeredUsS time series images. Bacharathl.[76] utilized CC mea-
images are subtracted pixel-by-pixel, and the mean value of thee to rigidly register two cardiac PET emission scans of the
sum of the absolute intensity difference of all the pixels in theame subject acquired at different times. The method was based
subtracted image is computed. The SSD is similar to the SAID the registration of corresponding transmission data sets. The
measure, but the squared intensity difference is calculated aptimum alignment was defined as the one that produced the
stead of the absolute difference. The SSD is the optimum measaximum value of the CC between the two data sets. CC is
sure when registered images differ only by Gaussian noise [12h optimal measure for registration in the case of a linear re-
[68]. In the paper by Hotet al. [67], the effect of various de- lationship between the intensity values in the images to be reg-
fects and misalignments was simulated. No significant diffeistered [11], [12], [68], [77]. This is seldom the case between
ences inthe translation or rotation errors of the SAD and SSD different image modalities, and the CC is thus mainly used for
gorithms were found. Slomket al.[66] compared the SAD and intramodality registration.
SSC methods for affine registration of SPECT emission images b) Intermodality registration: In the paper by Det al.
totemplates. Aninitial registration was obtained using alignmef&2], SAD and VIR methods were compared for the rigid reg-
of the principal axes. Registered images were first subtractéstration of thorax CT and SPECT images. In the VIR method,
and the SSC was determined by counting along each pixel rtdve sum of the normalized standard deviations is calculated to
the number of times the pixel gray level in the subtracted imageésfine registration parameters. The method was first proposed
went from negative to positive or from positive to negative [67by Woodset al. [78], [79] for registering intramodality brain
At the optimum registration, there is a maximum of total SigRET images [78] and intermodality brain PET and MR images
changes. Slomket al.[66] argued that the SAD provided bette79]. In the latter, the VIR algorithm minimizes the normalized
results than the SSC. This method was later enhanced and ptandard deviation of PET voxel values for each MR intensity
posed for voxel-by-voxel quantification of SPECT images asvalue, but the method could also be used for these images vice
clinical tool [69]. In the enhanced method, not only did the regrersa [12]. Deyet al. [32] utilized SPECT transmission image
istration algorithm compensate for shape differences by affias a linking mediator to register thorax CT and SPECT emis-
registration, but also a template erosion technique was used (igtn images. In this VIR method, the Simplex algorithm was
similar to warping adjustments) for fine tuning of the registraapplied for the minimization of the cost function, while in the
tion. The SSD-based similarity measure has also been appleijinal VIR method [79], the Newton—Rhapson method [54]
in rigid motion correction (caused mainly by breathing) of gatedgas used. An approximate image alignment was made using a
heart perfusion MR images [37]. Perfusion MR imaging oftetechnique based on the principal-axes transformation [80]. VIR
takes more than 3 min. Breath holding is not possible during tpeovided better convergence than SAD and may perform better
imaging protocol, nor can respiratory gating be used since a hiigh CT and SPECT image registration, but the method was only
temporal resolution is needed. Therefore, dynamic gated heagted on phantom images. In the paper by Ebedl. [30],
images and temporal resolution are degraded by respiratorydime SAD, SSC, VIR, andum of pixel-by-pixel produshea-
duced movements during the whole sequence [37]. In the receates were compared for rigid registration of intramodality car-
paper by Kleinet al.[23], [70], a novel affine 4-D registration diac SPECT emission images or intermodality cardiac PET and
algorithm was proposed for motion compensation of gated c&PECT emission images. SAD was recognized to be the most
diac PET emission images to give better estimation of perfusiancurate and reliable method. The use of SAD and VIR thus de-
and metabolic parameters. The method registers different gaends on the type of images to be registered.
diac PET emissionimage time frames with the end- diastolictimeln [81], the cross-correlation measure was utilized to rigidly
frame. It uses nonuniform elastic material model (12-parametegister cardiac MR and PET emission images by using PET
global affine motion model) and iteratively calculates registraransmission image as a linking mediator for registration. Edge
tion parameters of the model using a cost function that combiragormation and a region growing algorithm were combined to
a least squares voxel difference measure with penalty terms ssgment lung cavities from both MR and PET transmission im-
suming constant velocity and an affine model. The method daages. The segmented cavities were then utilized as landmarks
not require the precise a priori segmentation of the object.  for registration. Matching of the center of mass of segmented

Turkingstonet al.[71] utilized cross-correlation measure forcavities was exploited as an initial registration, and the cross-
the rigid alignment of dynamic cardiac PET images to cardiaorrelation function was employed for maximizing overlapping
templates. The method used only translations, assuming thegas of the lung cavities for accurate registration. The method
the orientation of the heart remains the same during the studsas validated only qualitatively, using visual inspection.
The cross-correlation technique has also been proposed for rigi@) Mutual Information: Mutual information is an informa-
motion correction of cardiac SPECT images [72], [73]. Betttion theory measure of the statistical dependence between two
nardiet al.[74] utilized the cross-correlation measure to rigidlyandom variables or the amount of information that one variable
register two PET transmission images for patient repositioningpntains about the other [11], [12], [82]—[84]. Mutual informa-
Cross-correlation measure was also used for the correctiortioh can be qualitatively considered as a measure of how well
the patient motion in the PET heart studies with the help of PEhe image explains the other. The mutual information is maxi-
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mized at the optimal alignment [77]. No assumptions are madi degrees of freedom (three translations and three rotations),
regarding the nature of the relation between the image intensitiggging a six-dimensional parameter space. Elastic registration
in the registered images [82]. Therefore, the mutual informatiagorithms have more degrees of freedom, in which case
method is promising in particular for intermodality registratiorthe parameter space has correspondingly more dimensions
Intermodality registration differs from intramodality registraf10]-[12]. Because the heart is a nonrigid moving object,
tion because different medical imaging modalities usually haetastic registration is ideally needed. An exhaustive search to
different intensity characteristics and different resolutions, noifiad the global minimum of the cost function is usually com-
characteristics, and fields of view. Several normalized versiopstationally too extensive and time consuming. Nonoptimal
of the mutual information has been proposed because changgsmization methods, like Powell [53], [54] and Simplex [54],
in overlap of very low-intensity regions of the image can dig90] methods, are applied to find an optimum faster than with
proportionately contribute to the mutual information measuthe exhaustive search. The Powell method has been selected for
[10]-[12]. the minimization of cardiac image registration methods in [29],
Registration based on mutual information has been pri®3], [38], and [46] and for thorax image registration methods
posed to register thorax CT and PET images, rigidly [85] and [32], [85], and [86]. The Simplex method has been used for
elastically [86]. In the latter, the rigid registration methoaardiac image registration in [30], [66], [67], and [69].
[85] was first applied as an initialization prior to the elastic Multiresolution methods can be implemented to increase the
registration. A nonlinear thin-plate-spline warping was dongrobability of finding the global optimum in the parameter space
using lung contours detected on PET transmission scans amd to make the registration procedure faster. In the multiresolu-
CT volumes. Nonlinear deformation significantly improved théon approach, the images are first registered at a low resolution,
alignment of PET with breath-hold CT. Carriléd al. [38] used and the transformation solution is applied to the next resolution
mutual information,VIR, and the CC methods for registeringvel. The process is repeated until the highest resolution level
abdominal thorax MR images. Results were compared withreached. For cardiac image registration, the multiresolution
the manual registration method. The best registration resudigproach has been applied in [26], [37], [47], and [86]. To our
were obtained using the mutual information with the Powelkinowledge, no comparative studies on the performance of mini-
minimization algorithm. In [87], a method that associatesization methods for cardiac image registration have been pub-
mutual information, gradient information, and the smoothnelished to date.
of the registration transformation was presented to elastically
register intrapatient cardiac MR and PET images. A rigid
thorax surface-based cardiac registration method [47] was used

for the initial registration of the images. A method can not be accepted as a clinical tool without
careful validation. Validation of registration accuracy is a
difficult task because the ground truth (i.e., gold standard) is
In a registration process, the image interpolation and mirgenerally not available [11], [12], [91]. Registration methods
mization algorithm are key points. We give hereafter some core often validated using external markers, anatomical land-
ments on these important topics. marks, or external fiducial frames as the gold standards [91].
1) Interpolation: Interpolation is required when an imageéVisual inspection is the most obvious method for evaluation of
needs to be translated, rotated, scaled, warped, or otherwisette-registration accuracy but can be considered as an informal
formed before it can match a reference image or an atlas [88hd insufficient approach.
In volumetric imaging, interpolation is often used to compen- A direct comparison of the measurements reported in the lit-
sate for nonisotropic data sampling. This is typically the casgature is not straightforward because of the nonunique defini-
with cardiac and thorax images where the in-slice resolutidion of accuracy and of the different methods adopted to mea-
can be much higher (e.g., 1 mm) than the interslice resolsure it [31]. In cardiac image registration, the main interestis the
tion (e.g., 8 mm). In intermodality registration, one image magistration accuracy in the heart area (target registration error)
be of substantially lower resolution than the other, and in cd#2]. The mean and rms errors are commonly used measures
diac image registration, lower resolution images (e.g., SPE@ registration errors [11], [12], [91]. In rigid-body registra-
or PET) are often transformed to the sample space of the higkien, error in the parameters of the spatial transformation model,
resolution modality (e.g., CT or MR) [29], [40]. To obtain thesuch as errors im-axis translation, are also commonly reported.
same isotropic voxel dimension in cardiac and thorax image rddgewever, the decomposition of a rigid-body movement into el-
istration, trilinear interpolation is often used [47], [88]. Nekoll&amentary rotations and translations is not unique, i.e., the result
et al.[57] created a scaled isotropic set from individual SA MRlepends on the order of the elementary operations [92].
and PET images using a cubic interpolation. In [37], bicubic in- To reduce registration errors caused by cardiac movementand
terpolation was used for interpolation of SA MR perfusion imrespiration, ECG gating and breath holding (or breath gating)
ages. Fabest al.[29] used quadrilinear interpolation to interpo-are sometimes used. The problem for cardiac image registration
late a 4-D SPECT image to the coordinates of a correspondinfg=CG-gated cine MR images is often that the same anatomical
MR image. For cardiac nuclear medicine images, cubic convolegion is not observed within the same slice of the cine images.
tion interpolation method has been recognized as efficient [8®ecent MRI “slice following” techniques should make temporal
2) Optimization: For rigid 3-D image registration, theregistration easier, showing the same anatomical locations of
optimal transformation usually minimizes a cost function witthe heart through cine image sequence. In thorax surface-based

Ill. V ALIDATION OF REGISTRATION METHODS

C. Implementation: Interpolation and Optimization
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cardiac registration methods, movement of the thoracic waiyerage values for the mean residual marker displacement over

and diaphragm is quite different in magnitude in all directionsen experiments were 3.411.41 mm, 2.2 0.76 mm, and

Movements can lead to distortions and asymmetrical positi@il9+ 0.52 mm for E, I, and El surfaces, respectively. The ro-

changes that can cause errors while determining the registratiational error was smaller than ®.5 each case. The result in-

parameters [93]. The movements near the diaphragm are largeisiated that the more the surfaces were integrated in the regis-

reaching several centimeters [94]. Cardiac PET and SPECT itration, the more accurate the result.

ages are often integral images through time (static images). This

causes extra difficulties for registering, e.g., with gated MR inB. Registration Accuracy

ages. In the case where both registered images are integral imr) |ntramodality Registration:

ages through time, the errors caused by breathing and cardiac 5y MRI: Bidautet al.[37] rigidly registered intramodality

motion can be considered to be similar in both images [31]. gated heart perfusion MR images by using SSD measure and
In reg|s_trat|0n meth(_)ds_ in Whlch atransml_ssmn image (PE_ btained 3.0-mm accuracy i, 1.6-mm accuracy iry, and

SPECT) is used as a linking mediator to register correspondidg_mm accuracy in directions. Gallippet al. [75] utilized cor-

emission image, the assumption s that the patient does not My ion measure and warping to register cardiac MR time-series

during and between image acquisition. Because the image- ages. Mean left—right registration error of 1:28.06 mm

quisition times in cardiac PET and SPECT transmission and " - anterior—posterior error of 3:28.04 mm were re-

emission images are often seyeral_mmutes, moveme_nt_artlf 6?ted. With intramodality mutual information-based registra-
often occur. In modern PET imaging scanners, emission i

N . . X . gn of abdominal MR images, Carrilket al.[38] reported 3-mm
transmission images are acquired without taking the patient qut . )
, accuracy by using anatomical landmarks.
of the scanner between acquisitions. &ual. [95] argue that : ) . .
I~ . . b) PET: Hohet al.[67] registered cardiac PET emission
careful application of laser alignment is an adequate method

of registration in the PET imaging systems where the patie'mages using SAD and SSC measures. For both methods,

is taken out of the scanner between transmission and emiss?gﬁuricly was W'?]'C"’?”V O‘J‘rla 0.5(;1_1m n the |r:jpga:gelg|frectlﬁn,
acquisitions during the uptake period. Methods have also been= 1-1 MM In the interplane direction, an - fora
presented for the rigid registration of PET emission and trafQtational directions. Turkingstoat al. [71] used cross-cor-

mission images [74], [96]. If the movement between SPEd?'atiO” measure for the alignment of dynamic cardiac PET

transmission and the emission image is more than 2—3 cmEfission scans to templates and showed that the rigid reg-

can also seriously affect the attenuation correction of the emfglration technique was reliable within one voxel (1<71.7

sion image and, thus, its quality [97]. x 4.2 mn?). Pallottaet al. [26] obtained with synthetic thorax
phantom 2.19-0.52 mm rms error for rigid registration
A. Phantom Studies of cardiac PET emission images with 4.Botational error,

Phantom studies are important for the estimation of the regléhile using both thorax and lung surfaces from corresponding
tration accuracy because a phantom can remain perfectly ffinSmission images for registration. Kleat al. [23], [70]
and can be displaced and sometimes even rotated with cBfRorted a 1.9-, 2.4-, and 6.8-mm maximum registration error
siderable accuracy. Phantom-based validation is utilized esg)?!-thex' y, andz directions, respectively, after the use of a 4-D
cially for estimating the accuracy of intramodality registratio ET motion compensation algorithm. For theCC-based PET
methods. For registration methods based on thorax surfaces [fBSmission image registration of corresponding cardiac PET
registration accuracy has been usually validated using thofXission images, Bacharaetal.[76] reported 1-mm accuracy
phantoms [26], [30]-[33], [35], [46], [74]. For example, thdn z, y, andz directions and 1.5in the three angles of rotation.
Alderson thorax phantom [31], [98], a physical torso phantom ¢) SPECT: Eberl et al. [30] rigidly registered in-
with lungs, cardiac, and spine inserts (Data Spectrum) [32] aigmodality SPECT emission images by using SAD measure
Jaszczak thorax phantom (Data Spectrum) [35] have been apd obtained 2.&1.2 mm accuracy by using a phantom
plied. In [71], a heart phantom was used. Simulations of ingxperiment.
ages and different error sources can be used to estimate cardiad) Intermodality Registration:
registration accuracy [26], [55]. Kleiet al.[23], [70] utilized a) MR-PET: Sinhaet al.[40] reported a 1.95 1.6 mn¥
a mathematical cardiac phantom [99] to validate a 4-D moti@ecuracy for a rigid heart surface-based registration method of
correction algorithm of cardiac PET images. Integrated imagifgCG-gated cardiac MR and FDG PET images. This error was
devices such as combined PET/CT scanners [100], [101] coefetimated only in thex, ) plane using 80 internal landmarks
also provide gold standards for registration [94]. from six volunteer scans. In [47], a 2880.5 mm error was re-
The accuracy of thorax surface-based registration methqusted for the rigid registration of cardiac MR and PET images.
depends on the modalities and structures to be registered. FPhle reported error was a surface distance registration error be-
lottaet al.[26] compared the registration accuracy of the methddieen thorax and lung surfaces. The measure depended also
where segmented PET transmission images were linking media-deformable model-based segmentation results, but provided
tors to register corresponding PET emission images. A synthetlso a reasonable measure of the registration accuracy of the MR
thorax phantom was used to validate the registration accuraeyd PET cardiac (thorax) images.
by using only external thorax surfaces (E), internal lung sur- b) MR-SPECT:For rigid heart surface-based registration
faces (1), or both thorax and lungs (El). Seven markers were pi-MR and SPECT images, Fabaral. [29] reported a 2.7-mm
sitioned to the external surfaces of the synthetic thorax phantamgistration accuracy.
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c) CT-PET: In the rigid thorax and lung CT and PET marks in cardiac images. Landmarks can also be less vis-
image registrations, where a PET transmission image was used ible with certain modalities and in some pathological con-
as a linking mediator to register PET emission image to CT  ditions, such as ischemia.
image coordinates, accuracy of 1-3 mm in the transaxial plane3) Thorax surface-based methods can be used if itis not pos-

and 2—4 mm in the longitudinal direction was reported in [33], sible to obtain structural information from the heart sur-
[46], and [55], with about 1. 5rotational error [46]. faces directly. In thorax surface,based cardiac image reg-
d) CT-SPECT:Forthe rigid registration of thorax CT and istration methods, it is recommended to use both thorax

SPECT emission images with the help of SPECT transmission and lung surfaces, which are well visible in thorax MR
images, the VIR and SAD methods were found to have aboutthe and CT images and in PET and SPECT transmission im-
same accuracy (about 3.5 mm), but VIR provided better conver-  ages [26]. Still, these methods are prone to errors induced
gence [32]. by respiration and different movement artifacts [94].

e) PET-SPECT:Forrigid cardiac PET and SPECT image 4) Registration of the heart surfaces directly will result in the
registration based on the segmentation of thorax and lung sur-  better registration of the area of interest. The choice of
faces from transmission images, the accuracy was reported to the surfaces to be registered (e.g., epicardial and/or endo-
be on the order of 3 mm in longitudinal direction and 5 mm cardial) is important and depends on the application and
in the transaxial plane [31]. For rigid cardiac PET and SPECT  modalities to be used. Gated acquisitions combined with
emission image registration based on SAD measure, Ebafl breath-hold (or breath-gated) image acquisition [94] give
[30] reported 3.1 1.7 mm accuracy. Nekollet al.[57] rigidly in many cases acceptable results even with rigid cardiac
registered heart surfaces from PET and SPECT images, and a registration methods.
mean distance between the two registered heart surfaces wasS) The voxel similarity measures, compared to geometric
less than 2.5 mm. The surface distance error measure depended image feature-based registration methods, have the im-
on segmentation results but provided a reasonable measure of portant advantage that they do not require a priori extrac-

the registration accuracy. tion of the registered features (e.g., segmentation). The
use of image intensity difference and correlation methods
IV. CONCLUSION relies on the assumption that pixel values in the regis-

tered images are strongly correlated. This is usually not
Registration of different cardiac imaging modalities is the  the case with intermodality registration. In modern in-
preliminary and mandatory step to combining anatomical and  formation-theoretic voxel similarity methods, like mutual
functional cardiac information. The integration of multiple com- information, no assumptions are made regarding the na-
plementary data into a common reference allows a more com- e of the relation between the image intensities in the
prehensive analysis of the cardiac functions and pathologies. registered images [82]. These methods are particularly
The accurate spatial coregistration of different imaging modal-  promising for the intermodality cardiac image registra-

ities also provides additional useful clinically relevant informa- tion. Because of the recent development of the mutual in-
tion, or information I’e|evant to Cal’diaC research, Wh|Ch iS not formation-based methodsl app“cations to cardiac image
available while looking at images from a single modality. registration are still rare. One of the aims of recent re-

We have presented a survey of various cardiac image regis-  gearch in the voxel similarity measure-based registration
tration methods, which were coarsely divided into registration  zrea has been to devise general algorithms that will work
methods based ayeometric image featuresmdvoxel similarity on awide variety of image types, without application-spe-
measuresin the first category, registration relies on the extrac- cific preprocessing [12].
tion of geometric features; in the latter, preliminary extraction Rigid cardiac image registration generally does not describe
of the features is not needed. the spatial relationship between images adequately. Elastic

The choice of a cardiac I’egistl’ation method is difficult SinC?nonrigid) cardiac image registration is needed especia”y
at the present time, no general fully automatic method exi§{§cause of cardiac motion; between end-diastole and end-sys-
that could handle the wide variety of encountered clinical Sijp|e (during cardiac cycle), the heart valvular plane moves 9—
uations (modalities, acquisition protocols, etc.). Moreover, jt4 mm toward the apex and the myocardial walls thicken from
should also be driven by the evaluation of the methods’ peeripproximater 10 to over 15 mm [23], [102], [103]. Also, the
mances with the same common databases for which the groypghlems due to imaging conditions, different movement arti-
truth is available. Such a reference does not exist either. We gf4gts, and elasticity of the body, lungs, and heart cause different
hereafter some critical comments about the main categoriesi@§ue deformations that are not possible to compensate for
cardiac image registration methods. using rigid registration methods. There is considerable research

1) External skin marker-based registration of cardiac ingoing on in extending the use of intensity-based registration

ages does not guarantee registration of the heart wittdlyorithms to nonrigid transformations [12].

the body, since heart position changes with body position Deformable model-based approaches (deformable registra-
(e.g., prone or supine), respiration, and cardiac contraimn algorithms) for cardiac image registration are particularly
tion [29]. Also, skin markers cannot be utilized retrospegromising for elastic 4-D registration of the cardiac images (e.g.,
tively. to compensate for movement artifacts) [23], [70]. Model-based

2) Landmark-based registration of the heart is also difficudtpproaches can also lead to the integration of information from

because there are few spatially accurate anatomical laifferent imaging modalities into an individualized heart model,
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including anatomical and functional information [69], [104]. [13]
This kind of model can be applied in computer-assisted diag-
nosis, treatment planning, and surgery. Data fusion technique%,‘”
based, i.e., on neural networks and fuzzy logic, can be used to
interpret and summarize the large amount of information fromi1s]
registered images and to help establish a diagnostic or select a
therapy [4], [105]. Methods combining similarity measures with[16]
a priori knowledge from geometric models can also provide nevym
possibilities, especially for elastic registration [87], [106].

The validation of the registration accuracy is particularly im-[18]
portant. Virtual and physical phantoms may provide the gold
standard for validation. Also, image databases may in the futurﬁgl
provide a source for the objective comparison of different car-
diac registration methods. [20]

Cardiac image registration remains a challenge because of the
numerous specific problems mainly related to the different mo-
tion sources (patient, respiration, heart) and to the specificity df1l
each imaging modality. Up to now, no general method is able
to automatically register any modality with any other modality.[22]
Cardiac image registration methods also always require a com-
promise among accuracy, precision, reliability, robustness, al 3]
issues such as automation, interactivity, speed, patient-friendli-
ness, etc. Itis also important to keep in mind that the registratiof#4!
techniques and results should be useful and usable in clinical
practice. [25]
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