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Abstract—In this paper, the current status of cardiac image
registration methods is reviewed. The combination of informa-
tion from multiple cardiac image modalities, such as magnetic
resonance imaging, computed tomography, positron emission
tomography, single-photon emission computed tomography, and
ultrasound, is of increasing interest in the medical community for
physiologic understanding and diagnostic purposes. Registration
of cardiac images is a more complex problem than brain image
registration because the heart is a nonrigid moving organ inside
a moving body. Moreover, as compared to the registration of
brain images, the heart exhibits much fewer accurate anatom-
ical landmarks. In a clinical context, physicians often mentally
integrate image information from different modalities. Automatic
registration, based on computer programs, might, however, offer
better accuracy and repeatability and save time.

Index Terms—Cardiac image registration, computed tomo-
graphy (CT), magnetic resonance imaging (MRI), positron
emission tomography (PET), single-photon emission computed
tomography (SPECT), ultrasound (US).

NOMENCLATURE

CC Correlation coefficient.
CT X-ray computed tomography.
ECG Electrocardiography.
ED End-diastolic.
ES End-systolic.
FDG Fluorodeoxyglucose.
ICP Iterative closest point.
LA Long axis.
LV Left ventricle.
MRI Magnetic resonance imaging.
PET Positron emission tomography.
rms Root mean square.
SA Short axis.
SAD Sum of absolute differences.
SPECT Single-photon emission computed tomography.
SSC Stochastic sign change.
SSD Sum of squared intensity differences.
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SVD Singular value decomposition.
US Ultrasound.
VIR Variance of intensity ratio.

I. INTRODUCTION

D IFFERENT imaging modalities bring complementary in-
formation that can be advantageously used to establish a

diagnosis or assist the clinician for a therapeutic gesture. To lo-
cally compare two or more measurements of different nature, a
number of registration algorithms have been developed, espe-
cially in brain imaging.

In the widespread ischemic heart diseases, the consequence
of reduced blood flow to the heart muscle can be studied using
several medical imaging modalities, each of which gives a spe-
cific view of this complex phenomenon. The first consequence
is a deterioration of the myocardial perfusion, which can be
analyzed with nuclear medicine imaging techniques (SPECT
and PET) or with MRI [1], [2]. The deficit of perfusion induces
metabolic changes in myocardial tissues highlighted using
FDG PET studies [1]. A further consequence of a myocardial
ischemia is the reduced capacity of the heart to eject blood into
the body. This can be evaluated by analyzing the myocardial
contractile function using MRI or US. Recent studies have
demonstrated the interest of concurrently analyzing those dif-
ferent aspects in order to assess the myocardial viability, which
will determine the proper therapeutic action [3], [4]. Therefore,
there is a growing interest in the development of cardiac image
registration methods that could bring into the same anatomical
reference all the available functional measurements.

Cardiac image registration is a more complex problem than
brain image registration, in particular because of the nonrigid
and mixed motions of the heart and the thorax structures. More-
over, as compared to the brain, the heart exhibits fewer accurate
anatomical landmarks.Also, cardiac imagesare usually acquired
with a lower resolution than brain images. Fig. 1 illustrates a
typical acquisition protocol with ECG-gated cardiac MRI. This
highlights certain problems induced by the spatiotemporal
image acquisition that hamper image registration.

In clinical practice, physicians mentally integrate informa-
tion from different images acquired from a patient, often with
different imaging modalities. Images are shown in various ori-
entations and positions and at different scales. Semi-interactive
registration methods rely on the expert’s ability to interactively
select corresponding slices using anatomical knowledge. In car-
diac image registration, the semi-interactive methods are often
used to register gated SA images [5], [6].

Several survey papers have been published in the field of
medical image registration [7]–[10]. Also, some review articles

0278-0062/02$17.00 © 2002 IEEE



1012 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 21, NO. 9, SEPTEMBER 2002

Fig. 1. Illustration of a classical acquisition of SA images with a ECG-gated
cine MR sequence. The same slice is acquired at successive time points of the
cardiac cycle. However, due to the motion of the heart, we do not observe the
same anatomical region within the same slice. Moreover, several cardiac cycles
are required to reconstruct slices. When possible, patients are asked to retain
their breath (15–20 s) during acquisition.

and books closely related to medical image registration and fu-
sion can be mentioned, such as [11]–[17]. Very few review pa-
pers focusing on cardiac image registration have been published
[18], [19]. Gilardi et al. [18] reviewed the techniques and clin-
ical applications for the integration of multimodal biomedical
images of the heart. Habbooshet al. [19] briefly discussed the
aspects of cardiac PET and MRI correlation. In the review ar-
ticle of Maintzet al.[8], registration methods for cardiac images
were also referenced in a separate section.

This paper aims to provide a survey concerning cardiac image
registration, including the most recent articles and discussing
also implementation and validation issues. For the four-dimen-
sional (4-D) registration of intramodality cardiac images, the
problem is often addressed in a cardiac motion tracking frame-
work. In this survey, the 4-D motion tracking problem is not con-
sidered at the methodological level. Instead, we refer to some
recent papers in this field [14], [20]–[23].

In this paper, cardiac image registration methods are divided
into two main categories: 1) those based on geometric image
features (Section II-A) and 2) those based on voxel similarity
measures (Section II-B). The geometric image feature-based
methods are divided into registration ofa set of pointsand
edges or surfaces. Registration methods based on voxel simi-
larity measures includemoments and principal-axes methods,
intensity difference and correlation methods,and methods
based on mutual information. After presenting the current
status of cardiac image registration methods, we discuss
implementation issues, such as interpolation and optimiza-
tion (Section II-C). Validation of the registration methods is
presented in Section III. The overview of cardiac and thorax
registration methods and their main parameters are summarized
in Table I. Some of the brain, thorax, and abdominal image
registration articles are referenced when methods have been, or
can easily be, applied to heart image registration.

In the reviewed papers, mainly MR, CT, PET, and SPECT
imaging modalities have been considered. There are very few
references related to registration with cardiac US images. This is
due to the characteristics of the US images that make them diffi-

cult to process automatically. Moreover, despite the existence of
three-dimensional (3-D) echocardiographic systems [24], two-
dimensional (2-D) image acquisitions are routinely performed.
At most, a collection of radial planes is acquired, resulting in
a quite different geometry as compared to the other imaging
modalities.

II. CARDIAC IMAGE REGISTRATION: PRINCIPLES

AND APPLICATIONS

A. Registration Methods Based on Geometric Image Features

Registration methods based on geometric image features can
be divided into registration ofa set of pointsand registration of
edges or surfaces.

1) Point-Based Registration:Point-based registration
methods often uses external markers or anatomical landmarks.
Corresponding point sets are usually manually defined in the
reference and floating images. The advantages of the point-
based registration methods are that they can be applied to any
imaging modalities where markers or landmarks are visible and
that the calculation of the registration parameters between two
point sets is usually fast. A noniterative least squares method
can be used to register corresponding point sets [12], [25].
The method uses an SVD of a 3 by 3 covariance matrix to
find a unique solution for the registration parameters between
two point sets. In cardiac image registration, the method has
been used, e.g., in phantom experiments for validating rigid
registration error [26].

Registration methods based onexternal skin markers(fidu-
cial markers) are widely applied in medical image registration
because they allow matching of any imaging modalities in
which the positions of markers can be accurately defined.
Registration based on skin markers is independent of the
alteration in the image patterns, induced by the pathologies
[18]. Skin markers must be easy to use and accurate to reattach,
but they should not interfere with the diagnostic content of
the images. Since the flexibility of the body can cause errors
in registration, it is important to choose relatively stable parts
of the body for markers placement [27]. Ideally, markers
should not be removed between imaging sessions to ensure
the same placements in different modalities [28]. Registration
of external skin markers does not guarantee registration of
the heart within the body, since heart position changes with
body position, respiration, and cardiac contraction [29]. The
disadvantage of the skin markers is also that they cannot be
utilized retrospectively. External markers have been applied
especially as a gold standard method in phantom measurements
to validate the accuracy of rigid cardiac and thorax registration
methods [26], [30]–[33] and in clinical images, e.g., to validate
the accuracy of rigid registration of head images [34]. For rigid
thorax CT and SPECT image registration, the combination of
both external markers and landmarks has also been utilized
[35], [36].

In landmark-based registration,corresponding anatomical
points have to be visible in both registered images. For heart
images, there are usually only few spatially accurate anatomical
landmarks. In pathological conditions, such as ischemia, the
functional alterations can also hide anatomical landmarks [18].
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TABLE I
OVERVIEW OF EVALUATED CARDIAC AND THORAX IMAGE REGISTRATION METHODS

Object Main object to be registered.
Trans. Transformation method.
Struc. Structures used in registration (T Thorax, L Lungs, HS heart surfaces).
Method Method used in registration (C cross-correlation, LS least squares voxel difference, MI mutual information).
Valid. Validation method (P Phantom, Pa. Patient, S Simulated images, M Misaligned images, L Landmarks).
Error: rot. Rotational error.
Error type: s.d. Standard deviation.

Landmarks have been exploited to estimate rigid registration
error in [30], [31], [35], [37], and [38]. Saviet al. [39] rigidly
registered cardiac PET and US images by using homologous
anatomical landmarks (the two papillary muscles and the infe-
rior junction of the right ventricle) of the heart. Rigid US-PET
image registration was first performed in a plane identified
by three landmarks. The obtained registration parameters
were then applied to the whole PET volume. Sinhaet al. [40]
validated the rigid heart surface-based cardiac MR and PET
image registration method by analyzing registration error using
cardiac landmarks (papillary muscles, the insertion point of
the right ventricle into the septum, the most inferior aspect of
the septum, and the most inferior aspect of the lateral wall).
Identification of landmarks was prone to errors because of their
finite width and complex shapes. Especially in multimodal
cardiac image registration, the accurate localization of the same

anatomical landmarks can be difficult. Sometimes automati-
cally detected points and lines can be used as landmarks [41].
Wirth et al. [42] utilized landmark-based elastic registration to
register a thorax MR image to the coordinates of a CT image of
the same subject. In this method, 36 corresponding landmarks
in thorax and lung surfaces were elastically matched, and the
rest of the points were mapped using interpolation or elastic
mapping functions. The method registered corresponding
points well, but general validation of the method accuracy was
not performed.

2) Edge- and Surface-Based Registration:The chamfer
matching method [43], [44] is often used to register surfaces
and point sets. In this method, the sum of the distances between
the transformed points and a distance map built upon the
segmented surface using the chamfer distance transformation
is minimized [45]. For cardiac image registration, chamfer
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matching methods have mainly been utilized for rigid reg-
istration methods based on the thorax structures [26], [31],
[46], [47]. Also the ICP algorithm of Beslet al. [48] has been
used to elastically register surfaces and lines [49], [50]. In the
ICP method, the distances between structures are explicitly
computed at every iteration of the registration algorithm and
the sum of distances minimized. The “head-and-hat” algorithm
[51], [52] has also been commonly proposed to register medical
images and was first presented to register brain images. This
algorithm models the contours from one of the images (usually
higher resolution) as a surface (the “head”) and the contours
of the other image set as a series of points (the “hat”). The
algorithm then determines the optimum rigid transformation,
which minimizes the mean squared deviation between the
points of the hat and the surfaces of the head by using the
Powell minimization algorithm [53], [54]. The “head-and-hat”
method has been applied for registering surfaces from cardiac
MR and PET images [40] and thorax CT and PET images [33].

a) Registration methods based on thorax surfaces:Car-
diac image registration methods based on the registration of the
thorax surfaces have been proposed because it is often difficult
to extract structural information from the heart surfaces directly.
Thorax and lung surfaces are, in general, well visible in MR and
CT images and in PET and SPECT transmission images. In the
registration methods based on the thorax surfaces, every sur-
face point that is involved in registration should have a unique
corresponding point in the other image. In practice, this usually
means that the axial extension in the reference study must be
greater than in the study to be matched [18]. Sometimes, arti-
ficial edges of the images have to be excluded from the regis-
tration parameters’ calculation. Surfaces from the transmission
images have been utilized for intramodality registration of car-
diac PET images [26] and for intermodality registration of car-
diac PET and SPECT images [31], MR and PET images [47],
and thorax CT and PET images [33], [46], [55]. Thorax and lung
surfaces have often been obtained using the simple thresholding
method of Yuet al. [33], where a threshold value of 50% of
the maximum soft-tissue value was selected to segment the PET
and SPECT transmission images [31], [46] and thorax CT im-
ages [33], [46]. Also, deformable models have been applied to
segment thorax structures from PET transmission and MR im-
ages [47]. In this rigid registration method, chamfer matching
was used to register segmented surfaces from PET transmis-
sion image with the MR transaxial image. Also, SA PET im-
ages were calculated from registered transaxial images by using
header information between MR transaxial and SA images.

b) Registration methods based on heart surfaces:Regis-
tration of the heart surfaces may result in better registration of
the area of interest [31]. The choice of the surfaces to be regis-
tered (e.g., epicardial and/or endocardial) is important. Faberet
al. [29] presented a method for the intersubject rigid registration
of 4-D gated cardiac SPECT perfusion images to the coordinates
of the gated MR image. Left ventricular ED and ES endocardial
surfaces were automatically detected from both image modali-
ties using a model-based surface detector [56]. The best single
transformation was searched to register SPECT ED and ES sur-
faces with corresponding surfaces in an MR image. Registration
of the center of mass of the surfaces was used as an initial align-

ment, and the “head-and-hat” algorithm [51], [52] was used to
find more accurate registration parameters. After registration,
quadrilinear interpolation was applied to the SPECT image to
obtain a temporal correlation with time frames of an MR image.
Sinhaet al. [40] presented a method to register gated cardiac
FDG PET images to the coordinates of gated MR images. In
this method, contours of the left ventricular wall were defined
from both imaging modalities by using an interactive algorithm
with morphologic operators. Registration parameters were de-
fined by using the “head-and-hat” surface matching approach
[51]. In the MunichHeart software [57], endocardial and epicar-
dial contours were manually delineated from SA MR images
and registered with the same contours extracted from PET or
SPECT images using the maximum count detection algorithm
[58]. Declercket al. [49], [50] presented an automated elastic
registration method to align images from rest and stress my-
ocardial perfusion SPECT studies. In this method, feature points
of the cardiac SPECT image surfaces were extracted using a
Canny–Deriche edge detector [59], [60]. The features were then
registered using the ICP method [48]. Images were also elas-
tically registered with a template image by using local spline
transformations. The method was also applied to cardiac SPECT
perfusion followup studies [61]. Thirionet al. [62], [63] pre-
sented a deformable model-based elastic registration method for
intramodality registration of diastolic and systolic CT or SPECT
images. Anderssonet al.[64] utilized heart edge information for
the cardiac PET emission images to rigidly reduce movement
artifacts. The method was also applied to rigidly realign cardiac
PET emission and transmission images [65].

B. Registration Methods Based on Voxel Similarity Measures

Registration methods based on voxel similarity measures can
be divided into methods based onmoments and principal axes,
intensity difference and correlation methods,and methods based
on mutual information.

1) Methods Based on Moments and Principal Axes:Image
registration methods based on moments and principal axes
use statistical factors derived from image data [7]. Moments
describe the spatial distribution of the mass (intensity) of the
image. Methods based on the principal axes register images
by bringing the principal axes of the inertia tensors of cor-
responding objects in the images into coincidence. Accurate
registration based on principal axes requires that the entire
object be present in both imaging sets. Therefore, applications
of these methods are limited. The principal-axes approach has
been used to initially register myocardial SPECT stress and
rest scans to templates [66], using SAD and SSC methods (see
Section II-B2) to obtain more accurate registration. For the
registration of thorax images, the principal-axes approach was
proposed as an initial registration between CT and transmission
SPECT images [32], while SAD and VIR measures (see
Section II-B2) were applied to obtain the final registration.

2) Intensity Difference and Correlation Methods:Image in-
tensity difference and correlation methods attempt to determine
the best registration by maximizing the similarity between im-
ages that differ primarily because of different image-acquisition
conditions, like noise [7]. The assumption of these methods is
usually that pixel values in the registered images are strongly
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correlated. Therefore, these methods are particularly powerful
for intramodality registration methods.

a) Intramodality registration: Hoh et al. [67] compared
the SAD and SSD similarity measures for the rigid registration
of cardiac PET emission images. In the SAD method, registered
images are subtracted pixel-by-pixel, and the mean value of the
sum of the absolute intensity difference of all the pixels in the
subtracted image is computed. The SSD is similar to the SAD
measure, but the squared intensity difference is calculated in-
stead of the absolute difference. The SSD is the optimum mea-
sure when registered images differ only by Gaussian noise [12],
[68]. In the paper by Hohet al. [67], the effect of various de-
fects and misalignments was simulated. No significant differ-
ences in the translation or rotation errors of the SAD and SSD al-
gorithms were found. Slomkaet al.[66] compared the SAD and
SSC methods for affine registration of SPECT emission images
to templates. An initial registrationwasobtainedusing alignment
of the principal axes. Registered images were first subtracted,
and the SSC was determined by counting along each pixel row
the number of times the pixel gray level in the subtracted images
went from negative to positive or from positive to negative [67].
At the optimum registration, there is a maximum of total sign
changes. Slomkaet al.[66] argued that the SAD provided better
results than the SSC. This method was later enhanced and pro-
posed for voxel-by-voxel quantification of SPECT images as a
clinical tool [69]. In the enhanced method, not only did the reg-
istration algorithm compensate for shape differences by affine
registration, but also a template erosion technique was used (role
similar to warping adjustments) for fine tuning of the registra-
tion. The SSD-based similarity measure has also been applied
in rigid motion correction (caused mainly by breathing) of gated
heart perfusion MR images [37]. Perfusion MR imaging often
takes more than 3 min. Breath holding is not possible during the
imaging protocol, nor can respiratory gating be used since a high
temporal resolution is needed. Therefore, dynamic gated heart
images and temporal resolution are degraded by respiratory-in-
duced movements during the whole sequence [37]. In the recent
paper by Kleinet al. [23], [70], a novel affine 4-D registration
algorithm was proposed for motion compensation of gated car-
diac PET emission images to give better estimation of perfusion
and metabolic parameters. The method registers different car-
diacPETemission image time frameswith theend-diastolic time
frame. It uses nonuniform elastic material model (12-parameter
global affine motion model) and iteratively calculates registra-
tion parameters of the model using a cost function that combines
a least squares voxel difference measure with penalty terms as-
suming constant velocity and an affine model. The method does
not require the precise a priori segmentation of the object.

Turkingstonet al. [71] utilized cross-correlation measure for
the rigid alignment of dynamic cardiac PET images to cardiac
templates. The method used only translations, assuming that
the orientation of the heart remains the same during the study.
The cross-correlation technique has also been proposed for rigid
motion correction of cardiac SPECT images [72], [73]. Betti-
nardiet al.[74] utilized the cross-correlation measure to rigidly
register two PET transmission images for patient repositioning.
Cross-correlation measure was also used for the correction of
the patient motion in the PET heart studies with the help of PET

transmission images, taken before and after emission imaging
[74]. Gallippi et al. [75] utilized modified correlation measure
to match local brightness statistics of the registered images. The
method was applied to rigidly register intramodality cardiac MR
or US time series images. Bacharachet al.[76] utilized CC mea-
sure to rigidly register two cardiac PET emission scans of the
same subject acquired at different times. The method was based
on the registration of corresponding transmission data sets. The
optimum alignment was defined as the one that produced the
maximum value of the CC between the two data sets. CC is
an optimal measure for registration in the case of a linear re-
lationship between the intensity values in the images to be reg-
istered [11], [12], [68], [77]. This is seldom the case between
different image modalities, and the CC is thus mainly used for
intramodality registration.

b) Intermodality registration: In the paper by Deyet al.
[32], SAD and VIR methods were compared for the rigid reg-
istration of thorax CT and SPECT images. In the VIR method,
the sum of the normalized standard deviations is calculated to
define registration parameters. The method was first proposed
by Woodset al. [78], [79] for registering intramodality brain
PET images [78] and intermodality brain PET and MR images
[79]. In the latter, the VIR algorithm minimizes the normalized
standard deviation of PET voxel values for each MR intensity
value, but the method could also be used for these images vice
versa [12]. Deyet al. [32] utilized SPECT transmission image
as a linking mediator to register thorax CT and SPECT emis-
sion images. In this VIR method, the Simplex algorithm was
applied for the minimization of the cost function, while in the
original VIR method [79], the Newton–Rhapson method [54]
was used. An approximate image alignment was made using a
technique based on the principal-axes transformation [80]. VIR
provided better convergence than SAD and may perform better
for CT and SPECT image registration, but the method was only
tested on phantom images. In the paper by Eberlet al. [30],
the SAD, SSC, VIR, andsum of pixel-by-pixel productmea-
sures were compared for rigid registration of intramodality car-
diac SPECT emission images or intermodality cardiac PET and
SPECT emission images. SAD was recognized to be the most
accurate and reliable method. The use of SAD and VIR thus de-
pends on the type of images to be registered.

In [81], the cross-correlation measure was utilized to rigidly
register cardiac MR and PET emission images by using PET
transmission image as a linking mediator for registration. Edge
information and a region growing algorithm were combined to
segment lung cavities from both MR and PET transmission im-
ages. The segmented cavities were then utilized as landmarks
for registration. Matching of the center of mass of segmented
cavities was exploited as an initial registration, and the cross-
correlation function was employed for maximizing overlapping
areas of the lung cavities for accurate registration. The method
was validated only qualitatively, using visual inspection.

3) Mutual Information: Mutual information is an informa-
tion theory measure of the statistical dependence between two
random variables or the amount of information that one variable
contains about the other [11], [12], [82]–[84]. Mutual informa-
tion can be qualitatively considered as a measure of how well
one image explains the other. The mutual information is maxi-
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mized at the optimal alignment [77]. No assumptions are made
regarding the nature of the relation between the image intensities
in the registered images [82]. Therefore, the mutual information
method is promising in particular for intermodality registration.

Intermodality registration differs from intramodality registra-
tion because different medical imaging modalities usually have
different intensity characteristics and different resolutions, noise
characteristics, and fields of view. Several normalized versions
of the mutual information has been proposed because changes
in overlap of very low-intensity regions of the image can dis-
proportionately contribute to the mutual information measure
[10]–[12].

Registration based on mutual information has been pro-
posed to register thorax CT and PET images, rigidly [85] and
elastically [86]. In the latter, the rigid registration method
[85] was first applied as an initialization prior to the elastic
registration. A nonlinear thin-plate-spline warping was done
using lung contours detected on PET transmission scans and
CT volumes. Nonlinear deformation significantly improved the
alignment of PET with breath-hold CT. Carrilloet al. [38] used
mutual information,VIR, and the CC methods for registering
abdominal thorax MR images. Results were compared with
the manual registration method. The best registration results
were obtained using the mutual information with the Powell
minimization algorithm. In [87], a method that associates
mutual information, gradient information, and the smoothness
of the registration transformation was presented to elastically
register intrapatient cardiac MR and PET images. A rigid
thorax surface-based cardiac registration method [47] was used
for the initial registration of the images.

C. Implementation: Interpolation and Optimization

In a registration process, the image interpolation and mini-
mization algorithm are key points. We give hereafter some com-
ments on these important topics.

1) Interpolation: Interpolation is required when an image
needs to be translated, rotated, scaled, warped, or otherwise de-
formed before it can match a reference image or an atlas [88].
In volumetric imaging, interpolation is often used to compen-
sate for nonisotropic data sampling. This is typically the case
with cardiac and thorax images where the in-slice resolution
can be much higher (e.g., 1 mm) than the interslice resolu-
tion (e.g., 8 mm). In intermodality registration, one image may
be of substantially lower resolution than the other, and in car-
diac image registration, lower resolution images (e.g., SPECT
or PET) are often transformed to the sample space of the higher
resolution modality (e.g., CT or MR) [29], [40]. To obtain the
same isotropic voxel dimension in cardiac and thorax image reg-
istration, trilinear interpolation is often used [47], [88]. Nekolla
et al. [57] created a scaled isotropic set from individual SA MR
and PET images using a cubic interpolation. In [37], bicubic in-
terpolation was used for interpolation of SA MR perfusion im-
ages. Faberet al.[29] used quadrilinear interpolation to interpo-
late a 4-D SPECT image to the coordinates of a corresponding
MR image. For cardiac nuclear medicine images, cubic convolu-
tion interpolation method has been recognized as efficient [89].

2) Optimization: For rigid 3-D image registration, the
optimal transformation usually minimizes a cost function with

six degrees of freedom (three translations and three rotations),
giving a six-dimensional parameter space. Elastic registration
algorithms have more degrees of freedom, in which case
the parameter space has correspondingly more dimensions
[10]–[12]. Because the heart is a nonrigid moving object,
elastic registration is ideally needed. An exhaustive search to
find the global minimum of the cost function is usually com-
putationally too extensive and time consuming. Nonoptimal
optimization methods, like Powell [53], [54] and Simplex [54],
[90] methods, are applied to find an optimum faster than with
the exhaustive search. The Powell method has been selected for
the minimization of cardiac image registration methods in [29],
[33], [38], and [46] and for thorax image registration methods
in [32], [85], and [86]. The Simplex method has been used for
cardiac image registration in [30], [66], [67], and [69].

Multiresolution methods can be implemented to increase the
probability of finding the global optimum in the parameter space
and to make the registration procedure faster. In the multiresolu-
tion approach, the images are first registered at a low resolution,
and the transformation solution is applied to the next resolution
level. The process is repeated until the highest resolution level
is reached. For cardiac image registration, the multiresolution
approach has been applied in [26], [37], [47], and [86]. To our
knowledge, no comparative studies on the performance of mini-
mization methods for cardiac image registration have been pub-
lished to date.

III. V ALIDATION OF REGISTRATION METHODS

A method can not be accepted as a clinical tool without
careful validation. Validation of registration accuracy is a
difficult task because the ground truth (i.e., gold standard) is
generally not available [11], [12], [91]. Registration methods
are often validated using external markers, anatomical land-
marks, or external fiducial frames as the gold standards [91].
Visual inspection is the most obvious method for evaluation of
the registration accuracy but can be considered as an informal
and insufficient approach.

A direct comparison of the measurements reported in the lit-
erature is not straightforward because of the nonunique defini-
tion of accuracy and of the different methods adopted to mea-
sure it [31]. In cardiac image registration, the main interest is the
registration accuracy in the heart area (target registration error)
[12]. The mean and rms errors are commonly used measures
for registration errors [11], [12], [91]. In rigid-body registra-
tion, error in the parameters of the spatial transformation model,
such as errors in-axis translation, are also commonly reported.
However, the decomposition of a rigid-body movement into el-
ementary rotations and translations is not unique, i.e., the result
depends on the order of the elementary operations [92].

To reduce registration errors caused by cardiac movement and
respiration, ECG gating and breath holding (or breath gating)
are sometimes used. The problem for cardiac image registration
of ECG-gated cine MR images is often that the same anatomical
region is not observed within the same slice of the cine images.
Recent MRI “slice following” techniques should make temporal
registration easier, showing the same anatomical locations of
the heart through cine image sequence. In thorax surface-based
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cardiac registration methods, movement of the thoracic wall
and diaphragm is quite different in magnitude in all directions.
Movements can lead to distortions and asymmetrical position
changes that can cause errors while determining the registration
parameters [93]. The movements near the diaphragm are largest,
reaching several centimeters [94]. Cardiac PET and SPECT im-
ages are often integral images through time (static images). This
causes extra difficulties for registering, e.g., with gated MR im-
ages. In the case where both registered images are integral im-
ages through time, the errors caused by breathing and cardiac
motion can be considered to be similar in both images [31].

In registration methods in which a transmission image (PET,
SPECT) is used as a linking mediator to register corresponding
emission image, the assumption is that the patient does not move
during and between image acquisition. Because the image-ac-
quisition times in cardiac PET and SPECT transmission and
emission images are often several minutes, movement artifacts
often occur. In modern PET imaging scanners, emission and
transmission images are acquired without taking the patient out
of the scanner between acquisitions. Yuet al. [95] argue that
careful application of laser alignment is an adequate method
of registration in the PET imaging systems where the patient
is taken out of the scanner between transmission and emission
acquisitions during the uptake period. Methods have also been
presented for the rigid registration of PET emission and trans-
mission images [74], [96]. If the movement between SPECT
transmission and the emission image is more than 2–3 cm, it
can also seriously affect the attenuation correction of the emis-
sion image and, thus, its quality [97].

A. Phantom Studies

Phantom studies are important for the estimation of the regis-
tration accuracy because a phantom can remain perfectly still
and can be displaced and sometimes even rotated with con-
siderable accuracy. Phantom-based validation is utilized espe-
cially for estimating the accuracy of intramodality registration
methods. For registration methods based on thorax surfaces, the
registration accuracy has been usually validated using thorax
phantoms [26], [30]–[33], [35], [46], [74]. For example, the
Alderson thorax phantom [31], [98], a physical torso phantom
with lungs, cardiac, and spine inserts (Data Spectrum) [32] and
Jaszczak thorax phantom (Data Spectrum) [35] have been ap-
plied. In [71], a heart phantom was used. Simulations of im-
ages and different error sources can be used to estimate cardiac
registration accuracy [26], [55]. Kleinet al. [23], [70] utilized
a mathematical cardiac phantom [99] to validate a 4-D motion
correction algorithm of cardiac PET images. Integrated imaging
devices such as combined PET/CT scanners [100], [101] could
also provide gold standards for registration [94].

The accuracy of thorax surface-based registration methods
depends on the modalities and structures to be registered. Pal-
lottaet al.[26] compared the registration accuracy of the method
where segmented PET transmission images were linking media-
tors to register corresponding PET emission images. A synthetic
thorax phantom was used to validate the registration accuracy
by using only external thorax surfaces (E), internal lung sur-
faces (I), or both thorax and lungs (EI). Seven markers were po-
sitioned to the external surfaces of the synthetic thorax phantom.

Average values for the mean residual marker displacement over
ten experiments were 3.411.41 mm, 2.27 0.76 mm, and
2.19 0.52 mm for E, I, and EI surfaces, respectively. The ro-
tational error was smaller than 1.5in each case. The result in-
dicated that the more the surfaces were integrated in the regis-
tration, the more accurate the result.

B. Registration Accuracy

1) Intramodality Registration:
a) MRI: Bidautet al.[37] rigidly registered intramodality

gated heart perfusion MR images by using SSD measure and
obtained 3.0-mm accuracy in, 1.6-mm accuracy in , and
2.2-mm accuracy in directions. Gallippiet al.[75] utilized cor-
relation measure and warping to register cardiac MR time-series
images. Mean left–right registration error of 1.230.06 mm
and mean anterior–posterior error of 3.251.04 mm were re-
ported. With intramodality mutual information-based registra-
tion of abdominal MR images, Carrilloet al.[38] reported 3-mm
accuracy by using anatomical landmarks.

b) PET: Hoh et al. [67] registered cardiac PET emission
images using SAD and SSC measures. For both methods,
accuracy was typically 0.5 0.5 mm in the inplane direction,
1.1 1.1 mm in the interplane direction, and 0.91.1 for all
rotational directions. Turkingstonet al. [71] used cross-cor-
relation measure for the alignment of dynamic cardiac PET
emission scans to templates and showed that the rigid reg-
istration technique was reliable within one voxel (1.71.7

4.2 mm ). Pallottaet al. [26] obtained with synthetic thorax
phantom 2.19 0.52 mm rms error for rigid registration
of cardiac PET emission images with 1.5rotational error,
while using both thorax and lung surfaces from corresponding
transmission images for registration. Kleinet al. [23], [70]
reported a 1.9-, 2.4-, and 6.8-mm maximum registration error
for the , , and directions, respectively, after the use of a 4-D
PET motion compensation algorithm. For theCC-based PET
transmission image registration of corresponding cardiac PET
emission images, Bacharachet al.[76] reported 1-mm accuracy
in , , and directions and 1.5in the three angles of rotation.

c) SPECT: Eberl et al. [30] rigidly registered in-
tramodality SPECT emission images by using SAD measure
and obtained 2.1 1.2 mm accuracy by using a phantom
experiment.

2) Intermodality Registration:
a) MR-PET: Sinhaet al. [40] reported a 1.95 1.6 mm

accuracy for a rigid heart surface-based registration method of
ECG-gated cardiac MR and FDG PET images. This error was
estimated only in the (, ) plane using 80 internal landmarks
from six volunteer scans. In [47], a 2.80.5 mm error was re-
ported for the rigid registration of cardiac MR and PET images.
The reported error was a surface distance registration error be-
tween thorax and lung surfaces. The measure depended also
on deformable model-based segmentation results, but provided
also a reasonable measure of the registration accuracy of the MR
and PET cardiac (thorax) images.

b) MR-SPECT:For rigid heart surface-based registration
of MR and SPECT images, Faberet al. [29] reported a 2.7-mm
registration accuracy.
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c) CT-PET: In the rigid thorax and lung CT and PET
image registrations, where a PET transmission image was used
as a linking mediator to register PET emission image to CT
image coordinates, accuracy of 1–3 mm in the transaxial plane
and 2–4 mm in the longitudinal direction was reported in [33],
[46], and [55], with about 1.5rotational error [46].

d) CT-SPECT:For the rigid registration of thorax CT and
SPECT emission images with the help of SPECT transmission
images, the VIR and SAD methods were found to have about the
same accuracy (about 3.5 mm), but VIR provided better conver-
gence [32].

e) PET-SPECT:For rigid cardiac PET and SPECT image
registration based on the segmentation of thorax and lung sur-
faces from transmission images, the accuracy was reported to
be on the order of 3 mm in longitudinal direction and 5 mm
in the transaxial plane [31]. For rigid cardiac PET and SPECT
emission image registration based on SAD measure, Eberlet al.
[30] reported 3.1 1.7 mm accuracy. Nekollaet al. [57] rigidly
registered heart surfaces from PET and SPECT images, and a
mean distance between the two registered heart surfaces was
less than 2.5 mm. The surface distance error measure depended
on segmentation results but provided a reasonable measure of
the registration accuracy.

IV. CONCLUSION

Registration of different cardiac imaging modalities is the
preliminary and mandatory step to combining anatomical and
functional cardiac information. The integration of multiple com-
plementary data into a common reference allows a more com-
prehensive analysis of the cardiac functions and pathologies.
The accurate spatial coregistration of different imaging modal-
ities also provides additional useful clinically relevant informa-
tion, or information relevant to cardiac research, which is not
available while looking at images from a single modality.

We have presented a survey of various cardiac image regis-
tration methods, which were coarsely divided into registration
methods based ongeometric image featuresandvoxel similarity
measures. In the first category, registration relies on the extrac-
tion of geometric features; in the latter, preliminary extraction
of the features is not needed.

The choice of a cardiac registration method is difficult since,
at the present time, no general fully automatic method exists
that could handle the wide variety of encountered clinical sit-
uations (modalities, acquisition protocols, etc.). Moreover, it
should also be driven by the evaluation of the methods’ perfor-
mances with the same common databases for which the ground
truth is available. Such a reference does not exist either. We give
hereafter some critical comments about the main categories of
cardiac image registration methods.

1) External skin marker-based registration of cardiac im-
ages does not guarantee registration of the heart within
the body, since heart position changes with body position
(e.g., prone or supine), respiration, and cardiac contrac-
tion [29]. Also, skin markers cannot be utilized retrospec-
tively.

2) Landmark-based registration of the heart is also difficult
because there are few spatially accurate anatomical land-

marks in cardiac images. Landmarks can also be less vis-
ible with certain modalities and in some pathological con-
ditions, such as ischemia.

3) Thorax surface-based methods can be used if it is not pos-
sible to obtain structural information from the heart sur-
faces directly. In thorax surface,based cardiac image reg-
istration methods, it is recommended to use both thorax
and lung surfaces, which are well visible in thorax MR
and CT images and in PET and SPECT transmission im-
ages [26]. Still, these methods are prone to errors induced
by respiration and different movement artifacts [94].

4) Registration of the heart surfaces directly will result in the
better registration of the area of interest. The choice of
the surfaces to be registered (e.g., epicardial and/or endo-
cardial) is important and depends on the application and
modalities to be used. Gated acquisitions combined with
breath-hold (or breath-gated) image acquisition [94] give
in many cases acceptable results even with rigid cardiac
registration methods.

5) The voxel similarity measures, compared to geometric
image feature-based registration methods, have the im-
portant advantage that they do not require a priori extrac-
tion of the registered features (e.g., segmentation). The
use of image intensity difference and correlation methods
relies on the assumption that pixel values in the regis-
tered images are strongly correlated. This is usually not
the case with intermodality registration. In modern in-
formation-theoretic voxel similarity methods, like mutual
information, no assumptions are made regarding the na-
ture of the relation between the image intensities in the
registered images [82]. These methods are particularly
promising for the intermodality cardiac image registra-
tion. Because of the recent development of the mutual in-
formation-based methods, applications to cardiac image
registration are still rare. One of the aims of recent re-
search in the voxel similarity measure-based registration
area has been to devise general algorithms that will work
on a wide variety of image types, without application-spe-
cific preprocessing [12].

Rigid cardiac image registration generally does not describe
the spatial relationship between images adequately. Elastic
(nonrigid) cardiac image registration is needed especially
because of cardiac motion; between end-diastole and end-sys-
tole (during cardiac cycle), the heart valvular plane moves 9–
14 mm toward the apex and the myocardial walls thicken from
approximately 10 to over 15 mm [23], [102], [103]. Also, the
problems due to imaging conditions, different movement arti-
facts, and elasticity of the body, lungs, and heart cause different
tissue deformations that are not possible to compensate for
using rigid registration methods. There is considerable research
going on in extending the use of intensity-based registration
algorithms to nonrigid transformations [12].

Deformable model-based approaches (deformable registra-
tion algorithms) for cardiac image registration are particularly
promising for elastic 4-D registration of the cardiac images (e.g.,
to compensate for movement artifacts) [23], [70]. Model-based
approaches can also lead to the integration of information from
different imaging modalities into an individualized heart model,
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including anatomical and functional information [69], [104].
This kind of model can be applied in computer-assisted diag-
nosis, treatment planning, and surgery. Data fusion techniques,
based, i.e., on neural networks and fuzzy logic, can be used to
interpret and summarize the large amount of information from
registered images and to help establish a diagnostic or select a
therapy [4], [105]. Methods combining similarity measures with
a priori knowledge from geometric models can also provide new
possibilities, especially for elastic registration [87], [106].

The validation of the registration accuracy is particularly im-
portant. Virtual and physical phantoms may provide the gold
standard for validation. Also, image databases may in the future
provide a source for the objective comparison of different car-
diac registration methods.

Cardiac image registration remains a challenge because of the
numerous specific problems mainly related to the different mo-
tion sources (patient, respiration, heart) and to the specificity of
each imaging modality. Up to now, no general method is able
to automatically register any modality with any other modality.
Cardiac image registration methods also always require a com-
promise among accuracy, precision, reliability, robustness, and
issues such as automation, interactivity, speed, patient-friendli-
ness, etc. It is also important to keep in mind that the registration
techniques and results should be useful and usable in clinical
practice.
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