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Abstract

Digital processing of electroencephalography (EEG) signals has now been popularly used in a wide variety of

applications such as seizure detection/prediction, motor imagery classification, mental task classification, emotion

classification, sleep state classification, and drug effects diagnosis. With the large number of EEG channels acquired,

it has become apparent that efficient channel selection algorithms are needed with varying importance from one

application to another. The main purpose of the channel selection process is threefold: (i) to reduce the

computational complexity of any processing task performed on EEG signals by selecting the relevant channels and

hence extracting the features of major importance, (ii) to reduce the amount of overfitting that may arise due to

the utilization of unnecessary channels, for the purpose of improving the performance, and (iii) to reduce the setup

time in some applications. Signal processing tools such as time-domain analysis, power spectral estimation, and

wavelet transform have been used for feature extraction and hence for channel selection in most of channel

selection algorithms. In addition, different evaluation approaches such as filtering, wrapper, embedded, hybrid, and

human-based techniques have been widely used for the evaluation of the selected subset of channels. In this

paper, we survey the recent developments in the field of EEG channel selection methods along with their

applications and classify these methods according to the evaluation approach.

Keywords: EEG signals; Channel selection; Seizure detection; Sleep state classification; Motor imagery classification;

Emotion classification; Mental task classification

1 Review
1.1 Introduction

Digital processing of EEG signals plays an important role

in a variety of applications, e.g., seizure detection/predic-

tion, sleep state classification, and motor imagery classifi-

cation. Digital processing of EEG signals consists of

different components: signal acquisition unit, feature ex-

traction unit, and a decision algorithm as shown in Fig. 1.

The input to the system in Fig. 1 is an EEG signal acquired

from the scalp, brain surface, or brain interior. The signal

acquisition unit is represented by electrodes whether they

are invasive or non-invasive. The feature extraction unit is

a signal processing unit aiming to extract discriminative

features from channel(s). The decision unit, in brain com-

puter interface (BCI) for example, is a hybrid unit with the

purpose of classification, decision-making, and passing the

decisions to external devices outputting the intention of

the subject [1].

As mentioned above, the interface between the brain and

the computer (or a device) could be through invasive or

non-invasive technologies. Although invasive technologies

have recently shown some promises in different applica-

tions for their large accuracy and low noise [2], non-

invasive technologies are still used extensively for safety

purposes with some additional signal processing tasks to

compensate for the noise and resolution limitations. Scalp

EEG acquisition devices are generally preferred due to their

low-cost, ease of use, portability, and high temporal reso-

lution. The scalp EEG signals can be recorded by differ-

ent modes such as unipolar and bipolar modes. In the

former mode, the voltage differences between all elec-

trodes and a reference one are recorded, where a chan-

nel is formed by an electrode-reference pair. On the

other hand, in the bipolar mode, the voltage differences

between two specified electrodes are recorded, where

each pair forms a channel. An electrode placement

scheme on scalp, known as International 10–20 system,

was recommended by the International Federation of
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Societies for Electroencephalography and Clinical Neuro-

physiology (IFSECN) [3]. Figure 2 shows the 10–20 EEG

electrode positions for the placement of electrodes from

the left and the top of the head. These electrodes (channels)

show the activities of different brain areas. Figure 3 shows

the brain areas.

Most of the useful information about the functional state

of a human brain lies in five major brain waves distin-

guished by their different frequency bands. These frequency

bands are delta band (0–4 Hz), theta band (3.5–7.5 Hz),

alpha band (7.5–13 Hz), beta band (13–26 Hz), and

gamma band (26–70 Hz) [4]. Delta waves are related to

the deep sleep state. Theta waves are related to the dee-

pest state of mediation (body asleep/mind awake).

Alpha waves are related to the case of dreaming and re-

laxation. Beta waves are the dominant with the waking

state with large attention. Gamma waves are highly re-

lated to the decision-making mode of the brain. When

dealing with mental illnesses states, unexpected distur-

bances of the brain waves occur leading to the need of

considerable signal processing burdens for diagnosis of

abnormal states [4].

The acquired EEG signals are generally of multi-channel

nature. To classify these signals, for example, we have two

choices: to work on a subset of channels selected based on

certain criteria or to work on all channels [5]. Figure 4

gives an illustration for the general process of EEG signal

classification based on channel selection. In this signal

processing setting, reducing the number of channels is

needed because the setup process with a large number of

channels is time-consuming and causes subject inconveni-

ence. In addition, it adds to the computational complexity

of the system, which is required to be low in certain

applications.

Another example where channel reduction is of a po-

tential value is in seizure detection and prediction. In

particular, there is a great interest from the industry and

scientific community in the development of portable

medical support systems that incorporate algorithms

capable of detecting early onset of epileptic seizures or

even predicting them hours before they occur, as this

will help to alert ambulatory patients or caregivers be-

fore seizure occurs to avoid injury [6, 7]. The develop-

ment of such portable systems should be based on

computationally efficient prediction algorithms that

make use of as minimum number of channels as pos-

sible to reduce system power consumption, a necessary

step to maintain longer time of operation.

Various techniques have been investigated for channel

selection in the processing of EEG signals. This paper

presents a survey for the recent developments in this

field. Several flowcharts and tabular forms are presented

to enable the reader to explore the different channel

selection algorithms, to determine their classification

Fig. 1 Processing of EEG signals

Fig. 2 The international 10–20 system. The left image shows the left side of the head, and the right image presents the view from above the

head [78]
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according to the evaluation algorithms, and to bring

attention to directions of research in EEG channel se-

lection for different applications. The performance of

different methods, if available, is given in terms of clas-

sification/detection accuracy and probability of false

alarm to produce clear and informative comparisons

among the channel selection approaches. In addition,

this survey may assist designers to choose the appropri-

ate algorithms that suite intended applications. Further-

more, this work is expected to help newcomers to the

field to determine the limitations associated with the

available channel selection methods and to pave the

road for the development of new channel selection

designs.

The rest of this paper is organized as follows. Section 2

covers the selection techniques in general. Section 3 dis-

cusses channel selection for seizure detection/prediction.

Section 4 is devoted for channel selection for motor im-

agery classification. Sections 5 and 6 cover the topics of

emotion classification and mental task classification with

channel selection strategies. Section 7 discusses channel

selection for the task of sleep state analysis. Section 8 dis-

cusses the channel selection process for drug effects diag-

nosis. Finally, concluding remarks are given in Section 9.

2 Channel selection techniques
During the last decades, EEG-based processing has be-

come a highly attractive research field. The large number

of channel recordings due to the availability of low-cost

interfaces led to the evolution of channel selection algo-

rithms. The objectives of channel selection are manifold:

improving model performance, providing faster processing

and dimensionality reduction, and identifying brain area

that generates class-event activity.

Based on the literature, feature selection algorithms

were used for EEG channel selection [8–10]. In this

section, we show how to adapt such techniques for

channel selection. The main steps of channel selection

are illustrated in Fig. 5 for a set of EEG channels. The

subset generation step is a heuristic search process to

present a candidate for evaluation based on a search

strategy such as complete search, sequential search, or

random search. In some applications, a trained special-

ist selects a subset of channels based on his experience.

There are five main categories of candidate evaluation

strategies, namely, filtering, wrapping, embedded, hy-

brid, and human-based techniques. These techniques

are used for subset evaluation. The process of channel

subset generation and evaluation is terminated when a

stopping criterion is satisfied (search is completed or a

threshold is reached). In the last step, the selected

channel subset is validated via prior knowledge about

the data. The evaluation techniques are discussed in

the next subsections.

2.1 Filtering techniques

Filtering techniques use an independent evaluation criter-

ion such as distance measure, information measure, de-

pendency measure, and consistency measure to evaluate

the candidate channel subsets, which are generated using

a search algorithm. Filtering techniques have some advan-

tages among which are the high speed, independence from

the classifier, and scalability [10], but they suffer from the

low accuracy, since they do not consider the combinations

of different channels. Figure 6 shows a general flowchart

for the filtering techniques. In this flowchart, S0 represents

the initial subset and Sbest represents the selected best sub-

set of channels. Also, D(C0, ….., Cn-1) represents a pool of

n channels for selection, and M refers to an independent

evaluation criterion. The γ represents the value of the

evaluation criterion for each subset of channels. The

“evaluate” function refers to an evaluation process.

2.2 Wrapper techniques

In case of wrapper techniques, a classification algorithm

is used to evaluate the candidate channel subsets, which

are generated by a search algorithm as shown in Fig. 7,

in which A denotes a classifier, and γbest represents the

best value of the evaluation criterion. The evaluation of

every candidate is obtained by training and testing a

Fig. 4 General process of EEG signal classification

Fig. 3 The cerebrum is subdivided into four lobes: frontal, parietal,

occipital, and temporal lobe [78]
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specific classification algorithm [10]. Consequently, they

are more computationally expensive than filtering tech-

niques and they are prone to overfitting.

2.3 Embedded techniques

In the embedded techniques, the channels are selected

based on criteria generated during the learning process of

a specific classifier because the selection is included into

the classifier construction [9]. Embedded techniques

achieve an interaction between the channel selection and

the classification. They are computationally less expensive

and less prone to overfitting. They are based on recursive

channel elimination to keep only channels with appreci-

ated magnitude.

2.4 Hybrid techniques

A hybrid technique is a combination of a filtering tech-

nique and a wrapper technique attempting to take advan-

tage of both in avoiding the pre-specification of a stopping

criterion (see Fig. 8). Generally, hybrid techniques utilize

both an independent measure and a mining algorithm for

evaluation of the available channel subsets [10]. Two

threshold values are evaluated: γbest corresponding to the

case with a classifier and θbest corresponding to the case

without a classifier. The independent measure is used to

select the best subset for a given size Cr (cardinality), and

then the mining algorithm is used to select the final best

subset across cardinalities.

2.5 Human-based techniques

In some applications, a well-trained observer evaluates the

outcome of a specific application, like seizure detection,

on the selected channels with any of the abovementioned

subset generation techniques based on his experience.

Thus, the findings of the human-based techniques can be

used in a feedback manner to refine the channel selection
process.

3 Channel selection for seizure detection/
prediction
Epilepsy is well known as the second most prevalent brain

disorder (after stroke) characterized with unexpected

occurrence of seizures. The International League Against

Epilepsy (ILAE) and the International Bureau for Epilepsy

(IBE) presented a definition for the epileptic seizure as “a

transit occurrence of signs and/or symptoms due to ab-

normal excessive or synchronous neuronal activity in the

brain” [11]. Epilepsy affects around 1 % of the world popu-

lation, and based on the seizure statistics of the Epilepsy

Foundation of America (EFA), about 200,000 cases of epi-

lepsy are diagnosed per year. The primary tool for diagno-

sis and management of epilepsy is through EEG signals.

In general, EEG recordings have different channels

for signals acquired from different spots of the human

brain. In certain applications, there is a need to select

some of these channels for EEG seizure detection/pre-

diction because the computational load required for a

seizure detection/prediction algorithm increases as a

function of the number of channels [12]. Reducing the

number of channels is of an utmost importance, for ex-

ample, in the development of portable medical support

systems for epilepsy patients, as reducing algorithmic

computational complexity will lead to faster real-time

response and lower power consumption to maintain

longer time for operation. In addition, the lower the

number of channels is, the more convenience the pa-

tient would have and the lower the setup time required

to fix gel-based EEG electrodes. Another factor that

needs to be considered carefully in seizure detection/

prediction is the overfitting effect due to the utilization

of a large number of redundant channels. Therefore,

channel selection could be used to reduce the feature

pattern size and lower the computational cost of fea-

ture extraction and classification. In what follows, we

cover some of the channel selection techniques utilized

for seizure detection/prediction and classify them ac-

cording to the channel subset evaluation techniques

given in Section 2.

Fig. 5 Main steps of channel selection
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3.1 Filtering techniques

For EEG seizure detection and prediction, signal statistics

such as variance and entropy can be used for channel

selection. This subsection presents four trends for channel

selection for EEG seizure detection and prediction, with a

common thread that they are all based on signal statistics.

Duun-Henriksen et al. [12] investigated different channel

selection schemes based on different statistical criteria as

follows:

3.1.1 Selection based on variance

The variance of ictal data of all available channels is esti-

mated with the equation:

Fig. 7 General wrapping techniques flowchart

Fig. 6 General filtering techniques flowchart
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V ict cð Þ ¼
1

k

Xk

i¼1

xc ið Þ−μcð Þ2 ð1Þ

where xc, μc,, and k are the seizure data, mean, and

number of samples of the training seizure data of channel

c, respectively. The three channels with maximum vari-

ance are selected for signal classification [12].

3.1.2 Selection based on difference in variance

The difference in variance is calculated as follows:

V diff cð Þ ¼ V ict cð Þ−V non‐ict cð Þ ð2Þ

where Vnon ‐ ict is the non-ictal (non-seizure) training

data, which represents the background variance that

would be deduced (variance of the normal state). The N

input channels are selected based on the minimum dif-

ference of variance.

3.1.3 Selection based on entropy

The entropy of an EEG channel is a measure of uncer-

tainty, where the EEG signal is considered as a random

variable. The entropy of channel c is defined as:

H cð Þ ¼ −

Xn

i¼1

p xið Þ log2p xið Þ ð3Þ

where p(xi) is the probability mass function of the

channel having n samples. The N channels with the

highest entropy are chosen as input to the automatic

seizure detector.

In the method developed by Duun-Henriksen et al.

[12], after channel selection, a feature extraction process

utilizing wavelet transform is performed on the selected

channels. A support vector machine (SVM) was used as

a classifier for seizure detection, with a non-linear radial

basis kernel having a regularization term of 0.5 and a

cost factor varying between 0.05 and 0.5. A recorded

iEEG data with 59 seizures and 1419 h from 10 patients

were used for training and testing. It was found that the

best channel selection method is based upon maximum

variance during seizure, which led to a seizure detection

sensitivity of 96 % and false detection rate of 0.14/h

using three channels. The work of Duun-Henriksen

et al. [12] falls in the class of filtering techniques, as it

used an independent measure for channel selection,

which is the variance. The authors did not use a search

strategy.

Faul [13] used another statistical measure, which is the

probability of a seizure in a channel produced by the

real-time EEG analysis for event detection (REACT) sys-

tem of Temko et al. [14] as a tool for channel selection

to change the behavior of the system aiming to reduce

the computational effort. The SVM output in this system

is treated as a probability, which is further passed

through a sigmoid function. He used a waiting time for

each channel to be incorporated in the channel selection

process, and this time is computed according to the

probability of seizure in that channel. He reported that

the computational efforts can be reduced by up to 65 %

with no effect on the seizure detection performance of

the REACT system (96 % for neonatal and 94 % for adult

databases).

Fig. 8 General hybrid techniques flowchart
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Faul and Marnane [15] developed statistics-based

dynamic EEG channel selection methods to reduce the

power consumption in seizure detection, which can be

classified as filtering techniques. In their methods, a

number predefined or primary screening channels

(PSCs) are chosen in the following approaches depend-

ing on the probability provided by the REACT system,

and then the channels are added or removed in the

next epoch. The first approach is location spread based

on some seed PSCs with their neighborhood channels.

Channels are added or excluded based on probability of

seizure. If the probability of seizure in any of the PSCs

exceeds a threshold, the nearest channel to the PSC is

added to the analysis and remains until its probability

drops below a threshold. Their results show that with

two channels {2,7}, the performance is 95.74 % with

66.76 % computational load saving, while with four

channels {2,4,6,7}, the performance is 96.55 % with

43.11 % computational cost reduction.

The second approach is idling (single/twin) based on

the two brain hemispheres. For idling, channels in the

PSCs are analyzed sequentially in alternate epochs, and

when the channel is activated, it is then analyzed continu-

ously until deactivation. Both activation and deactivation

are based on the probability of seizure. In twin idling, the

PSCs in each hemisphere are idled, separately. The per-

formance of the idling approach, without dynamic channel

selection, is 91 and 91.48 % and the computational saving

is 87.5 and 75 % for single and twin idle, respectively.

There is an increase in computational saving with single

idling of approximately 10 and 30 % with two PSC and

four PSC configurations, respectively. Location spread

with twin idling is another approach for the authors, but it

did not achieve an appreciable gain in terms of perform-

ance over the single idling approach with approximately

10 % drop in computational cost. The results of these ap-

proaches have been compared with the all-channel (eight

channels) REACT system [14] results leading to a feasibil-

ity of the suggested approaches by Faul and Marnane [15].

Atoufi et al. [16] investigated the prediction ability of

neuro-fuzzy models in different states of EEG signals:

normal, pre-ictal, and ictal. Although the main object-

ive of this study was to improve the model prediction

accuracy using information fusion, the main challenge

was selecting the channels that should be used to con-

struct the predictor. A selection algorithm was used to

select the channels with the largest amount of informa-

tion about the target (channel whose signal is to be pre-

dicted) but with the least information about each other.

This technique can be classified as a filtering technique

with a greedy sequential search strategy because it de-

pends on independent channel evaluation criteria. An

information theoretic criterion (mutual information

(MI)) was used to select a group of channels for multi-

channel prediction. The MI of two random variables X

and Y is defined as [16]:

I X;Yð Þ ¼ H Xð Þ– H X Yð Þ ¼ H Yð Þ– H Y Xð Þ
¼ H Xð Þ þ H Yð Þ– H X;Yð Þ ð4Þ

where H(X) and H(Y) are the entropies of the variables

X and Y and H(X|Y) is the conditional entropy. H(X;Y) is

the joint entropy of the two variables X and Y. The

authors evaluated their method on two patients’ data, of

Freiburg database, which is a publicly available intracra-

nial EEG database containing six channels (three focal

and three extrafocal) ECoG recordings of 21 patients

with a 256 Hz sampling rate [15]. This method achieved

60.6 and 60 % success rates in three-channel cases of

ECoG and EEG datasets, respectively. The authors

reported that the prediction accuracy using the selection

algorithm with multi-channels has been improved with a

noticeable improvement in pre-state detection over the

single channel.

3.2 Wrapper techniques

In this subsection, we try to bring together the channel

selection techniques for EEG seizure detection and predic-

tion that can be classified as wrapper techniques and show

why they fall into this category. Shih et al. [17] presented a

machine learning-based approach to construct detectors

that use fewer channels for seizure onset detection. For

selecting channels, the authors used an instance of the

wrapper approach, which is a feature selection algorithm

with backward elimination. This approach reduced the

average number of channels required to detect the seizure

onset from 18 to 4.6, while the mean fraction of seizure

detection decreases from 99 to 97 %. In addition, the aver-

age number of false events per hour decreased from 0.35

to 0.19. An increase of average detection latency from 7.8

to 11.2 s with average of 69 % of energy saving was

achieved. When this approach is combined with a patient-

specific screening detector, an additional energy saving of

16 % was achieved. Those results were compared to the

18-channel [18] results revealing the feasibility of the

channel reduction with this approach.

Glassman and Guttag [19] presented another method

that uses recursive feature elimination to design patient-

specific SVM detectors that use small numbers of elec-

trodes. The recursive feature elimination uses the SVM to

rank the contributions of each selected channel. They used

a leave-one-out cross validation principle to estimate the

performance of the detectors as illustrated in Table 1. The

main idea of the process is to find the smallest number of

channels n, such that the average cross validation per-

formance of detectors built using n channels is at least as

good as the average cross validation for the 21-channel

detector.
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The Detectorsetup (C, S) is a function to build an SVM

detector using the channels in C. It uses S seizures as a

training set and REF(n, S) as a recursive feature elimin-

ation function used to find the best n channels when train-

ing on S. The function Modify(Subset, d, s) is a function

used to calculate the performance of the detector d when

used on the file S and update the average performance.

This method is based on a wrapper algorithm with a

sequential search strategy. The authors evaluated their

method using 21-channel scalp EEG recordings of 10

patients. The method achieved 7.1 average channels, 0.011

average false negative, 0.48 average false positive, and 9.54

s average latency time.

Statistical metrics have also been used for wrapper

channel selection techniques. Mirowski et al. [20] pre-

sented a method based on computing bivariate features

of EEG synchronization. These features are cross correl-

ation, non-linear independence, dynamic entrainment,

and wavelet synchrony. They computed the features on

21 patients from Frieburg dataset [21]. They used time

aggregation for features before classification. Chang

et al. [22] proposed a channel selection method to re-

duce the feature pattern size produced from Mirowski

et al. work [20] for seizure prediction. Their work can be

classified as a wrapper technique with a pre-specified

subset of channels. Their method requires computation

of features from pairs of channels of the available EEG

signal. They investigated the performances of using all

channel pair combinations with the number of channels

from two to six in the case of electrocorticography

(ECoG) dataset and 75 combinations of fixed channel

pairs in case of EEG dataset. This method aims to reduce

the computed wavelet coherence (localized correlation

coefficient in time-frequency space) values for a given

channel pair over non-overlapping 5 s and frequency

bands after decomposing the channels into sub-bands.

The features are aggregated into patterns. Then, the SVM

is used to classify the patterns into pre-ictal and inter-ictal

states as shown in Fig. 9. The authors investigated the

performance of all channel pair combinations in the ECoG

database and 75 combinations of fixed channel pairs in

the EEG database. They evaluated their method using

three datasets: Freiburg database [21], CHB-MIT database

(6 patients: 1, 3, 6, 7, 10, 22) which is a scalp EEG database

with a 256 Hz sampling rate and more than 22 channels

for most of them [23], and National Taiwan University

Hospital database (one patient) which is also a scalp EEG

database with 200 Hz sampling rate and 18 channels [24].

The method achieved 60.6 and 60 % success rate in three-

channel cases of ECoG and EEG datasets, respectively.

Also, the method achieved more than 93.73 % of compu-

tational saving compared to the full 22-channel case.

Greene et al. [25] developed another non-patient-

specific statistical method for automated neonatal

channel selection and seizure detection based on a reg-

ularized discriminant classifier. This method can be

classified as a wrapper method with a pre-specified

subset channel selection scheme. Seven features were

extracted from non-overlapping 8 s, which are spectral

entropy, Shannon entropy, spectral edge frequency,

non-linear energy, line length, wavelet energy, and root

mean square (RMS) amplitude. They compared the

effectiveness of their method on a single channel with

the training performed on multi-channel EEG. The

authors evaluated their method on 17 recordings from

17 neonates with a 251.9 total number of hours and

411 seizures with a 256 Hz sampling rate. Each record-

ing contained 7–11 EEG channels and 1 ECG channel.

They examined the performance of nine single channels,

which are C4-C3, C3-T3, C4-T4, F3-C3, F4-C4, Cz-C4,

Cz-C3, C4-02, and C3-01. Channel C3-C4 gave the best

seizure detection performance, when compared to other

single channels. It achieved a 90.77 % correct detection

and 9.43 % false detection rate, respectively, while the

multi-channels achieved an 81.03 % detection rate and a

3.82 % false detection rate.

Another statistical approach was presented by Temko

et al. [26]. They presented an online neonate seizure

detection framework based on EEG channel weighting

and moving average filtering as illustrated in Fig. 10.

The authors computed the channel weights on the fly

using patient specific history and clinically derived

Table 1 Using cross validation to select channels for a patient

[19]

//“Full montage average performance evaluation”

init(All)

for s = each seizure in set of seizures S

C = 21 channels

d = Detectorsetup (C, S – {s})

Modify (All, d, s)

end

//“Subset channel selection performance evaluation”

Numchannels = 21

for n = 20 to 1

Init(Subset)

for s = each seizure in set of seizures S

S’ = S – {s}

C = RFE(n, S’) “Find n best channels”

d = Detectorsetup (C, S’)

Modify (Subset, d, s)

if Subset >= All

Numrequired = n

return Numrequired
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prior channel importance. The moving average filtering

is used to smooth the SVM output which is interpreted

as probabilities. The dataset used consists of 17 new-

borns EEG recordings obtained from Cork University

Maternity Hospital database, Ireland [27]. A total of 36

channels were used for recording the data. Eight channels

were selected for further processing using channel weight-

ing. From each channel, 55 features were extracted which

are then fed to an SVM classifier. The output of the classi-

fier was then smoothed with a moving average filter and

converted to probability-like values using a Bayesian prob-

abilistic framework. These values were then compared

with a threshold in the interval [0,1], and based on this

comparison, decisions about the presence of seizures per

channel were taken. Area under the precision-recall

(PR) curve [28] was used as a metric in this work. The

authors have shown that with their proposed channel

weighting technique, the PR area has increased up to

25 % with the average increase from 81.0 to 84.42 %.

Furthermore, it was reported that the performance of

the channel weighting algorithm was proportional to

the subject observation time.

3.3 Human-based techniques

In this subsection, we explore two human-based tech-

niques for channel selection in EEG signal detection and

prediction. Zimbric et al. [29] compared a collection of 3

channels with a collection of 21 channels for the detection

of neonatal seizures and quantification of seizure burden.

Tracking were analyzed in the three-channel montage for

seizure number, duration, and quantification of seizure

burden before reanalysis with the full 21-channel neonatal

minimal placement montage. Seizures were identified

using standard definitions of EEG seizure. Analysis of the

results was performed by two independent readers, and

hence, this method can be classified as a human-based

technique with a pre-specified subset of channels. Evalu-

ation metrics such as sensitivity, specificity, and reliability

were calculated. They evaluated their method using 35

EEG recordings from 28 infants with a total of 1389 min.

The sensitivity and specificity of three-channel montage

for detecting seizures >10 s were 91 and 100 % for reader

1 and 82 and 96 % for reader 2, respectively.

Tekgual et al. [30] presented a comparison study of

reduced electrode montage (9 electrodes) with full 10/

20 electrode montage (19 electrodes) considering de-

tection and characterization of neonatal seizures and

background EEG characteristics. Three independent

readers reviewed EEG recordings for number, duration,

and topography of seizures and background features.

Hence, we can consider this approach as a human-

based approach with a pre-specified subset channel

selection. The reviewers started with reduced montage

and then the full montage. A total of 151 EEG record-

ings from 139 infants, obtained from Bio-logic System

of the Clinical Neurophysiology Laboratory, Children’s

Hospital, Boston [30], were reviewed by the reader on

both montages. The sensitivity and specificity of the

reduced montage for seizure detection were 96.8 and

100 %, respectively.

Fig. 10 Steps of the Temko et al. [26] method for seizure detection with channel selection

Fig. 9 Seizure prediction algorithm of Chang et al. [13]
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4 Channel selection for motor imagery
classification
Motor imagery is a mental task in which the subject

imagines that he is doing an action. Motor imagery

classification is very important for certain patients. This

task can be performed with EEG signals and may

require channel selection to choose the most related

channels to the cortical activity patterns and to reduce

the computation time as well.

4.1 Filtering techniques

The common thread between the channel selection tech-

niques adopted for motor imagery classification and cate-

gorized as filtering techniques is that they are based on

EEG signal statistics. He et al. [31] presented a statistical

channel selection method for classifying motor imagery.

This method used Bhattacharyya bound of common

spatial patterns [32] as an optimal index and fast forward

search to find the optimal combination of channels. It is a

filtering method with sequential search strategy for subset

channel selection. Then, it uses Bayes algorithm [33] as a

classifier. The authors utilized four EEG recordings for

subjects a, b, d, and e of dataset 1 of BCI competition IV

to evaluate the performance of their method, each of

which contains 200 trials. A total of 59 channels were used

for the recordings. They reported that the classification

accuracies obtained by their method, which is ~95 % with

~33 average number of channels, is higher than those

obtained by all channels, but still their solution is a sub-

optimal solution.

Another statistical method was presented by Tam et al.

[34], who proposed a channel selection method for motor

imagery classification based on the sorting of common

spatial pattern (CSP) filter coefficients. Their method,

called CSP-rank, is based on a filtering approach with a

sequential search strategy for subset channel selection. It

uses two CSP filters for two classes corresponding to

motor imagery and immobilization. It firstly sorts the ab-

solute value of the filter coefficients in each filter and then

selects the electrode with the next largest coefficient in

turn from the two spatial filters. They utilized 64-channel

EEG recordings from five chronic stroke patients through

20 sessions and each session consisted of 80 trials. They

compared CSP-rank with support vector machine recur-

sive feature elimination (SVM-RFE) [35, 36] and random

selection. CSP-rank was able to maintain an average classi-

fication accuracy rate above 90 % for 8–38 electrodes. It

obtained the highest average classification accuracy rate of

91.7 % with 22 electrodes. The SVM-RFE maintained aver-

age classification accuracy rate above 90 % for 12–28 elec-

trodes and achieved the highest average classification

accuracy rate of 90.7 % with 14 electrodes. Random selec-

tion maintained an average classification accuracy rate

above 85 % for 10–50 electrodes and obtained the highest

average classification accuracy rate of 89.6 % with 32

electrodes.

Yong et al. [37] presented another statistical channel

selection method for classifying two motor imageries

based on introducing l1 norm regularization term in the

CSP algorithm which supports sparsity in the weights of

the spatial filter. This method adopts a filtering approach

with a pre-specified subset channel selection strategy

based on experience. The EEG data used for evaluating

this method was recorded from five subjects (aa, av, al,

aw, ay) using 118 channels and a 1 kHz sampling rate,

provided by Fraunhofer FIRST (Intelligent Data Analysis

Group) and University of Medicine Berlin (Neurophysics

Group) with two classes: right hand and right foot motor

imageries [38]. Each class consisted of 140 trials. The

method was able to reduce the number of channels on

average to 13 electrodes (of 118 electrodes), while the

average classification accuracy rate dropped from 77.3 to

73.5 % only. The value of the regularization parameter is

subject-specific and was selected manually. Therefore, it

needs to be chosen automatically to produce reasonable

results.

Meng et al. [39] presented an automated channel se-

lection method based on CSP in BCI systems. The CSP

algorithm is commonly used to derive spatial filters for

the multi-channel EEG signals. However, it is known

that the performance of the CSP degrades due to the

overfitting problem, when the number of channels is

large. Therefore, to reduce the number of channels, the

authors used a heuristic algorithm, namely, l1 norm, to

select the most useful channels, and then extract the

features from the selected channels using the CSP.

They initially applied the CSP to the datasets and then

scored the channels based on their l1 norm. The chan-

nels with the highest scores were selected for further

processing, while the others were excluded. Using the

CSP, features are extracted only from the selected chan-

nels and are forwarded to the classifier. This algorithm

adopted a filtering approach. It was evaluated on data-

sets provided by Fraunhofer FIRST (Intelligent Data

Analysis Group) and University of Medicine Berlin

(Neurophysics Group). A total of 118 electrodes were

placed on the scalp to record the data with a sampling

rate of 1 KHz for five subjects [38]. The algorithm was

compared with a commonly used γ2 algorithm for

channel selection [40]. It was shown that, with Meng

et al. algorithm, the classification accuracies increased

from 80.8 to 82.4, 97.5 to 98.6, 72.2 to 76.8, 93.6 to 94,

and 92.1 to 96.6 % for all the five subjects with 20

channels.

Wang et al. [41] proposed a channel reduction method

in motor imagery, in which the prominent channels in

this method were selected using the maximum of spatial

pattern vectors obtained with the CSP algorithm. Event-
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related desynchronization (ERD) and readiness potential

(RP) of the selected EEG channels were used as features.

Using these features, EEG signals were classified using a

Fisher discriminant (FD) classifier [42–44]. This method

was evaluated on a datasets provided by Fraunhofer

FIRST (Intelligent Data Analysis Group) and University

Medicine Berlin (Neurophysics Group) [38]. It was

shown that the classification accuracies with four chan-

nels were 93.45 and 91.88 % for two subjects. Increasing

the channels to eight increased the classification accur-

acies to 96.68 and 93.25 %, respectively, at the expense

of decreasing the convenience of the system user.

The effect of increasing the number of channels on

the classification accuracy of EEG-based motor imagery

has been presented by Shan et al. [45]. They adopted a

filtering approach with a sequential search strategy for

subset channel selection. They used two different data-

sets, an imagery-based cursor movement control dataset

and a motor imagery tasks dataset for comparison. In

the first dataset, 64 channels were used for recording the

data with a sampling rate of 200 Hz. Similarly, in the

second dataset, 59 channels were used for recording data

with a sampling rate of 100 Hz. A modified time-

frequency-spatial synthesized method was used for right

and left motor imagery classification. It was observed

that increasing the number of channels increases the

classification accuracy in the first dataset, while it is not

the case in the second dataset in which the optimum

accuracy is achieved at a subset of channels. Increasing

the number of channels from two to all in the first data-

set increased the training and testing classification

accuracies from 68.7 to 90.4 and 63.7 to 87.7 %, while in

the second dataset, it was observed that the classification

accuracy increased till 16 channels and then significantly

decreased from 81.3 to 68.9 % for all channels. It was

concluded that the performance of online BCI systems

increases by increasing the number of channels in con-

trast to the offline motor imagery tasks paradigm.

EEG patterns in a BCI system vary from the first session

to subsequent sessions on other days due to several sub-

jects’ preconditions. Therefore, there is a need for a robust

and stable channel selection algorithm across different

sessions. Arvaneh et al. [46] presented a robust channel

selection approach across sessions in BCI system involving

stroke patients adopting a filtering approach with pre-

specified subset channel selection based on experience.

They proposed a robust sparse common spatial pattern

(RSCSP) algorithm for optimal EEG channel selection

across different sessions, where the estimates of the

covariance matrices of EEG measurements are replaced

with the robust minimum covariance determinant (MCD)

estimates. The stability and robustness of this algorithm

were evaluated by comparison with five existing channel

selection algorithms across 12 different sessions of motor

imagery-based datasets from 11 stroke patients. A total of

27 channels were used for recording the data with a sam-

pling rate of 250 Hz. Eight channels were selected using

the RSCSP algorithm from the first session and were eval-

uated on the 11 subsequent sessions. The results showed

that the RSCSP algorithm outperformed other algorithms

like SCSP, CSP, MI, Fisher criterion (FC), and SVM by an

average accuracy of 0.88, 2.85, 2.69, 4.85, and 4.58 %,

respectively.

He et al. [47] presented a Rayleigh coefficient (RC)

maximization-based genetic algorithm (GA) for chan-

nel selection in motor-imagery BCI system adopting a

filtering approach with a random search strategy for

subset channel selection. This algorithm uses the CSP

to diagonalize the covariance matrices and maximize

the difference of variances of two classes. On the other

hand, RC maximization is performed not only for maxi-

mizing the difference of covariance of two classes but

also for minimizing the sum of these two covariance

matrices. Hence, the RC features can be more discrim-

inating than CSP. However, like CSP, the performance

of the RC maximization is deteriorated with the redun-

dant electrode channels. Therefore, the authors pro-

posed an improved GA for channel selection based on

RC maximization. Using this algorithm, Fisher ratios

for every single channel were calculated and ranked in

descending order. The first selection of the subset of

channels was made through the maximum Fisher ratios of

the channels. An improved GA based on RC

maximization was then applied on the selected channels

to get the optimum subset of channels. This algorithm

was evaluated on two datasets. In the first dataset, 118

channels were used to record the data with a sampling

rate of 100 Hz, and in the second dataset, 32 channels

were used for recording the data with a sampling date of

250 Hz. It was observed that the RC-GA achieved high

classification accuracy with lower computational cost. The

average accuracies are 88.2 and 89.38 % for the first and

second datasets, respectively. The performance of this

algorithm was also compared with other channel selection

algorithms like SVM-GA, Sequential Forward Search

(SFS), and Sequential Backward Search (SBS) algorithms.

It was shown that RC-GA provided more compact

selected channels, while acquiring higher classification ac-

curacy than the other mentioned algorithms.

Arvaneh et al. [48] proposed an SCSP algorithm for

subject-dependent channel selection in BCI systems

adopting a filtering approach with a pre-specified subset

channel selection scheme. They formulated the SCSP

algorithm as an optimization problem to select the mini-

mum number of channels within a constraint of classifi-

cation accuracy. The CSP is usually used to derive spatial

filters for the multi-channel EEG signals. However, the

weights of the CSP are very dense. The CSP algorithm is
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sparsified by adding a lp norm, 0 < p < 1, regularization

term into the optimization problem. The performance of

this algorithm was evaluated using two datasets, Dataset

IIa [49] from BCI competition IV with 22 channels (four

motor imagery tasks; left hand, right hand, feet, or tongue)

and Dataset IVa [50] from BCI competition III with 118

channels (two motor imagery tasks; right hand and foot)

recorded from 14 subjects. It was shown that the SCSP

algorithm achieved the best classification accuracy by re-

ducing the number of channels and an improvement of

10 % in classification accuracy compared to the three

channels case (C3, C4, and Cz). The average accuracy

rates for SCSP1 (maximizing the accuracy by removing

noisy and irrelevant channels) were 81.63 and 82.28 % for

Dataset IIa and Dataset IVa with average number of chan-

nels 13.22 and 22.6, respectively. The average accuracy

rates for SCSP2 (minimizing the selected channel(s)

while maintaining the accuracy comparable to all chan-

nels’ accuracy) were 79.07% with 8.55 average number

of channels and 79.28% with 7.6 average number of

channels for the first and second datasets, respectively.

It is also shown that this algorithm outperforms other

existing channel selection algorithms based on Fisher

criterion, mutual information, SVM, CSP, and RCSP, in

classification accuracy.

4.2 Wrapper techniques

Some of the adopted channel selection techniques for

motor imagery classification are categorized as wrapper

techniques. Yang et al. [51] presented a subject-specific

channel selection method based on criteria derived from

Fisher’s discriminant analysis to measure the discrimin-

ation power of time-domain parameter (TDP) features

extracted from different channels and different time seg-

ments for classification of two motor imagery tasks,

right hand and right foot. This method adopts a wrapper

approach with pre-specified subset channel selection

depending on experience. The authors utilized the data-

set IVa from BCI competition III [52], which consists of

EEG recordings from five subjects using 118 electrodes.

The subjects performed 280 trials of cue-drive motor

imagery (right hand, 140 trails; right foot, 140 trails) and

each trial lasted for 3.5 s. This method reduced the

number of channels from 118 to no more than 11 chan-

nels without a significant decrease in the accuracy rate

(78 % mean accuracy rate).

Wei and Wang [53] presented a method for channel

selection during the classification of motor imagery of

left hand, right hand, and foot based on a binary multi-

objective particle swarm optimization algorithm. This

method adopted a wrapper approach with a random

search strategy for subset channel selection. It extended

the particle swarm optimization algorithm shown in

Fig. 11 to handle two objectives: minimizing the number

of selected channels and maximizing the sum of three

mutual information metrics. The classification accuracy

rate was calculated with three different classifiers: KNN,

SVM, and back-propagation (BP) network. This method

utilized EEG recordings from five health subjects from

22 channels with 256 Hz sampling rate. The experiment

consisted of six runs separated by 5 min break, and each

run included 60 trails (120 trails for each class). The

results showed that the highest accuracy rate was around

91 % with nine channels in subject two, while the accur-

acy rate with all channels was around 92 %. Similarly,

the data set of subject 3 showed the lowest accuracy of

around 75 % with 14 channels and around 76 % with all

channels.

Zhou and Yedida [54] presented a method for the

reduction of the number of channels for the task of clas-

sifying mental states for shoulder and elbow movement

intentions for healthy and stroke patients. Their method

is based on combining the support vector channel selec-

tion with a weighted time-frequency synthesis classifica-

tion algorithm [54]. It is classified as a wrapper method

with a sequential search strategy for subset channel

selection. The authors evaluated their method using

EEG recordings from two able-bodied (healthy) and one

stroke subjects. A total of 131 channels were used, and

the sampling rate was 256 Hz. This method was able to

achieve higher than 90 % classification accuracy rate for

Fig. 11 General particle swarm optimization flowchart [79]
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the healthy subjects when the total number of channels

N was 20 <N < 131 and 50 <N < 131, for the first and

second subjects, respectively. On the other hand, the

classification accuracy rate was below 85 % for the sub-

ject with stroke.

Kamrunnahar et al. [55] presented a systematic

optimization algorithm for the optimization of the

number and locations of electrodes in BCI systems

adopting a wrapper approach with a complete search

strategy for subset channel selection. A human scalp

EEG data were recorded in response to cue-based

motor imagery tasks. A total of 19 channels were used

for recording the data with a sampling rate of 256 Hz

that was passed through a band-pass Butterworth filter

with cutoff frequencies of 0.5 and 60 Hz. To increase

the spatial resolution of the recorded data and decrease

its dependence on the reference location, the authors

used two techniques: Laplacian derivation [56–59] and

common average reference (CAR) [55]. They used a

model-based autoregressive technique to extract

the features. For selecting the optimum number of

channels, all possible combinations of channels were

calculated. Task discrimination errors were calculated

using linear discriminant analysis (LDA) [44] for each

combination. The channel combination with the lowest

discrimination error was selected as the optimal selection

for a specific subject. The average classification errors for

subject one were ~21.75 with four channels and ~28.28

with three channels for tasks one and two, respectively.

The performance of this algorithm was evaluated by com-

parison with another feature selection algorithm, namely,

forward stepwise feature selection [60, 61].

Yang et al. [62] presented an artificial neural network

and genetic algorithm approach for channel selection

and classification of EEG signals in BCI systems adopt-

ing a wrapper approach with a random search strategy

for subset channel selection. Conventional ANN-based

approaches have problems of the lack of explicit input

optimization, and their learning results are not easily

understood. Therefore, the authors proposed a generic

neural mathematic method (GNMM) for EEG channel

selection and classification problems, aiming to focus on

the issues above. The GNMM consists of three steps

[63, 64]: channel selection based on the GA, pattern

classification using multi-layer perceptron (MLP), and

rule-extraction based on mathematical programming.

The channel appearance percentage was used in the GA

to optimize the input channel selection. After channel

selection, the MLP was used for pattern classification,

and finally, regression rules were extracted so that train-

ing results can be easily implemented. This technique

was evaluated on two datasets. The first dataset contains

ECoG signals recorded using an 8 × 8 electrode grid in

touch with the brain at a sampling rate of 1000 Hz, and

the subject had to imagine movements of either the little

figure or the tongue. In the second dataset, 32 channels

were used for recording EEG signals with a sampling

rate of 256 Hz, where the participants had to execute

left-hand or right-hand button press. Using the GNMM

proposed by the authors, 10 channels were selected in

the first dataset which achieved a classification accuracy

of about 80 %. For the second dataset, six channels were

selected with which they achieved a classification accur-

acy of 86 %.

4.3 Embedded techniques

Lal et al. [40] adopted feature selection algorithms, recur-

sive feature elimination (RFE), and zero-norm optimization

based on the training of SVMs for channel selection and

demonstrated the usefulness of these operations on motor

imagery classification. Their work adopted an embedded

approach with a sequential search strategy for subset chan-

nel selection. The authors evaluated their method utilizing

39 EEG channel recordings from five subjects (A, B, C, D,

and E). A band-pass filter with cutoff frequencies 0.1 and

40 Hz was applied, and the sampling rate was 256 Hz. With

every subject, they recorded 400 trials, and each trial lasted

for 9 s tasking every subject to imagine left versus right

hand movements during each trial. They found that the

RFE and zero-norm optimization are capable of reducing

the number of channels without increasing the error. The

average error rate for 17 channels (located over or close to

the motor cortex) over the five subjects using RFE was

reported to be 23 %, while the average error rate using 12

channels was 24 %.

Schroder et al. [65] presented a robust EEG channel

selection algorithm across subjects in BCI systems

adopting an embedded approach with a sequential

search strategy for subset channel selection. They tried

to investigate whether channels selected for one sub-

ject are useful to the others as well. Data were re-

corded from eight male subjects using 17 EEG

channels with a sampling rate of 256 Hz. For each

subject, Welch’s method [66] was used to extract the

features, which were then fed to the linear SVMs for

classification. The authors used a recursive channel

elimination (RCE) method for the cross subjects chan-

nel selection. Using the RCE, the importance of the

channel is determined by its influence on the margin

of a trained SVM. After applying the RCE on the data-

sets from different subjects for cross channel selec-

tion, it was observed that it cannot only be used

successfully for channel selection in individual sub-

jects but also proved helpful in channel selection

across different subjects with low error rates. The

average error rate is 26.9 % with more than 32

channels.
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4.4 Hybrid techniques

Li et al. [67] proposed a method for selecting suitable

channels for classification of two motor imagery tasks:

right hand and right foot based on a common spatial

pattern algorithm as shown in Fig. 12. This method is

based on a wrapper approach with a complete search

strategy for subset channel selection. The l1 norms of

common spatial pattern features are used to compute

the contribution scores Di
footscore

and Di
handscore

for the ith

channel. The channels with larger values of Di
footscore

and

Di
handscore

are used to obtain channel rankings A and B,

where A is the channel ranking under right-hand motor

imagery task and B is the channel ranking under foot

imagery task. The first m ≤ 59 channels are selected

from A and removed from B to obtain channel ranking

C. After that, the first n (n ≤ 118 −m) channels of C are

selected. The channel combination is obtained by

combining both m and n. Finally, the optimal combin-

ation of channels is selected by comparing the classifica-

tion accuracy rates using an SVM with all combinations.

The authors evaluated their method on the datasets of

two subjects: “aa” and “a1” from the dataset IVa from

BCI competition III using 118 electrodes [52].

For the dataset “aa,” the highest classification accuracy

rate was 92.34 % using seven channels, while the classifi-

cation accuracy rate with all channels was 90.54 %,

respectively. Similarly, for the data set “a1,” the highest

classification rate was 94.63 % using eight channels,

while it was 90.82 % with all channels.

5 Channel selection for emotion classification
Human emotions are thought to be discrete in nature

with distinguishable EEG signals. The process of emo-

tion classification based on EEG signals may require

some sort of channel selection to save computation time.

In addition, there is a certain area in the brain that is

concerned with emotions, which makes channels from

other areas unrelated to emotion classification. Channel

selection approaches adopted for emotion classification

can be categorized to filtering and wrapper techniques.

Rizon et al. [68] proposed an asymmetric ratio (AR)

(asymmetric variance ratio and amplitude asymmetric

ratio) based channel selection method for human emo-

tion recognition from EEG signals as illustrated in

Figs. 13 and 14 and Table 2. The ratio of variances

between hemisphere channels was used as an indicator

for assessing the region of the brain and the channels

associated with emotion detection. The spectral power

ratios between hemisphere channels are used to pre-

cisely estimate the electrical activity. The asymmetric

variance ratio (AVR) is defined as [68]:

AVR ¼
V ið Þ−V jð Þ

V ið Þ þ V jð Þ
ð5Þ

where V(i) is the variance of left hemisphere channel,

V(j) is the variance of the right hemisphere channel, i =

0, 1, 2…….N, j = 0, 1, 2…..N, and N is the number of

homogeneously distributed electrodes on left and right

hemispheres.

The amplitude asymmetric ratio (AAR) is given by

[68]:

AAR ¼
P ið Þ−P jð Þ

P ið Þ þ P jð Þ
ð6Þ

where P(i) is the spectral power of left hemisphere chan-

nel, P(j) is the spectral power of right hemisphere chan-

nel, i = 0, 1, 2…….N, j = 0, 1, 2…..N, and N is the

number of electrodes on left and right hemispheres.

The method of Rizon’s et al. is a filtering approach

with a pre-specified subset of channels selected by a
Fig. 12 Flowchart of Li et al. algorithm [67]
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human expert. It was evaluated using 63 channel EEG

recordings (28 pairs, seven center electrodes) from five

healthy subjects with a 256 Hz sampling rate and a

band-pass filter between 0.05 and 70 Hz with five

different classes of emotions (disgust, happy, surprise,

sad, and fear). In this method, features are extracted

from the wavelet domain using Daubechies 4 (db4)

wavelet transform. The results show that this method

reduced the 28 pairs of channels to 2. For validating

the method, the authors employed a fuzzy C-Means

clustering algorithm to classify the emotions [68]. Its

results support their findings.

Jatupaiboon et al. [69] proposed a method to classify

two emotions based on EEG signals, which are positive

and negative emotions elicited by pictures. They ex-

tracted the power spectrum from five bands and used

SVM as a classifier in a wrapper channel selection

evaluation approach. In their experiment, they used a

manual approach for reducing the number of channels.

They utilized EEG recordings from 11 participants,

whom have been shown 100 pictures (50 positives and

50 negatives) from Geneva Affective Picture Database

(GAPED) [70]. The authors used EMOTIVE headset

with 14 channels [71] for recording with 4-s epochs

and 50 % overlapping. They achieved an 85.41 % accur-

acy rate with seven pairs (14 channels: full) and 84.18

% accuracy rate with five pairs, respectively. The au-

thors found also that frontal pairs of channels and

high-frequency bands give higher accuracy than other

pairs of channels and lower frequency bands.

6 Channel selection for mental task classification
Mental task classification is a new and challenging

trend in EEG signal processing. The main objective of

this classification process is enabling a patient to com-

municate with the outside world without physical

movement. This classification process may require

channel selection as a pre-processing step to reduce the

computation time.

6.1 Filtering techniques

Lan et al. [72] presented an ambulatory cognitive state

classification system to assess the user’s mental load

based on EEG measurements. Their work focused par-

ticularly on dimensionality reduction (channel selection

and feature projection) utilizing mutual information

techniques as shown in Fig. 15. This work is based on a

filtering approach with a sequential search strategy for

subset channel selection. In order to select an effective

subset of the available channels after pre-processing by

artifact removal and band-pass filtering, the authors

used a forward incremental method. Three classifiers,

Gaussian mixtures model (GMM), K-nearest neighbor

(KNN), and Parzen, were used to classify the feature

vector based on majority voting in a fusion filtering

process. The authors used 32 channels of EEG record-

ings from three subjects performing two mental tasks

(n-back, Larson) at two difficulty levels (low, high) with

256 Hz sampling rate to evaluate the method. The n-

back task is a continuous performance task used to

measure a part of working memory. The Larson task

requires the subjects to maintain a mental count

according to the presented configuration of images on

the monitor. For performance evaluation, the data was

divided into five sets and each set was saved for testing

and the other four were used for training. The average

classification accuracy was around 80 % for all subjects

Fig. 13 Channel selection with asymmetric ratio calculation

Fig. 14 Feature extraction in Rizon’s method
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when the number of channels was 7, 10, or 7 channels

selected based on literature suggestions.

6.2 Wrapper techniques

Chai et al. [73] presented a method for EEG mental

task classification using a genetic algorithm-based

neural network classifier. The method of Chai et al. is a

wrapper-based method with a pre-specified subset of

channels. They used six non-imagery tasks which are

arithmetic (math) by imagining and solving simple

multiplication, letter composing by mentally composing

simple words, Rubik’s cube rolling by imaging a Rubik’s

cube rolled forward, visual counting by mentally count-

ing numbers from one to nine, ringtone by imagining a

familiar mobile ringtone, and spatial navigation by

moving around and scanning the surroundings in a

familiar location in mind. Two methods of feature ex-

traction were used and compared: power spectral dens-

ity (PSD) and Hilbert Huang transform (HHT). For

recording, they used a monopolar EEG system from

Compumedic company with 256 Hz sampling rate. Five

participants were involved in this experiment with 10

sessions recording for each mental task. The accuracy

rate for classifying three mental tasks using the original

eight channels is between 76 and 85 % using PSD fea-

ture extractor. In case of two channels with PSD fea-

ture extractor, the accuracy rate was between 65 and

79 %, and with HHT feature extractor, the accuracy rate

was between 70 and 84 %.

Tavakolian et al. [74] presented a channel reduction

method for classifying three mental tasks (baseline,

multiplication, and geometric figure rotation) based on

genetic algorithms for subset generation as shown in

Fig. 16. This method is based on the wrapper approach

with random search strategy for subset channel selec-

tion. They used a feed-forward neural network as a

classifier, and its outputs were averaged and considered

as the performance function of the genetic algorithm.

The genetic algorithm was used to find the best six

channel combinations of 19 channels. The method was

evaluated using 19 channel EEG recordings from five

subjects with a 250 Hz sampling rate. In each session,

every task was repeated two times and each time lasted

for 10 s. The results showed that the classification

accuracy rates were 100, 99.6, 96.66, and 88 % for sub-

jects 1, 3, 5, 2, and 4, respectively.

7 Channel selection for sleep state classification
Sleep state classification is very important for infants as

well as adults. This classification process can be

performed with EEG signals. This field has been the

subject of interest of several neuroscience researchers.

It requires also some sort of channel selection to obtain

Table 2 Rizon’s channel selection algorithm for emotion

classification [68]

1. The raw EEG signals from five subjects over five discrete emotions are
collected using 63 electrodes which are placed through standard
International 10/20 system on the scalp.

2. The signals are pre-processed by mean removal and variance
normalization.

3. The signals are filtered using 5th order band-pass filter at a cutoff
frequency of 0.05 Hz – 45 Hz.

4. The signals are divided into five different EEG frequency bands using
5th order Butterworth filter.

5. Alpha band is used for channel selection.

6. From the 63-channel EEG signals, only 28 homogeneous channel-
pairs are separated out for calculating the asymmetric ratio for
channel selection.

7. For each subject, the values of AVR and AAR are calculated for all the
28 homogeneous pairs of electrodes using the equations (6) and (7).

8. If all values of AR are positive or negative for five emotions this leads
to a rank of 5, for four emotions this leads to a rank of 4, etc.

9. The channel pairs of higher ranks of AAR and APR are sorted as the
dominant channels for emotion recognition.

Fig. 15 Flow diagram of Lan et al. method [72]
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robust classification results because at least one EEG

channel combined with one electromyography (EMG)

and one electrooculography (EOG) are required for

manual scoring. Piryatinska et al. [75] presented a

channel selection method for neonate EEG sleep state

classification using a multivariate analysis approach

adopting filtering with a complete search strategy for

subset channel selection. It has two main stages: scor-

ing of sleep stages based on each combination of EEG

channels and selection of the optimal channel combin-

ation. The latter consists of three steps: producing two

rankings, one for the full term and one for the preterm

neonates, of the channel combinations; selecting the

channels that appear most often in the top channel

combinations; and validating these selections with a

cross validation methodology. They used EEG sleep sig-

nals from 36 neonates (20 full term and 16 preterm) re-

corded from 14 channels at a sampling rate 64 Hz. This

method achieved 87.20 % a mean agreement percentage

(MAP) with five channels (compared to physician’s

scores) and 87.41 % MPA with four channels for full

term and preterm, respectively.

8 Channel selection for drug effect classification
Ong et al. [76] presented a channel selection algorithm

for visual evoked potentials (VEP) based on principle

component analysis (PCA). The VEP is a small elec-

trical potential originating from the brain in response

to a visual stimulus. This algorithm was used to classify

alcoholic and non-alcoholic subjects. PCA transforms

the dataset into a new set of variables called principle

components to be ranked from the highest to the low-

est bases. The first few principle components usually

contain most of the variation present in the original

dataset. The performance of this algorithm was evalu-

ated on a VEP dataset recorded from 20 subjects: 10

are alcoholic and 10 are non-alcoholic. A total of 61

channels (variables) were used with a signal being sam-

pled at 256 Hz. The authors selected 16 optimal chan-

nels, since they contributed 98.563 % of the total

variance. Gamma band powers of the selected channels

were used as features for classification. An MLP neural

network was used as a classifier to classify the alcoholic

and non-alcoholic subjects. The gamma band power

was used as an input feature to the neural network. It

was concluded that the classification performance using

all the channels was 95.83 % and using 16 channels was

94.06 %, which are very close.

9 Conclusion and future research directions
This paper explored some EEG channel selection tech-

niques for different applications taking into consideration

the different criteria developed in the literature for chan-

nel selection evaluation and search strategy. The paper

introduced the basic notations and procedures of the

channel selection process. It presents a description of

channel selection approaches for a variety of applications.

The comprehensive study in this paper has revealed that

it is possible, without much loss in the performance of

the classification/detection tasks, to make use of a small

set of EEG channels ranging from 10 to 30 % of the avail-

able channels. This will in turn reduce the processing

complexity with less setup time and maintain the subject’s

convenience by having less electrodes. In some applica-

tions, such as sleep state classification, there are dominant

channels responsible for the activity of concern and need

to be determined. In some other applications, such as

seizure detection and prediction, the use of all channels

may lead to an overfitting effect during the classification

process. Table 3 summarizes the channel selection tech-

niques surveyed in Sections 3–8 as contrasted to each

application. These techniques have been tested using dif-

ferent databases. Therefore, an extensive study is needed

to determine the channel selection technique that gives

the highest performance score, when all techniques

belonging to a specific application are applied to a unified

database. Another important issue is to investigate chan-

nel selection techniques for emerging applications based

on visual and auditory-evoked potential [77]. Finally, it is

observed that channel selection algorithms are in general

based on features extracted from the EEG signals. Finding

features well representing all EEG signal states is still a

challenging task that needs further research. It is observed

from this study that channel selection has been investi-

gated intensively in motor imagery classification with a

variety of techniques. So, extending these techniques to

other applications will be useful. For wrapper, hybrid, and

embedded channel selection techniques, the performance

Fig. 16 Tavakolian et al. method [74]
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Table 3 Summary of channel selection methods

Technique Subset channel Evaluation
method

Performance metrics Application

Selection strategy

Duun-Henriksen et al. [12]
Statistical criteria Filtering Sensitivity, 96 %; false detection rate, 0.14/h (with three channels) Seizure

detection

Faul [13] Statistical criteria Average accuracy, 96 % on neonatal database; average accuracy,
94 % on adult database; computational effort saving, 65 %

Faul and Marnane [15] Statistical criteria Average accuracy rate, 95.74 % (location spread), 91 % (single idle),
and 91.48 % (twin idle), (with 2 channels)

Atoufi et al. [16] Sequential search Average accuracy rate, 60 % (for EEG dataset with three channels)

Shih et al. [17] Sequential search Wrapper Average accuracy rate, 97 %; average detection latency, 11.2 s
(with 4.6 average number of channels)

Glassman and Guttag [19]
Sequential search Average false negative, 0.011; average false positive, 0.48; and

average latency time, 9.54 s (with 7.1 average number of channels)

Chang et al. [22] Pre-specified Average accuracy rate,70 % (for EEG dataset with three channels);
average energy saving, 93.73 %

Greene et al. [25] Pre-specified Average accuracy rate, 90.77 % (with single channel, C3-C4)

Temko et al. [26] Channel
weighting

Average precision-recall, 84.42 (with 8 channels)

Zimbric et al. [29] Pre-specified
Human-based

Average sensitivity, 86.5 %; average specificity, 98 % (with 3 channels)

Tekgul et al. [30] Pre-specified Sensitivity, 96.8 %; specificity, 100 % (with 9 channels)

He et al. [31] Sequential search Filtering Average accuracy rate, ~95 % (with ~33 average number of channels) Motor
imagery
Classification

Tam et al. [34] Sequential search Highest average accuracy rate, 91.7 % (with 22 channels)

Yong at al. [37] Pre-specified Average accuracy rate, 73.5 % (with 13 average number of channels)

Meng et al. [39] Heuristic
algorithm

Average accuracy rate, 89.68 % (with 20 channels)

Wang et al. [41] Maximum of
spatial pattern
vectors

Average accuracy rate, 92.66 % (with 4 channels) and 94.96 %
(with 8 channels)

Shan et al. [45] Sequential search Accuracy rate, 63.7 (for first dataset with 2 channels) and 81.3 %
(for second dataset with 16 channels)

Arvaneh et al. [46] Pre-specified Average accuracy rate, 70.47 % (with eight channels)

He et al. [47] Genetic
algorithm

Average accuracy rate, 88.2 % (for first dataset) and 89.38%
(for second dataset)

Arvaneh et al. [48] Pre-specified Average accuracy rates (SCSP1), 81.63 % (for Dataset IIa with 13.22
average channels) and 82.28 % (Dataset IVa with 22.6 average number
of channels)

Average accuracy rates (SCSP2), 79.07 % (for Dataset IIa with 8.55
average channels) and 79.28 % (for Dataset IVa with 7.6 average
channels)

Yang et al. [51] Pre-specified Wrapper Average accuracy rate, 78 % (with 11 channels)

Wei and Wang [53] Random search Accuracy rate, 83 % (for S1 with 8 channels), 91 % (for S2 with 9
channels), 75 % (for S3 with 14 channels), 86 % (for S4 with 8
channels), and 87 % (for S5 with 7 channels)

Zhou and Yedida [54]
Sequential search

Average accuracy rate for healthy subjects >90 % (with 90 channels),
accuracy rate for stroke subject <85 % (with 110 channels)

Kamrunnahar et al. [55] Complete search Average classification errors, ~21.75 and 28.28 % (for subject 1 with 4
and 3 channels for tasks 1 and 2)

Yang et al. [62] Genetic
algorithm

Average accuracy rate, 80 % (for 10 channels with the first dataset)
and 86 % (for 6 channels with the second dataset)

Lal et al. [40] Sequential search Embedded Average error rate, 23 % (for 17 channels) and 24 % (12 channels)

Schroder et al. [65] Sequential search Average error rate, 26.9 % (with ≥32 channels)

Li et al. [67] Complete search Hybrid
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sensitivity should be studied with different types of classi-

fiers. With channel selection, we may still work on a

multi-channel basis, so the development of a framework

containing channel selection and decision fusion is an

open area for further investigation.
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