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Graphene is a very promising optoelectronic material and has gained more and more attention. To analyze its electromagnetic
properties, several numerical methods have been developed for graphene simulation. In this paper, a review of application of
graphene in electronic and photonic device is provided, as well as some widely used computational electromagnetic algorithms
for graphene modeling. �e advantages and drawbacks of each method are discussed and numerical examples of these methods
are given to illustrate their performance and application.

1. Introduction

Graphene consists of a monolayer of carbon atoms arranged
on a two-dimensional honeycomb lattice which is made up
of hexagons. Since its 	rst discovery in 2004, graphene has
attracted tremendous research interest in various 	elds due
to its distinctive properties [1–3]. Graphene is a rising star not
only in material science and condensed matter physics, but
also in the electronic and photonic device communities [4].

Graphene has unique electronic band structure, and the
electrons in it behave as massless Dirac fermion [5, 6].
Graphene acquires a pronounced electric 	eld e�ect which
means carrier concentration can be tuned by electrostatic
gating. It has been shown that, in bilayer graphene, the
electronic gap between conduction bands and the valence
can be tuned between zero and midinfrared energies, which
makes bilayer graphene the only known semiconductor with
a tunable energy gap [7, 8]. Zhang et al. [9] presented
a widely tunable electronic bandgap in electrically gated
graphene, and they realized a gate-controlled, continuously
tunable bandgap of up to 250meV. Large-area graphene
	lms of the order of centimeters on copper substrates were
realized by chemical vapor deposition using methane [10],
which facilitated the fabrication of graphene transistors.
A good review of graphene transistors in both logic and
radiofrequency applications is provided in [11].

Besides electron-device application, graphene has also
been recognized as a novel optical material for pho-
tonic application. Compared to traditional metal, graphene
exhibits several favorable properties. Particularly, surface
plasmon polaritons (SPPs), which are electromagnetic waves
coupled charge excitations on the surface of a conductor,
can be excited in graphene. �e plasmons in graphene are
tightly con	ned and the volumes of SPPs in graphene can

be 106 times smaller than those in free space [12]. �is
property leads to strong light-matter interaction in graphene
[13]. Additionally, the dielectric properties of graphene can
be electrically or chemically tuned by changing the charge
carrier density and Fermi energy [13–15]. Brar et al. [12]
created and probed plasmons in graphene with �� ≤ �0/100
and resonant energies as high as 310meV for 15 nm nanores-
onators. Fei et al. [16] showed common graphenes/SiO2/Si
back-gated structure support propagating surface plasmons
and they altered both the amplitude and the wavelength of
these plasmons by varying the gate voltage. �e graphene-
based plasmonicsmay enable the novel optic devices working
in di�erent frequency ranges—from terahertz to the visible
range—with extremely high speed, low driving voltage, low
power consumption, and compact sizes [17]. Vakil and
Engheta in [18] showed that graphene can be made into
a one-atom-thick platform for infrared metamaterials and
transformation optical devices by manipulating spatially
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inhomogeneous and nonuniform conductivity patterns. Ju
et al. [19] used metamaterial made up of periodic graphene
microribbon arrays for terahertz plasmon excitations and
demonstrated that the plasmon resonance can be tuned over
a broad terahertz frequency range by adjusting microribbon
width and electrostatic doping.

Our group has been dedicated to the study of molecular
sensors for a long time. Francescato et al. [20] presented
a platform for broadband molecular spectroscopy based on
the propagation of strongly con	ned antibonding plasmons
supported by graphene sandwiches. �is novel scheme mea-
sures the absorption spectrum of the molecule and shows a
broadband capability and high sensitivity. Recently, Yang et
al. [21] proposed a cylindrical graphene plasmon waveguide
and investigated its application in molecular sensing.

�e terahertz antenna based on graphene has promising
application in wireless communications in nanosystems.
�e tunable property of graphene facilitates the design-
ing of recon	gurable antenna. Huang et al. [22] presented
a beam recon	gurable antenna based on a switchable
high-impedance surface using single-layer graphene. �e
graphene-based antennas which have broad wavelength tun-
ing range are proposed in [23, 24].

In this paper, the electromagnetic simulation of graphene
is introduced and some widely used computational electro-
magnetic methods for graphene modeling are reviewed. �e
advantages and drawbacks of each method are discussed and
numerical examples of these methods are given to illustrate
their performance and application.

2. Electromagnetic Simulation of Graphene

To investigate the electromagnetic property of graphene,
Maxwell equations need to be solved to simulate the wave
propagation in graphene. In most cases, Maxwell equations
have no analytical solutions except for a few simple canon-
ical problems. �erefore, numerical methods are crucial to
understand the wave guiding and scattering by graphene.
�ere are three popular computational electromagnetic
methods to simulate graphene: 	nite-di�erence time-domain
method (FDTD), 	nite element method (FEM), and method
of moment (MoM). Each method has its own advantages
and disadvantages depending on the speci	c problem. Many
commercial so�ware packages based on these methods are
available, such as FDTD Solutions, CST, HFSS, COMSOL,
IE3D, and FEKO. All the so�ware packages can be used
to model graphene; however, none of these are developed
speci	cally for graphene which makes them less e�cient in
dealing with this monoatomic layer device.

Graphene is modeled as a thin surface with complex
conductivity which can be tuned by external electric 	eld bias
or chemical doping. �e surface conductivity of graphene is
commonly described by Kubo formula [32]:

�� = ��
2 (� − �2Γ)
�ℎ2 [ 1
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⋅ ∫∞
0
� (��� (�)�� − ��� (−�)�� ) ��

− ∫∞
0

�� (−�) − �� (�)(� − �2Γ)2 − 4 (�/ℎ)2 ��] ,
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where Γ is the phenomenological scattering rate, � is the
electron charge, � is the energy state, and ℎ denotes the
reduced Plank constant.�e 	rst term of (1) is corresponding
to the intraband contribution while the second term is due to
the interband contribution. �at is,

�� = �intra + �inter. (2)

�e intraband term in (2) can be evaluated by

�intra = �2����ℎ2 (2Γ + ��) [
����� + 2 ln (�

−��/	�
 + 1)] (3)

and the interband term in (2) is approximated by

�inter = − ��24�ℎ ln(2 ���������� − (� − �2Γ) ℎ2 ���������� + (� − �2Γ) ℎ)
(��� ≪ ����������) ,

(4)

where �� is the chemical potential, � is the temperature, and�� is the Boltzmann constant.
In electromagnetic simulation, the 2D graphene surface

is usually approximated by a 3D dielectric slab whose 3D
conductivity is evaluated by the following equation:

�3D = ��� , (5)

where � is the thickness of the graphene layer. �e accuracy
of 3D dielectric slab model degrades as � increases. It can be
shown that, using the 2D conductivity, the SPP wavelength is
[25]

�SPP = �0 (1 − ( 2"0�)
2)−0.5 . (6)

�e 3D dielectric slab can support even and odd modes. �e
odd mode has the wavelength of

�odd = 2�(−2�coth−1�3D)
−1

(7)

and (6) can be approximated by (7) only if the following three
conditions are satis	ed [25]:

��SPP ≪ 1,
|�| ≪ 2"0 ,���������
������� > 2��0.

(8)

Figure 1 shows the relative error of using the dielectric slab
model for graphene with respect to normalized � and �; more
details can be found in [25].
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Figure 1: Relative error of the dielectric slab model with respect to
normalized � and � [25].

3. Finite-Difference Time-Domain Method

FDTD is time-domain method which has speci	c advantage
in transient problem and wideband problem.�e broadband
results can be obtained in one simulation. Compared to
frequency-domain method, it takes less computing memory
and simulation time. Additionally, FDTD is an iterative
scheme which eliminates solving large linear system; hence,
it is simple, robust, and easy to implement.

�ere are three general approaches to model graphene
in FDTD: (I) using standard FDTD method with very 	ne
mesh within the graphene sheet; (II) using the subcell FDTD
method; (III) using surface resistive boundary condition.

In the 	rst approach, graphene is modeled as thin layer
with 	nite thickness and the surface conductivity is trans-
formed to volume permittivity. According to the Courant-
Friedrichs-Lewy (CFL) stability condition of FDTD, 	ne
mesh leads to small time step, so this approach is both
memory- and time-consuming which reduces its e�ciency.
To alleviate the time step constraint, some unconditionally
stable FDTD methods are developed for graphene simu-
lation. In [33], the locally one-dimensional (LOD) FDTD
is applied for the e�cient simulation of graphene device.
�ey demonstrated that the LOD-FDTD can be 60% faster
than standard FDTD with reasonable accuracy. Wang et al.
[26] proposed an unconditionally stable one-step leapfrog
alternating-direction-implicit (ADI) FDTD to study the SPPs
in graphene structure. In Figure 2, they showed the SPPs
propagating along the spiral waveguide. �e one-step ADI-
FDTD method gives accurate result which is comparable to
conventional FDTD.�ey also showed that the conventional
FDTD took 1.7 × 105 s for this problem, while ADI-FDTD
only took 0.8 × 105 s with CFLN = 10.

In the second approach, graphene is treated as thin layer
occupying a fraction of FDTD cell [27]. �e Yee cell for the
subcell FDTDmethod is shown in Figure 3, where%� compo-
nent is split into%�,� and%�,
 in cells occupying graphene [27].
However, this scheme is complex in mathematics and needs
special type of PML to model in	nitely thin sheets [34].

In the third approach, graphene is modeled as a zero-
thickness conductive sheet over which the 	elds satisfy the
surface boundary condition. Nayyeri et al. [28, 35] presented
this scheme in detail. As shown in Figure 4(a), a conductive
sheet locates at&+ 1/2. �e tangential component of' 	eld

is discontinuous over the sheet, so '� is split into 1'� and
2'�, which satisfy the following discretized Faraday law:

�1
1'�+1/2� − 1'�−1/2�Δ- = %�� (& + 1/2) − %�� (&)Δ3/2 , (9a)

�1
2'�+1/2� − 2'�−1/2�Δ- = %�� (& + 1) − %�� (& + 1/2)Δ3/2 . (9b)

�e surface boundary condition is

2'� − 1'� = ��%� (10)

from which %��(& + 1/2) can be written as

%�� (& + 12) = 12�� [(
2'�+1/2� + 2'�−1/2� )

− (1'�+1/2� + 1'�−1/2� )] .
(11)

Substituting (11) into (9a) and (9b), 1'� and 2'� can be
derived as

1'�+1/2� = 11 − ;1;2 (<
�
1 + ;1<�2 ) , (12a)

2'�+1/2� = 11 − ;1;2 (<
�
2 + ;2<�1 ) . (12b)

�e expressions of ;1, ;2, <�1 , and <�2 are shown in [28].
Figure 4(b) is a 3D FDTD cell containing conductive sheet
at & + 1/2. In this case, tangential components of magnetic
	eld ('�, '�) and normal component of electric 	eld (%�) are
discontinuous over the sheet, so they are split into two parts
on the two sides of the surface. �eir updating equations can
be derived in a similar way to 1D case and are presented in
[28].

�e surface boundary condition approach has been val-
idated [28]. Figure 5(a) shows a 2D problem in which an
in	nite line source radiates above an in	nite graphene sheet.
�e pattern of %� at the wavelength of 100 �m is shown
in Figure 5(b). A strong agreement between the proposed
FDTD result and that derived from semianalytic method is
obtained. In addition, unlike the subcell FDTD method, the
classical PML is applicable to the surface boundary condition
scheme.

In time-domain simulation, the conductivities of
graphene shown in (2)–(4) need to be converted from
frequency domain into time domain. �e intraband
conductivity, which has a Drude-like expression, can be
easily converted into time domain. However, the interband
conductivity has a complex logarithmic form which needs
a vector 	tting technique. A summation of partial fractions
in terms of complex conjugate pole-residues is applied to
approximate the conductivity.�e detailed description of the
	tting technique can be found in [35–37].
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Figure 2: �e normalized %� component of guided SPPs along the spiral graphene waveguide at time - = 1.9258 ps calculated by (a)
conventional FDTD and (b) the proposed improved ADI-FDTD with CFLN = 10 [26].
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4. Finite Element Method

FEM is a full-wave numerical technique for electromagnetic
boundary-value problems.�e basic principle of this method
is to discretize the whole computing domain with a 	nite
number of subdomains in which the unknown function is
expanded by simple interpolation functions with unknown
coe�cients. �en, a system of algebraic equations of these
unknown coe�cients is obtained by using Ritz variational or
Galerkin’s method. Finally, by solving this linear system, the
approximated solution of the entire domain can be obtained.

In FDTD, the computing space is discretized by orthogo-
nal grid; this staircase approximation will reduce the mod-
eling 	delity when it comes to complex geometry, while
in FEM, where the triangles or tetrahedral elements are
applied, arbitrary geometries can be modeled accurately. As
a result, FEM has advantage in complex and inhomogeneous
problems. Furthermore, FEM is a frequency domain method

which makes it e�cient in dealing with narrow-band prob-
lems.

Brar et al. [12] solved Maxwell’s equation by FEM and
modeled graphene as a thin sheet with 0.1 nm thickness;
the results suggested that graphene can increase light-matter
interactions at infrared energies. So�ware packages such as
HFSS and COMSOL are based on FEM, and they are used
widely in graphene simulation. Recently, we used COMSOL
to investigate the transmission properties of a cylindrical
graphene plasmon waveguide [21]. Tamagnone et al. [29]
simulated a recon	gurable graphene antenna with HFSS; the
structure of the antenna is shown in Figure 6(a); the input
impedance of the antenna can be tuned by changing the
chemical potential as shown in Figure 6(b).

5. Method of Moments

In contrast to FDTD and FEM which solve di�erential
equations, MoM is a technique used to solve electromag-
netic surface or volume integral equations in the frequency
domain. In MoM, the quantities of interest are not the 	elds
but the electromagnetic sources (surface or volume current),
so only the surface of the geometry needs to be discretized.
�e surface current is discretized into wire segments and/or
surface patches. A linear system can be constructed by the
method of weighted residuals and the results of the linear
equations give the surface current. �e far-	eld result can
be derived from the surface current by Green’s function.
Because it only requires calculating the boundary values
instead of the values throughout the space, MoM is highly
e�cient for electrically large objects and is widely used in
solving radiation and scattering problems. However, when
applied to complex inhomogeneous cases, it will be very
computationally expensive and less e�cient.

�e analytical expressions of dyadic Green’s function for
graphene are derived in [38]. Shapoval et al. [39] proposed
integral equations based on surface-impedance boundary
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Figure 5: (a) Line source scattering by a graphene sheet. (b) Normalized pattern of %� at the wavelength of �0 = 100 �m [28].

condition to analyze plane wave scattering and absorption
by graphene-strip gratings. �e method of moments for
graphene nanoribbons was developed in [40–44], in which
the issue of nonlocality of graphene conductivity was taken
into account. Nonlocal e�ect arises from spatial dispersion
of graphene which is nonnegligible when dealing with slow
modes supported by graphene nanoribbons. �e spatially
dispersive intraband conductivity tensor was derived in [41].

So�ware packages such as IE3D and FEKO are based on
MoM. IE3D is applied to simulate themicrowave propagation
in a coplanar waveguide over graphene from 40MHz to
110GHz [45]. Cabellos-Aparicio et al. [30] used FEKO to
study the radiated power of a graphene plasmonic antenna
fed by photoconductive source. �e antenna structure is
shown in Figure 7(a) and the radiated power with respect to

frequency is shown in Figure 7(b).�e detailed parameters of
the photoconductive antenna can be found in [30].

6. Discontinuous Galerkin
Time-Domain Method

�e graphene involved problems are o�en multiscale.
Graphene is monoatomic and its thickness is much smaller
than wavelength, so it is an electrically 	ne structure. In
contrast, the substrate belongs to electrically coarse structure
because its dimension is much greater than wavelength.
As we have mentioned before, time-domain methods have
the advantage that the broadband characterization can be
obtained with only a single simulation. However, FDTD
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method has a serious e�ciency problem in multiscale sim-
ulation because it requires high discretization density to
model electrically 	ne structure due to its cartesian grid. �e
	nite element time-domain (FETD) method is capable of
modeling complex and 	ne structures and achieving high-
order accuracy with high-order basis functions. �e major
drawback is a global linear system of equations that needs to
be solved at each time step. �e multiscale problems usually
contain a large number of unknowns; FETDwill be very com-
putationally expensive in this case. Discontinuous Galerkin
time-domain (DGTD) method is promising in multiscale
problems [46]. DGTD allows for domain decomposition. A
multiscale structure is divided into several subdomains and
each subdomain can be discretized separately. All operations
in DGTD are local, so large global matrix is split into several

smaller matrices. Unlike FETD, the matrices of DGTD are
inverted and stored before time marching, and di�erent
time integration scheme can be used in di�erent subdomain.
Additionally, DGTD is naturally adapted to parallel comput-
ing. Recently, DGTD has been used in nanophotonics 	eld
and considered as a viable alternative to the well-established
FDTD and FETD methods [47].

Li et al. [31] proposed DGTD method with resistive
boundary condition for the electromagnetic analyzing of
graphene. �ey also applied this method to the magne-
tized graphene from microwave to THz range, where the
anisotropic and disperse surface conductivity is involved
[48]. Figure 8(a) shows the re�ection Γ�, transmission Γ
, and
absorption Γ� coe�cients of an in	nitely large graphene sheet
under the illumination of a normally incident plane wave;
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Figure 8: (a) �e magnitude of re�ection Γ�, transmission Γ
, and absorption Γ� coe�cients calculated by DGFD as well as the theoretical
value. (b) Normalized extinction cross section of a graphene patch calculated by DGTD and integral equation method [31].

the results of DGTD agree very well with the theoretical data.
Figure 8(b) is the normalized extinction cross section of a
freestanding graphene patch; good consistency is achieved
between DGTD and integral equation method. More numer-
ical examples can be found in [31].

7. Conclusion

Due to its intriguing properties, graphene is used more and
more widely in electronic and photonic community. �is
paper gives a brief review of application of graphene, aswell as
the computational methods which can be used to investigate
its electromagnetic properties. Although a number of famous
commercial so�ware packages are available for graphene sim-
ulation, none of them are developed speci	cally for graphene;
therefore, they su�er from ine�ciency. Each computational
method has its own advantages and drawbacks; one should
choose the appropriate method according to the speci	c
problem. FDTD is simple and easy to implement; however, it
is less e�cient in modeling 	ne structure. FEM is �exible in
geometry modeling but solving large global system makes it
computationally expensive. DGTD is very suitable for multi-
scale problem and we believe it will be more andmore widely
used in modeling and designing graphene-assisted device.
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