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Abstract Biophysical computational models are complementary to experiments and
theories, providing powerful tools for the study of neurological diseases. The focus of this
review is the dynamic modeling and control strategies of Parkinson’s disease (PD). In
previous studies, the development of parkinsonian network dynamics modeling has made
great progress. Modeling mainly focuses on the cortex-thalamus-basal ganglia (CTBG)
circuit and its sub-circuits, which helps to explore the dynamic behavior of the parkin-
sonian network, such as synchronization. Deep brain stimulation (DBS) is an effective
strategy for the treatment of PD. At present, many studies are based on the side effects
of the DBS. However, the translation from modeling results to clinical disease mitigation
therapy still faces huge challenges. Here, we introduce the progress of DBS improvement.
Its specific purpose is to develop novel DBS treatment methods, optimize the treatment
effect of DBS for each patient, and focus on the study in closed-loop DBS. Our goal is
to review the inspiration and insights gained by combining the system theory with these
computational models to analyze neurodynamics and optimize DBS treatment.

Key words computational model, deep brain stimulation (DBS), Parkinson’s disease
(PD), basal ganglia (BG)

Chinese Library Classification O175.1
2010 Mathematics Subject Classification 37N25

1 Introduction

Parkinson’s disease (PD) is a common chronic neurodegenerative disorder, which involves
several neural pathways of motors and non-motors. The core pathology underlying PD is
degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) in midbrain,
leading to the decrease in the dopamine (DA) level in striatum. PD is characterized by motor
impairments including rigidity, slowness of movement, and tremor. It can also cause a wide
range of non-motor symptoms that appear normally in the course of the disease both early and
late-loss of smell, sleep disorders, autonomic dysfunction, cognitive decline, and depression[1].
The severity of these symptoms increases as the PD progresses[2].
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In PD, the electrophysiologic changes of the basal ganglia (BG), thalamus, and cortex include
changes in firing rates, increasing incidence of bursting behaviors, interneuronal synchrony, and
enhancing beta-band (13Hz–35Hz) oscillatory activity[3–4]. These obvious dynamic changes
provide a physiological basis for modeling studies. The lack of DA in the SNc is associated
with the pathological dynamics in the motor-related neuronal network spanning the cortico-
thalamus- basal ganglia-cortical circuit[5]. Many computational models ranging from the sub-
thalamic nucleus (STN)-globus pallidus externa (GPe) circuit, the striatum microcircuit, and
basal ganglia-thalamic (BGTH) circuit to the cortex-thalamus-basal ganglia (CTBG) circuit
have been proposed in recent years. Even if several advancements in the fields of anatomy,
physiology, and biochemistry of these nuclei in BG have yielded new information in the last
decades, the molecular and cellular mechanisms involved in the pathogenesis have not been
well understood yet. In order to develop effective therapy, the improvement of our current
understanding of PD pathogenesis and progression is crucial.

Current treatments aiming at treating motor features help moderate symptomatic effects.
However, no available therapy has been proven to be able to cure or slow the process of
neurodegeneration[2]. At present, there are mainly three kinds of therapeutic methods to relax
symptoms, i.e., medication, surgical procedures, and deep brain stimulation (DBS). DBS is the
most common surgical treatment for motor features in advanced PD, though the underlying
mechanisms behind DBS remain elusive. The two primary DBS targets are STN and globus
pallidus pars interna (GPi). Notably, STN-DBS often results in a greater ability to reduce the
need for DA replacement medications and improve the cardinal motor features of PD, while
GPi-DBS can reduce motor complications, such as dyskinesia[6]. Although DBS is helpful for
the aforementioned motor features, there are still some side effects. The specificity of the pa-
tient requires the doctor to spend some time setting the parameters of the neurostimulator,
and the battery charging problem is also one of the most common reasons for the pain of DBS
patients. Therefore, the improvement of DBS has attracted more and more attention in recent
years.

In this review, we shall provide a review of development of a parkinsonian computational
model under the new research in the fields of anatomy, physiology, and biochemistry and also a
review for recent development of the treatment of PD via DBS, emphasizing the contributions
that the system theory has been provided to explain the global dynamics of neuronal circuits
which are regulated by DBS. This review highlights the recent improvements in DBS, which
may be a significant advancement in the treatment of PD.

2 Computational models of CTBG circuits

The BG is an intricately connected assembly of many subcortical nuclei, forming the core
of an adaptive network connecting cortical and thalamic circuits[7–8]. The striatum, GPe,
GPi, STN, the substantia nigra pars reticulata (SNr), and SNc are generally considered to be
the main components of the BG. The striatum is the main input structure and the principal
recipient of cortical inputs and the DA inputs[9], and only two types of neurons are commonly
considered in the modeling of striatum, i.e., fast spiking interneuron (FSI) and medium spiny
neuron (MSN).

The motor circuit consists of multiple parallel polysynaptic loops, which begins with a
convergent input from the cortex to the input nuclei of the BG and then proceeds through
different pathways to the GPi or SNr, which projects to the thalamus and the cortex. There
are three pathways through the BG, i.e., the direct, indirect, and hyper direct pathways, as
depicted in Fig. 1(a). The direct pathway is composed of MSN that expresses DA D1 receptors
(D1 MSN), and projects to both SNr and GPi. The indirect pathway is composed of MSN that
expresses DA D2 receptors (D2 MSN), and projects to the GPe[10]. The hyper direct pathway
is a projection from the cortex to the STN.
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In PD, the degeneration and death of dopaminergic neurons in SNc and decrease in the DA
level of BG bring about the abnormal function of neural circuitry (see Fig. 1(b)), which also
leads to the emergence of the movement disorders and slighter cognitive issues. Albin et al.[11]

were the first to put forward the functional explanation for the effects of DA depletion of the
BG. The classic model believes that the lack of DA would suppress the D1 MSN projecting to
the GPi, and therefore inhibit the direct pathway. Conversely, it would facilitate the activity
of the D2 MSN projecting onto the GPe, thus exciting the indirect pathway (see Fig. 1(b)).
For striatum microcircuits, DA depletion was implemented by changing the circuit properties.
These changes include a reduction in connections between D1 and D2 MSNs, the removement
of the connections between D1 MSN, a reduction in mutual inhibition between D2 MSN, and
an increase in FSI inhibition to D2 MSN[10]. A result of this effect would be an over-inhibition
of the thalamus, which would depress excitatory synapses input in the thalamus to MSNs and
cortex.

Fig. 1 CTBG network of (a) normal state and (b) parkinsonian state, where the arrows represent
excitatory connections, and the round heads represent inhibitory connection (color online)

At present, even if many advancements in the fields of anatomy, physiology, and biochemistry
of these nuclei have yielded new information in the last decades, the internal mechanisms of PD
are far to be fully understood. Accordingly, the establishment of reliable computational models
to investigate the inner events of the pathogenesis represents a key issue in the field. Current
models of neuron and mean-field are predominantly biophysically based and account for several
factors that influence the electrophysiology of neurons, e.g., processing of synaptic inputs, ionic
basis of electrical excitability, and the effect of DA[12–15]. Here, we review the neuron model
and mean-field neural model which are of physiological significance.

2.1 Neural network models

The biological Hodgkin-Huxley (HH) and derivative models have confirmed their availability
for recognizing and signifying the electrical activities in single neurons[16–19]. Studies have shown
that the CTBG network model for central nervous systems has always been the physiological
basis for studying PD. In the past modeling process, the conductivity-based HH model is used to
describe the dynamic behavior of different neurons from a mathematical perspective. The HH
model is based on the electrical equivalent circuit model which is a useful method to describe the
behavior of membrane potential. It mainly includes three parts, i.e., ion channel, power supply,
and capacitor. Figure 2(a) shows an equivalent circuit representation of neurons with sodium
(Na), calcium (Ca), and potassium (K) ion-channels and leakage current (L). The membrane
capacitance current can be expressed as

Icap = Cm
dV

dt
, (1)
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where Cm is the membrane capacitance. In the equivalent circuit, each ion channel is usually
represented by a series of conductors. Assume that the conductance of a single ion channel a
is ga. According to Ohm’s law, the current of ion channel a can be expressed as

Ia = ga(V − Ea), (2)

where Ea is the reversal potential given by the Nernst potential. According to Kirchhoff’s
current law, the sum of the total current flowing into the cell is zero. The differential equation
of membrane potential is obtained as

0 = Cm
dV

dt
+

∑

a

Ia, a = {Na, Ca, K, L}. (3)

Besides, a simple spike model, i.e., the Izhikevich model, reproduces a variety of behaviors
of biological neurons, including bursting, spiking, and subthreshold oscillations[20]. It can also
be used in the modeling analysis of PD research. Here, we review the computational network
models based on a single neuron which has been used in the past few decades, ranging from the
BG circuit model, the BGTH model, and the striatum microcircuit model.

φ

φ

-

Fig. 2 (a) Equivalent circuit representation of a patch of cell membrane with sodium (Na), calcium
(Ca), and potassium (K) ion-channels and leakage current (L); (b) BGTH network connection
diagram, where each STN neuron projects to two neighboring GPe and GPi cells, each GPe cell
inhibits two neighboring STN, GPe, and GPi cells, each GPi cell inhibits one thalamus cell, and
Thalamus receives pulses from the SMC; (c) the conversion relationship among the membrane
potential Va, the mean firing rate Qa, and the pulse rate φab in the mean-field model; (d)
diagram of the CTBG mean-field model, where the model contains excitatory (denoted by
“e”) and inhibitory (denoted by “i” ) interneurons in the cortex, striatum D1, D2 nuclei, GPe,
GPi, STN, and the thalamic relay nuclei (TRN) in the thalamus. In addition, the modeling
of ventral anterior (VA) nucleus, ventrolateral (VL) thalamic nucleus, and centromedian-
parafascicular (CM-Pf) complex is also considered. The arrows represent excitatory glutamate
output, and the round heads represent inhibitory GABA output (color online)
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Both STN and GPe are the essential components of the indirect pathway in BG, and it is
crucial in the motor circuit. The interaction between STN and GPe nucleus is complicated.
GPe neurons are excited by the glutamate action of STN neurons, send gamma-aminobutyric
acidergic (GABAergic) inhibitory projections to STN, and then are reactivated by the rebound
excitatory action of STN[21]. These properties suggest the possibility for intrinsic oscillations
arising within the STN-GPe circuit, and therefore capture the dynamic interaction of the STN,
and GPe is important to generate the pathological changes in PD. Based on experimental data,
Terman et al.[21] established a single-compartment conductance biophysical model of STN and
GPe cells, which laid a model foundation for subsequent studies. The dynamics of the neuron
membrane potential of STN and GPe can be expressed by the following standardized HH neuron
differential equations:

CmV ′ = −
∑

k

I ion
k − Isyn + Iapp, (4)

where V is the membrane voltage of STN or GPe, and V ′ is the derivative of V . I ion
k represents

the total ion current of the neuron, and Isyn represents the synaptic current. In the network
connection between STN and GPe, Iapp is the bias current acted by peripheral nerve nuclei
to adjust the discharge characteristics of different types of neurons. For STN, it includes the
potassium current

IK = gKn4(V − EK),

the sodium current

INa = gNam
3
∞(V )h(V − ENa),

the leakage current

IL = gL(V − EL),

Ca2+ currents

IT = gTa3
∞(V )b2

∞(r)(V − ECa),

ICa = gCas
2
∞(V )(V − ECa),

and a Ca2+-activated after hyperpolarization potassium current

IAHP = gAHP(V − EK)(CCa/(CCa + 15)),

which depends on the intracellular calcium concentration CCa to regulate the post-polarization
current. The modeling of the ion currents includes different gated variables, which are treated as
functions of time and voltage, have the first-order dynamics, and are controlled by the following
form of differential equation:

dX

dt
= ϕX((X∞(V ) − X)/τX(V )), (5)

where X can be n, h, and r. τX is the time constant of ion channel switching. Using this formula,
the activation (and deactivation) time constant has an asymmetric bell-shaped relationship with
the voltage. The activation gating of the fast activation channel is regarded to be instantaneous.
The steady-state voltage dependence can be expressed as X∞(V ) = 1/(1+exp(−(V −θX)/σX)),
where X can be n, h, a, s, m, or r. The inactivation variable b of T current can be considered as

b∞(r) = 1/(1 + exp(−(r − θb)/σb)) − 1/(1 + exp(−(−θb)/σb)),
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which can make the rebound burst of STN cells more obvious. Isyn is mainly the inhibitory
effect of GPe on STN, represented by

IG-S = gG-S(V − VG-S)
∑

sj ,

where gG-S is the maximum synaptic conductivity, and each synaptic variable sj solves a first-
order differential equation as follows:

s′j = αH∞(VGj − θG)(1 − sj) − βsj , (6)

where VGj is the membrane potential of the jth GPe neuron, and

H∞(V ) = 1/(1 + exp(−(V − θH
G )/σH

G )).

For the modeling of GPe, the synaptic current of GPe includes the excitatory effect of STN
on GPe and the inhibitory effect of GPe itself. Terman et al.[21] used each type of network
models with 8 to 20 neurons to construct three different structural connections, i.e., random
and sparsely connected architecture, structured and sparsely connected architecture, and struc-
tured and tightly connected architecture. The results show that the STN-GPe circuit can not
only exhibit the rhythmic activity but also have irregular autonomous activity patterns. This
provides a basis for explaining the related oscillatory activity in the STN and GPe in PD from
a modeling perspective.

GPi is the major output nucleus of BG. Projections of different pathways converge on GPi
and then project to thalamus. Simply view the thalamus as a relay station whose role is to
respond faithfully to incoming sensorimotor signals, although the function of the thalamus is
more than that. A BGTH model by Rubin and Terman[22] provided a mathematical phase
plane analysis of the mechanisms that determined thalamic relay capabilities, and introduced
the notion of thalamic relay fidelity as a potential indicator of PD for the first time. They
considered that GPe and GPi neuron membrane potential dynamics were similar and were
expressed by using the same formula. The parameters of the STN model are slightly adjusted
to reflect the firing pattern. In addition to BG, the modeling of thalamus neurons simply
considers the leakage current, potassium current, sodium current, and T-type current,

⎧

⎪

⎨

⎪

⎩

CmV ′
TH = −IL − INa − IK − IT − IG-T + ISMC,

h′
T = (h∞(V ) − hT)/τh(V ),

r′T = (r∞(V ) − rT)/τr(V ),

(7)

where IG-T is the synaptic current from GPi to thalamus. hT and rT are gated variables. ISMC

represents the sensorimotor cortex (SMC) input of the thalamus, and is modeled as a periodic
step function of the following form:

ISMC = iSMCH(sin(2πt/ρSMC))(1 − H(sin(2π(t + δSMC)/ρSMC))). (8)

Rubin and Terman[22] established a healthy state and a parkinsonian state by selecting the
form of s(t) from GPi to thalamus. The relay capacity of the thalamus can indirectly reflect
the state of the system.

Then, the BGTH model was extended and later used to disentangle the contributions of
local cells in the subthalamopallidal subsystem and fibers of passage to the modulation of
thalamocortical neurons[23]. So et al.[23] improved the model proposed by Rubin and Terman[22].
This modification mainly includes the parameters of the ion channels, the modeling of ICa, and
the synaptic currents. The neuron model qualitatively replicates the firing patterns observed
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in experiments. For STN→GPe, STN→GPi, and GPi→TH, the synaptic current is established
as

ds

dt
= z, (9)

dz

dt
= 0.234u(t)− 0.4z − 0.04s, (10)

where u(t) depends on the presynaptic cell potential, when the presynaptic cell crosses the
threshold of –10mV, and u(t) = 1. Otherwise, u(t) = 0. Figure 2(b) shows the network
connection for the BGTH circuit. In the healthy state of the improved BGTH model, the STN,
GPe, and GPi neurons present a random discharge pattern, and the thalamic relay neurons
can accurately relay the cortical SMC signal input (see Fig. 3(a)). In the parkinsonian state,
STN, GPe, and GPi neurons exhibit regular burst oscillations, and thalamic relay neurons

Fig. 3 Firing patterns of GPe, GPi, thalamic, and STN neurons in different states of the BGTH
network: (a) normal state, where STN, GPe, and GPi neurons exhibit random firing, and the
TRN can accurately relay the cortical SMC signal input; (b) parkinsonian state, where STN,
GPe, and GPi neurons exhibit regular cluster oscillations, and TC neurons cannot accurately
respond to the cortical SMC signal input; (c) simulating the LFP, compared with the healthy
state, in the parkinsonian state, where the amplitude of the LFP is significantly increased due
to the increased synchronization between neurons; (d) power spectral density analysis of the
LFP under different conditions, in the parkinsonian state, which has an obvious peak in the
beta-band (color online)
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cannot accurately respond to SMC signal input (see Fig. 3(b)). Besides, they also explore
the therapeutic effects of STN-DBS and GPi-DBS. During STN and GPi-DBS, the activation
of local cells through fibers reduces thalamic transmission errors. To indirectly reflect the
synchronization of neuron groups, it is a good tool to indirectly simulate the local field potential
(LFP) by weighting the synaptic variables of neurons (see Subsection 3.2). In the parkinsonian
state, the amplitude of LFP increases significantly due to the bursting behavior of neurons (see
Fig. 3(c)). Through the power spectral density analysis, it is found that there is an obvious peak
in the beta-band which is consistent with the experiment (see Fig. 3(d))[24]. It is worth noting
that, in the BGTH model, the striatal inputs to the GPe and GPi are specifically represented
by constant currents directly injected into GPe and GPi cells.

The striatum is the main input structure of the BG and receives input from cortex and DA
from SNc. Altered firing in the GPe and GPi suggests that striatal MSNs of the direct and
indirect pathways are imbalanced during DA depletion. Both MSN classes receive inhibitory
input from each other and inhibitory interneurons FSI within the striatum. The effect of DA
reduction first appears in the striatum. Therefore, the inhibitory microcircuits of the striatum
are known to be critical for motor circuit. There are mainly four types of neurons inside the
striatum, of which MSNs account for more than 95%[25]. The modeling of the striatal inhibitory
microcircuit is mainly carried out for MSNs and FSIs. Humphries et al.[12] used the Izhikevich
model to model DA-modulated MSNs and FSIs. According to different DA receptors, MSNs
can be divided into two categories, i.e., D1 MSN and D2 MSN. The relative level of DA receptor
occupancy is expressed by the parameter ϕ1 (for D1) and parameter ϕ2 (for D2) and normalized
to the interval [0, 1]. The dynamics of MSNs can be expressed as

CmV ′
D1 = k(VD1 − Vr)(VD1 − Vt) − u + I + ϕ1gDA(VD1 − EDA), (11)

CmV ′
D2 = k(1 − αϕ2)(VD2 − Vr)(VD2 − Vt) − u + I, (12)

I = Iampa + B(V )Inmda + Igaba-fs + Igaba-ms. (13)

The formula includes the modulation factor k, the resting and threshold potentials Vr and Vt,
and the synaptic current I. MSNs receive input from the cortex Iampa and Inmda, the inhibitory
input Igaba-fs from FSI, and the inhibitory input Igaba-ms from other MSNs. B(V ) simulates the
voltage-dependent insertion of magnesium into the N-methyl-D-aspartic acid receptor (NMDA)
receptor[12]. FSIs only express the D1 receptor on their cell membrane. Therefore, the mem-
brane potential of FSI can be expressed as

CmV ′
fs = k(Vfs − Vr(1 − ηϕ1))(Vfs − Vt) − ufs + I, (14)

I = Iampa + Igaba + Igap. (15)

According to the experimental results, Vr is modulated by 1 − ηϕ1. The synaptic currents
includes the cortical input Iampa and the FSI input Igaba, and there are also electrical synaptic
connections inside FSIs. Electrical synaptic connections play a very important role in FSIs.
A subsequent study showed that they played a vital role in generating balanced discharges[26].
Based on the above formula, Humphries et al.[12] established a new three-dimensional model
of the connectivity of striatal microcircuits, discovered the synchronization behavior within
MSNs, and found that the time scale of synchronization largely depends on the simulated DA
concentration.

In addition to the modeling with the Izhikevich model, the HH model is also used to model
the striatal microcircuit. McCarthy et al.[27] used the HH model to model FSIs and MSNs
based on the experimental results. The voltage of each neuron is described as

CmV ′ = −
∑

Imemb −
∑

Isyn + Iapp. (16)
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The membrane currents are modeled by HH conductance dynamics

Imemb = g(mnhk)(V − Eion),

where g is the maximum conductance. Eion stands for the reversal potential. m and h are the
activation and inactivation gated variables, respectively. Different from the previous modeling,
the MSN neurons contain a special current, i.e., the M-current. The maximum conductance
of the M-current is thought to be regulated by acetylcholine in MSNs[27]. By reducing the
conductance of the M-current, the characteristics of the striatal network in the parkinsonian
state can be indirectly fed back. The simulation results are consistent with the experimental
results through an analysis, which indicates that the changes of the M-current conductance
and Iapp modulate the magnitude of the beta oscillation of MSNs[27]. Besides, Wolf[28] used a
modified version of the HH formulation to simulate the membrane potential dynamics of MSNs.
This model is more complicated and contains dozens of different sodium, potassium, and calcium
ion currents, which can replicate many of the responses of these cells to current injection and
synaptic input[28]. Subsequently, it has been used to study various dynamic behaviors within
striatum[10,26]. The above studies have evaluated the role of the striatal inhibitory circuits in
regulating striatum balance.

However, the effects of the striatal inhibitory microcircuits in the BGTH model remain elu-
sive. The striatum involves direct and indirect channels in the classic model. Therefore, it is
unwise to ignore the modeling of the striatum to consider parkinsonian dynamics. Kumaravelu
et al.[29] developed a biophysical CTBG network model representing the healthy and parkinso-
nian rat brain, in which the cortical network comprised reciprocally connected regular spiking
excitatory neurons and fast-spiking inhibitory interneurons, and striatum modeling took MSNs
into account and provided inhibitory input to BG. Recently, Yu and Wang[30] proposed an ex-
tended BGTH model containing MSNs and FSIs. The results demonstrated that decreasing the
M-current conductance of the MSNs resulted in β-oscillations in the striatum, and increased
the inhibition of GPi and GPe by the striatum also caused oscillatory activity in the β-band of
BG.

Nevertheless, one caveat with using neuron models is that they increase rapidly in complexity
as more neurons and sub-nucleus are modeled, thus making model analyses intractable and
having heavy computing burdens. In addition, the parameters of these models are difficult to
adjust as they require more data from physiological experiments. Although this neuron model
often gives great results in the physiological and clinical sense, it generally lacks some systemic
explanation. Therefore, certain researchers have established other types of models to represent
and analyze the dynamics of neurons under PD.
2.2 Neural field models

The neuron model focuses on modeling individual neurons with a specific connection struc-
ture, and lacks a systematic understanding[31]. When paying attention to the potential dy-
namics of the BG neural network itself, a different approach, the mean-field model, is used to
attempt to simulate population behavior while using fewer dimensions. The mean-field model
uses concepts in statistical physics and approximates the more general overall density model,
which ignores the interactions between models of a higher order than average activity. It is
easier to capture the average electrophysiological activity of a large, spatially distributed neu-
ron collection, thereby enabling a theoretical analysis and extensive simulation of large neural
tissue layers.

At present, the mesoscopic model of BG has attracted more and more attention from re-
searchers. As mentioned before, previous studies indicate that the abnormal oscillations in BG
may be caused by the interaction between STN and GPe[32–34]. In particular, we introduce the
mean-field model of CTBG in detail here. The mean-field model explains not only the dynamic
characteristics of the cortex, but also the biological mechanisms of the interaction among cor-
tex, thalamus, and BG, especially the interpretation of PD dynamics. It mainly refers to the
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theory proposed by Robinson et al.[35]. Robinson et al.[35] constructed a mean-field model of
the cortex-thalamic network, and simulated the normal and epileptic conditions by changing
the model parameters. Since motor instructions originate from the cortex, and information
flows through the BG to other motor nuclei, it is necessary to study how BG affects the cortical
information flow from the perspective of the system and how this effect becomes pathological
in PD. The mean-field model system of the CTBG network to study the dynamic behavior of
PD was proposed[36–37]. The model contains excitatory (e) and inhibitory (i) interneurons in
the cortex, striatum D1, D2 nuclei, GPe, GPi, STN, and TRN in the thalamus (see Fig. 2(d)).

The mean-field model describes the dynamic relationship among the membrane potential,
the mean firing rate, and the presynaptic activity of each neuron group (see Fig. 2(c)). For
a given nucleus a, the relationship between its mean firing rate Qa and its corresponding
membrane voltage Va satisfies the similar sigmoidal function as follows:

Qa(r, t) =
Qmax

a

1 + exp(−(Va(t) − θa)/σ′)
, (17)

where Qmax
a is the maximum attainable firing rate, r is the spatial position of the nucleus, and

θa is the mean threshold potential. σ′ represents the standard deviation of the threshold. It
is usually considered that all the nuclei have the same θa value. The dynamics of the mean
membrane potential Va is modeled as

Dαβ(t)Va(t) =
∑

b

vabϕb(t − τab), (18)

Dαβ(t) =
1

αβ

d2

dt2
+

( 1

α
+

1

β

) d

dt
+ 1. (19)

Here, Dαβ is a differential operator, which represents the integration of dendrites and synapses
of incoming signals. α and β are the reciprocal of the decay and rise time constant of the cell
body’s response to the input signal, respectively. ϕ is the input pulse rate, τab is the time delay,
and vab is the synaptic strength from the nucleus b to the nucleus a.

For the relationship between ϕ and Q, Robinson et al.[35] derived a similar attenuation
damping wave equation to establish

1

γ2
a

( ∂2

∂t2
+ 2γa

∂

∂t
+ γ2

a

)

ϕa(t) = Qa(t), (20)

where γa is the damping rate. In practice, we usually think that only the axons of the cortical
pyramidal neuron group are long enough to produce significant propagation effects. For other
neurons, because the axons are short enough to assume that γa = ∞. In addition, the mean
membrane voltage and the firing rate of cortex satisfy Ve = Vi and Qe = Qi, respectively,
which further simplifies the model. The parameters of the CTBG mean-field model within a
reasonable range can produce a steady-state discharge rate, and many predictions that have not
been mentioned in the previous models are considered. Using the CTBG model, van Albada
et al.[36] and van Albada and Robinson[37] deduced the expression of the mean firing rate of
each nucleus in a steady state. They simulated DA loss through weaker direct and stronger
indirect pathways, which could explain a wide range of electrophysiological phenomena. Besides,
they also explored the possible sources of abnormal oscillations in the CTBG, and found that
oscillations around 5Hz and 20Hz could be generated through a strong indirect way, which
would also lead to increase the synchronization of the entire BG.

In addition to exploring PD, the mean-field model of CTBG has also been widely used
to explore neurological diseases such as epilepsy[38–39]. Subsequently, based on the mean-field
model of CTBG, a new network model for the pedunculopontine nucleus (PPN) was established
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to investigate how PPN controls the PD through the projections from the PPN to several key
nuclei of BG and thalamus[40]. The results showed that, although PPN stimulation had few
effects on the firing rate, it had significant effects on the firing patterns of different nuclei.
Most previous brain modeling work has focused on one of these two scales, and the difficulty
of compound modeling at the two scales is to create a common representation of neuronal
activity[41]. Converting a single spike into an average discharge rate is a direct dimensionality
reduction, which can be obtained by averaging the spike activity directly. In contrast, to convert
an average population firing rate into a single spike requires additional dimensions. Some studies
have proposed a compound spike network/neural field model of the brain. For example, Kerr
et al.[41] developed a composite model to explore the effects of driving a spiking network model
with several different types of input, including those corresponding to the healthy brain and
PD.

The mean-field model has a lower computational burden than the neuron model, and it is a
macroscopic model of studying the mechanism of PD, which may understand the role of nuclei
in pathophysiology from a more systematic perspective. In parallel with the development of
anatomy and physiology, the ability to build computational models to reflect the expanding
knowledge of the biophysics of neurons and their networks is maturing at a rapid rate. In the
treatment of neurodegenerative disease, DBS treatment for PD is gaining increasing acceptance.
Therefore, the integration of control theory, computational neuroscience, and DBS provides an
opportunity to create new approaches to the treatment of PD.

3 DBS therapy

DBS is an effective strategy used in the treatment and control of PD[42]. It inserts electrodes
into the deep nucleus of the brain and then connects the electrodes to the square wave generator
placed in the human subcutaneous tissue with wires to complete the stimulation of parkinsonian
patients[43]. The doctor can adjust the frequency, pulse width, or amplitude of the stimulation
signal to get the best treatment effect[44–45].

Although DBS is considered to be an effective treatment for PD, its side effects are more
obvious. From the system perspective, DBS is an external local control input into the network,
which causes several problems. (i) DBS generally uses a single nucleus as the target, and pro-
longed stimulation will cause specific physical damage[46]. (ii) The battery needs to be replaced
by clinical surgery[47–48]. At present, the stimulation frequency required for STN-DBS or GPi-
DBS is about 130Hz–185Hz[5], and the high energy consumption leads to battery replacement,
which will increase the risk of infection in patients. (iii) Due to the lack of adaptation to the
needs of patients and the effects of symptoms, doctors need to adjust parameters for a long time
to achieve the optimal stimulation effect[44–45]. Therefore, how to improve this inherent treat-
ment strategy and choose a safer and more effective stimulation method is the main problem
of the current studies.
3.1 Optimization of DBS: waveform, target, and electrode

In recent years, many studies have proposed that using neuron models improves DBS from
different perspectives to reduce stimulation side effects. Improvements to DBS can be divided
into three categories (see Fig. 4). The first one is about waveforms. The most commonly used
DBS waveform is dominated by rectangular pulse stimulation[22–23,49–50]. Terman et al.[21]

modeled this rectangular pulse stimulation as

IDBS = iDH
(

sin
(2πt

ρD

))(

1 − H
(

sin
(2π(t + δD)

ρD

)))

, (21)

where iD is the stimulation amplitude, ρD is the stimulation period, and δD is the duration
of each pulse. H(x) represents a Heaviside step function. The HH neuronal network model
is usually used to analyze the treatment strategy of DBS. DBS targeting STN and GPi is
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considered to be an important form of intervention to relieve PD-related motor symptoms. The
DBS is embodied as

CmV ′ = −
∑

k

I ion
k − Isyn + Iapp + IDBS. (22)

The simulation of DBS shows that as the stimulation frequency increases, STN neurons
gradually exhibit high-frequency discharges, synchronized with DBS pulses, thus masking the
original bursting activity of STN neurons[22–23]. STN activates GPe and GPi neurons through
synapse action, causing them to also display high-frequency and regular discharge (see Fig. 5(a)).
The application of stimulus changes the firing pattern of neurons and affects the error index (EI)
of the thalamic relay. In the modified BGTH model, the relationship between the frequency of
EI and DBS is consistent with the clinical observation, that is, the fidelity of the response of
thalamic cells is equivalent to that of health, only when the stimulation frequency is greater than
100Hz[23]. Figure 5(b) shows that EI decreases gradually between 40Hz and 100Hz. However,
such unbalanced single-phase stimulation currents can damage nerve tissues and cause serious
side effects[46]. Therefore, charge-balanced bi-phasic (CBBP) pulses are generally used in actual
surgical operations. Fan et al.[46] modeled the CBBP pulse. In order to be consistent with the
electrophysiological experiment, a short-duration positive-phase anode pulse of 60 µs was used in
each unit stimulation cycle accompanied by a longer-duration negative-phase pulse. ICBBP-DBS

can be considered as

ICBBP-DBS = iDH1

(

H
(

sin
(2πt

ρD

))(

1 − H
(

sin
(2π(t + δD)

ρD

))))

, (23)

where iD, ρD, δD, and H are consistent with Eq. (21). H1 is a bi-valued discrete function,

H1 =

⎧

⎨

⎩

1, x = 1,

−
δD

ρD − δD
, x = 0.

(24)

Except for the rectangular pulse, it has been found that special non-rectangular waves may
have a better effect on the treatment of PD. Wongsarnpigoon and Grill[51] used the genetic
algorithm to calculate the energy-efficient DBS waveform similar to the truncated Gaussian
curves, and determined the parameter selection of DBS waveforms. Foutz and Mcintyre[52]

evaluated the potential energy savings of non-rectangular stimulation pulses relative to clinical
standards. Eight types of stimulation waveforms were considered, i.e., rectangular waveforms,
center triangular waveforms, increasing ramp waveforms, decreasing ramp waveforms, increasing
exponential waveforms, decreasing exponential waveforms, Gaussian waveforms, and sinusoidal
waveforms (see Fig. 4(a))[52]. Studies have shown that the use of non-rectangular stimulation
waveforms can save up to 64% of energy. The delay time between the cathode and anode
parts of the charge balance Gaussian waveform is proposed to desynchronize the GPe and GPi
neurons[53]. The amount of energy consumed by Gaussian Delay Gaussian (GDG) waveforms
is 60% lower than a rectangular charged balanced pulse[53]. Recently, noise stimulation has
been used to destroy the firing pattern of pathological neuronal activity[54]. Compared with
the traditional DBS paradigm, low-frequency and low-intensity noise stimulation with balanced
waveforms can reduce the energy consumption of the stimulation by 50%.

The second one is to improve the target. Through the study of the BG, it is found that the
parkinsonian motor dysfunction is closely related to STN and GPi neurons[55–56]. Therefore,
STN and GPi are used as common targets of DBS, and a series of results have been obtained.
Recently, it was reported that GPe-DBS changed the firing patterns of STN, GPi, and thala-
mic neurons in PD monkeys, and improved abnormal motor signals, suggesting that GPe may
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Fig. 4 (a) Waveform improvements, where rectangular waveforms, center triangular waveforms, in-
creasing ramp waveforms, decreasing ramp waveforms, increasing exponential waveforms, de-
creasing exponential waveform, Gaussian waveform, sinusoidal waveform, CBBP pulses wave-
form, and Guassian with delay waveform are considered[46,51,57] ; (b) target waveforms; (c)
electrode improvements, consistent with the process of the experiment[58], where five adjacent
contacts were selectively extracted and activated to generate different stimulation fields, such
as the front, back, outer, and middle sides of the STN[46] (color online)

become a target of DBS[59]. In terms of targets, there are two different types of stimulation,
i.e., multi-site stimulation and multi-target stimulation. From the perspective of modeling,
Tass[60–61] proposed that perfect desynchronization could be achieved by stimulating all neu-
rons individually, and each neuron had its own electrode and its own reset stimulation. However,
each neuron had its electrode, which will damage the tissue. Thus, it is not feasible. The individ-
ual control mode can be approximated by stimulation at multiple sites, where such stimulation
can be achieved by the neural chip technique[62]. They proposed coordinated reset (CR) stim-
ulation, which is a desynchronized stimulation technique based on the coordinated phase reset
of each subgroup of the synchronized nervous system[63]. The stimulation signal is managed
in a time coordinated manner through the stimulation site so that the next stimulation site
is delayed after the previous stimulation site is activated. Lysyansky et al.[64] also optimized
CR stimulation to minimize the total amount of stimulation current required, depending on
the stimulus intensity and stimulus sequence parameters, including the length of the stimulus
program on and off. For example, CR is applied in the m:n switch mode, where m cycles with
CR are followed by n cycles without any stimulation[64]. Stimulation has a significant desyn-
chronization effect while minimizing the total amount of stimulation current delivered. The
other is multi-target stimulation. Fan and Wang[65] used the BGTH model to explore the ef-
fects of multi-target stimulation on PD. The microelectrodes are placed in three different nuclei
of STN, GPe, and GPi, and high-frequency pulse stimulation currents are alternately injected
into different nuclei. Recently, Yu et al.[66] proposed the combined DBS of two nuclei (CDBS),
which is to inject two kinds of low-frequency pulse stimulation currents with phase difference
by placing two microelectrodes in the BG. Under certain parameters, the energy consumption
of CDBS is reduced by 70% compared with high-frequency DBS, and the stimulation frequency
is reduced to about 40Hz. Figure 5(c) shows the changes of the raster patterns of STN, GPe,
and GPi neurons under the CDBS. The phenomenon of bursting synchronous discharge in
the parkinsonian state has been significantly improved. This control method can alternately
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Fig. 5 (a) 120 Hz STN-DBS, STN, and GPi neurons exhibit high-frequency firing patterns, and the
thalamus also resumes its normal ability to relay SMC signals; (b) the reliability level of tha-
lamus neurons in response to cortical SMC signal input varies with stimulation frequency[23];
(c) an example of dual-target joint stimulation which can desynchronize the neuron group,
from top to bottom: healthy state, pathologic state, and CDBS[66] (color online)

stimulate multiple subcutaneous structures, thus effectively reducing the physical damage caused
by long-lasting stimulation of a single site. In addition to the BG, in recent years, studies have
found that PPN is closely related to the axial symptoms in patients with advanced PD[67–69].
Many clinical studies have shown that low-frequency stimulation of PPN can also improve the
axial symptoms of PD[67].

The traditional stimulation electrode has four longitudinally arranged cylindrical contacts,
which have a large contact area and weak controllability[70]. To obtain the best clinical effect,
it is necessary to maximize the coverage of the area while minimizing the spread of current to
adjacent structures to avoid adverse side effects. Martens et al.[70] used a computational model
to simulate the voltage distribution and DBS activation volume. The electrodes arranged in a
cylindrical array can direct the stimulation field to the main direction field. Contarino et al.[58]

developed a direction-controllable DBS electrode with 32 contacts that can effectively control
the direction and range of the stimulation field. Fan et al.[46] used the BGTH model, com-
bined with related electrophysiological experiments and anatomical characteristics, to verify
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that STN’s four different directions of stimulation had better control effects in improving neu-
ronal cluster desynchronization. They selected four sets of contact sets (each set of contact sets
consists of four adjacent contacts) to represent four directional stimulus strategies, i.e., anterior,
posterior, lateral, and medial. If the contacts surrounded by the rounded rectangle are acti-
vated at the same time, a spherical stimulation field for STN will be generated (see Fig. 4(c)).
Numerical simulations show that the reliability level of thalamus neurons in response to cor-
tical SMC signal input varies with stimulation intensity[46]. Through the analysis, it can be
seen that there is at least one directional control stimulus that can make the relay ability of
TC neurons decrease faster than the spherical stimulation mode within a specific stimulation
intensity range. The improvement work on DBS is still in progress and is expected to be further
applied to the clinical treatment.
3.2 Closed loop DBS

The electrodes of DBS are usually permanently implanted in the BG, and the stimulator
delivers electrical impulses continuously and independently, without relying on any feedback
(open-loop stimulation). On the contrary, in closed-loop stimulation, electrical stimulation is
delivered as a function of neuronal activity, which is adjusted in real-time[71]. Demand-based
closed-loop feedback control is smarter than the normal DBS and avoids harmful side effects
caused by constant stimulation[72]. It can maximize the treatment effect while minimizing the
amount of stimulation and the time to adjust stimulation settings.

Closed-loop stimulation methods mainly include two types. The first type method uses
the high-frequency DBS waveform, and adjusts the stimulation parameters through closed-loop
control. The second type method can be considered as a “mild stimulation”, which attempts to
adjust the pathological oscillation network in an on-demand manner[73]. Regarding the feedback
signal of closed-loop stimulation, we usually use the LFP of STN in modeling[74]. In clinical
experiments, it can be recorded from the end of the electrode used for DBS. Studies have shown
that the LFP is closely related to the activity of individual neurons and shows obvious β-band
oscillations in the PD state[74]. The amplitude of the filtered LFP can indirectly reflect the
degree of synchronization of neurons (see Fig. 3(c)). Generally, in the neuronal network model,
to calculate the magnitude of the stimulus signal, the LFP is modeled, which is related to the
average synaptic activity of the neuron,

PLF = N−1
N

∑

j=1

sj , (25)

where sj(t) is the synaptic variable which is consistent with Eq. (6). Then, filter the LFP of
STN by applying a linear damped oscillator as follows:

ü + αdu̇ + ω2u = kfPLF(t), (26)

where
ω = 2π/T,

in which T is the period of LFP. αd and kf are constants used to maintain the amplitude of the
input original LFP signal. The amplitude of the filtered LFP signal can indirectly reflect the
strong and weak synchronization state of neurons. The stimulation is modulated by the linear
delay feedback method as follows:

Istim = K(x(t − τ ) − x(t)), (27)

where x(t) = u̇, and K is the stimulation intensity[75]. Popovych and Tass[75] found that mod-
ulating the amplitude of pulsed high-frequency stimulation through linear or nonlinear delay
feedback methods could effectively and robustly desynchronize the STN-GPe network model.
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Furthermore, they proposed a pulsed multi-site linear feedback control, considering 200 STN
neurons and adding four stimulation sites, which could achieve a more effective desynchroniza-
tion effect. Guo and Rubin[76] used a computational model of the BGTH to explore a multi-site
delayed feedback stimulation (MDFS), which filtered the simulated LFP signal to generate a
stimulus signal. A new frequency adaptive stimulation control strategy based on the LFP in the
closed-loop model was proposed[77]. For example, high-frequency stimulation is only triggered
at the peak of the filtered LFP (see Fig. 6(b)). Besides, Su et al.[78] systematically studied the
modulation of the amplitude, frequency, and pulse width of the DBS signal through closed-loop
stimulation. The closed-loop adjustment of the DBS parameters shows better desynchronization
and is also energy-efficient.

Adaptive DBS (aDBS) is also a closed-loop system, which changes the stimulation param-
eters in real time according to the patient’s clinical status to provide treatment for patients
with movement disorders. The aDBS uses feedback about the state of the neural circuit to
control the stimulus, instead of providing a fixed stimulus as before[79–81]. Little et al.[80] con-
ducted a systematic test on the aDBS in PD clinical trials. Stimulation was only turned on
when the β-amplitude was higher than the preset threshold, while it was turned off when the
amplitude was lower than the preset threshold. Compared with traditional DBS, aDBS is far
more effective (absolutely reduced by 27%), and the stimulation time is reduced by 56%[79]. Re-
cently, Velisar et al.[82] proposed a new dual-threshold algorithm, which used a dual-threshold
strategy for the β-activity of STN to change the stimulation voltage. In addition, an improved
DBS algorithm was implemented using classic traditional proportional-integral-derivative (PID)
methodology[83]. For example, the control based on the reliability of the thalamus adopts a
proportional control strategy to achieve optimal control under a given energy consumption.
Closed-loop stimulation is more adaptable than open-loop stimulation. Based on theoretical
modeling results, the maximum effectiveness of different closed-loop parameters in human PD
patient experimental models needs further study.

Fig. 6 Feedback loop: (a) the LFP signal of STN is recorded and then filtered with a damped
oscillator, and the result is shifted through a linear or nonlinear delayed feedback and then
through the special stimulation protocol to produce the DBS signal; (b) an example of the
LFP amplitude adjusting the frequency of the stimulation signal (color online)
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4 Summary and outlook

We systematically summarize the dynamic modeling analysis and control strategies related
to PD in recent decades. According to the records and analysis of clinical experiments, the
nucleus within the BG in the parkinsonian network exhibits bursting a discharge behavior, and
the synchronization level increases. Through the power spectral density analysis, it is found
that the energy of STN and GPi nucleus increases significantly in the beta-band. Using the
neuron model and the field model, these dynamic characteristics are well reflected. Models are
generally based on CTBG circuits. Except for the striatum, we generally consider other nuclei as
a whole in modeling. Recently, optogenetics has been used to specifically stimulate the neuron
population in GPe[84], where targeted interventions reliably induce long-term exercise rescue in
PD mouse models. Studies have developed molecular and genetic strategies to subdivide GPe
neurons into subgroups, which have different physiological and anatomical projections[85–86].
In the prototype population, neurons can be further subdivided according to the expression of
parvalbumin (PV)-GPe and Lim homeobox 6 (Lhx6)-GPe[85–86]. The long-lasting recovery of
the movement of PD mice can be achieved by selective excitatory stimulation of PV-GPe or
inhibitory stimulation of Lhx6-GPe[84]. Therefore, the identification of different cell types in the
BG is essential for us to understand the function of the BG and treat neurological disorders,
especially PD. At present, in terms of modeling study, the specific modeling of the nucleus
within the BG is blank, which will be an important node for subsequent study. Because certain
dynamic effects are only achieved by limiting the operation of specific neuron subgroups, rather
than by regulating all neurons at the same time. The specific modeling of neurons helps us to
further understand the dynamic mechanism of PD[5].

At present, the computational model has been widely used to find more novel, irregular, and
low-frequency DBS strategies, and the results obtained are generally more energy-efficient than
traditional DBS. In order to solve the problem of higher damage to a single target, the multi-
target stimulation strategy is proposed. However, the current study on targets mostly stays on
the structure of the BG. Simulating complex neural networks provides a unique opportunity to
evaluate new stimulation targets. It is necessary to explore more effective stimulation targets.
In addition, to reduce the adjustment time of DBS, many studies have combined model-based
control techniques to design a closed-loop aDBS strategy. However, the improvement of DBS
seems to be a huge project, the clinical application is not abundant, and there are still consid-
erable differences between the models and the actual applications. In general, these solutions
are still in the early theoretical stage, and it takes a long time to transition from the preclinical
trial stage to the clinical trial stage[5].

In addition to electrical stimulation, optogenetic stimulation is slowly emerging for the
regulation of neurons. This technique can control neural activity in a cell-specific way with
a high degree of time accuracy, which is a significant advantage over traditional techniques
such as electrical stimulation[87]. Optogenetic stimulation combines genetic and optical tools to
stimulate specific neurons. Electrical stimulation will drive the activity of all cells in the area
where the electrode is located through the coupling relationship between neurons[88], including
some axons in the cell body far away from the target[89]. These compound effects may make
it difficult to understand the stimulus and may lead to off-target adverse effects. Optogenetic
stimulation is aimed at specific cell types. It is potentially highly spatially selective, and external
stimuli can have no direct contact with cells[87]. Neuron optogenetic tools can also be divided
into excitatory and inhibitory[89]. Therefore, it can tell us more specifically whether the effect
on neurons is excitatory or inhibitory. Therefore, we can use optogenetic stimulation to explore
the therapeutic mechanism of DBS, which can be further used to understand the mechanism
of PD and improve electrical DBS.
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